1
|
Sobolev V, Tchepourina E, Soboleva A, Denisova E, Korsunskaya I, Mezentsev A. PPAR-γ in Melanoma and Immune Cells: Insights into Disease Pathogenesis and Therapeutic Implications. Cells 2025; 14:534. [PMID: 40214488 PMCID: PMC11989151 DOI: 10.3390/cells14070534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Changes in skin pigmentation, like hyperpigmentation or moles, can affect appearance and social life. Unlike locally containable moles, malignant melanomas are aggressive and can spread rapidly, disproportionately affecting younger individuals with a high potential for metastasis. Research has shown that the peroxisome proliferator-activated receptor gamma (PPAR-γ) and its ligands exhibit protective effects against melanoma. As a transcription factor, PPAR-γ is crucial in functions like fatty acid storage and glucose metabolism. Activation of PPAR-γ promotes lipid uptake and enhances sensitivity to insulin. In many cases, it also inhibits the growth of cancer cell lines, like breast, gastric, lung, and prostate cancer. In melanoma, PPAR-γ regulates cell proliferation, differentiation, apoptosis, and survival. During tumorigenesis, it controls metabolic changes and the immunogenicity of stromal cells. PPAR-γ agonists can target hypoxia-induced angiogenesis in tumor therapy, but their effects on tumors can be suppressive or promotional, depending on the tumor environment. Published data show that PPAR-γ-targeting agents can be effective in specific groups of patients, but further studies are needed to understand lesser-known biological effects of PPAR-γ and address the existing safety concerns. This review provides a summary of the current understanding of PPAR-γ and its involvement in melanoma.
Collapse
Affiliation(s)
- Vladimir Sobolev
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Ekaterina Tchepourina
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Anna Soboleva
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Elena Denisova
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
- Moscow Center of Dermatovenerology and Cosmetology, Moscow 119071, Russia
| | - Irina Korsunskaya
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Alexandre Mezentsev
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| |
Collapse
|
2
|
Zhou XP, Xing JP, Sun LB, Tian SQ, Luo R, Liu WH, Song XY, Gao SH. Molecular characteristics and systemic treatment options of liposarcoma: A systematic review. Biomed Pharmacother 2024; 178:117204. [PMID: 39067161 DOI: 10.1016/j.biopha.2024.117204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Liposarcoma (LPS) is a rare soft tissue sarcoma that develops from the differentiation of fat cells, typically occurring in the lower extremities and retroperitoneal space. Depending on its histological morphology and molecular changes, LPS can be divided into various subtypes, each exhibiting distinct biological behaviors. During treatment, especially for LPS arising in the retroperitoneum, the extent and quality of the initial surgery are critically important. Treatment strategies must be tailored to the specific type of LPS. Over the past few decades, the treatment of LPS has undergone numerous advancements, with new therapeutic approaches such as targeted drugs and immunotherapies continually emerging. This paper reviews the biological characteristics, molecular alterations, as well as surgical and pharmacological treatments of various LPS subtypes, with the aim of enhancing clinicians' understanding and emphasizing the importance of individualized precision therapy. With a deeper understanding of the biological characteristics and molecular alterations of LPS, future treatment trends are likely to focus more on developing personalized treatment plans to better address the various types of LPS.
Collapse
Affiliation(s)
- Xuan-Peng Zhou
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Jian-Peng Xing
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Luan-Biao Sun
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Sheng-Qi Tian
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Ran Luo
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Wen-Hao Liu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Xin-Yuan Song
- The Chinese University of Hong Kong, New Territories 999077, Hong Kong Special Administrative Region of China
| | - Shuo-Hui Gao
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China.
| |
Collapse
|
3
|
Skoczyńska A, Ołdakowska M, Dobosz A, Adamiec R, Gritskevich S, Jonkisz A, Lebioda A, Adamiec-Mroczek J, Małodobra-Mazur M, Dobosz T. PPARs in Clinical Experimental Medicine after 35 Years of Worldwide Scientific Investigations and Medical Experiments. Biomolecules 2024; 14:786. [PMID: 39062500 PMCID: PMC11275227 DOI: 10.3390/biom14070786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
This year marks the 35th anniversary of Professor Walter Wahli's discovery of the PPARs (Peroxisome Proliferator-Activated Receptors) family of nuclear hormone receptors. To mark the occasion, the editors of the scientific periodical Biomolecules decided to publish a special issue in his honor. This paper summarizes what is known about PPARs and shows how trends have changed and how research on PPARs has evolved. The article also highlights the importance of PPARs and what role they play in various diseases and ailments. The paper is in a mixed form; essentially it is a review article, but it has been enriched with the results of our experiments. The selection of works was subjective, as there are more than 200,000 publications in the PubMed database alone. First, all papers done on an animal model were discarded at the outset. What remained was still far too large to describe directly. Therefore, only papers that were outstanding, groundbreaking, or simply interesting were described and briefly commented on.
Collapse
Affiliation(s)
- Anna Skoczyńska
- Department of Internal and Occupational Medicine and Hypertension, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Monika Ołdakowska
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Agnieszka Dobosz
- Department of Basic Medical Sciences and Immunology, Division of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| | - Rajmund Adamiec
- Department of Diabetology and Internal Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
- Department of Internal Medicine, Faculty of Medical and Technical Sciences, Karkonosze University of Applied Sciences, Lwówiecka 18, 58-506 Jelenia Góra, Poland
| | - Sofya Gritskevich
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Anna Jonkisz
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Arleta Lebioda
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Joanna Adamiec-Mroczek
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Tadeusz Dobosz
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| |
Collapse
|
4
|
M S A, K C, Bhargavan RV, Somanathan T, Subhadradevi L. An overview on liposarcoma subtypes: Genetic alterations and recent advances in therapeutic strategies. J Mol Histol 2024; 55:227-240. [PMID: 38696048 DOI: 10.1007/s10735-024-10195-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/18/2024] [Indexed: 05/21/2024]
Abstract
Liposarcoma (LPS) is a rare malignancy of adipocytic differentiation. According to World Health Organization classification, LPS comprises of four principle subtypes Atypical lipomatous tumor/Well-differentiated liposarcoma (ATL/WDLPS), Dedifferentiated liposarcoma (WDLPS), Myxoid liposarcoma (MLPS), and Pleomorphic liposarcoma (PLPS). Each subtype can develop at any location and shows distinct clinical behavior and treatment sensitivity. ATL/ WDLPS subtype has a higher incidence rate, low recurrence, and is insensitive to radiation and chemotherapy. DDLPS is the focal progression of WDLPS, which is aggressive and highly metastasizing. MLPS is sensitive to radiation and chemotherapy, with a higher recurrence rate and metastasis. PLPS subtype is highly metastasizing, has a poor prognosis, and exhibiting higher recurrence rate. Initial histological analysis provides information for the characterization of LPS subtypes', further molecular and genetic analysis provides certain subtype specifications, such as gene amplifications and gene fusions. Such molecular genetic alterations will be useful as therapeutic targets in various cancers, including the LPS subtypes. A wide range of novel therapeutic agents based on genetic alterations that aim to target LPS subtypes specifically are under investigation. This review summarizes the LPS subtype classification, their molecular genetic characteristics, and the implications of genetic alterations in therapeutics.
Collapse
Affiliation(s)
- Anju M S
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India
| | - Chandramohan K
- Division of Surgical Oncology, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India
| | - Rexeena V Bhargavan
- Division of Surgical Oncology, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India
| | - Thara Somanathan
- Division of Pathology, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India
| | - Lakshmi Subhadradevi
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India.
| |
Collapse
|
5
|
Robinson JW, Martin R, Ozawa M, Elwenspoek MMC, Redaniel MT, Kurian K, Ben-Shlomo Y. Use of drugs for hyperlipidaemia and diabetes and risk of primary and secondary brain tumours: nested case-control studies using the UK Clinical Practice Research Datalink (CPRD). BMJ Open 2024; 14:e072026. [PMID: 38336454 PMCID: PMC10860117 DOI: 10.1136/bmjopen-2023-072026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 12/05/2023] [Indexed: 02/12/2024] Open
Abstract
OBJECTIVES Previous studies have suggested that fibrates and glitazones may have a role in brain tumour prevention. We examined if there is support for these observations using primary care records from the UK Clinical Practice Research Datalink (CPRD). DESIGN We conducted two nested case-control studies using primary and secondary brain tumours identified within CPRD between 2000 and 2016. We selected cases and controls among the population of individuals who had been treated with any anti-diabetic or anti-hyperlipidaemic medication to reduce confounding by indication. SETTING Adults older than 18 years registered with a general practitioner in the UK contributing data to CPRD. RESULTS We identified 7496 individuals with any brain tumour (4471 primary; 3025 secondary) in total. After restricting cases and controls to those prescribed any anti-diabetic or anti-hyperlipidaemic medication, there were 1950 cases and 7791 controls in the fibrate and 480 cases with 1920 controls in the glitazone analyses. Longer use of glitazones compared with all other anti-diabetic medications was associated with a reduced risk of primary (adjusted OR (aOR) 0.89 per year, 95% CI 0.80 to 0.98), secondary (aOR 0.87 per year, 95% CI 0.77 to 0.99) or combined brain tumours (aOR 0.88 per year, 95% CI 0.81 to 0.95). There was little evidence that fibrate exposure was associated with risk of either primary or secondary brain tumours. CONCLUSIONS Longer exposure to glitazones was associated with reduced primary and secondary brain tumour risk. Further basic science and population-based research should explore this finding in greater detail, in terms of replication and mechanistic studies.
Collapse
Affiliation(s)
- Jamie W Robinson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Richard Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, University of Bristol Medical School, Bristol, UK
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Mio Ozawa
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Martha Maria Christine Elwenspoek
- Department of Population Health Sciences, University of Bristol Medical School, Bristol, UK
- National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) West, Univeristy of Bristol, Bristol, UK
| | - Maria Theresa Redaniel
- Department of Population Health Sciences, University of Bristol Medical School, Bristol, UK
- National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) West, Univeristy of Bristol, Bristol, UK
| | - Kathreena Kurian
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Brain Tumour Research Centre, University of Bristol, Bristol, UK
| | - Yoav Ben-Shlomo
- Department of Population Health Sciences, University of Bristol Medical School, Bristol, UK
- National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) West, Univeristy of Bristol, Bristol, UK
| |
Collapse
|
6
|
Lesovaya EA, Fetisov TI, Bokhyan BY, Maksimova VP, Kulikov EP, Belitsky GA, Kirsanov KI, Yakubovskaya MG. Genetic, Epigenetic and Transcriptome Alterations in Liposarcoma for Target Therapy Selection. Cancers (Basel) 2024; 16:271. [PMID: 38254762 PMCID: PMC10813500 DOI: 10.3390/cancers16020271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Liposarcoma (LPS) is one of the most common adult soft-tissue sarcomas (STS), characterized by a high diversity of histopathological features as well as to a lesser extent by a spectrum of molecular abnormalities. Current targeted therapies for STS do not include a wide range of drugs and surgical resection is the mainstay of treatment for localized disease in all subtypes, while many LPS patients initially present with or ultimately progress to advanced disease that is either unresectable, metastatic or both. The understanding of the molecular characteristics of liposarcoma subtypes is becoming an important option for the detection of new potential targets and development novel, biology-driven therapies for this disease. Innovative therapies have been introduced and they are currently part of preclinical and clinical studies. In this review, we provide an analysis of the molecular genetics of liposarcoma followed by a discussion of the specific epigenetic changes in these malignancies. Then, we summarize the peculiarities of the key signaling cascades involved in the pathogenesis of the disease and possible novel therapeutic approaches based on a better understanding of subtype-specific disease biology. Although heterogeneity in liposarcoma genetics and phenotype as well as the associated development of resistance to therapy make difficult the introduction of novel therapeutic targets into the clinic, recently a number of targeted therapy drugs were proposed for LPS treatment. The most promising results were shown for CDK4/6 and MDM2 inhibitors as well as for the multi-kinase inhibitors anlotinib and sunitinib.
