1
|
Silwal P, Singhal P, Senecal JM, Senecal JE, Lynn BD, Nagy JI. Patterns of connexin36 and eGFP reporter expression among motoneurons in spinal sexually dimorphic motor nuclei in mouse. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2024; 16:55-76. [PMID: 39021417 PMCID: PMC11249853 DOI: 10.62347/ogwv9376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/06/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Sexually dimorphic spinal motoneurons (MNs) in the dorsomedial nucleus (DMN) and dorsolateral nucleus (DLN) as well as those in the cremaster nucleus are involved in reproductive behaviours, and the cremaster nucleus additionally contributes to testicular thermoregulation. It has been reported that MNs in DMN and DLN are extensively linked by gap junctions forming electrical synapses composed of connexin36 (Cx36) and there is evidence that subpopulation of MNs in the cremaster nucleus are also electrically coupled by these synapses. METHODOLOGY We used immunofluorescence methods to detect enhanced green fluorescent protein (eGFP) reporter for Cx36 expression in these motor nuclei. RESULTS We document in male mice that about half the MNs in each of DMN and DLN express eGFP, while the remaining half do not. Further, we found that the eGFP+ vs. eGFP- subsets of MNs in each of these motor nuclei innervate different target muscles; eGFP+ MNs in DMN and DLN project to sexually dimorphic bulbocavernosus and ischiocavernosus muscles, while the eGFP- subsets project to sexually non-dimorphic anal and external urethral sphincter muscles. Similarly, eGFP+ vs. eGFP- cremaster MNs were found to project to anatomically distinct portions of the cremaster muscle. By immunofluorescence, nearly all motoneurons in both DMN and DLN displayed punctate labelling for Cx36, including at eGFP+/eGFP+, eGFP+/eGFP- and eGFP-/eGFP- cell appositions. CONCLUSIONS Most if not all motoneurons in DMN and DLN are electrically coupled, including sexually dimorphic and non-dimorphic motoneurons with each other, despite absence of eGFP reporter in the non-dimorphic populations in these nuclei that have selective projections to sexually non-dimorphic target muscles.
Collapse
Affiliation(s)
- Prabhisha Silwal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| | - Pratyaksh Singhal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| | - Joanne Mm Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| | - Julie Em Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| | - Bruce D Lynn
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| | - James I Nagy
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| |
Collapse
|
2
|
Thomas D, Recabal-Beyer A, Senecal JMM, Serletis D, Lynn BD, Jackson MF, Nagy JI. Association of connexin36 with adherens junctions at mixed synapses and distinguishing electrophysiological features of those at mossy fiber terminals in rat ventral hippocampus. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2024; 16:28-54. [PMID: 39021415 PMCID: PMC11249852 DOI: 10.62347/rtmh4490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/06/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Granule cells in the hippocampus project axons to hippocampal CA3 pyramidal cells where they form large mossy fiber terminals. We have reported that these terminals contain the gap junction protein connexin36 (Cx36) specifically in the stratum lucidum of rat ventral hippocampus, thus creating morphologically mixed synapses that have the potential for dual chemical/electrical transmission. METHODOLOGY Here, we used various approaches to characterize molecular and electrophysiological relationships between the Cx36-containing gap junctions at mossy fiber terminals and their postsynaptic elements and to examine molecular relationships at mixed synapses in the brainstem. RESULTS In rat and human ventral hippocampus, many of these terminals, identified by their selective expression of vesicular zinc transporter-3 (ZnT3), displayed multiple, immunofluorescent Cx36-puncta representing gap junctions, which were absent at mossy fiber terminals in the dorsal hippocampus. In rat, these were found in close proximity to the protein constituents of adherens junctions (i.e., N-cadherin and nectin-1) that are structural hallmarks of mossy fiber terminals, linking these terminals to the dendritic shafts of CA3 pyramidal cells, thus indicating the loci of gap junctions at these contacts. Cx36-puncta were also associated with adherens junctions at mixed synapses in the brainstem, supporting emerging views of the structural organization of the adherens junction-neuronal gap junction complex. Electrophysiologically induced long-term potentiation (LTP) of field responses evoked by mossy fiber stimulation was greater in the ventral than dorsal hippocampus. CONCLUSIONS The electrical component of transmission at mossy fiber terminals may contribute to enhanced LTP responses in the ventral hippocampus.
Collapse
Affiliation(s)
- Deepthi Thomas
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, Manitoba, Canada
| | - Antonia Recabal-Beyer
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de ConcepciónVíctor Lamas 1290, Casilla 160, Concepción, Chile
| | - Joanne MM Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, Manitoba, Canada
| | - Demitre Serletis
- Epilepsy Center, Neurological Institute, Cleveland ClinicCleveland, Ohio, USA
| | - Bruce D Lynn
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, Manitoba, Canada
| | - Michael F Jackson
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- PrairieNeuro Research Centre, Kleysen Institute for Advanced Medicine, Health Science CentreWinnipeg, Manitoba, Canada
| | - James I Nagy
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Mao W, Chen S. Assembly mechanisms of the neuronal gap junction channel connexin 36 elucidated by Cryo-EM. Arch Biochem Biophys 2024; 754:109959. [PMID: 38490311 DOI: 10.1016/j.abb.2024.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/20/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Electrical synapses are essential components of neural circuits. Neuronal signal transduction across electrical synapses is primarily mediated by gap junction channels composed of Connexin36 (Cx36), the lack of which causes impaired electrical coupling between certain neurons including cortical interneurons and thalamic reticular nucleus (TRN) neurons. However, the structural basis underlying Cx36 function and assembly remains elusive. Recently, Lee et al. reported cryo-EM structures of Cx36, thus provided first insights of its gating mechanism. Here, we report a consistent cryo-EM structure of Cx36 determined in parallel, and describe unique interactions underpinning its assembly mechanism in complementary to the competing work. In particular, we found non-canonical electrostatic interactions between protomers from opposing hemichannels and a steric complementary site between adjacent protomers within a hemichannel, which together provide a structural explanation for the assembly specificity in homomeric and heteromeric gap junction channels.
Collapse
Affiliation(s)
- Wenxuan Mao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanshuang Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Shigematsu N, Miyamoto Y, Esumi S, Fukuda T. The Anterolateral Barrel Subfield Differs from the Posteromedial Barrel Subfield in the Morphology and Cell Density of Parvalbumin-Positive GABAergic Interneurons. eNeuro 2024; 11:ENEURO.0518-22.2024. [PMID: 38438262 DOI: 10.1523/eneuro.0518-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 12/20/2023] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
Layer 4 of the rodent somatosensory cortex has unitary structures called barrels that receive tactile information from individual vibrissae. Barrels in the anterolateral barrel subfield (ALBSF) are much smaller and have gained less attention than larger barrels in the posteromedial barrel subfield (PMBSF), though the former outnumber the latter. We compared the morphological features of barrels between the ALBSF and PMBSF in male mice using deformation-free tangential sections and confocal optical slice-based, precise reconstructions of barrels. The average volume of a single barrel in the ALBSF was 34.7% of that in the PMBSF, but the numerical density of parvalbumin (PV)-positive interneurons in the former was 1.49 times higher than that in the latter. Moreover, PV neuron density in septa was 2.08 times higher in the ALBSF than that in the PMBSF. The proportions of PV neuron number to both all neuron number and all GABAergic neuron number in the ALBSF were also higher than those in the PMBSF. Somata of PV neurons in barrels and septa in the ALBSF received 1.64 and 1.50 times more vesicular glutamate transporter Type 2-labeled boutons than those in the PMBSF, suggesting more potent feedforward inhibitory circuits in the ALBSF. The mode of connectivity through dendritic gap junctions among PV neurons also differed between the ALBSF and PMBSF. Clusters of smaller unitary structures containing a higher density of representative GABAergic interneurons with differential morphological features in the ALBSF suggest a division of functional roles in the two vibrissa-barrel systems, as has been demonstrated by behavioral studies.