Collapse
Affiliation(s)
- Ekaterina A. Lesovaya
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
- Faculty of Oncology, I.P. Pavlov Ryazan State Medical University, Ministry of Health of Russia, 9 Vysokovol’tnaya St., Ryazan 390026, Russia;
- Laboratory of Single Cell Biology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russia
| | - Timur I. Fetisov
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
| | - Beniamin Yu. Bokhyan
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
| | - Varvara P. Maksimova
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
| | - Evgeny P. Kulikov
- Faculty of Oncology, I.P. Pavlov Ryazan State Medical University, Ministry of Health of Russia, 9 Vysokovol’tnaya St., Ryazan 390026, Russia;
| | - Gennady A. Belitsky
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
| | - Kirill I. Kirsanov
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
- Laboratory of Single Cell Biology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russia
| | - Marianna G. Yakubovskaya
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
- Laboratory of Single Cell Biology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russia
| |
Collapse
|
7
|
Zhang W, Lang R. Succinate metabolism: a promising therapeutic target for inflammation, ischemia/reperfusion injury and cancer. Front Cell Dev Biol 2023; 11:1266973. [PMID: 37808079 PMCID: PMC10556696 DOI: 10.3389/fcell.2023.1266973] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
Succinate serves as an essential circulating metabolite within the tricarboxylic acid (TCA) cycle and functions as a substrate for succinate dehydrogenase (SDH), thereby contributing to energy production in fundamental mitochondrial metabolic pathways. Aberrant changes in succinate concentrations have been associated with pathological states, including chronic inflammation, ischemia/reperfusion (IR) injury, and cancer, resulting from the exaggerated response of specific immune cells, thereby rendering it a central area of investigation. Recent studies have elucidated the pivotal involvement of succinate and SDH in immunity beyond metabolic processes, particularly in the context of cancer. Current scientific endeavors are concentrated on comprehending the functional repercussions of metabolic modifications, specifically pertaining to succinate and SDH, in immune cells operating within a hypoxic milieu. The efficacy of targeting succinate and SDH alterations to manipulate immune cell functions in hypoxia-related diseases have been demonstrated. Consequently, a comprehensive understanding of succinate's role in metabolism and the regulation of SDH is crucial for effectively targeting succinate and SDH as therapeutic interventions to influence the progression of specific diseases. This review provides a succinct overview of the latest advancements in comprehending the emerging functions of succinate and SDH in metabolic processes. Furthermore, it explores the involvement of succinate, an intermediary of the TCA cycle, in chronic inflammation, IR injury, and cancer, with particular emphasis on the mechanisms underlying succinate accumulation. This review critically assesses the potential of modulating succinate accumulation and metabolism within the hypoxic milieu as a means to combat various diseases. It explores potential targets for therapeutic interventions by focusing on succinate metabolism and the regulation of SDH in hypoxia-related disorders.
Collapse
Affiliation(s)
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Lavudi K, Nuguri SM, Olverson Z, Dhanabalan AK, Patnaik S, Kokkanti RR. Targeting the retinoic acid signaling pathway as a modern precision therapy against cancers. Front Cell Dev Biol 2023; 11:1254612. [PMID: 37645246 PMCID: PMC10461636 DOI: 10.3389/fcell.2023.1254612] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
Retinoic acid (RA) is a vital metabolite derived from vitamin A. RA plays a prominent role during development, which helps in embryological advancement and cellular differentiation. Mechanistically, RA binds to its definite nuclear receptors including the retinoic acid receptor and retinoid X receptor, thus triggering gene transcription and further consequences in gene regulation. This functional heterodimer activation later results in gene activation/inactivation. Several reports have been published related to the detailed embryonic and developmental role of retinoic acids and as an anti-cancer drug for specific cancers, including acute promyelocytic leukemia, breast cancer, and prostate cancer. Nonetheless, the other side of all-trans retinoic acid (ATRA) has not been explored widely yet. In this review, we focused on the role of the RA pathway and its downstream gene activation in relation to cancer progression. Furthermore, we explored the ways of targeting the retinoic acid pathway by focusing on the dual role of aldehyde dehydrogenase (ALDH) family enzymes. Combination strategies by combining RA targets with ALDH-specific targets make the tumor cells sensitive to the treatment and improve the progression-free survival of the patients. In addition to the genomic effects of ATRA, we also highlighted the role of ATRA in non-canonical mechanisms as an immune checkpoint inhibitor, thus targeting the immune oncological perspective of cancer treatments in the current era. The role of ATRA in activating independent mechanisms is also explained in this review. This review also highlights the current clinical trials of ATRA in combination with other chemotherapeutic drugs and explains the future directional insights related to ATRA usage.
Collapse
Affiliation(s)
- Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Shreya Madhav Nuguri
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Zianne Olverson
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Anantha Krishna Dhanabalan
- Centre for Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| | - Srinivas Patnaik
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Rekha Rani Kokkanti
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, Andhra Pradesh, India
| |
Collapse
|
9
|
Lee WS, Jang Y, Cho A, Kim YB, Bu YH, Yang S, Kim EH. Effectiveness of tumor‑treating fields to reduce the proliferation and migration of liposarcoma cell lines. Exp Ther Med 2023; 26:363. [PMID: 37408858 PMCID: PMC10318604 DOI: 10.3892/etm.2023.12062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/21/2023] [Indexed: 07/07/2023] Open
Abstract
Liposarcoma (LPS) is a rare type of soft tissue sarcoma that constitutes 20% of all sarcoma cases in adults. Effective therapeutic protocols for human LPS are not well-defined. Tumor-treating fields (TTFields) are a novel and upcoming field for antitumor therapy. TTFields combined with chemoradiotherapy have proven to be more effective than TTFields combined with radiotherapy or chemotherapy alone. The present study aimed to assess the effectiveness of TTFields in inhibiting cell proliferation and viability for the anticancer treatment of LPS. The present study used TTFields (frequency, 150 kHz; intensity, 1.0 V/cm) to treat two LPS cell lines (94T778 and SW872) and analyzed the antitumor effects. According to trypan blue and MTT assay results, TTFields markedly reduced the viability and proliferation of LPS cell lines along with the formation of colonies in three-dimensional culture. Based on the Transwell chamber assay, TTFields treatment also markedly reduced the migration of LPS cells. Furthermore, as shown by the higher activation of caspase-3 in the Caspase-3 activity assay and the results of the reactive oxygen species (ROS) assay, TTFields increased the formation of ROS in the cells and enhanced the proportion of apoptotic cells. The present study also investigated the inhibitory effect of TTFields in combination with doxorubicin (DOX) on the migratory capacity of tumor cells. The results demonstrated that TTFields treatment synergistically induced the ROS-induced apoptosis of LPS cancer cell lines and inhibited their migratory behavior. In conclusion, the present study demonstrated the potential of TTFields in improving the sensitivity of LPS cancer cells, which may lay the foundation for future clinical trials of this combination treatment strategy.
Collapse
Affiliation(s)
- Won Seok Lee
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Daegu, Gyeongsangbuk-do 42472, Republic of Korea
| | - Yoonjung Jang
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Gyeongsangbuk-do 42988, Republic of Korea
| | - Ahyeon Cho
- School of Medicine, Daegu Catholic University, Daegu, Gyeongsangbuk-do 42472, Republic of Korea
| | - Yu Bin Kim
- School of Medicine, Daegu Catholic University, Daegu, Gyeongsangbuk-do 42472, Republic of Korea
| | - Young Hyun Bu
- School of Medicine, Daegu Catholic University, Daegu, Gyeongsangbuk-do 42472, Republic of Korea
| | - Somi Yang
- School of Medicine, Daegu Catholic University, Daegu, Gyeongsangbuk-do 42472, Republic of Korea
| | - Eun Ho Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Daegu, Gyeongsangbuk-do 42472, Republic of Korea
| |
Collapse
|
10
|
Yang K, Wang X, Song C, He Z, Wang R, Xu Y, Jiang G, Wan Y, Mei J, Mao W. The role of lipid metabolic reprogramming in tumor microenvironment. Theranostics 2023; 13:1774-1808. [PMID: 37064872 PMCID: PMC10091885 DOI: 10.7150/thno.82920] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/07/2023] [Indexed: 04/18/2023] Open
Abstract
Metabolic reprogramming is one of the most important hallmarks of malignant tumors. Specifically, lipid metabolic reprogramming has marked impacts on cancer progression and therapeutic response by remodeling the tumor microenvironment (TME). In the past few decades, immunotherapy has revolutionized the treatment landscape for advanced cancers. Lipid metabolic reprogramming plays pivotal role in regulating the immune microenvironment and response to cancer immunotherapy. Here, we systematically reviewed the characteristics, mechanism, and role of lipid metabolic reprogramming in tumor and immune cells in the TME, appraised the effects of various cell death modes (specifically ferroptosis) on lipid metabolism, and summarized the antitumor therapies targeting lipid metabolism. Overall, lipid metabolic reprogramming has profound effects on cancer immunotherapy by regulating the immune microenvironment; therefore, targeting lipid metabolic reprogramming may lead to the development of innovative clinical applications including sensitizing immunotherapy.
Collapse
Affiliation(s)
- Kai Yang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaokun Wang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Chenghu Song
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Zhao He
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Ruixin Wang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Yongrui Xu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Guanyu Jiang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton 13850, USA
| | - Jie Mei
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wenjun Mao
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| |
Collapse
|
11
|
Lipidomics and Transcriptomics Differ Liposarcoma Differentiation Characteristics That Can Be Altered by Pentose Phosphate Pathway Intervention. Metabolites 2022; 12:metabo12121227. [PMID: 36557266 PMCID: PMC9783184 DOI: 10.3390/metabo12121227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Liposarcoma (LPS) is a rare and heterogeneous malignancy of adipocytic origin. Well-differentiated liposarcoma (WDLPS) and dedifferentiated liposarcoma (DDLPS) are two of the most common subtypes, showing similar genetic characterizations but distinct biological behaviors and clinical prognosis. Compared to WDLPS, DDLPS is more aggressive and has the potential of metastasis, as the malignant adipocytic tumor's metabolic changes may have taken place during the tumorigenesis of LPSs. Therefore, to investigate the lipid alterations between the two subtypes, high-resolution liquid chromatography tandem mass spectrometry (LC-MS/MS) based untargeted lipidomic analysis was performed onto LPS tissues from 6 WDLPS and 7 DDLPS patients. The lipidomic analysis showed the upregulated phosphatidylcholines and phosphoethanolamines in DDLPS, and the upregulated triglycerides and diglycerides in WDLPS, which might be due to the uncompleted adipocytic dedifferentiation leading to such tumorigenesis. Such a finding was also confirmed by the similarity comparison of two LPS subtypes to the transcriptome of stromal vascular fraction at different differentiation stages. Transcriptomic analysis also demonstrated that metabolic pathways including the pentose phosphate pathway (PPP) were upregulated in WDLPS compared to DDLPS. Therefore, the cell line LPS853 was treated with the PPP inhibitor 6-aminonicotinamide ex vivo and the proliferation and invasion of LPS853 was significantly promoted by PPP inhibition, suggesting the potential role of PPP in the development and differentiation of LPS. In conclusion, this study described the altered lipid profiles of WDLPS and DDLPS for the first time, revealing the different differentiation stages of the two subtypes and providing a potential metabolic target for LPS treatment.
Collapse
|
12
|
Takeuchi A, Endo M, Kawai A, Nishida Y, Terauchi R, Matsumine A, Aiba H, Nakamura T, Tandai S, Ozaki T, Hoshi M, Kayano D, Okuda M, Yamamoto N, Hayashi K, Miwa S, Igarashi K, Yoshimura K, Nomura A, Murayama T, Tsuchiya H. Randomized placebo-controlled double-blind phase II study of zaltoprofen for patients with diffuse-type and unresectable localized tenosynovial giant cell tumors: The REALIZE study. Front Oncol 2022; 12:900010. [PMID: 36212437 PMCID: PMC9533097 DOI: 10.3389/fonc.2022.900010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background A tenosynovial giant cell tumor (TGCT) is a locally aggressive benign neoplasm arising from intra- or extra-articular tissue, categorized as localized (L-TGCT, solitary lesion) and diffuse (D-TGCT, multiple lesions) TGCT. Surgical excision is the mainstay of the treatment, and a high local recurrence rate of approximately 50% has been reported. We focused on zaltoprofen, a nonsteroidal anti-inflammatory drug that can activate peroxisome proliferator-activated receptor gamma (PPARγ) and inhibit the proliferation of TGCT stromal cells. Therefore, we conducted a randomized trial to evaluate the safety and effectiveness of zaltoprofen in patients with D-TGCTs or unresectable L-TGCTs. Methods This randomized, placebo-controlled, double-blind, multicenter trial evaluated the safety and efficacy of zaltoprofen. In the treatment group, zaltoprofen (480 mg/day) was administered for 48 weeks; the placebo group received similar dosages without zaltoprofen. The primary outcome was progression-free rate (PFR) 48 weeks after treatment administration. Disease progression was defined as the following conditions requiring surgical intervention: 1) repetitive joint swelling due to hemorrhage, 2) joint range of motion limitation, 3) invasion of the adjacent cartilage or bone, 4) severe joint space narrowing, and 5) increased tumor size (target lesion). Results Forty-one patients were allocated to the zaltoprofen (n=21) or placebo (n=20) groups. The PFR was not significant between the zaltoprofen group and the placebo group at 48 weeks (84.0% and 90.0%, respectively; p=0.619). The mean Japanese Orthopedic Association knee score significantly improved from baseline to week 48 in the zaltoprofen group (85.38 versus 93.75, p=0.027). There was a significant difference between the values at 48 weeks of placebo and zaltoprofen group (p=0.014). One severe adverse event (grade 3 hypertension) was observed in the zaltoprofen group. Discussion This is the first study to evaluate the efficacy and safety of zaltoprofen in patients with TGCT. No significant differences in PFR were observed between the groups at 48 weeks. Physical function significantly improved after zaltoprofen treatment. The safety profile of zaltoprofen was acceptable. This less invasive and safer treatment with zaltoprofen, compared to surgical removal, could be justified as a novel approach to treating TGCT. Further analysis of long-term administration of zaltoprofen should be considered in future studies. Clinical Trial Registration University Hospital Medical Information Network Clinical Trials Registry, identifier (UMIN000025901).
Collapse
Affiliation(s)
- Akihiko Takeuchi
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Makoto Endo
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshihiro Nishida
- Department of Orthopaedic Surgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Ryu Terauchi
- Department of Orthopaedic Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akihiko Matsumine
- Department of Orthopaedics and Rehabilitation Medicine, Unit of Surgery, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hisaki Aiba
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tomoki Nakamura
- Department of Orthopedic Surgery, Mie University School of Medicine, Mie, Japan
| | - Susumu Tandai
- Department of Orthopaedic Surgery, Asahikawa Medical University, Hokkaido, Japan
| | - Toshifumi Ozaki
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Manabu Hoshi
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Daiki Kayano
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - Miho Okuda
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kentaro Igarashi
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kenichi Yoshimura
- Future Medical Center, Hiroshima University Hospital, Hiroshima, Japan
| | - Akihiro Nomura
- Innovative Clinical Research Center (iCREK), Kanazawa University Hospital, Kanazawa, Japan
| | - Toshinori Murayama
- Innovative Clinical Research Center (iCREK), Kanazawa University Hospital, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- *Correspondence: Hiroyuki Tsuchiya,
| |
Collapse
|
13
|
Cassinelli G, Pasquali S, Lanzi C. Beyond targeting amplified MDM2 and CDK4 in well differentiated and dedifferentiated liposarcomas: From promise and clinical applications towards identification of progression drivers. Front Oncol 2022; 12:965261. [PMID: 36119484 PMCID: PMC9479065 DOI: 10.3389/fonc.2022.965261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/12/2022] [Indexed: 12/01/2022] Open
Abstract
Well differentiated and dedifferentiated liposarcomas (WDLPS and DDLPS) are tumors of the adipose tissue poorly responsive to conventional cytotoxic chemotherapy which currently remains the standard-of-care. The dismal prognosis of the DDLPS subtype indicates an urgent need to identify new therapeutic targets to improve the patient outcome. The amplification of the two driver genes MDM2 and CDK4, shared by WDLPD and DDLPS, has provided the rationale to explore targeting the encoded ubiquitin-protein ligase and cell cycle regulating kinase as a therapeutic approach. Investigation of the genomic landscape of WD/DDLPS and preclinical studies have revealed additional potential targets such as receptor tyrosine kinases, the cell cycle kinase Aurora A, and the nuclear exporter XPO1. While the therapeutic significance of these targets is being investigated in clinical trials, insights into the molecular characteristics associated with dedifferentiation and progression from WDLPS to DDLPS highlighted additional genetic alterations including fusion transcripts generated by chromosomal rearrangements potentially providing new druggable targets (e.g. NTRK, MAP2K6). Recent years have witnessed the increasing use of patient-derived cell and tumor xenograft models which offer valuable tools to accelerate drug repurposing and combination studies. Implementation of integrated "multi-omics" investigations applied to models recapitulating WD/DDLPS genetics, histologic differentiation and biology, will hopefully lead to a better understanding of molecular alterations driving liposarcomagenesis and DDLPS progression, as well as to the identification of new therapies tailored on tumor histology and molecular profile.
Collapse
Affiliation(s)
- Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
- Sarcoma Service, Department of Surgery, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
14
|
Bar-Hai N, Ishay-Ronen D. Engaging plasticity: Differentiation therapy in solid tumors. Front Pharmacol 2022; 13:944773. [PMID: 36034865 PMCID: PMC9410762 DOI: 10.3389/fphar.2022.944773] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is a systemic heterogeneous disease that can undergo several rounds of latency and activation. Tumor progression evolves by increasing diversity, adaptation to signals from the microenvironment and escape mechanisms from therapy. These dynamic processes indicate necessity for cell plasticity. Epithelial-mesenchymal transition (EMT) plays a major role in facilitating cell plasticity in solid tumors by inducing dedifferentiation and cell type transitions. These two practices, plasticity and dedifferentiation enhance tumor heterogeneity creating a key challenge in cancer treatment. In this review we will explore cancer cell plasticity and elaborate treatment modalities that aspire to overcome such dynamic processes in solid tumors. We will further discuss the therapeutic potential of utilizing enhanced cell plasticity for differentiation therapy.
Collapse
Affiliation(s)
- Neta Bar-Hai
- Cancer Research Center, Oncology Institute, Chaim Sheba Medical Center, Tel-Hashomer, Israel
- Affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dana Ishay-Ronen
- Cancer Research Center, Oncology Institute, Chaim Sheba Medical Center, Tel-Hashomer, Israel
- Affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Dana Ishay-Ronen,
| |
Collapse
|
15
|
Wagner N, Wagner KD. Peroxisome Proliferator-Activated Receptors and the Hallmarks of Cancer. Cells 2022; 11:cells11152432. [PMID: 35954274 PMCID: PMC9368267 DOI: 10.3390/cells11152432] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) function as nuclear transcription factors upon the binding of physiological or pharmacological ligands and heterodimerization with retinoic X receptors. Physiological ligands include fatty acids and fatty-acid-derived compounds with low specificity for the different PPAR subtypes (alpha, beta/delta, and gamma). For each of the PPAR subtypes, specific pharmacological agonists and antagonists, as well as pan-agonists, are available. In agreement with their natural ligands, PPARs are mainly focused on as targets for the treatment of metabolic syndrome and its associated complications. Nevertheless, many publications are available that implicate PPARs in malignancies. In several instances, they are controversial for very similar models. Thus, to better predict the potential use of PPAR modulators for personalized medicine in therapies against malignancies, it seems necessary and timely to review the three PPARs in relation to the didactic concept of cancer hallmark capabilities. We previously described the functions of PPAR beta/delta with respect to the cancer hallmarks and reviewed the implications of all PPARs in angiogenesis. Thus, the current review updates our knowledge on PPAR beta and the hallmarks of cancer and extends the concept to PPAR alpha and PPAR gamma.
Collapse
Affiliation(s)
- Nicole Wagner
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-489-153-713 (K.-D.W.)
| | | |
Collapse
|
16
|
Dang TN, Tiongco RP, Brown LM, Taylor JL, Lyons JM, Lau FH, Floyd ZE. Expression of the preadipocyte marker ZFP423 is dysregulated between well-differentiated and dedifferentiated liposarcoma. BMC Cancer 2022; 22:300. [PMID: 35313831 PMCID: PMC8939188 DOI: 10.1186/s12885-022-09379-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/04/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Well-differentiated and dedifferentiated liposarcomas are rare soft tissue tumors originating in adipose tissue that share genetic abnormalities but have significantly different metastatic potential. Dedifferentiated liposarcoma (DDLPS) is highly aggressive and has an overall 5-year survival rate of 30% as compared to 90% for well-differentiated liposarcoma (WDLPS). This discrepancy may be connected to their potential to form adipocytes, where WDLPS is adipogenic but DDLPS is adipogenic-impaired. Normal adipogenesis requires Zinc Finger Protein 423 (ZFP423), a transcriptional coregulator of Perixosome Proliferator Activated Receptor gamma (PPARG2) mRNA expression that defines committed preadipocytes. Expression of ZFP423 in preadipocytes is promoted by Seven-In-Absentia Homolog 2 (SIAH2)-mediated degradation of Zinc Finger Protein 521 (ZFP521). This study investigated the potential role of ZFP423, SIAH2 and ZFP521 in the adipogenic potential of WDLPS and DDLPS. METHODS Human WDLPS and DDLPS fresh and paraffin-embedded tissues were used to assess the gene and protein expression of proadipogenic regulators. In parallel, normal adipose tissue stromal cells along with WDLPS and DDLPS cell lines were cultured, genetically modified, and induced to undergo adipogenesis in vitro. RESULTS Impaired adipogenic potential in DDLPS was associated with reduced ZFP423 protein levels in parallel with reduced PPARG2 expression, potentially involving regulation of ZFP521. SIAH2 protein levels did not define a clear distinction related to adipogenesis in these liposarcomas. However, in primary tumor specimens, SIAH2 mRNA was consistently upregulated in DDLPS compared to WDLPS when assayed by fluorescence in situ hybridization or real-time PCR. CONCLUSIONS These data provide novel insights into ZFP423 expression in adipogenic regulation between WDLPS and DDLPS adipocytic tumor development. The data also introduces SIAH2 mRNA levels as a possible molecular marker to distinguish between WDLPS and DDLPS.
Collapse
Affiliation(s)
- Thanh N Dang
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, 70808, USA
| | - Rafael P Tiongco
- Tulane University School of Medicine, New Orleans, Louisiana, 70118, USA
| | - Loren M Brown
- Department of Surgery, Louisiana State University Health Science Center, New Orleans, Louisiana, 70112, USA
| | - Jessica L Taylor
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, 70808, USA
| | - John M Lyons
- Our Lady of the Lake Medical Center, Baton Rouge, Louisiana, 70808, USA
| | - Frank H Lau
- Department of Surgery, Louisiana State University Health Science Center, New Orleans, Louisiana, 70112, USA.
| | - Z Elizabeth Floyd
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, 70808, USA.
| |
Collapse
|
17
|
Morosi L, Matteo C, Meroni M, Ceruti T, Fuso Nerini I, Bello E, Frapolli R, D'Incalci M, Zucchetti M, Davoli E. Quantitative measurement of pioglitazone in neoplastic and normal tissues by AP-MALDI mass spectrometry imaging. Talanta 2022; 237:122918. [PMID: 34736656 DOI: 10.1016/j.talanta.2021.122918] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
Pioglitazone is a Peroxisome Proliferator-Activated Receptor (PPAR) agonist of the thiazolidinedione class of compounds with promising anticancer activity. An innovative quantitative mass spectrometry imaging (MSI) method and a HPLC-UV method were developed and validated to investigate its distribution in tumor and liver tissues. The MSI method is based on stable isotope normalization and resulted highly specific and sensitive (0.2 pmol/spot). The correct identification of the drug ion signal is confirmed by MS/MS analysis on tissue. The method shows an optimal lateral resolution (25 μm) relying on the ionization efficiency and fine laser diameter of the atmospheric pressure MALDI source. The HPLC-UV method is simple and straightforward involving quick protein precipitation and shows good sensitivity (50ng/sample) using a small starting volume of biological sample. Thus, it is applicable to samples obtained from both preclinical models and clinical surgical procedures. MSI and HPLC-UV assays were validated assessing linearity, intra- and inter-day precision and accuracy, limit of quantification, selectivity and recovery. These are the first methods developed and validated for the analysis of pioglitazone in tissues, and they were applied successfully to myxoid liposarcoma xenograft-bearing mice, which received clinically relevant drug doses. Pioglitazone was measured by either method in sections of tumor and liver 2, 6 and 24 h post-treatment. Drug distribution was relatively homogeneous.