Collapse
Affiliation(s)
- Naoki Shigematsu
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yuta Miyamoto
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shigeyuki Esumi
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
5
|
Gilloteaux J, De Swert K, Suain V, Brion JP, Nicaise C. Loss of Ephaptic Contacts in the Murine Thalamus during Osmotic Demyelination Syndrome. Ultrastruct Pathol 2023; 47:398-423. [PMID: 37477534 DOI: 10.1080/01913123.2023.2232452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/10/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND AND AIM A murine model mimicking osmotic demyelination syndrome (ODS) revealed with histology in the relay posterolateral (VPL) and ventral posteromedial (VPM) thalamic nuclei adjoined nerve cell bodies in chronic hyponatremia, amongst the damaged 12 h and 48 h after reinstatement of osmolality. This report aims to verify and complement with ultrastructure other neurophysiology, immunohistochemistry, and molecular biochemistry data to assess the connexin-36 protein, as part of those hinted close contacts.This ODS investigation included four groups of mice: Sham (NN; n = 13), hyponatremic (HN; n = 11), those sacrificed 12 h after a fast restoration of normal natremia (ODS12h; n = 6) and mice sacrificed 48 h afterward, or ODS48 h (n = 9). Out of these, thalamic zones samples included NN (n = 2), HN (n = 2), ODS12h (n = 3) and ODS48h (n = 3). RESULTS Ultrastructure illustrated junctions between nerve cell bodies that were immunolabeled with connexin36 (Cx36) with light microscopy and Western blots. These cell's junctions were reminiscent of low resistance junctions characterized in other regions of the CNS with electrophysiology. Contiguous neurons showed neurolemma contacts in intact and damaged tissues according to their location in the ODS zones, at 12 h and 48 h post correction along with other demyelinating alterations. Neurons and ephaptic contact measurements indicated the highest alterations, including nerve cell necrosis in the ODS epicenter and damages decreased toward the outskirts of the demyelinated zone. CONCLUSION Ephapses contained C × 36between intact or ODS injured neurons in the thalamus appeared to be resilient beyond the core degraded tissue injuries. These could maintain intercellular ionic and metabolite exchanges between these lesser injured regions and, thus, would partake to some brain plasticity repairs.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Department of Medicine, URPHyM, NARILIS, Université de Namur, Namur, Belgium
- Department of Anatomical Sciences, St George's University School of Medicine, Newcastle Upon Tyne, UK
| | - Kathleen De Swert
- Department of Medicine, URPHyM, NARILIS, Université de Namur, Namur, Belgium
| | - Valérie Suain
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Charles Nicaise
- Department of Medicine, URPHyM, NARILIS, Université de Namur, Namur, Belgium
| |
Collapse
|
6
|
Gebicke-Haerter PJ. The computational power of the human brain. Front Cell Neurosci 2023; 17:1220030. [PMID: 37608987 PMCID: PMC10441807 DOI: 10.3389/fncel.2023.1220030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 08/24/2023] Open
Abstract
At the end of the 20th century, analog systems in computer science have been widely replaced by digital systems due to their higher computing power. Nevertheless, the question keeps being intriguing until now: is the brain analog or digital? Initially, the latter has been favored, considering it as a Turing machine that works like a digital computer. However, more recently, digital and analog processes have been combined to implant human behavior in robots, endowing them with artificial intelligence (AI). Therefore, we think it is timely to compare mathematical models with the biology of computation in the brain. To this end, digital and analog processes clearly identified in cellular and molecular interactions in the Central Nervous System are highlighted. But above that, we try to pinpoint reasons distinguishing in silico computation from salient features of biological computation. First, genuinely analog information processing has been observed in electrical synapses and through gap junctions, the latter both in neurons and astrocytes. Apparently opposed to that, neuronal action potentials (APs) or spikes represent clearly digital events, like the yes/no or 1/0 of a Turing machine. However, spikes are rarely uniform, but can vary in amplitude and widths, which has significant, differential effects on transmitter release at the presynaptic terminal, where notwithstanding the quantal (vesicular) release itself is digital. Conversely, at the dendritic site of the postsynaptic neuron, there are numerous analog events of computation. Moreover, synaptic transmission of information is not only neuronal, but heavily influenced by astrocytes tightly ensheathing the majority of synapses in brain (tripartite synapse). At least at this point, LTP and LTD modifying synaptic plasticity and believed to induce short and long-term memory processes including consolidation (equivalent to RAM and ROM in electronic devices) have to be discussed. The present knowledge of how the brain stores and retrieves memories includes a variety of options (e.g., neuronal network oscillations, engram cells, astrocytic syncytium). Also epigenetic features play crucial roles in memory formation and its consolidation, which necessarily guides to molecular events like gene transcription and translation. In conclusion, brain computation is not only digital or analog, or a combination of both, but encompasses features in parallel, and of higher orders of complexity.
Collapse
Affiliation(s)
- Peter J. Gebicke-Haerter
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
7
|
Accomando AW, Johnson MA, McLaughlin MA, Simmons JA, Simmons AM. Connexin36 RNA Expression in the Cochlear Nucleus of the Echolocating Bat, Eptesicus fuscus. J Assoc Res Otolaryngol 2023; 24:281-290. [PMID: 37253961 PMCID: PMC10335991 DOI: 10.1007/s10162-023-00898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 03/30/2023] [Indexed: 06/01/2023] Open
Abstract
PURPOSE The echolocating bat is used as a model for studying the auditory nervous system because its specialized sensory capabilities arise from general mammalian auditory percepts such as pitch and sound source localization. These percepts are mediated by precise timing within neurons and networks of the lower auditory brainstem, where the gap junction protein Connexin36 (CX36) is expressed. Gap junctions and electrical synapses in the central nervous system are associated with fast transmission and synchronous patterns of firing within neuronal networks. The purpose of this study was to identify areas where CX36 was expressed in the bat cochlear nucleus to shed light on auditory brainstem networks in a hearing specialist animal model. METHODS We investigated the distribution of CX36 RNA throughout the cochlear nucleus complex of the echolocating big brown bat, Eptesicus fuscus, using in situ hybridization. As a qualitative comparison, we visualized Gjd2 gene expression in the cochlear nucleus of transgenic CX36 reporter mice, species that hear ultrasound but do not echolocate. RESULTS In both the bat and the mouse, CX36 is expressed in the anteroventral and in the dorsal cochlear nucleus, with more limited expression in the posteroventral cochlear nucleus. These results are generally consistent with previous work based on immunohistochemistry. CONCLUSION Our data suggest that the anatomical substrate for CX36-mediated electrical neurotransmission is conserved in the mammalian CN across echolocating bats and non-echolocating mice.
Collapse
Affiliation(s)
- Alyssa W. Accomando
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI 02912 USA
| | - Mark A. Johnson
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI 02912 USA
- Taconic Biosciences, Rensselaer, NY 12144 USA
| | - Madeline A. McLaughlin
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI 02912 USA
| | - James A. Simmons
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI 02912 USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02912 USA
| | - Andrea Megela Simmons
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI 02912 USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02912 USA
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912 USA
| |
Collapse
|
8
|
Recabal-Beyer A, Tavakoli H, M M Senecal J, Stecina K, Nagy JI. Interrelationships between spinal sympathetic preganglionic neurons, autonomic systems and electrical synapses formed by connexin36-containing gap junctions. Neuroscience 2023:S0306-4522(23)00220-8. [PMID: 37225049 DOI: 10.1016/j.neuroscience.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/24/2023] [Accepted: 05/14/2023] [Indexed: 05/26/2023]
Abstract
Spinal sympathetic preganglionic neurons (SPNs) are among the many neuronal populations in the mammalian central nervous system (CNS) where there is evidence for electrical coupling between cell pairs linked by gap junctions composed of connexin36 (Cx36). Understanding the organization of this coupling in relation to autonomic functions of spinal sympathetic systems requires knowledge of how these junctions are deployed among SPNs. Here, we document the distribution of immunofluorescence detection of Cx36 among SPNs identified by immunolabelling of their various markers, including choline acetyltransferase, nitric oxide and peripherin in adult and developing mouse and rat. In adult animals, labelling of Cx36 was exclusively punctate and dense concentrations of Cx36-puncta were distributed along the entire length of the spinal thoracic intermediolateral cell column (IML). These puncta were also seen in association with SPN dendritic processes in the lateral funiculus, the intercalated and central autonomic areas and those within and extending medially from the IML. All labelling for Cx36 was absent in spinal cords of Cx36 knockout mice. High densities of Cx36-puncta were already evident among clusters of SPNs in the IML of mouse and rat at postnatal days 10-12. In Cx36BAC::eGFP mice, eGFP reporter was absent in SPNs, thus representing false negative detection, but was localized to some glutamatergic and GABAergic synaptic terminals. Some eGFP+ terminals were found contacting SPN dendrites. These results indicate widespread Cx36 expression in SPNs, further supporting evidence of electrical coupling between these cells, and suggest that SPNs are innervated by neurons that themselves may be electrically coupled.
Collapse
Affiliation(s)
- A Recabal-Beyer
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada R3E 0J9
| | - H Tavakoli
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada R3E 0J9
| | - J M M Senecal
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada R3E 0J9
| | - K Stecina
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada R3E 0J9
| | - J I Nagy
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada R3E 0J9.
| |
Collapse
|
9
|
Zhu Z, Li X, Wang X, Zuo X, Ma Y, Gao X, Liang Z, Zhang Z, Song Z, Ding T, Ju C, Li P, Li K, Zhang J, Quan H, Wang Z, Hu X. Photobiomodulation augments the effects of mitochondrial transplantation in the treatment of spinal cord injury in rats by facilitating mitochondrial transfer to neurons via Connexin 36. Bioeng Transl Med 2023; 8:e10473. [PMID: 37206245 PMCID: PMC10189468 DOI: 10.1002/btm2.10473] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/15/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial transplantation is a promising treatment for spinal cord injury (SCI), but it has the disadvantage of low efficiency of mitochondrial transfer to targeted cells. Here, we demonstrated that Photobiomodulation (PBM) could promote the transfer process, thus augmenting the therapeutic effect of mitochondrial transplantation. In vivo experiments, motor function recovery, tissue repair, and neuronal apoptosis were evaluated in different treatment groups. Under the premise of mitochondrial transplantation, the expression of Connex36 (Cx36), the trend of mitochondria transferred to neurons, and its downstream effects, such as ATP production and antioxidant capacity, were evaluated after PBM intervention. In in vitro experiments, dorsal root ganglia (DRG) were cotreated with PBM and 18β-GA (a Cx36 inhibitor). In vivo experiments showed that PBM combined with mitochondrial transplantation could increase ATP production and reduce oxidative stress and neuronal apoptosis levels, thereby promoting tissue repair and motor function recovery. In vitro experiments further verified that Cx36 mediated the transfer of mitochondria into neurons. PBM could facilitate this progress via Cx36 both in vivo and in vitro. The present study reports a potential method of using PBM to facilitate the transfer of mitochondria to neurons for the treatment of SCI.