Collapse
Affiliation(s)
- Lavinia Morosi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy
| | - Cristina Matteo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy
| | - Marina Meroni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy
| | - Tommaso Ceruti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy
| | - Ilaria Fuso Nerini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy
| | - Ezia Bello
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy
| | - Roberta Frapolli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy.
| | - Maurizio D'Incalci
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy
| | - Massimo Zucchetti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy
| | - Enrico Davoli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Mass Spectrometry Research Center for Health and Environment and Laboratory of Mass Spectrometry, Via Mario Negri 2, Milan, Italy
| |
Collapse
|
18
|
Ali S, Hamam D, Liu X, Lebrun JJ. Terminal differentiation and anti-tumorigenic effects of prolactin in breast cancer. Front Endocrinol (Lausanne) 2022; 13:993570. [PMID: 36157462 PMCID: PMC9499354 DOI: 10.3389/fendo.2022.993570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is a major disease affecting women worldwide. A woman has 1 in 8 lifetime risk of developing breast cancer, and morbidity and mortality due to this disease are expected to continue to rise globally. Breast cancer remains a challenging disease due to its heterogeneity, propensity for recurrence and metastasis to distant vital organs including bones, lungs, liver and brain ultimately leading to patient death. Despite the development of various therapeutic strategies to treat breast cancer, still there are no effective treatments once metastasis has occurred. Loss of differentiation and increased cellular plasticity and stemness are being recognized molecularly and clinically as major derivers of heterogeneity, tumor evolution, relapse, metastasis, and therapeutic failure. In solid tumors, breast cancer is one of the leading cancer types in which tumor differentiation state has long been known to influence cancer behavior. Reprograming and/or restoring differentiation of cancer cells has been proposed to provide a viable approach to reverse the cancer through differentiation and terminal maturation. The hormone prolactin (PRL) is known to play a critical role in mammary gland lobuloalveolar development/remodeling and the terminal differentiation of the mammary epithelial cells promoting milk proteins gene expression and lactation. Here, we will highlight recent discoveries supporting an anti-tumorigenic role for PRL in breast cancer as a "pro/forward-differentiation" pathway restricting plasticity, stemness and tumorigenesis.
Collapse
|
19
|
Rosas RR, Nachbor KM, Handley N, Mathison G, Wuertz BR, Ba'th F, Ondrey FG. Preclinical evidence for pioglitazone and bexarotene combination in oral cancer chemoprevention. Head Neck 2021; 44:661-671. [PMID: 34931381 DOI: 10.1002/hed.26959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) requires new treatments and targeted approaches to improve survival. The peroxisome proliferator-activated receptor γ (PPARγ) and retinoic X receptor alpha (RXRα) nuclear receptor pathways may be targetable with repurposed Food and Drug Administration (FDA)-approved agents for prevention and treatment. METHODS Oral cancer and leukoplakia cell lines were treated with the PPARγ agonist (pioglitazone) and RXRα activator (bexarotene). PPARγ activation, cellular proliferation, apoptosis activity and phenotype, including the pharmacodynamic marker, involucrin (IVL), were subsequently analyzed using a reporter gene assay, genomic data, MTT assay and western blot. RESULTS Microarray analysis of HNSCC tumor versus normal tissue shows IVL expression is significantly increased in normal tissue compared to HNSCC tumors (p < 0.0001). In MSK Leuk1 and CA 9-22 cell lines, pioglitazone increases PPARγ DNA binding activity and IVL promoter activity in a dose dependent manner (p < 0.01 and p < 0.0001). Combination treatment with pioglitazone and bexarotene increases PPARγ DNA binding activity and IVL promoter activity (p < 0.01 and p < 0.0001). MTT analysis shows decreases in cell proliferation when cells are treated with pioglitazone and bexarotene. Decreases in cell proliferation are significant to at least p < 0.05 for all combination versus single agent treatments. Western blot on whole-cell lysate from cells treated with pioglitazone and bexarotene alone or in combination for IVL showed increased protein levels with combination treatment. CONCLUSIONS Targeting the PPARγ/RXRα heterodimer with pioglitazone and bexarotene was effective in this preclinical project. This was functional in both preneoplastic and oral cancer cell lines. A better understanding of the molecular mechanism on downstream effects on cellular proliferation could potentially have implications clinically, both in oral preneoplasia and possibly head and neck cancer; however, more research needs to be done to explore the potential these medications have in chemoprevention.
Collapse
Affiliation(s)
- Rolando R Rosas
- Department of Ear, Nose and Throat, Essentia Health-Duluth Clinic, Duluth, Minnesota, USA
| | - Kristine M Nachbor
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nathan Handley
- Department of Medical Oncology at Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Grant Mathison
- Department of Orthopedic Surgery, TRIA Orthopedics, Shakopee, Minnesota, USA
| | - Beverly R Wuertz
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Fadlullah Ba'th
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Frank G Ondrey
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
20
|
Loo SY, Syn NL, Koh APF, Teng JCF, Deivasigamani A, Tan TZ, Thike AA, Vali S, Kapoor S, Wang X, Wang JW, Tan PH, Yip GW, Sethi G, Huang RYJ, Hui KM, Wang L, Goh BC, Kumar AP. Epigenetic derepression converts PPARγ into a druggable target in triple-negative and endocrine-resistant breast cancers. Cell Death Discov 2021; 7:265. [PMID: 34580286 PMCID: PMC8476547 DOI: 10.1038/s41420-021-00635-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 01/04/2023] Open
Abstract
Clinical trials repurposing peroxisome proliferator-activated receptor-gamma (PPARγ) agonists as anticancer agents have exhibited lackluster efficacy across a variety of tumor types. Here, we report that increased PPARG expression is associated with a better prognosis but is anticorrelated with histone deacetylase (HDAC) 1 and 2 expressions. We show that HDAC overexpression blunts anti-proliferative and anti-angiogenic responses to PPARγ agonists via transcriptional and post-translational mechanisms, however, these can be neutralized with clinically approved and experimental HDAC inhibitors. Supporting this notion, concomitant treatment with HDAC inhibitors was required to license the tumor-suppressive effects of PPARγ agonists in triple-negative and endocrine-refractory breast cancer cells, and combination therapy also restrained angiogenesis in a tube formation assay. This combination was also synergistic in estrogen receptor-alpha (ERα)-positive cells because HDAC blockade abrogated ERα interference with PPARγ-regulated transcription. Following a pharmacokinetics optimization study, the combination of rosiglitazone and a potent pan-HDAC inhibitor, LBH589, stalled disease progression in a mouse model of triple-negative breast cancer greater than either of the monotherapies, while exhibiting a favorable safety profile. Our findings account for historical observations of de-novo resistance to PPARγ agonist monotherapy and propound a therapeutically cogent intervention against two aggressive breast cancer subtypes.
Collapse
Affiliation(s)
- Ser Yue Loo
- Cancer Science Institute of Singapore and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Nicholas L Syn
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Angele Pei-Fern Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Janet Cheng-Fei Teng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amudha Deivasigamani
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Aye Aye Thike
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Shireen Vali
- Cellworks Research India Pvt. Ltd., Bengaluru, India
| | - Shweta Kapoor
- Cellworks Research India Pvt. Ltd., Bengaluru, India
| | - Xiaoyuan Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cardiovascular Research Institute (CVRI), National University Heart Centre, Singapore (NUHCS), National University Health System, Singapore, Singapore
| | - Jiong Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Puay Hoon Tan
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - George W Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kam Man Hui
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University Cancer Institute, National University Health System, Singapore, Singapore.,Department of Haematology-Oncology, National University Hospital, National University Health System, Singapore, Singapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,National University Cancer Institute, National University Health System, Singapore, Singapore.
| |
Collapse
|
21
|
Modulating cell differentiation in cancer models. Biochem Soc Trans 2021; 49:1803-1816. [PMID: 34436513 DOI: 10.1042/bst20210230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
Cancer has been traditionally viewed as a disease characterised by excessive and uncontrolled proliferation, leading to the development of cytotoxic therapies against highly proliferating malignant cells. However, tumours frequently relapse due to the presence of slow-cycling cancer stem cells eluding chemo and radiotherapy. Since these malignant stem cells are largely undifferentiated, inducing their lineage commitment has been proposed as a potential intervention strategy to deplete tumours from their most resistant components. Pro-differentiation approaches have thus far yielded clinical success in the reversion of acute promyelocytic leukaemia (APL), and new developments are fast widening their therapeutic applicability to solid carcinomas. Recent advances in cancer differentiation discussed here highlight the potential and outstanding challenges of differentiation-based approaches.
Collapse
|
22
|
Quan J, Bode AM, Luo X. ACSL family: The regulatory mechanisms and therapeutic implications in cancer. Eur J Pharmacol 2021; 909:174397. [PMID: 34332918 DOI: 10.1016/j.ejphar.2021.174397] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 12/29/2022]
Abstract
Accumulating evidence shows that deregulation of fatty acid (FA) metabolism is associated with the development of cancer. Long-chain acyl-coenzyme A synthases (ACSLs) are responsible for activating long-chain FAs and are frequently deregulated in cancers. Among the five mammalian ACSL family members, ACSL1 is involved in the TNFα-mediated pro-inflammatory phenotype and mainly facilitates cancer progression. ACSL3 is an androgen-responsive gene. High ACSL3 expression has been detected in a variety of cancers, including melanoma, triple-negative breast cancer (TNBC) and high-grade non-small cell lung carcinoma (NSCLC), and correlates with worse prognosis of patients with these diseases. ACSL4 can exert opposing roles acting as a tumor suppressor or as an oncogene depending on the specific cancer type and tissue environment. Moreover, ACSL4 behaves as a crucial regulator in ferroptosis that is defined as a cell death process caused by iron-dependent peroxidation of lipids. ACSL5 is nuclear-coded and expressed in the mitochondria and physiologically participates in the pro-apoptotic sensing of cells. ACSL5 mainly acts as a tumor suppressor in cancers. ACSL6 downregulation has been observed in many forms of cancers, except in colorectal cancer (CRC). Here, we address the differential regulatory mechanisms of the ACSL family members as well as their functions in carcinogenesis. Moreover, we enumerate the clinical therapeutic implications of ACSLs, which might serve as valuable biomarkers and therapeutic targets for precision cancer treatment.
Collapse
Affiliation(s)
- Jing Quan
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan, 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan, 410078, China; Molecular Imaging Research Center of Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
23
|
Chamberlain F, Benson C, Thway K, Huang P, Jones RL, Gennatas S. Pharmacotherapy for liposarcoma: current and emerging synthetic treatments. Future Oncol 2021; 17:2659-2670. [PMID: 33880964 DOI: 10.2217/fon-2020-1092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Liposarcomas are rare tumors arising from adipocytic tissue and accounting for approximately 15-20% of all soft tissue sarcomas. Liposarcoma can be further classified into histopathological subtypes with variable chemosensitivity according to subtype. Decisions regarding management should be made on an individual basis, but surgery for localized disease and systemic chemotherapy remain the mainstay of treatment. Currently, only doxorubicin and trabectedin have robust Phase III data to support their use in the management of advanced liposarcoma. However, in the subgroup analysis of a Phase III trial comparing eribulin with dacarbazine, there was a greater than 7-month improvement in median overall survival in those treated with eribulin. There are also promising results from emerging studies in novel and targeted agents for the treatment of liposarcoma.
Collapse
Affiliation(s)
| | | | - Khin Thway
- The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | - Paul Huang
- Institute of Cancer Research, London, SW7 3RP, UK
| | - Robin L Jones
- The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK.,Institute of Cancer Research, London, SW7 3RP, UK
| | | |
Collapse
|
24
|
Combined COX-2/PPARγ Expression as Independent Negative Prognosticator for Vulvar Cancer Patients. Diagnostics (Basel) 2021; 11:diagnostics11030491. [PMID: 33802010 PMCID: PMC8001561 DOI: 10.3390/diagnostics11030491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
Vulvar cancer incidence numbers have been rising steadily over the past decades. Especially the number of young patients with vulvar cancer increased recently. Therefore, the need to identify new prognostic factors for vulvar carcinoma is more apparent. Cyclooxygenase-2 (COX-2) has long been an object of scientific interest in the context of carcinogenesis. This enzyme is involved in prostaglandin synthesis and the latter binds to nuclear receptors like PPARγ. Therefore, the aim of this study was to investigate COX-2- and PPARγ- expression in tissues of vulvar carcinomas and to analyze their relevance as prognostic factors. The cytoplasmatic expression of COX-2 as well as PPARγ is associated with a significantly reduced survival, whereas nuclear expression of PPARγ results in a better survival. Especially the combined expression of both COX-2 and PPARγ in the cytoplasm is an independent negative prognosticator for vulvar cancer patients.
Collapse
|
25
|
Zolghadr F, Bakhshinejad B, Davuchbabny S, Sarrafpour B, Seyedasli N. Critical regulatory levels in tumor differentiation: Signaling pathways, epigenetics and non-coding transcripts. Bioessays 2021; 43:e2000190. [PMID: 33644880 DOI: 10.1002/bies.202000190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 11/07/2022]
Abstract
Approaches to induce tumor differentiation often result in manageable and therapy-naïve cellular states in cancer cells. This transformation is achieved by activating pathways that drive tumor cells away from plasticity, a state that commonly correlates with enhanced aggression, metastasis and resistance to therapy. Here, we discuss signaling pathways, epigenetics and non-coding RNAs as three main regulatory levels with the potential to drive tumor differentiation and hence as potential targets in differentiation therapy approaches. The success of an effective therapeutic regimen in one cancer, however, does not necessarily sustain across cancer types; a phenomenon largely resulting from heterogeneity in the genetic and physiological landscapes of tumor types necessitating an approach designed for each cancer's unique genetic and phenotypic build-up.
Collapse
Affiliation(s)
- Fatemeh Zolghadr
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Babak Bakhshinejad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sapir Davuchbabny
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Babak Sarrafpour
- School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Naisana Seyedasli
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia.,The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| |
Collapse
|
26
|
Wang Y, Wu J, Chen H, Yang Y, Xiao C, Yi X, Shi C, Zhong K, He H, Li Y, Wu Z, Zhou G, Rao Q, Wang X, Zhou X, Lomberk G, Liu B, Zhao J, Ge J, Zhou W, Chu X, Chen C, Zhou X, Wang L, Guan K, Qu L. Genome-wide CRISPR-Cas9 screen identified KLF11 as a druggable suppressor for sarcoma cancer stem cells. SCIENCE ADVANCES 2021; 7:7/5/eabe3445. [PMID: 33571129 PMCID: PMC7840125 DOI: 10.1126/sciadv.abe3445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/09/2020] [Indexed: 05/14/2023]
Abstract
Cancer stem cells (CSCs) are involved in tumorigenesis, recurrence, and therapy resistance. To identify critical regulators of sarcoma CSCs, we performed a reporter-based genome-wide CRISPR-Cas9 screen and uncovered Kruppel-like factor 11 (KLF11) as top candidate. In vitro and in vivo functional annotation defined a negative role of KLF11 in CSCs. Mechanistically, KLF11 and YAP/TEAD bound to adjacent DNA sites along with direct interaction. KLF11 recruited SIN3A/HDAC to suppress the transcriptional output of YAP/TEAD, which, in turn, promoted KLF11 transcription, forming a negative feedback loop. However, in CSCs, this negative feedback was lost because of epigenetic silence of KLF11, causing sustained YAP activation. Low KLF11 was associated with poor prognosis and chemotherapy response in patients with sarcoma. Pharmacological activation of KLF11 by thiazolidinedione effectively restored chemotherapy response. Collectively, our study identifies KLF11 as a negative regulator in sarcoma CSCs and potential therapeutic target.
Collapse
Affiliation(s)
- Yicun Wang
- Department of Urology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
- Department of Orthopedic, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
| | - Jinhui Wu
- Department of Orthopedic, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Hui Chen
- Department of Pathology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
| | - Yang Yang
- Institute of Clinical Laboratory Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
| | - Chengwu Xiao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xiaoming Yi
- Department of Urology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
| | - Changjie Shi
- Department of Urology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
| | - Ke Zhong
- Department of Urology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
| | - Haowei He
- Department of Urology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
| | - Yaoming Li
- Department of Urology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zhenjie Wu
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Guangxin Zhou
- Department of Orthopedic, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
| | - Qiu Rao
- Department of Pathology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
| | - Xiaoxia Wang
- Department of Pathology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
| | - Xiaodie Zhou
- Department of Pathology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
| | - Gwen Lomberk
- Department of Surgery, Medical College of Wisconsin Milwaukee, WI 53226, USA
| | - Bing Liu
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jianning Zhao
- Department of Orthopedic, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
| | - Jingping Ge
- Department of Urology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China.
| | - Wenquan Zhou
- Department of Urology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China.
| | - Cheng Chen
- Department of Medical Oncology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China.
| | - Xuhui Zhou
- Department of Orthopedic, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Linhui Wang
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Kunliang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Le Qu
- Department of Urology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China.
| |
Collapse
|
27
|
Wagner N, Wagner KD. PPARs and Angiogenesis-Implications in Pathology. Int J Mol Sci 2020; 21:ijms21165723. [PMID: 32785018 PMCID: PMC7461101 DOI: 10.3390/ijms21165723] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the family of ligand-activated nuclear receptors. The PPAR family consists of three subtypes encoded by three separate genes: PPARα (NR1C1), PPARβ/δ (NR1C2), and PPARγ (NR1C3). PPARs are critical regulators of metabolism and exhibit tissue and cell type-specific expression patterns and functions. Specific PPAR ligands have been proposed as potential therapies for a variety of diseases such as metabolic syndrome, cancer, neurogenerative disorders, diabetes, cardiovascular diseases, endometriosis, and retinopathies. In this review, we focus on the knowledge of PPAR function in angiogenesis, a complex process that plays important roles in numerous pathological conditions for which therapeutic use of PPAR modulation has been suggested.
Collapse
|
28
|
Crombe A, Sitbon M, Stoeckle E, Italiano A, Buy X, Le Loarer F, Kind M. Magnetic resonance imaging assessment of chemotherapy-related adipocytic maturation in myxoid/round cell liposarcomas: specificity and prognostic value. Br J Radiol 2020; 93:20190794. [PMID: 32105502 PMCID: PMC10993228 DOI: 10.1259/bjr.20190794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/09/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To investigate the specificity, clinical implication and prognostic value of MRI adipocytic maturation (MAM) in myxoid/round cells liposarcomas (MRC-LPS) treated with neoadjuvant chemotherapy (NAC). METHODS Of the 89 patients diagnosed with MRC-LPS at our sarcoma reference center between 2008 and 2018, 28 were included as they were treated with NAC, surgery and radiotherapy. All patients underwent contrast-enhanced MRIs at baseline and late evaluation. A control cohort of 13 high-grade pleomorphic and dedifferentiated LPS with same inclusion criteria was used to evaluate the specificity of MAM in MRC-LPS. Two radiologists analyzed the occurrence of MAM, changes in the tumor architecture, shape and surrounding tissues during NAC. Pathological features of tumor samples were reviewed and correlated with MRI. Metastatic relapse-free survival was estimated with Kaplan-Meier curves and Cox models. Associations between prognostic T1-based delta-radiomics features and MAM were investigated with Student t-test. RESULTS MAM was more frequent in MRC-LPS (p = 0.045) and not specific of any type of chemotherapy (p = 0.7). Regarding MRC-LPS, 14 out of 28 patients (50%) demonstrated MAM. Eight patients showed metastatic relapses. MAM was not associated with metastatic relapse-free survival (p = 0.9). MAM correlated strongly with the percentage of histological adipocytic differentiation on surgical specimen (p < 0.001), which still expressed the tumor marker NY-ESO-1. None of the prognostic T1-based delta-radiomics features was associated with MAM. CONCLUSION MAM seems a neutral event during NAC. ADVANCES IN KNOWLEDGE MAM predominated in MRC-LPS and was not specific of a type of chemotherapy. Occurrence of MAM was not associated with better patients' metastasis free survival.
Collapse
Affiliation(s)
- Amandine Crombe
- Department of Radiology, Institut Bergonie,
F-33000, Bordeaux,
France
- University of Bordeaux, F-33000,
Bordeaux, France
- Modelisation in Oncology (MOnc) Team, INRIA Bordeaux-Sud-Ouest,
CNRS UMR 5251 & Université de Bordeaux,
F-33405, Talence,
France
| | - Maxime Sitbon
- Department of Radiology, Institut Bergonie,
F-33000, Bordeaux,
France
| | | | - Antoine Italiano
- Department of Medical Oncology, Institut Bergonie,
F-33000, Bordeaux,
France
| | - Xavier Buy
- Department of Radiology, Institut Bergonie,
F-33000, Bordeaux,
France
| | - François Le Loarer
- University of Bordeaux, F-33000,
Bordeaux, France
- Department of Pathology, Institut Bergonie,
F-33000, Bordeaux,
France
| | - Michèle Kind
- Department of Radiology, Institut Bergonie,
F-33000, Bordeaux,
France
| |
Collapse
|
29
|
Tyler R, Wanigasooriya K, Taniere P, Almond M, Ford S, Desai A, Beggs A. A review of retroperitoneal liposarcoma genomics. Cancer Treat Rev 2020; 86:102013. [PMID: 32278233 DOI: 10.1016/j.ctrv.2020.102013] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022]
Abstract
Retroperitoneal liposarcomas are rare tumours that carry a poorer prognosis than their extremity counterparts. Within their subtypes - well differentiated (WDL), dedifferentiated (DDL), myxoid (MLS) and pleomorphic (PLS) - they exhibit a diverse genomic landscape. With recent advances in next generation sequencing, the number of studies exploring this have greatly increased. The recent literature has deepened our understanding of the hallmark MDM2/CDK4 amplification in WDL/DDL and addressed concerns about toxicity and resistance when targeting this. The FUS-DDIT3 fusion gene remains the primary focus of interest in MLS with additional potential targets described. Whole genome sequencing has driven identification of novel genes and pathways implicated in WDL/DDL outside of the classic 12q13-15 amplicon. Due to their rarity; anatomical location and histologic subtype are infrequently mentioned when reporting the results of these studies. Reports can include non-adipogenic or extremity tumours, making it difficult to draw specific retroperitoneal conclusions. This narrative review aims to provide a summary of retroperitoneal liposarcoma genomics and the implications for therapeutic targeting.
Collapse
Affiliation(s)
- Robert Tyler
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Kasun Wanigasooriya
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Philippe Taniere
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, United Kingdom.
| | - Max Almond
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, United Kingdom.
| | - Samuel Ford
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, United Kingdom.
| | - Anant Desai
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, United Kingdom.
| | - Andrew Beggs
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
30
|
Biondo LA, Teixeira AAS, de O. S. Ferreira KC, Neto JCR. Pharmacological Strategies for Insulin Sensitivity in Obesity and Cancer: Thiazolidinediones and Metformin. Curr Pharm Des 2020; 26:932-945. [PMID: 31969093 DOI: 10.2174/1381612826666200122124116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/21/2019] [Indexed: 12/19/2022]
Abstract
Background:
Chronic diseases, such as obesity and cancer, have high prevalence rates. Both diseases
have hyperinsulinemia, hyperglycemia, high levels of IGF-1 and inflammatory cytokines in common. Therefore,
these can be considered triggers for cancer development and growth. In addition, low-grade inflammation that
modulates the activation of immune cells, cellular metabolism, and production of cytokines and chemokines are
common in obesity, cancer, and insulin resistance. Pharmacological strategies are necessary when a change in
lifestyle does not improve glycemic homeostasis. In this regard, thiazolidinediones (TZD) possess multiple molecular
targets and regulate PPARγ in obesity and cancer related to insulin resistance, while metformin acts
through the AMPK pathway.
Objective:
The aim of this study was to review TZD and metformin as pharmacological treatments for insulin
resistance associated with obesity and cancer.
Conclusions:
Thiazolidinediones restored adiponectin secretion and leptin sensitivity, reduced lipid droplets in
hepatocytes and orexigen peptides in the hypothalamus. In cancer cells, TZD reduced proliferation, production of
reactive oxygen species, and inflammation by acting through the mTOR and NFκB pathways. Metformin has
similar effects, though these are AMPK-dependent. In addition, both drugs can be efficient against certain side
effects caused by chemotherapy.