Collapse
Affiliation(s)
- Zhijie Zhu
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Xin Li
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
- 967 Hospital of People's Liberation Army Joint Logistic Support ForceDalianLiaoningChina
| | - Xuankang Wang
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Xiaoshuang Zuo
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Yangguang Ma
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Xue Gao
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Zhuowen Liang
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Zhihao Zhang
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Zhiwen Song
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Tan Ding
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Cheng Ju
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Penghui Li
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Kun Li
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Jiawei Zhang
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Huilin Quan
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Zhe Wang
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Xueyu Hu
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| |
Collapse
|
10
|
Vaughn MJ, Haas JS. On the Diverse Functions of Electrical Synapses. Front Cell Neurosci 2022; 16:910015. [PMID: 35755782 PMCID: PMC9219736 DOI: 10.3389/fncel.2022.910015] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Electrical synapses are the neurophysiological product of gap junctional pores between neurons that allow bidirectional flow of current between neurons. They are expressed throughout the mammalian nervous system, including cortex, hippocampus, thalamus, retina, cerebellum, and inferior olive. Classically, the function of electrical synapses has been associated with synchrony, logically following that continuous conductance provided by gap junctions facilitates the reduction of voltage differences between coupled neurons. Indeed, electrical synapses promote synchrony at many anatomical and frequency ranges across the brain. However, a growing body of literature shows there is greater complexity to the computational function of electrical synapses. The paired membranes that embed electrical synapses act as low-pass filters, and as such, electrical synapses can preferentially transfer spike after hyperpolarizations, effectively providing spike-dependent inhibition. Other functions include driving asynchronous firing, improving signal to noise ratio, aiding in discrimination of dissimilar inputs, or dampening signals by shunting current. The diverse ways by which electrical synapses contribute to neuronal integration merits furthers study. Here we review how functions of electrical synapses vary across circuits and brain regions and depend critically on the context of the neurons and brain circuits involved. Computational modeling of electrical synapses embedded in multi-cellular models and experiments utilizing optical control and measurement of cellular activity will be essential in determining the specific roles performed by electrical synapses in varying contexts.
Collapse
Affiliation(s)
- Mitchell J Vaughn
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Julie S Haas
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
11
|
Choudhury SP, Bano S, Sen S, Suchal K, Kumar S, Nikolajeff F, Dey SK, Sharma V. Altered neural cell junctions and ion-channels leading to disrupted neuron communication in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:66. [PMID: 35650269 PMCID: PMC9160246 DOI: 10.1038/s41531-022-00324-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 05/05/2022] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is a neurological disorder that affects the movement of the human body. It is primarily characterized by reduced dopamine levels in the brain. The causative agent of PD is still unclear but it is generally accepted that α-synuclein has a central role to play. It is also known that gap-junctions and associated connexins are complicated structures that play critical roles in nervous system signaling and associated misfunctioning. Thus, our current article emphasizes how, alongside α-synuclein, ion-channels, gap-junctions, and related connexins, all play vital roles in influencing multiple metabolic activities of the brain during PD. It also highlights that ion-channel and gap-junction disruptions, which are primarily mediated by their structural-functional changes and alterations, have a role in PD. Furthermore, we discussed available drugs and advanced therapeutic interventions that target Parkinson's pathogenesis. In conclusion, it warrants creating better treatments for PD patients. Although, dopaminergic replenishment therapy is useful in treating neurological problems, such therapies are, however, unable to control the degeneration that underpins the disease, thereby declining their overall efficacy. This creates an additional challenge and an untapped scope for neurologists to adopt treatments for PD by targeting the ion-channels and gap-junctions, which is well-reviewed in the present article.
Collapse
Affiliation(s)
- Saptamita Paul Choudhury
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Sarika Bano
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Srijon Sen
- Indian Institute of Technology-Kharagpur, Kharagpur, 721302, India
| | - Kapil Suchal
- Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, India
| | - Saroj Kumar
- Deparment of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Fredrik Nikolajeff
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Sanjay Kumar Dey
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| | - Vaibhav Sharma
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden.
| |
Collapse
|
12
|
Zoidl GR, Spray DC. The Roles of Calmodulin and CaMKII in Cx36 Plasticity. Int J Mol Sci 2021; 22:4473. [PMID: 33922931 PMCID: PMC8123330 DOI: 10.3390/ijms22094473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 01/07/2023] Open
Abstract
Anatomical and electrophysiological evidence that gap junctions and electrical coupling occur between neurons was initially confined to invertebrates and nonmammals and was thought to be a primitive form of synaptic transmission. More recent studies revealed that electrical communication is common in the mammalian central nervous system (CNS), often coexisting with chemical synaptic transmission. The subsequent progress indicated that electrical synapses formed by the gap junction protein connexin-36 (Cx36) and its paralogs in nonmammals constitute vital elements in mammalian and fish synaptic circuitry. They govern the collective activity of ensembles of coupled neurons, and Cx36 gap junctions endow them with enormous adaptive plasticity, like that seen at chemical synapses. Moreover, they orchestrate the synchronized neuronal network activity and rhythmic oscillations that underlie the fundamental integrative processes, such as memory and learning. Here, we review the available mechanistic evidence and models that argue for the essential roles of calcium, calmodulin, and the Ca2+/calmodulin-dependent protein kinase II in integrating calcium signals to modulate the strength of electrical synapses through interactions with the gap junction protein Cx36.
Collapse
Affiliation(s)
- Georg R. Zoidl
- Department of Biology & Center for Vision Research (CVR), York University, Toronto, ON M3J 1P3, Canada
| | - David C. Spray
- Dominick P. Purpura Department of Neuroscience & Department of Medicine (Cardiology), Albert Einstein College of Medicine, New York, NY 10461, USA;
| |
Collapse
|
13
|
Mesnil M, Defamie N, Naus C, Sarrouilhe D. Brain Disorders and Chemical Pollutants: A Gap Junction Link? Biomolecules 2020; 11:51. [PMID: 33396565 PMCID: PMC7824109 DOI: 10.3390/biom11010051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The incidence of brain pathologies has increased during last decades. Better diagnosis (autism spectrum disorders) and longer life expectancy (Parkinson's disease, Alzheimer's disease) partly explain this increase, while emerging data suggest pollutant exposures as a possible but still underestimated cause of major brain disorders. Taking into account that the brain parenchyma is rich in gap junctions and that most pollutants inhibit their function; brain disorders might be the consequence of gap-junctional alterations due to long-term exposures to pollutants. In this article, this hypothesis is addressed through three complementary aspects: (1) the gap-junctional organization and connexin expression in brain parenchyma and their function; (2) the effect of major pollutants (pesticides, bisphenol A, phthalates, heavy metals, airborne particles, etc.) on gap-junctional and connexin functions; (3) a description of the major brain disorders categorized as neurodevelopmental (autism spectrum disorders, attention deficit hyperactivity disorders, epilepsy), neurobehavioral (migraines, major depressive disorders), neurodegenerative (Parkinson's and Alzheimer's diseases) and cancers (glioma), in which both connexin dysfunction and pollutant involvement have been described. Based on these different aspects, the possible involvement of pollutant-inhibited gap junctions in brain disorders is discussed for prenatal and postnatal exposures.
Collapse
Affiliation(s)
- Marc Mesnil
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 rue G. Bonnet–TSA 51 106, 86073 Poitiers, France; (M.M.); (N.D.)
| | - Norah Defamie
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 rue G. Bonnet–TSA 51 106, 86073 Poitiers, France; (M.M.); (N.D.)
| | - Christian Naus
- Faculty of Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada;
| | - Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculté de Médecine et Pharmacie, 6 rue de La Milétrie, bât D1, TSA 51115, 86073 Poitiers, France
| |
Collapse
|
14
|
Aseervatham J, Li X, Mitchell CK, Lin YP, Heidelberger R, O’Brien J. Calmodulin Binding to Connexin 35: Specializations to Function as an Electrical Synapse. Int J Mol Sci 2020; 21:E6346. [PMID: 32882943 PMCID: PMC7504508 DOI: 10.3390/ijms21176346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 12/25/2022] Open
Abstract
Calmodulin binding is a nearly universal property of gap junction proteins, imparting a calcium-dependent uncoupling behavior that can serve in an emergency to decouple a stressed cell from its neighbors. However, gap junctions that function as electrical synapses within networks of neurons routinely encounter large fluctuations in local cytoplasmic calcium concentration; frequent uncoupling would be impractical and counterproductive. We have studied the properties and functional consequences of calmodulin binding to the electrical synapse protein Connexin 35 (Cx35 or gjd2b), homologous to mammalian Connexin 36 (Cx36 or gjd2). We find that specializations in Cx35 calmodulin binding sites make it relatively impervious to moderately high levels of cytoplasmic calcium. Calmodulin binding to a site in the C-terminus causes uncoupling when calcium reaches low micromolar concentrations, a behavior prevented by mutations that eliminate calmodulin binding. However, milder stimuli promote calcium/calmodulin-dependent protein kinase II activity that potentiates coupling without interference from calmodulin binding. A second calmodulin binding site in the end of the Cx35 cytoplasmic loop, homologous to a calmodulin binding site present in many connexins, binds calmodulin with very low affinity and stoichiometry. Together, the calmodulin binding sites cause Cx35 to uncouple only at extreme levels of intracellular calcium.