Collapse
Affiliation(s)
- Luana A. Biondo
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Alexandre A. S. Teixeira
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Karen C. de O. S. Ferreira
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jose C. R. Neto
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
31
|
Anti-diabetic medications and the risk for colorectal cancer: A population-based nested case-control study. Cancer Epidemiol 2020; 64:101658. [DOI: 10.1016/j.canep.2019.101658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/30/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022]
|
32
|
Mrowka P, Glodkowska-Mrowka E. PPARγ Agonists in Combination Cancer Therapies. Curr Cancer Drug Targets 2019; 20:197-215. [PMID: 31814555 DOI: 10.2174/1568009619666191209102015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/03/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear receptor acting as a transcription factor involved in the regulation of energy metabolism, cell cycle, cell differentiation, and apoptosis. These unique properties constitute a strong therapeutic potential that place PPARγ agonists as one of the most interesting and widely studied anticancer molecules. Although PPARγ agonists exert significant, antiproliferative and tumoricidal activity in vitro, their anticancer efficacy in animal models is ambiguous, and their effectiveness in clinical trials in monotherapy is unsatisfactory. However, due to pleiotropic effects of PPARγ activation in normal and tumor cells, PPARγ ligands interact with many antitumor treatment modalities and synergistically potentiate their effectiveness. The most spectacular example is a combination of PPARγ ligands with tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML). In this setting, PPARγ activation sensitizes leukemic stem cells, resistant to any previous form of treatment, to targeted therapy. Thus, this combination is believed to be the first pharmacological therapy able to cure CML patients. Within the last decade, a significant body of data confirming the benefits of the addition of PPARγ ligands to various antitumor therapies, including chemotherapy, hormonotherapy, targeted therapy, and immunotherapy, has been published. Although the majority of these studies have been carried out in vitro or animal tumor models, a few successful attempts to introduce PPARγ ligands into anticancer therapy in humans have been recently made. In this review, we aim to summarize shines and shadows of targeting PPARγ in antitumor therapies.
Collapse
Affiliation(s)
- Piotr Mrowka
- Department of Biophysics and Human Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Eliza Glodkowska-Mrowka
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland.,Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| |
Collapse
|
33
|
Bielczyk-Maczynska E. White Adipocyte Plasticity in Physiology and Disease. Cells 2019; 8:E1507. [PMID: 31775295 PMCID: PMC6953026 DOI: 10.3390/cells8121507] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022] Open
Abstract
Cellular plasticity is a transformation of a terminally differentiated cell into another cell type, which has been long known to occur in disease and regeneration. However, white adipocytes (fat cells) have only recently been observed to undergo different types of cellular plasticity. Adipocyte transdifferentiation into myofibroblasts and cancer-associated fibroblasts occurs in fibrosis and cancer, respectively. On the other hand, reversible adipocyte dedifferentiation into adipocyte progenitor cells (preadipocytes) has been demonstrated in mammary gland and in dermal adipose tissue. Here we discuss the research on adipocyte plasticity, including the experimental approaches that allowed to detect and study it, the current state of the knowledge, major research questions which remain to be addressed, and the advances required to stimulate adipocyte plasticity research. In the future, the knowledge of the molecular mechanisms of adipocyte plasticity can be utilized both to prevent adipocyte plasticity in disease and to stimulate it for use in regenerative medicine.
Collapse
Affiliation(s)
- Ewa Bielczyk-Maczynska
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
34
|
Cheng HS, Tan WR, Low ZS, Marvalim C, Lee JYH, Tan NS. Exploration and Development of PPAR Modulators in Health and Disease: An Update of Clinical Evidence. Int J Mol Sci 2019; 20:E5055. [PMID: 31614690 PMCID: PMC6834327 DOI: 10.3390/ijms20205055] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that govern the expression of genes responsible for energy metabolism, cellular development, and differentiation. Their crucial biological roles dictate the significance of PPAR-targeting synthetic ligands in medical research and drug discovery. Clinical implications of PPAR agonists span across a wide range of health conditions, including metabolic diseases, chronic inflammatory diseases, infections, autoimmune diseases, neurological and psychiatric disorders, and malignancies. In this review we aim to consolidate existing clinical evidence of PPAR modulators, highlighting their clinical prospects and challenges. Findings from clinical trials revealed that different agonists of the same PPAR subtype could present different safety profiles and clinical outcomes in a disease-dependent manner. Pemafibrate, due to its high selectivity, is likely to replace other PPARα agonists for dyslipidemia and cardiovascular diseases. PPARγ agonist pioglitazone showed tremendous promises in many non-metabolic disorders like chronic kidney disease, depression, inflammation, and autoimmune diseases. The clinical niche of PPARβ/δ agonists is less well-explored. Interestingly, dual- or pan-PPAR agonists, namely chiglitazar, saroglitazar, elafibranor, and lanifibranor, are gaining momentum with their optimistic outcomes in many diseases including type 2 diabetes, dyslipidemia, non-alcoholic fatty liver disease, and primary biliary cholangitis. Notably, the preclinical and clinical development for PPAR antagonists remains unacceptably deficient. We anticipate the future design of better PPAR modulators with minimal off-target effects, high selectivity, superior bioavailability, and pharmacokinetics. This will open new possibilities for PPAR ligands in medicine.
Collapse
Affiliation(s)
- Hong Sheng Cheng
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Wei Ren Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Zun Siong Low
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Charlie Marvalim
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Justin Yin Hao Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| |
Collapse
|
35
|
Frapolli R, Bello E, Ponzo M, Craparotta I, Mannarino L, Ballabio S, Marchini S, Carrassa L, Ubezio P, Porcu L, Brich S, Sanfilippo R, Casali PG, Gronchi A, Pilotti S, D'Incalci M. Combination of PPARγ Agonist Pioglitazone and Trabectedin Induce Adipocyte Differentiation to Overcome Trabectedin Resistance in Myxoid Liposarcomas. Clin Cancer Res 2019; 25:7565-7575. [PMID: 31481505 DOI: 10.1158/1078-0432.ccr-19-0976] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/01/2019] [Accepted: 08/28/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE This study was aimed at investigating whether the PPARγ agonist pioglitazone-given in combination with trabectedin-is able to reactivate adipocytic differentiation in myxoid liposarcoma (MLS) patient-derived xenografts, overcoming resistance to trabectedin. EXPERIMENTAL DESIGN The antitumor and biological effects of trabectedin, pioglitazone, and the combination of the two drugs were investigated in nude mice bearing well-characterized MLS xenografts representative of innate or acquired resistance against trabectedin. Pioglitazone and trabectedin were given by daily oral and weekly i.v. administrations, respectively. Molecular studies were performed by using microarrays approach, real-time PCR, and Western blotting. RESULTS We found that the resistance of MLS against trabectedin is associated with the lack of activation of adipogenesis. The PPARγ agonist pioglitazone reactivated adipogenesis, assessed by histologic and gene pathway analyses. Pioglitazone was well tolerated and did not increase the toxicity of trabectedin. The ability of pioglitazone to reactivate adipocytic differentiation was observed by morphologic examination, and it is consistent with the increased expression of genes such as ADIPOQ implicated in the adipogenesis process. The determination of adiponectin by Western blotting constitutes a good and reliable biomarker related to MLS adipocytic differentiation. CONCLUSIONS The finding that the combination of pioglitazone and trabectedin induces terminal adipocytic differentiation of some MLSs with the complete pathologic response and cure of tumor-bearing mice provides a strong rationale to test the combination of trabectedin and pioglitazone in patients with MLS.
Collapse
Affiliation(s)
- Roberta Frapolli
- Unit of Preclinical Experimental Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ezia Bello
- Unit of Preclinical Experimental Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marianna Ponzo
- Unit of Preclinical Experimental Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Craparotta
- Unit of Translational Genomic, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Laura Mannarino
- Unit of Translational Genomic, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Sara Ballabio
- Unit of Translational Genomic, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Sergio Marchini
- Unit of Translational Genomic, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Laura Carrassa
- Unit of DNA repair, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Paolo Ubezio
- Unit of Biophysics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Luca Porcu
- Unit of Methodological Research, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Silvia Brich
- Laboratory of Molecular Pathology, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Roberta Sanfilippo
- Medical Oncology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Giovanni Casali
- Medical Oncology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Gronchi
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvana Pilotti
- Laboratory of Molecular Pathology, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maurizio D'Incalci
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
36
|
Anticancer properties of 5Z-(4-fluorobenzylidene)-2-(4-hydroxyphenylamino)-thiazol-4-one. Sci Rep 2019; 9:10609. [PMID: 31337851 PMCID: PMC6650463 DOI: 10.1038/s41598-019-47177-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/09/2019] [Indexed: 11/09/2022] Open
Abstract
4-thiazolidinones, which are privileged structures in medicinal chemistry, comprise the well-known class of heterocycles and are a source of new drug-like compounds. Undoubtedly, the 5-bulky-substituted-2,4-thiazolidinediones - a class of antihyperglycemic glitazones, which are peroxisome proliferator-activated receptor gamma (PPARγ) agonists, are the most described group among them. As there are various chemically distinct 4-thiazolidinones, different subtypes have been selected for studies; however, their main pharmacological profiles are similar. The aim of this study was to evaluate the anticancer activity of 5Z-(4-fluorobenzylidene)-2-(4-hydroxyphenylamino)-thiazol-4-one (Les-236) in four human cancer cell lines, A549, SCC-15, SH-SY5Y, and CACO-2, and investigate its impact on the production of reactive oxygen species (ROS) and the apoptotic process as well as cytotoxicity and metabolism in these cell lines. The cell lines were exposed to increasing concentrations (1 nM to 100 µM) of the studied compound for 6, 24, and 48 h, and later, ROS production, cell viability, caspase-3 activity, and cell metabolism were examined. The obtained results showed that the studied compound decreased the production of ROS, increased the release of lactate dehydrogenase, and decreased cell metabolism/proliferation in all the five cell lines at micromolar concentrations. Interestingly, over a wide range of concentrations (from 1 nM to 100 µM), Les-236 was able to increase the activity of caspase-3 in BJ (after 6 h of exposure), A549, CACO-2, and SCC-15 (after 48 h of exposure) cell lines which could be an effect of the activation of PPARγ-dependent pathways.
Collapse
|
37
|
Kim YJ, Yu DB, Kim M, Choi YL. Adipogenesis induces growth inhibition of dedifferentiated liposarcoma. Cancer Sci 2019; 110:2676-2683. [PMID: 31069877 PMCID: PMC6676121 DOI: 10.1111/cas.14036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/28/2019] [Accepted: 05/01/2019] [Indexed: 01/02/2023] Open
Abstract
Well‐differentiated liposarcoma (WDLPS) and dedifferentiated liposarcoma (DDLPS) are the most common types of liposarcoma. Although WDLPS and DDLPS patients receive intensive treatment including radical surgery and systemic therapy, their overall 5‐year survival rates are 90% and 30%, respectively, indicating that DDLPS is clinically more aggressive. We examined whether adipogenic stimulation induces adipogenesis in human WDLPS/DDLPS cells by using dexamethasone, indomethacin, insulin, and 3‐isobutyl‐1‐methylxanthine (IBMX), all putative medications or drugs. Functional in vitro experiments showed that treatment with these four compounds induced adipogenic potency by transcriptional and translational upregulation of genes related to the maintenance of stemness and adipogenic differentiation. Using in vivo xenograft models, we found that the induction of stemness and adipogenesis inhibited the tumorigenic potency of DDLPS. This study suggests a potential application of drug repositioning in which adipogenesis‐inducing compounds could be used to treat DDLPS patients in a clinical setting.
Collapse
Affiliation(s)
- Yu Jin Kim
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dan Bi Yu
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Mingi Kim
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Yoon-La Choi
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
38
|
Suarez-Kelly LP, Baldi GG, Gronchi A. Pharmacotherapy for liposarcoma: current state of the art and emerging systemic treatments. Expert Opin Pharmacother 2019; 20:1503-1515. [PMID: 31136210 DOI: 10.1080/14656566.2019.1618271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Introduction: Liposarcomas are a heterogeneous group of soft tissue tumors that arise from adipose tissue and are one of the most common soft tissue sarcomas found in adults. Liposarcomas are subclassified into four subtypes with distinct histologic and biologic features that influence their treatment and management. Areas covered: This manuscript reviews the key clinicopathologic and cytogenic characteristics of the liposarcoma histologic subtypes and summarizes the results of recent clinical trials, treatment options, and future directions in the pharmacotherapy for the management of liposarcoma. Expert opinion: Despite significant advancements in the management of this disease, the treatment of liposarcoma continues to be a challenge. Surgical resection remains the mainstay of treatment for localized disease; however, use of systemic therapies in conjunction with surgery may be considered in patients where tumor shrinkage could reduce surgical morbidity and in patients with high-risk of micrometastatic disease. Anthracycline-based chemotherapy regimens remain the standard first-line treatment for unresectable/metastatic liposarcoma. Trabectedin and eribulin are currently the two most promising and evidenced-based second-line treatment options for liposarcomas. However, multiple clinical trials dedicated to patients with liposarcoma evaluating novel targeted agents are ongoing. Every effort should be made to enroll patients with liposarcoma into histotype-specific clinical trials.
Collapse
Affiliation(s)
- Lorena P Suarez-Kelly
- Complex General Surgical Oncology Fellow, The Ohio State University , Columbus , OH , USA
| | - Giacomo G Baldi
- "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato , Prato , Italy.,Adult mesenchymal and Rare Tumor Unit, Department of Cancer Medicine, Fondazione IRCCS-Istituto Nazionale dei Tumori , Milan , Italy
| | - Alessandro Gronchi
- Sarcoma Service of the Department of Surgery, Fondazione IRCCS-Istituto Nazionale dei Tumori , Milan , Italy
| |
Collapse
|
39
|
Lee KS, Choi JS, Cho YW. Reprogramming of cancer stem cells into non-tumorigenic cells using stem cell exosomes for cancer therapy. Biochem Biophys Res Commun 2019; 512:511-516. [PMID: 30905410 DOI: 10.1016/j.bbrc.2019.03.072] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/12/2019] [Indexed: 01/06/2023]
Abstract
Cancer stem cells (CSCs) are a small population of cells with stem cell-like properties found in tumors. CSCs are closely associated with tumor heterogeneity, which influences tumor progress, metastasis, and drug resistance. Here, we propose a concept to enhance efficacy of cancer therapy through CSC reprogramming into non-tumorigenic cells using stem cell-derived exosomes with osteoinductive potential. We hypothesized that exosomes derived from osteogenic differentiating human adipose-derived stem cells (OD-EXOs) contain specific cargos capable of inducing osteogenic differentiation of CSCs. Quantitative RT-PCR analysis revealed that OD-EXOs enhanced the expression of osteogenic-related genes, such as alkaline phosphatase (ALPL), osteocalcin (BGLAP), and runt-related transcription factor 2 (RUNX2). In addition, expression of drug-resistance genes such as ATP binding cassette (ABC) transporter, the breast cancer gene family (BCRA1 and BCRA2), and the ErbB gene family were significantly decreased in OD-EXO-treated CSCs. Our findings suggest that OD-EXOs function as a biochemical cue for CSC reprogramming and contribute to overcoming therapeutic resistance.
Collapse
Affiliation(s)
- Kyoung Soo Lee
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 426-791, Republic of Korea
| | - Ji Suk Choi
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 426-791, Republic of Korea; Exostemtech Inc., Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Yong Woo Cho
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 426-791, Republic of Korea; Exostemtech Inc., Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
40
|
Takeuchi A, Nomura A, Yamamoto N, Hayashi K, Igarashi K, Tandai S, Kawai A, Matsumine A, Miwa S, Nishida Y, Nakamura T, Terauchi R, Hoshi M, Kunisada T, Endo M, Yoshimura K, Murayama T, Tsuchiya H. Randomized placebo-controlled double-blind phase II study of zaltoprofen for patients with diffuse-type and unresectable localized tenosynovial giant cell tumors: a study protocol. BMC Musculoskelet Disord 2019; 20:68. [PMID: 30738433 PMCID: PMC6368706 DOI: 10.1186/s12891-019-2453-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 02/01/2019] [Indexed: 02/06/2023] Open
Abstract
Background A tenosynovial giant cell tumor (TGCT) is a locally aggressive benign neoplasm arising from intra- or extra-articular tissue. Diffuse TGCT (D-TGCT) most commonly develops in the knee, followed by the hip, ankle, elbow, and shoulder. Surgical removal is the only effective treatment option for the patients. However, a local recurrence rate as high as 47% has been reported. Recently, we revealed that zaltoprofen, a nonsteroidal anti-inflammatory drug possessing the ability to activate peroxisome proliferator-activated receptor gamma (PPARγ), can inhibit the proliferation of TGCT stromal cells via PPARγ. PPARγ is a ligand-activated transcription factor that belongs to the nuclear hormone receptor superfamily. It plays an important role in the differentiation of adipocytes from precursor cells and exhibits antitumorigenic effects on certain malignancies. Therefore, we are conducting this investigator-initiated clinical trial to evaluate whether zaltoprofen is safe and effective for patients with D-TGCT or unresectable localized TGCT (L-TGCT). Methods This study is a randomized, placebo-controlled, double-blind, multicenter trial to evaluate the safety and efficacy of zaltoprofen for patients with D-TGCT or L-TGCT. For the treatment group, zaltoprofen 480 mg/day will be administered for 48 weeks; the placebo group will receive similar dosages without zaltoprofen. Twenty participants in each group are needed in this trial (40 participants total). The primary outcome is the progression-free rate at 48 weeks after treatment administration. “Progression” is defined as any serious events (1. Repetitive joint swelling due to hemorrhage, 2. Joint range of motion limitation, 3. Invasion of adjacent cartilage or bone, 4. Severe joint space narrowing, 5. Increase in tumor size) requiring surgical interventions. We hypothesize that the zaltoprofen group will have a higher progression-free rate compared to that of the placebo group at 48 weeks. Discussion This is the first study to evaluate the efficacy of zaltoprofen in patients with D-TGCT or unresectable L-TGCT. We believe that the results of this trial will validate a novel treatment option, zaltoprofen, to stabilize disease progression for TGCT patients. Trial registration University Hospital Medical Information Network (UMIN) Clinical Trials Registry (UMIN000025901) registered on 4/01/2017.
Collapse
Affiliation(s)
- Akihiko Takeuchi
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Akihiro Nomura
- Innovative Clinical Research Center (iCREK), Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Kentaro Igarashi
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Susumu Tandai
- Department of Orthopaedic Surgery, Asahikawa Medical University, 2-1E Midorigaoka, Asahikawa, Hokkaido, 078-8510, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Matsumine
- Department of Orthopaedics and Rehabilitation Medicine, Unit of Surgery, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1104, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Yoshihiro Nishida
- Department of Orthopaedic Surgery, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomoki Nakamura
- Department of Orthopedic Surgery, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Ryu Terauchi
- Department of Orthopaedic Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho Hirokoji-agaru Kawaramachi-dori Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Manabu Hoshi
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-Machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Toshiyuki Kunisada
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Makoto Endo
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenichi Yoshimura
- Innovative Clinical Research Center (iCREK), Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Toshinori Murayama
- Innovative Clinical Research Center (iCREK), Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan.
| |
Collapse
|
41
|
Berebichez-Fridman R, Montero-Olvera PR. Sources and Clinical Applications of Mesenchymal Stem Cells: State-of-the-art review. Sultan Qaboos Univ Med J 2018; 18:e264-e277. [PMID: 30607265 DOI: 10.18295/squmj.2018.18.03.002] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/16/2018] [Accepted: 05/10/2018] [Indexed: 12/15/2022] Open
Abstract
First discovered by Friedenstein in 1976, mesenchymal stem cells (MSCs) are adult stem cells found throughout the body that share a fixed set of characteristics. Discovered initially in the bone marrow, this cell source is considered the gold standard for clinical research, although various other sources-including adipose tissue, dental pulp, mobilised peripheral blood and birth-derived tissues-have since been identified. Although similar, MSCs derived from different sources possess distinct characteristics, advantages and disadvantages, including their differentiation potential and proliferation capacity, which influence their applicability. Hence, they may be used for specific clinical applications in the fields of regenerative medicine and tissue engineering. This review article summarises current knowledge regarding the various sources, characteristics and therapeutic applications of MSCs.
Collapse
Affiliation(s)
- Roberto Berebichez-Fridman
- Department of Orthopaedic Surgery, American British Cowdray Medical Center, Mexico City, Mexico.,Tissue Engineering, Cell Therapy & Regenerative Medicine Unit, National Institute of Rehabilitation, Mexico City, Mexico
| | - Pablo R Montero-Olvera
- Tissue Engineering, Cell Therapy & Regenerative Medicine Unit, National Institute of Rehabilitation, Mexico City, Mexico
| |
Collapse
|
42
|
Bojková B, Kubatka P, Qaradakhi T, Zulli A, Kajo K. Melatonin May Increase Anticancer Potential of Pleiotropic Drugs. Int J Mol Sci 2018; 19:E3910. [PMID: 30563247 PMCID: PMC6320927 DOI: 10.3390/ijms19123910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is not only a pineal hormone, but also an ubiquitary molecule present in plants and part of our diet. Numerous preclinical and some clinical reports pointed to its multiple beneficial effects including oncostatic properties, and as such, it has become one of the most aspiring goals in cancer prevention/therapy. A link between cancer and inflammation and/or metabolic disorders has been well established and the therapy of these conditions with so-called pleiotropic drugs, which include non-steroidal anti-inflammatory drugs, statins and peroral antidiabetics, modulates a cancer risk too. Adjuvant therapy with melatonin may improve the oncostatic potential of these drugs. Results from preclinical studies are limited though support this hypothesis, which, however, remains to be verified by further research.
Collapse
Affiliation(s)
- Bianka Bojková
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárová 2, 041 54 Košice, Slovak Republic.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01 Martin, Slovak Republic.
- Department of Experimental Carcinogenesis, Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4C, 036 01 Martin, Slovak Republic.
| | - Tawar Qaradakhi
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia.
| | - Anthony Zulli
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia.
| | - Karol Kajo
- St. Elisabeth Oncology Institute, Heydukova 10, 811 08 Bratislava, Slovak Republic.
- Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovak Republic.
| |
Collapse
|
43
|
Heudobler D, Rechenmacher M, Lüke F, Vogelhuber M, Klobuch S, Thomas S, Pukrop T, Hackl C, Herr W, Ghibelli L, Gerner C, Reichle A. Clinical Efficacy of a Novel Therapeutic Principle, Anakoinosis. Front Pharmacol 2018; 9:1357. [PMID: 30546308 PMCID: PMC6279883 DOI: 10.3389/fphar.2018.01357] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022] Open
Abstract
Classic tumor therapy, consisting of cytotoxic agents and/or targeted therapy, has not overcome therapeutic limitations like poor risk genetic parameters, genetic heterogeneity at different metastatic sites or the problem of undruggable targets. Here we summarize data and trials principally following a completely different treatment concept tackling systems biologic processes: the principle of communicative reprogramming of tumor tissues, i.e., anakoinosis (ancient greek for communication), aims at establishing novel communicative behavior of tumor tissue, the hosting organ and organism via re-modeling gene expression, thus recovering differentiation, and apoptosis competence leading to cancer control - in contrast to an immediate, "poisoning" with maximal tolerable doses of targeted or cytotoxic therapies. Therefore, we introduce the term "Master modulators" for drugs or drug combinations promoting evolutionary processes or regulating homeostatic pathways. These "master modulators" comprise a broad diversity of drugs, characterized by the capacity for reprogramming tumor tissues, i.e., transcriptional modulators, metronomic low-dose chemotherapy, epigenetically modifying agents, protein binding pro-anakoinotic drugs, such as COX-2 inhibitors, IMiDs etc., or for example differentiation inducing therapies. Data on 97 anakoinosis inducing schedules indicate a favorable toxicity profile: The combined administration of master modulators, frequently (with poor or no monoactivity) may even induce continuous complete remission in refractory metastatic neoplasia, irrespectively of the tumor type. That means recessive components of the tumor, successively developing during tumor ontogenesis, are accessible by regulatory active drug combinations in a therapeutically meaningful way. Drug selection is now dependent on situative systems characteristics, to less extent histology dependent. To sum up, anakoinosis represents a new substantive therapy principle besides novel targeted therapies.