Collapse
Affiliation(s)
- Jaya Aseervatham
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.A.); (X.L.); (C.K.M.); (Y.-P.L.)
| | - Xiaofan Li
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.A.); (X.L.); (C.K.M.); (Y.-P.L.)
| | - Cheryl K. Mitchell
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.A.); (X.L.); (C.K.M.); (Y.-P.L.)
| | - Ya-Ping Lin
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.A.); (X.L.); (C.K.M.); (Y.-P.L.)
| | - Ruth Heidelberger
- Department of Neurobiology & Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
- The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - John O’Brien
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.A.); (X.L.); (C.K.M.); (Y.-P.L.)
- The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
15
|
Shigematsu N, Nishi A, Fukuda T. Gap Junctions Interconnect Different Subtypes of Parvalbumin-Positive Interneurons in Barrels and Septa with Connectivity Unique to Each Subtype. Cereb Cortex 2020; 29:1414-1429. [PMID: 29490016 DOI: 10.1093/cercor/bhy038] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/30/2018] [Accepted: 02/03/2018] [Indexed: 11/14/2022] Open
Abstract
Parvalbumin (PV)-positive interneurons form dendritic gap junctions with one another, but the connectivity among gap junction-coupled dendrites remains uninvestigated in most neocortical areas. We visualized gap junctions in layer 4 of the mouse barrel cortex and examined their structural details. PV neurons were divided into 4 types based on the location of soma and dendrites within or outside barrels. Type 1 neurons that had soma and all dendrites inside a barrel, considered most specific to single vibrissa-derived signals, unexpectedly formed gap junctions only with other types but never with each other. Type 2 neurons inside a barrel elongated dendrites outward, forming gap junctions within a column that contained the home barrel. Type 3 neurons located outside barrels established connections with all types including Type 4 neurons that were confined inside the inter-barrel septa. The majority (33/38, 86.8%) of dendritic gap junctions were within 75 μm from at least 1 of 2 paired somata. All types received vesicular glutamate transporter 2-positive axon terminals preferentially on somata and proximal dendrites, indicating the involvement of all types in thalamocortical feedforward regulation in which proximal gap junctions may also participate. These structural organizations provide a new morphological basis for regulatory mechanisms in barrel cortex.
Collapse
Affiliation(s)
- Naoki Shigematsu
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
16
|
Martin EA, Lasseigne AM, Miller AC. Understanding the Molecular and Cell Biological Mechanisms of Electrical Synapse Formation. Front Neuroanat 2020; 14:12. [PMID: 32372919 PMCID: PMC7179694 DOI: 10.3389/fnana.2020.00012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
In this review article, we will describe the recent advances made towards understanding the molecular and cell biological mechanisms of electrical synapse formation. New evidence indicates that electrical synapses, which are gap junctions between neurons, can have complex molecular compositions including protein asymmetries across joined cells, diverse morphological arrangements, and overlooked similarities with other junctions, all of which indicate new potential roles in neurodevelopmental disease. Aquatic organisms, and in particular the vertebrate zebrafish, have proven to be excellent models for elucidating the molecular mechanisms of electrical synapse formation. Zebrafish will serve as our main exemplar throughout this review and will be compared with other model organisms. We highlight the known cell biological processes that build neuronal gap junctions and compare these with the assemblies of adherens junctions, tight junctions, non-neuronal gap junctions, and chemical synapses to explore the unknown frontiers remaining in our understanding of the critical and ubiquitous electrical synapse.
Collapse
Affiliation(s)
| | | | - Adam C. Miller
- Department of Biology, Institute of Neuroscience, University of Oregon, Eugene, OR, United States
| |
Collapse
|
17
|
Stefanov A, Novelli E, Strettoi E. Inner retinal preservation in the photoinducible I307N rhodopsin mutant mouse, a model of autosomal dominant retinitis pigmentosa. J Comp Neurol 2019; 528:1502-1522. [PMID: 31811649 PMCID: PMC7187456 DOI: 10.1002/cne.24838] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
Rod‐cone degenerations, for example, retinitis pigmentosa are leading causes of blindness worldwide. Despite slow disease progression in humans, vision loss is inevitable; therefore, development of vision restoration strategies is crucial. Among others, promising approaches include optogenetics and prosthetic implants, which aim to bypass lost photoreceptors (PRs). Naturally, the efficacy of these therapeutic strategies will depend on inner retinal structural and functional preservation. The present study shows that in photoinducible I307N rhodopsin mice (Translational Vision Research Model 4 [Tvrm4]), a 12k lux light exposure eliminates PRs in the central retina in 1 week, but interneurons and their synapses are maintained for as long as 9 weeks postinduction. Despite bipolar cell dendritic retraction and moderate loss of horizontal cells, the survival rate of various cell types is very high. Significant preservation of conventional synapses and gap junctions in the inner plexiform layer is also observed. We found the number of synaptic ribbons to gradually decline and their ultrastructure to become transiently abnormal, although based on our findings intrinsic retinal architecture is maintained despite complete loss of PRs. Unlike common rodent models of PR degeneration, where the disease phenotype often interferes with retinal development, in Tvrm4 mice, the degenerative process can be induced after retinal development is complete. This time course more closely mimics the timing of disease onset in affected patients. Stability of the inner retina found in these mutants 2 months after PR degeneration suggests moderate, stereotyped remodeling in the early stages of the human disease and represents a promising finding for prompt approaches of vision restoration.
Collapse
Affiliation(s)
- Antonia Stefanov
- Institute of Neuroscience, Italian National Research Council - CNR, Pisa, Italy.,Regional Doctoral School of Neuroscience, University of Florence, Florence, Italy
| | - Elena Novelli
- Institute of Neuroscience, Italian National Research Council - CNR, Pisa, Italy
| | - Enrica Strettoi
- Institute of Neuroscience, Italian National Research Council - CNR, Pisa, Italy
| |
Collapse
|
18
|
Rod Photoreceptors Signal Fast Changes in Daylight Levels Using a Cx36-Independent Retinal Pathway in Mouse. J Neurosci 2019; 40:796-810. [PMID: 31776212 DOI: 10.1523/jneurosci.0455-19.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 11/21/2022] Open
Abstract
Temporal contrast detected by rod photoreceptors is channeled into multiple retinal rod pathways that ultimately connect to cone photoreceptor pathways via Cx36 gap junctions or via chemical synapses. However, we do not yet understand how the different rod pathways contribute to the perception of temporal contrast (changes in luminance with time) at mesopic light levels, where both rods and cones actively respond to light. Here, we use a forced-choice, operant behavior assay to investigate rod-driven, temporal contrast sensitivity (TCS) in mice of either sex. Transgenic mice with desensitized cones (GNAT2 cpfl3 line) were used to identify rod contributions to TCS in mesopic lights. We found that at low mesopic lights (400 photons/s/μm2 at the retina), control and GNAT2 cpfl3 mice had similar TCS. Surprisingly, at upper mesopic lights (8000 photons/s/μm2), GNAT2 cpfl3 mice exhibited a relative reduction in TCS to low (<12 Hz) while maintaining normal TCS to high (12-36 Hz) temporal frequencies. The rod-driven responses to high temporal frequencies developed gradually over time (>30 min). Furthermore, the TCS of GNAT2 cpfl3 and GNAT2 cpfl3 ::Cx36-/- mice matched closely, indicating that transmission of high-frequency signals (1) does not require the rod-cone Cx36 gap junctions as has been proposed in the past; and (2) a Cx36-independent rod pathway(s) (e.g., direct rod to OFF cone bipolar cell synapses and/or glycinergic synapses from AII amacrine cells to OFF ganglion cells) is sufficient for fast, mesopic rod-driven vision. These findings extend our understanding of the link between visual circuits and perception in mouse.SIGNIFICANCE STATEMENT The contributions of specific retinal pathways to visual perception are not well understood. We found that the temporal processing properties of rod-driven vision in mice change significantly with light level. In dim lights, rods relay relatively slow temporal variations. However, in daylight conditions, rod pathways exhibit high sensitivity to fast but not to slow temporal variations, whereas cone-driven responses supplement the loss in rod-driven sensitivity to slow temporal variations. Our findings highlight the dynamic interplay of rod- and cone-driven vision as light levels rise from night to daytime levels. Furthermore, the fast, rod-driven signals do not require the rod-to-cone Cx36 gap junctions as proposed in the past, but rather, can be relayed by alternative Cx36-independent rod pathways.