Collapse
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Michael Rechenmacher
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Martin Vogelhuber
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Simone Thomas
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Christina Hackl
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Lina Ghibelli
- Department Biology, Universita' di Roma Tor Vergata, Rome, Italy
| | - Christopher Gerner
- Faculty Chemistry, Institut for Analytical Chemistry, University Vienna, Vienna, Austria
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
44
|
Heudobler D, Rechenmacher M, Lüke F, Vogelhuber M, Pukrop T, Herr W, Ghibelli L, Gerner C, Reichle A. Peroxisome Proliferator-Activated Receptors (PPAR)γ Agonists as Master Modulators of Tumor Tissue. Int J Mol Sci 2018; 19:ijms19113540. [PMID: 30424016 PMCID: PMC6274845 DOI: 10.3390/ijms19113540] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/27/2018] [Accepted: 11/06/2018] [Indexed: 02/08/2023] Open
Abstract
In most clinical trials, thiazolidinediones do not show any relevant anti-cancer activity when used as mono-therapy. Clinical inefficacy contrasts ambiguous pre-clinical data either favoring anti-tumor activity or tumor promotion. However, if thiazolidinediones are combined with additional regulatory active drugs, so-called ‘master modulators’ of tumors, i.e., transcriptional modulators, metronomic low-dose chemotherapy, epigenetically modifying agents, protein binding pro-anakoinotic drugs, such as COX-2 inhibitors, IMiDs, etc., the results indicate clinically relevant communicative reprogramming of tumor tissues, i.e., anakoinosis, meaning ‘communication’ in ancient Greek. The concerted activity of master modulators may multifaceted diversify palliative care or even induce continuous complete remission in refractory metastatic tumor disease and hematologic neoplasia by establishing novel communicative behavior of tumor tissue, the hosting organ, and organism. Re-modulation of gene expression, for example, the up-regulation of tumor suppressor genes, may recover differentiation, apoptosis competence, and leads to cancer control—in contrast to an immediate, ‘poisoning’ with maximal tolerable doses of targeted/cytotoxic therapies. The key for uncovering the therapeutic potential of Peroxisome proliferator-activated receptor γ (PPARγ) agonists is selecting the appropriate combination of master modulators for inducing anakoinosis: Now, anakoinosis is trend setting by establishing a novel therapeutic pillar while overcoming classic obstacles of targeted therapies, such as therapy resistance and (molecular-)genetic tumor heterogeneity.
Collapse
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Michael Rechenmacher
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Florian Lüke
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Martin Vogelhuber
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Tobias Pukrop
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Lina Ghibelli
- Department Biology, Universita' di Roma Tor Vergata, 00173 Rome, Italy.
| | - Christopher Gerner
- Institut for Analytical Chemistry, Faculty Chemistry, University Vienna, Vienna A-1090, Austria.
| | - Albrecht Reichle
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| |
Collapse
|
45
|
Mijatović S, Bramanti A, Nicoletti F, Fagone P, Kaluđerović GN, Maksimović-Ivanić D. Naturally occurring compounds in differentiation based therapy of cancer. Biotechnol Adv 2018; 36:1622-1632. [DOI: 10.1016/j.biotechadv.2018.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/22/2018] [Accepted: 04/10/2018] [Indexed: 12/22/2022]
|
46
|
Furth N, Pateras IS, Rotkopf R, Vlachou V, Rivkin I, Schmitt I, Bakaev D, Gershoni A, Ainbinder E, Leshkowitz D, Johnson RL, Gorgoulis VG, Oren M, Aylon Y. LATS1 and LATS2 suppress breast cancer progression by maintaining cell identity and metabolic state. Life Sci Alliance 2018; 1:e201800171. [PMID: 30456386 PMCID: PMC6238411 DOI: 10.26508/lsa.201800171] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 02/04/2023] Open
Abstract
In luminal B tumors LATS2 depletion results in metabolic rewiring whereas LATS1 depletion promotes the expression of basal-like features. Deregulated activity of LArge Tumor Suppressor (LATS) tumor suppressors has broad implications on cellular and tissue homeostasis. We examined the consequences of down-regulation of either LATS1 or LATS2 in breast cancer. Consistent with their proposed tumor suppressive roles, expression of both paralogs was significantly down-regulated in human breast cancer, and loss of either paralog accelerated mammary tumorigenesis in mice. However, each paralog had a distinct impact on breast cancer. Thus, LATS2 depletion in luminal B tumors resulted in metabolic rewiring, with increased glycolysis and reduced peroxisome proliferator-activated receptor γ (PPARγ) signaling. Furthermore, pharmacological activation of PPARγ elicited LATS2-dependent death in luminal B-derived cells. In contrast, LATS1 depletion augmented cancer cell plasticity, skewing luminal B tumors towards increased expression of basal-like features, in association with increased resistance to hormone therapy. Hence, these two closely related paralogs play distinct roles in protection against breast cancer; tumors with reduced expression of either LATS1 or LATS2 may rewire signaling networks differently and thus respond differently to anticancer treatments.
Collapse
Affiliation(s)
- Noa Furth
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ioannis S Pateras
- Laboratory of Histology and Embryology Medical School, University of Athens, Athens, Greece
| | - Ron Rotkopf
- Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Vassiliki Vlachou
- Laboratory of Histology and Embryology Medical School, University of Athens, Athens, Greece
| | - Irina Rivkin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ina Schmitt
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Deborah Bakaev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anat Gershoni
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Elena Ainbinder
- Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Dena Leshkowitz
- Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Randy L Johnson
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vassilis G Gorgoulis
- Laboratory of Histology and Embryology Medical School, University of Athens, Athens, Greece.,Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Aylon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
47
|
Abaricia S, Hirbe AC. Diagnosis and Treatment of Myxoid Liposarcomas: Histology Matters. Curr Treat Options Oncol 2018; 19:64. [DOI: 10.1007/s11864-018-0590-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Sanchez DJ, Steger DJ, Skuli N, Bansal A, Simon MC. PPARγ is dispensable for clear cell renal cell carcinoma progression. Mol Metab 2018; 14:139-149. [PMID: 29866440 PMCID: PMC6034040 DOI: 10.1016/j.molmet.2018.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/11/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Clear cell renal cell carcinoma (ccRCC) is a subtype of kidney cancer defined by robust lipid accumulation, which prior studies have indicated plays an important role in tumor progression. We hypothesized that the peroxisome proliferator-activated receptor gamma (PPARγ), detected in both ccRCC tumors and cell lines, promotes lipid storage in ccRCC and contributes to tumorigenesis in this setting. PPARγ transcriptionally regulates a number of genes involved in lipid and glucose metabolism in adipocytes, yet its role in ccRCC has not been described. The objective of this study was to elucidate endogenous PPARγ function in ccRCC cells. METHODS AND RESULTS Using chromatin immunoprecipitation followed by deep sequencing (ChIP-seq), we found that PPARγ and its heterodimer RXR occupy the canonical DR1 PPAR binding motif at approximately 1000 locations throughout the genome that can be subdivided into adipose-shared and ccRCC-specific sites. CRISPR-Cas9 mediated, loss-of-function studies determined that PPARγ is dispensable for viability, proliferation, and migration of ccRCC cells in vitro and in vivo. Also, surprisingly, PPARγ deletion had little effect on the robust lipid accumulation that typifies the "clear cell" phenotype of kidney cancer. CONCLUSION Our results suggest that PPARγ plays neither a tumor suppressive nor oncogenic role in advanced ccRCC, and thus single-agent therapeutics targeting PPARγ are unlikely to be effective for the treatment of this disease. The unique cistrome of PPARγ in ccRCC cells demonstrates the importance of cell type in determining the functions of PPARγ.
Collapse
Affiliation(s)
- Danielle J Sanchez
- Abramson Family Cancer Research Institute, USA; Department of Cell and Developmental Biology, USA
| | | | - Nicolas Skuli
- Abramson Family Cancer Research Institute, USA; Department of Cancer Biology, USA
| | - Ankita Bansal
- Abramson Family Cancer Research Institute, USA; Department of Cancer Biology, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, USA; Department of Cell and Developmental Biology, USA.
| |
Collapse
|
49
|
Fang E, Zhang X, Wang Q, Wang D. Identification of prostate cancer hub genes and therapeutic agents using bioinformatics approach. Cancer Biomark 2018; 20:553-561. [PMID: 28800317 DOI: 10.3233/cbm-170362] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is the most common and the second leading cause of cancer-related death among men in America. As the molecular mechanism of PCa has not yet been completely discovered, identification of hub genes and potential drug of this disease is an important area of research that could provide new insights into exploring the mechanisms underlying PCa. OBJECTIVE The aim of this study was to identify potential biomarkers and novel drug for prostate cancer treatment. METHODS The differentially expressed genes (DEGs) between prostate cancer and normal cells were screened using microarray data obtained from the Gene Expression Omnibus database. Gene ontology (GO) and pathway enrichment analyses were performed in order to investigate the functions of DEGs, and the protein-protein interaction (PPI) network of the DEGs was constructed using the Cytoscape software. DEGs were then mapped to the connectivity map database to identify molecular agents associated with the underlying mechanisms of PCa. RESULTS Totally, 359 genes (155 upregulated and 204 downregulated genes) were found to be differentially expressed between prostate cancer and normal cells. The GO terms significantly enriched by DEGs included cell adhesion, protein binding involved in cell-cell adhesion, response to BMP, extracellular region and extracellular region part. KEGG pathway analysis showed that the most significant pathways included cell adhesion molecules (CAMs) and TGF-beta signaling pathway. The PPI network of up-regulated DEGs and down-regulated DEGs were established, respectively. While CDH1, BMP2, NKX3-1, PPARG and PRKAR2B were identified as the hub genes in the PPI network. CONCLUSIONS The BMP2, PPARG and PRKAR2B genes may therefore be potential biomarkers in the treatment of PCa. Additionally, the small molecular agent phenoxybenzamine may be a potential drug for PCa.
Collapse
|
50
|
Vallée A, Lecarpentier Y. Crosstalk Between Peroxisome Proliferator-Activated Receptor Gamma and the Canonical WNT/β-Catenin Pathway in Chronic Inflammation and Oxidative Stress During Carcinogenesis. Front Immunol 2018; 9:745. [PMID: 29706964 PMCID: PMC5908886 DOI: 10.3389/fimmu.2018.00745] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022] Open
Abstract
Inflammation and oxidative stress are common and co-substantial pathological processes accompanying, promoting, and even initiating numerous cancers. The canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPARγ) generally work in opposition. If one of them is upregulated, the other one is downregulated and vice versa. WNT/β-catenin signaling is upregulated in inflammatory processes and oxidative stress and in many cancers, although there are some exceptions for cancers. The opposite is observed with PPARγ, which is generally downregulated during inflammation and oxidative stress and in many cancers. This helps to explain in part the opposite and unidirectional profile of the canonical WNT/β-catenin signaling and PPARγ in these three frequent and morbid processes that potentiate each other and create a vicious circle. Many intracellular pathways commonly involved downstream will help maintain and amplify inflammation, oxidative stress, and cancer. Thus, many WNT/β-catenin target genes such as c-Myc, cyclin D1, and HIF-1α are involved in the development of cancers. Nuclear factor-kappaB (NFκB) can activate many inflammatory factors such as TNF-α, TGF-β, interleukin-6 (IL-6), IL-8, MMP, vascular endothelial growth factor, COX2, Bcl2, and inducible nitric oxide synthase. These factors are often associated with cancerous processes and may even promote them. Reactive oxygen species (ROS), generated by cellular alterations, stimulate the production of inflammatory factors such as NFκB, signal transducer and activator transcription, activator protein-1, and HIF-α. NFκB inhibits glycogen synthase kinase-3β (GSK-3β) and therefore activates the canonical WNT pathway. ROS activates the phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling in many cancers. PI3K/Akt also inhibits GSK-3β. Many gene mutations of the canonical WNT/β-catenin pathway giving rise to cancers have been reported (CTNNB1, AXIN, APC). Conversely, a significant reduction in the expression of PPARγ has been observed in many cancers. Moreover, PPARγ agonists promote cell cycle arrest, cell differentiation, and apoptosis and reduce inflammation, angiogenesis, oxidative stress, cell proliferation, invasion, and cell migration. All these complex and opposing interactions between the canonical WNT/β-catenin pathway and PPARγ appear to be fairly common in inflammation, oxidative stress, and cancers.
Collapse
Affiliation(s)
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| |
Collapse
|