Collapse
|
19
|
Wang M, Chen JJ, Huang Q, Su X, Yu YC, Liu LY. Connexin43 in neonatal excitatory neurons is important for short-term motor learning. Brain Res 2019; 1720:146287. [PMID: 31194949 DOI: 10.1016/j.brainres.2019.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/29/2019] [Accepted: 06/09/2019] [Indexed: 11/26/2022]
Abstract
In the neocortex, gap junctions are expressed at very early developmental stages, and they are involved in many processes such as neurogenesis, neuronal migration and synapse formation. Connexin43 (Cx43), a gap junction protein, has been found to be abundantly expressed in radial glial cells, excitatory neurons and astrocytes. Although accumulating evidence suggests that Cx43-mediated gap-junctional coupling between astrocytes plays an important role in the central nervous system, the function of Cx43 in early excitatory neurons remains elusive. To investigate the impact of Cx43 deficiency in excitatory neurons at early postnatal stages, we conditionally knocked out Cx43 in excitatory neurons under the Emx1 promoter by tamoxifen induction. We found that deletion of Cx43 around birth did not impair the laminar distribution of excitatory neurons in the neocortex. Moreover, mice with Cx43 deletion during the early postnatal stages had normal anxiety-like behaviors, depression-related behaviors, learning and memory-associated behaviors at adolescent stages. However, Cx43 conditional knockout mice exhibited impaired motor-learning behavior. These results suggested that Cx43 expression in excitatory neurons at early postnatal stages contributes to short-term motor learning capacity.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Jing-Jing Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Qian Huang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xin Su
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yong-Chun Yu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Lin-Yun Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
20
|
Poberezhnyi VI, Marchuk OV, Shvidyuk OS, Petrik IY, Logvinov OS. Fundamentals of the modern theory of the phenomenon of "pain" from the perspective of a systematic approach. Neurophysiological basis. Part 1: A brief presentation of key subcellular and cellular ctructural elements of the central nervous system. PAIN MEDICINE 2019. [DOI: 10.31636/pmjua.v3i4.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The phenomenon of “pain” is a psychophysiological phenomenon that is actualized in the mind of a person as a result of the systemic response of his body to certain external and internal stimuli. The heart of the corresponding mental processes is certain neurophysiological processes, which in turn are caused by a certain form of the systemic structural and functional organization of the central nervous system (CNS). Thus, the systemic structural and functional organization of the central nervous system of a person, determining the corresponding psychophysiological state in a specific time interval, determines its psycho-emotional states or reactions manifested by the pain phenomenon. The nervous system of the human body has a hierarchical structure and is a morphologically and functionally complete set of different, interconnected, nervous and structural formations. The basis of the structural formations of the nervous system is nervous tissue. It is a system of interconnected differentials of nerve cells, neuroglia and glial macrophages, providing specific functions of perception of stimulation, excitation, generation of nerve impulses and its transmission. The neuron and each of its compartments (spines, dendrites, catfish, axon) is an autonomous, plastic, active, structural formation with complex computational properties. One of them – dendrites – plays a key role in the integration and processing of information. Dendrites, due to their morphology, provide neurons with unique electrical and plastic properties and cause variations in their computational properties. The morphology of dendrites: 1) determines – a) the number and type of contacts that a particular neuron can form with other neurons; b) the complexity, diversity of its functions; c) its computational operations; 2) determines – a) variations in the computational properties of a neuron (variations of the discharges between bursts and regular forms of pulsation); b) back distribution of action potentials. Dendritic spines can form synaptic connection – one of the main factors for increasing the diversity of forms of synaptic connections of neurons. Their volume and shape can change over a short period of time, and they can rotate in space, appear and disappear by themselves. Spines play a key role in selectively changing the strength of synaptic connections during the memorization and learning process. Glial cells are active participants in diffuse transmission of nerve impulses in the brain. Astrocytes form a three-dimensional, functionally “syncytia-like” formation, inside of which there are neurons, thus causing their specific microenvironment. They and neurons are structurally and functionally interconnected, based on which their permanent interaction occurs. Oligodendrocytes provide conditions for the generation and transmission of nerve impulses along the processes of neurons and play a significant role in the processes of their excitation and inhibition. Microglial cells play an important role in the formation of the brain, especially in the formation and maintenance of synapses. Thus, the CNS should be considered as a single, functionally “syncytia-like”, structural entity. Because the three-dimensional distribution of dendritic branches in space is important for determining the type of information that goes to a neuron, it is necessary to consider the three-dimensionality of their structure when analyzing the implementation of their functions.
Collapse
|
21
|
Ha NT, Dougherty KJ. Spinal Shox2 interneuron interconnectivity related to function and development. eLife 2018; 7:42519. [PMID: 30596374 PMCID: PMC6333440 DOI: 10.7554/elife.42519] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/27/2018] [Indexed: 12/25/2022] Open
Abstract
Neuronal networks generating hindlimb locomotion are located in the spinal cord. The mechanisms underlying spinal rhythmogenesis are unknown but network activity and interconnectivity of excitatory interneurons likely play prominent roles. Here, we investigate interconnectivity within the Shox2 interneuron population, a subset of which has been suggested to be involved in locomotor rhythm generation, using paired recordings in isolated spinal cords or slices from transgenic mice. Sparse unidirectional connections consistent with chemical synaptic transmission and prominent bidirectional connections mediated by electrical synapses were present within distinct subsets of Shox2 interneurons. Moreover, bidirectional electrical connections were preferentially found between functionally-related Shox2 interneurons. Though prevalent in neonatal mice, electrical coupling began to decline in incidence and strength in mice ~ 3 weeks of age. Overall, our data suggest that gap junctional coupling promotes synchronization of Shox2 interneurons, and may be implicated in locomotor rhythmicity in developing mice.
Collapse
Affiliation(s)
- Ngoc T Ha
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
| | - Kimberly J Dougherty
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
| |
Collapse
|
22
|
Lo Furno D, Mannino G, Pellitteri R, Zappalà A, Parenti R, Gili E, Vancheri C, Giuffrida R. Conditioned Media From Glial Cells Promote a Neural-Like Connexin Expression in Human Adipose-Derived Mesenchymal Stem Cells. Front Physiol 2018; 9:1742. [PMID: 30555356 PMCID: PMC6282092 DOI: 10.3389/fphys.2018.01742] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
The expression of neuronal and glial connexins (Cxs) has been evaluated in adipose-derived mesenchymal stem cells (ASCs) whose neural differentiation was promoted by a conditioned medium (CM) obtained from cultures of olfactory ensheathing cells (OECs) or Schwann cells (SCs). By immunocytochemistry and flow cytometer analysis it was found that Cx43 was already considerably expressed in naïve ASCs and further increased after 24 h and 7 days from CM exposition. Cx32 and Cx36 were significantly improved in conditioned cultures compared to control ASCs, whereas a decreased expression was noticed in the absence of CM treatments. Cx47 was virtually absent in any conditions. Altogether, high basal levels and induced increases of Cx43 expression suggest a potential attitude of ASCs toward an astrocyte differentiation, whereas the lack of Cx47 would indicate a poor propensity of ASCs to become oligodendrocytes. CM-evoked Cx32 and Cx36 increases showed that a neuronal- or a SC-like differentiation can be promoted by using this strategy. Results further confirm that environmental cues can favor an ASC neural differentiation, either as neuronal or glial elements. Of note, the use of glial products present in CM rather than the addition of chemical agents to achieve such differentiation would resemble "more physiological" conditions of differentiation. As a conclusion, the overexpression of typical neural Cxs would indicate the potential capability of neural-like ASCs to interact with neighboring neural cells and microenvironment.
Collapse
Affiliation(s)
- Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Rosalia Pellitteri
- Institute of Neurological Sciences, National Research Council, Catania, Italy
| | - Agata Zappalà
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Elisa Gili
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Carlo Vancheri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| |
Collapse
|
23
|
Faber DS, Pereda AE. Two Forms of Electrical Transmission Between Neurons. Front Mol Neurosci 2018; 11:427. [PMID: 30534051 PMCID: PMC6276723 DOI: 10.3389/fnmol.2018.00427] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/05/2018] [Indexed: 12/30/2022] Open
Abstract
Electrical signaling is a cardinal feature of the nervous system and endows it with the capability of quickly reacting to changes in the environment. Although synaptic communication between nerve cells is perceived to be mainly chemically mediated, electrical synaptic interactions also occur. Two different strategies are responsible for electrical communication between neurons. One is the consequence of low resistance intercellular pathways, called "gap junctions", for the spread of electrical currents between the interior of two cells. The second occurs in the absence of cell-to-cell contacts and is a consequence of the extracellular electrical fields generated by the electrical activity of neurons. Here, we place present notions about electrical transmission in a historical perspective and contrast the contributions of the two different forms of electrical communication to brain function.
Collapse
Affiliation(s)
- Donald S. Faber
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Alberto E. Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
- Marine Biological Laboratory, Woods Hole, MA, United States
| |
Collapse
|
24
|
Nagy JI, Lynn BD. Structural and Intermolecular Associations Between Connexin36 and Protein Components of the Adherens Junction-Neuronal Gap Junction Complex. Neuroscience 2018; 384:241-261. [PMID: 29879437 DOI: 10.1016/j.neuroscience.2018.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 11/20/2022]
Abstract
Intimate structural and functional relationships between gap junctions and adherens junctions have been demonstrated in peripheral tissues, but have not been thoroughly examined in the central nervous system, where adherens junctions are often found in close proximity to neuronal gap junctions. Here, we used immunofluorescence approaches to document the localization of various protein components of adherens junctions in relation to those that we have previously reported to occur at electrical synapses formed by neuronal gap junctions composed of connexin36 (Cx36). The adherens junction constituents N-cadherin and nectin-1 were frequently found to localize near or overlap with Cx36-containing gap junctions in several brain regions examined. This was also true of the adherens junction-associated proteins α-catenin and β-catenin, as well as the proteins zonula occludens-1 and AF6 (aka, afadin) that were reported constituents of both adherens junctions and gap junctions. The deployment of the protein constituents of these junctions was especially striking at somatic contacts between primary afferent neurons in the mesencephalic trigeminal nucleus (MesV), where the structural components of adherens junctions appeared to be maintained in connexin36 null mice. These results support emerging views concerning the multi-molecular composition of electrical synapses and raise possibilities for various structural and functional protein-protein interactions at what now can be considered the adherens junction-neuronal gap junction complex. Further, the results point to intracellular signaling pathways that could potentially contribute to the assembly, maintenance and turnover of this complex, as well as to the dynamic nature of neuronal communication at electrical synapses.
Collapse
Affiliation(s)
- J I Nagy
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - B D Lynn
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
25
|
Nagy JI, Lynn BD, Senecal JMM, Stecina K. Connexin36 Expression in Primary Afferent Neurons in Relation to the Axon Reflex and Modality Coding of Somatic Sensation. Neuroscience 2018; 383:216-234. [PMID: 29746988 DOI: 10.1016/j.neuroscience.2018.04.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/02/2018] [Accepted: 04/26/2018] [Indexed: 01/25/2023]
Abstract
Electrical coupling mediated by connexin36-containing gap junctions that form electrical synapses is known to be prevalent in the central nervous system, but such coupling was long ago reported also to occur between cutaneous sensory fibers. Here, we provide evidence supporting the capability of primary afferent fibers to engage in electrical coupling. In transgenic mice with enhanced green fluorescent protein (eGFP) serving as a reporter for connexin36 expression, immunofluorescence labeling of eGFP was found in subpopulations of neurons in lumbar dorsal root and trigeminal sensory ganglia, and in fibers within peripheral nerves and tissues. Immunolabeling of connexin36 was robust in the sciatic nerve, weaker in sensory ganglia than in peripheral nerve, and absent in these tissues from Cx36 null mice. Connexin36 mRNA was detected in ganglia from wild-type mice, but not in those from Cx36 null mice. Labeling of eGFP was localized within a subpopulation of ganglion cells containing substance P and calcitonin gene-releasing peptide, and in peripheral fibers containing these peptides. Expression of eGFP was also found in various proportions of sensory ganglion neurons containing transient receptor potential (TRP) channels, including TRPV1 and TRPM8. Ganglion cells labeled for isolectin B4 and tyrosine hydroxylase displayed very little co-localization with eGFP. Our results suggest that previously observed electrical coupling between peripheral sensory fibers occurs via electrical synapses formed by Cx36-containing gap junctions, and that some degree of selectivity in the extent of electrical coupling may occur between fibers belonging to subpopulations of sensory neurons identified according to their sensory modality responsiveness.
Collapse
Affiliation(s)
- J I Nagy
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
| | - B D Lynn
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - J M M Senecal
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - K Stecina
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
26
|
Ouachikh O, Hafidi A, Boucher Y, Dieb W. Electrical Synapses are Involved in Orofacial Neuropathic Pain. Neuroscience 2018; 382:69-79. [PMID: 29746991 DOI: 10.1016/j.neuroscience.2018.04.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/28/2022]
Abstract
Accumulated evidences suggest important roles of glial GAP-junctions in pain. However, only a few studies have explored the role of neuronal GAP-junctions or electrical synapses in neuropathic pain (NP). Therefore, the present study explores the role of connexin 36 (Cx36) in NP using the chronic constriction injury of the infraorbital nerve (CCI-IoN) model in rat. A significant increase in Cx36 labeling was observed in the medullary dorsal horn (MDH) of CCI-IoN-lesioned compared to sham rats. The expression of Cx36 in CCI-IoN-lesioned rats revealed a rostroventral gradient of punctuate labeling within lamina IIo of the MDH. Cx36-positive somata and processes were also observed in MDH laminae IIi and III-V. These somata were mostly of the Gamma aminobutyric acid (GABA) and occasionally Glycine transporter 2 (GlyT2) cell subtypes. Moreover the GABA cell subtypes are highly coupled in lamina IIo as revealed by the intense Cx36 staining in this lamina. Pharmacological Cx36 blockade by intracisternal administration of mefloquine decreased significantly the mechanical allodynia observed in CCI-IoN-lesioned rats. Altogether, our findings demonstrated that Cx36 play an important role in mechanical allodynia by coupling GABA cells. Increasing cell coupling by enhancing Cx36 expression favors neuropathic pain while disrupting this coupling alleviates it. This mechanism may constitute a novel target for the treatment of orofacial mechanical allodynia.
Collapse
Affiliation(s)
- Omar Ouachikh
- EA 7280 - Neuro-psycho-pharmacologie des systèmes dopaminergiques sous corticaux, Université Clermont Auvergne, Clermont-Ferrand 63000, France
| | - Aziz Hafidi
- EA 7280 - Neuro-psycho-pharmacologie des systèmes dopaminergiques sous corticaux, Université Clermont Auvergne, Clermont-Ferrand 63000, France.
| | - Yves Boucher
- Faculté d'odontologie (Garançière), Université Paris-Diderot, Paris, France; Hôpital Pitié-Salpétrière, AP-HP, Paris, France
| | - Wisam Dieb
- EA 7280 - Neuro-psycho-pharmacologie des systèmes dopaminergiques sous corticaux, Université Clermont Auvergne, Clermont-Ferrand 63000, France; Faculté d'odontologie (Garançière), Université Paris-Diderot, Paris, France; Hôpital Pitié-Salpétrière, AP-HP, Paris, France
| |
Collapse
|
27
|
Stagkourakis S, Pérez CT, Hellysaz A, Ammari R, Broberger C. Network oscillation rules imposed by species-specific electrical coupling. eLife 2018; 7:33144. [PMID: 29722649 PMCID: PMC5933921 DOI: 10.7554/elife.33144] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/16/2018] [Indexed: 12/02/2022] Open
Abstract
Electrical junctions are widespread within the mammalian CNS. Yet, their role in organizing neuronal ensemble activity remains incompletely understood. Here, in a functionally well-characterized system – neuroendocrine tuberoinfundibular dopamine (TIDA) neurons - we demonstrate a striking species difference in network behavior: rat TIDA cells discharge in highly stereotyped, robust, synchronized slow oscillations, whereas mouse oscillations are faster, flexible and show substantial cell-to-cell variability. We show that these distinct operational modes are explained by the presence of strong TIDA-TIDA gap junction coupling in the rat, and its complete absence in the mouse. Both species, however, encompass a similar heterogeneous range of intrinsic resonance frequencies, suggesting similar network building blocks. We demonstrate that gap junctions select and impose the slow network rhythm. These data identify a role for electrical junctions in determining oscillation frequency and show how related species can rely on distinct network strategies to accomplish adaptive control of hormone release.
Collapse
Affiliation(s)
| | | | - Arash Hellysaz
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Rachida Ammari
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
28
|
Ma Y, Han X, de Castro RB, Zhang P, Zhang K, Hu Z, Qin L. Analysis of the bystander effect in cone photoreceptors via a guided neural network platform. SCIENCE ADVANCES 2018; 4:eaas9274. [PMID: 29750200 PMCID: PMC5942910 DOI: 10.1126/sciadv.aas9274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
The mammalian retina system consists of a complicated photoreceptor structure, which exhibits extensive random synaptic connections. To study retinal development and degeneration, various experimental models have been used previously, but these models are often uncontrollable, are difficult to manipulate, and do not provide sufficient similarity or precision. Therefore, the mechanisms in many retinal diseases remain unclear because of the limited capability in observing the progression and molecular driving forces. For example, photoreceptor degeneration can spread to surrounding healthy photoreceptors via a phenomenon known as the bystander effect; however, no in-depth observations can be made to decipher the molecular mechanisms or the pathways that contribute to the spreading. It is then necessary to build dissociated neural networks to investigate the communications with controllability of cells and their treatment. We developed a neural network chip (NN-Chip) to load single neurons into highly ordered microwells connected by microchannels for synapse formation to build the neural network. By observing the distribution of apoptosis spreading from light-induced apoptotic cones to the surrounding cones, we demonstrated convincing evidence of the existence of a cone-to-cone bystander killing effect. Combining the NN-Chip with microinjection technology, we also found that the gap junction protein connexin 36 (Cx36) is critical for apoptosis spreading and the bystander effect in cones. In addition, our unique NN-Chip platform provides a quantitative, high-throughput tool for investigating signaling mechanisms and behaviors in neurons and opens a new avenue for screening potential drug targets to cure retinal diseases.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- College of Materials Sciences and Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Xin Han
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ricardo Bessa de Castro
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
- College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Pengchao Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kai Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Zhongbo Hu
- College of Materials Sciences and Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
29
|
Pérez Armendariz EM, Norcini M, Hernández-Tellez B, Castell-Rodríguez A, Coronel-Cruz C, Alquicira RG, Sideris A, Recio-Pinto E. Neurons and satellite glial cells in adult rat lumbar dorsal root ganglia express connexin 36. Acta Histochem 2018; 120:168-178. [PMID: 29224922 DOI: 10.1016/j.acthis.2017.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/02/2017] [Accepted: 11/15/2017] [Indexed: 01/08/2023]
Abstract
Previous studies have shown that following peripheral nerve injury there was a downregulation of the gap junction protein connexin 36 (Cx36) in the spinal cord; however, it is not known whether Cx36 protein is expressed in the dorsal root ganglia (DRGs), nor if its levels are altered following peripheral nerve injuries. Here we address these aspects in the adult rat lumbar DRG. Cx36 mRNA was detected using qRT-PCR, and Cx36 protein was identified in DRG sections using immunohistochemistry (IHC) and immunofluorescence (IF). Double staining revealed that Cx36 co-localizes with both anti-β-III tubulin, a neuronal marker, and anti-glutamine synthetase, a satellite glial cell (SGC) marker. In neurons, Cx36 staining was mostly uniform in somata and fibers of all sizes and its intensity increased at the cell membranes. This labeling pattern was in contrast with Cx36 IF dots mainly found at junctional membranes in islet beta cells used as a control tissue. Co-staining with anti-Cx43 and anti-Cx36 showed that whereas mostly uniform staining of Cx36 was found throughout neurons and SGCs, Cx43 IF puncta were localized to SGCs. Cx36 mRNA was expressed in normal lumbar DRG, and it was significantly down-regulated in L4 DRG of rats that underwent sciatic nerve injury resulting in persistent hypersensitivity. Collectively, these findings demonstrated that neurons and SGCs express Cx36 protein in normal DRG, and suggested that perturbation of Cx36 levels may contribute to chronic neuropathic pain resulting from a peripheral nerve injury.
Collapse
Affiliation(s)
- E Martha Pérez Armendariz
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Torre de Investigación 5to piso, Avenida Universidad 3000, Circuito Interior, Ciudad Universitaria, Colonia Universidad Nacional Autónoma de México, CU, D.F., 04510, Mexico.
| | - Monica Norcini
- Department of Anesthesiology, NYULMC, 180 Varick Street, Room 677, New York, NY 10014, USA.
| | - Beatriz Hernández-Tellez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Torre de Investigación 5to piso, Avenida Universidad 3000, Circuito Interior, Ciudad Universitaria, Colonia Universidad Nacional Autónoma de México, CU, D.F., 04510, Mexico.
| | - Andrés Castell-Rodríguez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Torre de Investigación 5to piso, Avenida Universidad 3000, Circuito Interior, Ciudad Universitaria, Colonia Universidad Nacional Autónoma de México, CU, D.F., 04510, Mexico.
| | - Cristina Coronel-Cruz
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Torre de Investigación 5to piso, Avenida Universidad 3000, Circuito Interior, Ciudad Universitaria, Colonia Universidad Nacional Autónoma de México, CU, D.F., 04510, Mexico.
| | - Raquel Guerrero Alquicira
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Torre de Investigación 5to piso, Avenida Universidad 3000, Circuito Interior, Ciudad Universitaria, Colonia Universidad Nacional Autónoma de México, CU, D.F., 04510, Mexico.
| | - Alexandra Sideris
- Department of Anesthesiology, NYULMC, 180 Varick Street, Room 677, New York, NY 10014, USA.
| | - Esperanza Recio-Pinto
- Department of Anesthesiology, NYULMC, 180 Varick Street, Room 677, New York, NY 10014, USA; Departments of Anesthesiology, Biochemistry & Molecular Pharmacology, NYULMC, 180 Varick Street, Room 677, New York, NY 10014 USA.
| |
Collapse
|
30
|
Wu XL, Ma DM, Zhang W, Zhou JS, Huo YW, Lu M, Tang FR. Cx36 in the mouse hippocampus during and after pilocarpine-induced status epilepticus. Epilepsy Res 2018; 141:64-72. [PMID: 29476948 DOI: 10.1016/j.eplepsyres.2018.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/24/2018] [Accepted: 02/13/2018] [Indexed: 12/24/2022]
Abstract
Gap junctions play an important role in the synchronization activity of coupled cells. Hippocampal inhibitory interneurons are involved in epileptogenesis and seizure activity, and express gap junction protein connexin (Cx) 36. Cx36 is also localized in the axons (mossy fibers) of granule cells in the dentate gyrus. While it has been documented that Cx36 is involved in epileptogenesis, there are still controversies regarding the expression levels of Cx36 at different developmental stages of human and animal models of epileptogenesis. In this study, the expression of Cx36 was investigated in the mouse hippocampus at 1 h, 4 h during pilocarpine-induced status epilepticus (PISE) and 1 week, 2 months after PISE. We found that Cx36 was down-regulated in neurons at different time points during and after PISE, whereas it was increased significantly in the stratum lucidum of CA3 area at 2 months after PISE. Double immunofluorescence indicated that Cx36 was localized in parvalbumin (PV) immunopositive interneuron in CA1 area and in mossy fibers and their terminals in the stratum lucidum of CA3 area. It suggests that decreased expression of Cx36 in interneurons may be related to less effective inhibitory control of excitatory activity of hippocampal principal neurons. However, the increased Cx36 immunopositive product in mossy fibers at the chronic stage after PISE may enhance the contacts between granule cells in the dentate gyrus and pyramidal neurons in CA3 area. The two different changes of Cx36 may be implicated in the epileptogenesis.
Collapse
Affiliation(s)
- X L Wu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - D M Ma
- Department of Thoracic Surgery, The Ninth Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, China
| | - W Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - J S Zhou
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - Y W Huo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - M Lu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - F R Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative (SNRSI), National University of Singapore, 1 CREATE Way #04-01, CREATE Tower 138602, Singapore.
| |
Collapse
|
31
|
Belousov AB, Nishimune H, Denisova JV, Fontes JD. A potential role for neuronal connexin 36 in the pathogenesis of amyotrophic lateral sclerosis. Neurosci Lett 2018; 666:1-4. [PMID: 29246791 PMCID: PMC5805564 DOI: 10.1016/j.neulet.2017.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 11/26/2022]
Abstract
Neuronal gap junctional protein connexin 36 (Cx36) contributes to neuronal death following a range of acute brain insults such as ischemia, traumatic brain injury and epilepsy. Whether Cx36 contributes to neuronal death and pathological outcomes in chronic neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), is not known. We show here that the expression of Cx36 is significantly decreased in lumbar segments of the spinal cord of both human ALS subjects and SOD1G93A mice as compared to healthy human and wild-type mouse controls, respectively. In purified neuronal cultures prepared from the spinal cord of wild-type mice, knockdown of Cx36 reduces neuronal death caused by overexpression of the mutant human SOD1-G93A protein. Taken together, these data suggest a possible contribution of Cx36 to ALS pathogenesis. A perspective for the use of blockers of Cx36 gap junction channels for ALS therapy is discussed.
Collapse
Affiliation(s)
- Andrei B Belousov
- Departments of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Hiroshi Nishimune
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Janna V Denisova
- Departments of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Joseph D Fontes
- Departments of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
32
|
Nagy JI, Pereda AE, Rash JE. Electrical synapses in mammalian CNS: Past eras, present focus and future directions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:102-123. [PMID: 28577972 PMCID: PMC5705454 DOI: 10.1016/j.bbamem.2017.05.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 12/19/2022]
Abstract
Gap junctions provide the basis for electrical synapses between neurons. Early studies in well-defined circuits in lower vertebrates laid the foundation for understanding various properties conferred by electrical synaptic transmission. Knowledge surrounding electrical synapses in mammalian systems unfolded first with evidence indicating the presence of gap junctions between neurons in various brain regions, but with little appreciation of their functional roles. Beginning at about the turn of this century, new approaches were applied to scrutinize electrical synapses, revealing the prevalence of neuronal gap junctions, the connexin protein composition of many of those junctions, and the myriad diverse neural systems in which they occur in the mammalian CNS. Subsequent progress indicated that electrical synapses constitute key elements in synaptic circuitry, govern the collective activity of ensembles of electrically coupled neurons, and in part orchestrate the synchronized neuronal network activity and rhythmic oscillations that underlie fundamental integrative processes. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- James I Nagy
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - John E Rash
- Department of Biomedical Sciences, and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
33
|
Role of Connexin and Pannexin containing channels in HIV infection and NeuroAIDS. Neurosci Lett 2017; 695:86-90. [PMID: 28886986 DOI: 10.1016/j.neulet.2017.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 07/27/2017] [Accepted: 09/01/2017] [Indexed: 01/31/2023]
Abstract
Neuron-Glia crosstalk is essential for efficient synaptic communication, cell growth and differentiation, neuronal activity, neurotransmitter recycling, and brain immune response. The master regulators of this neuron-glia communication are connexin containing Gap Junctions (GJs) and Hemichannels (HCs) as well as pannexin HCs. However, the role of these channels under pathological conditions, especially in infectious diseases is still in exploratory stages. Human Immunodeficiency Virus-1 (HIV) is one such infectious agent that takes advantage of the host intercellular communication systems, GJs and HCs, to exacerbate viral pathogenesis in the brain in spite of the antiretroviral therapy effectively controlling viral replication in the periphery. Although most infectious agents lead to total "shutdown" of gap junctional communication in parenchymal cells, HIV infection maintains and "hijacks" GJs and HCs to enable few infected cells to spread toxic intracellular agents to neighboring uninfected cells aggravating viral neuropathology even in the absence of viral replication. In this mini-review, we present a comprehensive overview of the role of GJs and HCs in augmenting HIV neuropathogenesis.
Collapse
|
34
|
Mao Y, Nguyen T, Tonkin RS, Lees JG, Warren C, O'Carroll SJ, Nicholson LFB, Green CR, Moalem-Taylor G, Gorrie CA. Characterisation of Peptide5 systemic administration for treating traumatic spinal cord injured rats. Exp Brain Res 2017; 235:3033-3048. [PMID: 28725925 DOI: 10.1007/s00221-017-5023-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/03/2017] [Indexed: 11/27/2022]
Abstract
Systemic administration of a Connexin43 mimetic peptide, Peptide5, has been shown to reduce secondary tissue damage and improve functional recovery after spinal cord injury (SCI). This study investigated safety measures and potential off-target effects of Peptide5 systemic administration. Rats were subjected to a mild contusion SCI using the New York University impactor. One cohort was injected intraperitoneally with a single dose of fluorescently labelled Peptide5 and euthanised at 2 or 4 h post-injury for peptide distribution analysis. A second cohort received intraperitoneal injections of Peptide5 or a scrambled peptide and was culled at 8 or 24 h post-injury for the analysis of connexin proteins and systemic cytokine profile. We found that Peptide5 did not cross the blood-spinal cord barrier in control animals, but reached the lesion area in the spinal cord-injured animals without entering non-injured tissue. There was no evidence that the systemic administration of Peptide5 modulates Connexin43 protein expression or hemichannel closure in the heart and lung tissue of SCI animals. The expression levels of other major connexin proteins including Connexin30 in astrocytes, Connexin36 in neurons and Connexin47 in oligodendrocytes were also unaltered by systemic delivery of Peptide5 in either the injured or non-injured spinal cords. In addition, systemic delivery of Peptide5 had no significant effect on the plasma levels of cytokines, chemokines or growth factors. These data indicate that the systemic delivery of Peptide5 is unlikely to cause any off-target or adverse effects and may thus be a safe treatment option for traumatic SCI.
Collapse
Affiliation(s)
- Yilin Mao
- Neural Injury Research Unit, School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia
| | - Tara Nguyen
- Neural Injury Research Unit, School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia
| | - Ryan S Tonkin
- Neuropathic Pain Research Group, Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Justin G Lees
- Neuropathic Pain Research Group, Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Caitlyn Warren
- Neural Injury Research Unit, School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging and The Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Louise F B Nicholson
- Department of Anatomy and Medical Imaging and The Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Colin R Green
- Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Gila Moalem-Taylor
- Neuropathic Pain Research Group, Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Catherine A Gorrie
- Neural Injury Research Unit, School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
35
|
Hatch RJ, Mendis GDC, Kaila K, Reid CA, Petrou S. Gap Junctions Link Regular-Spiking and Fast-Spiking Interneurons in Layer 5 Somatosensory Cortex. Front Cell Neurosci 2017; 11:204. [PMID: 28769764 PMCID: PMC5511827 DOI: 10.3389/fncel.2017.00204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/28/2017] [Indexed: 11/24/2022] Open
Abstract
Gap junctions form electrical synapses that modulate neuronal activity by synchronizing action potential (AP) firing of cortical interneurons (INs). Gap junctions are thought to form predominantly within cortical INs of the same functional class and are therefore considered to act within discrete neuronal populations. Here, we challenge that view and show that the probability of electrical coupling is the same within and between regular-spiking (RS) and fast-spiking (FS) cortical INs in 16–21 days old mice. Firing properties of these two populations were distinct from other INs types including neurogliaform and low-threshold spiking (LTS) cells. We also demonstrate that pre-junctional APs can depolarize post-junctional neurons and increase the probability of firing. Our findings of frequent gap junction coupling between functionally distinct IN subtypes suggest that cortical IN networks are much more extensive and heterogeneous than previously thought. This may have implications on mechanisms ranging from cognitive functions to modulation of pathological states in epilepsy and other neurological disorders.
Collapse
Affiliation(s)
- Robert J Hatch
- The Florey Institute of Neuroscience and Mental Health, The University of MelbourneMelbourne, VIC, Australia
| | - G Dulini C Mendis
- Department of Mechanical Engineering, The University of MelbourneMelbourne, VIC, Australia
| | - Kai Kaila
- Department of Biosciences and Neuroscience Center (HiLife), The University of HelsinkiHelsinki, Finland
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, The University of MelbourneMelbourne, VIC, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, The University of MelbourneMelbourne, VIC, Australia.,Department of Medicine (RMH), The University of MelbourneMelbourne, VIC, Australia.,ARC Centre of Excellence for Integrated Brain Function, The University of MelbourneMelbourne, VIC, Australia
| |
Collapse
|
36
|
Lapato AS, Tiwari-Woodruff SK. Connexins and pannexins: At the junction of neuro-glial homeostasis & disease. J Neurosci Res 2017; 96:31-44. [PMID: 28580666 DOI: 10.1002/jnr.24088] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/08/2017] [Accepted: 05/01/2017] [Indexed: 12/15/2022]
Abstract
In the central nervous system (CNS), connexin (Cx)s and pannexin (Panx)s are an integral component of homeostatic neuronal excitability and synaptic plasticity. Neuronal Cx gap junctions form electrical synapses across biochemically similar GABAergic networks, allowing rapid and extensive inhibition in response to principle neuron excitation. Glial Cx gap junctions link astrocytes and oligodendrocytes in the pan-glial network that is responsible for removing excitotoxic ions and metabolites. In addition, glial gap junctions help constrain excessive excitatory activity in neurons and facilitate astrocyte Ca2+ slow wave propagation. Panxs do not form gap junctions in vivo, but Panx hemichannels participate in autocrine and paracrine gliotransmission, alongside Cx hemichannels. ATP and other gliotransmitters released by Cx and Panx hemichannels maintain physiologic glutamatergic tone by strengthening synapses and mitigating aberrant high frequency bursting. Under pathological depolarizing and inflammatory conditions, gap junctions and hemichannels become dysregulated, resulting in excessive neuronal firing and seizure. In this review, we present known contributions of Cxs and Panxs to physiologic neuronal excitation and explore how the disruption of gap junctions and hemichannels lead to abnormal glutamatergic transmission, purinergic signaling, and seizures.
Collapse
Affiliation(s)
- Andrew S Lapato
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, 92521.,Center for Glial-Neuronal Interactions, University of California Riverside, Riverside, CA, 92521
| | - Seema K Tiwari-Woodruff
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, 92521.,Center for Glial-Neuronal Interactions, University of California Riverside, Riverside, CA, 92521.,Neuroscience Graduate Program, University of California Riverside, Riverside, CA, 92521
| |
Collapse
|
37
|
Homer, Spikar, and Other Drebrin-Binding Proteins in the Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:249-268. [PMID: 28865024 DOI: 10.1007/978-4-431-56550-5_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drebrin is a major F-actin-binding protein in the brain. In the past two decades, many drebrin-binding proteins in addition to F-actin have been identified in several research fields including neuroscience, oncology, and immunology. Among the drebrin-binding proteins, there are various kinds of proteins including scaffold proteins, nuclear proteins, phosphatases, microtubule-binding proteins, G-actin-binding proteins, gap junction proteins, chemokine receptors, and cell-adhesion-related proteins. The interaction between drebrin and its binding partners seems to play important roles in higher brain functions, because drebrin is involved in the pathogenesis of some neurological diseases with cognitive defects. In this chapter, we will first review the interaction of Homer and spikar with drebrin, particularly focusing on spine morphogenesis and synaptic function. Homer contributes to spine morphogenesis by cooperating with shank and activated Cdc42 small GTPase, suggesting a novel signaling pathway comprising Homer, drebrin, shank, and Cdc42 for spine morphogenesis. Drebrin sequesters spikar in the cytoplasm and stabilizes it in dendritic spines, leading to spine formation. Finally, we will introduce some other drebrin-binding proteins including end-binding protein 3 (EB3), profilin, progranulin, and phosphatase and tensin homologue (PTEN). These proteins are involved in Alzheimer's disease and cancer. Therefore, further studies on drebrin and its binding proteins will be of great importance to elucidate the pathologies of various diseases and may contribute to their medical treatment and diagnostics development.
Collapse
|
38
|
Fukuda T. Structural organization of the dendritic reticulum linked by gap junctions in layer 4 of the visual cortex. Neuroscience 2017; 340:76-90. [DOI: 10.1016/j.neuroscience.2016.10.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/07/2016] [Accepted: 10/20/2016] [Indexed: 11/16/2022]
|
39
|
Kanjhan R, Fogarty MJ, Noakes PG, Bellingham MC. Developmental changes in the morphology of mouse hypoglossal motor neurons. Brain Struct Funct 2016; 221:3755-86. [PMID: 26476929 PMCID: PMC5009180 DOI: 10.1007/s00429-015-1130-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/03/2015] [Indexed: 12/19/2022]
Abstract
Hypoglossal motor neurons (XII MNs) innervate tongue muscles important in breathing, suckling and vocalization. Morphological properties of 103 XII MNs were studied using Neurobiotin™ filling in transverse brainstem slices from C57/Bl6 mice (n = 34) from embryonic day (E) 17 to postnatal day (P) 28. XII MNs from areas thought to innervate different tongue muscles showed similar morphology in most, but not all, features. Morphological properties of XII MNs were established prior to birth, not differing between E17-18 and P0. MN somatic volume gradually increased for the first 2 weeks post-birth. The complexity of dendritic branching and dendrite length of XII MNs increased throughout development (E17-P28). MNs in the ventromedial XII motor nucleus, likely to innervate the genioglossus, frequently (42 %) had dendrites crossing to the contralateral side at all ages, but their number declined with postnatal development. Unexpectedly, putative dendritic spines were found in all XII MNs at all ages, and were primarily localized to XII MN somata and primary dendrites at E18-P4, increased in distal dendrites by P5-P8, and were later predominantly found in distal dendrites. Dye-coupling between XII MNs was common from E18 to P7, but declined strongly with maturation after P7. Axon collaterals were found in 20 % (6 of 28) of XII MNs with filled axons; collaterals terminated widely outside and, in one case, within the XII motor nucleus. These results reveal new morphological features of mouse XII MNs, and suggest that dendritic projection patterns, spine density and distribution, and dye-coupling patterns show specific developmental changes in mice.
Collapse
Affiliation(s)
- Refik Kanjhan
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Matthew J Fogarty
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peter G Noakes
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mark C Bellingham
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
40
|
Schwab BC, van Wezel RJA, van Gils SA. Sparse pallidal connections shape synchrony in a network model of the basal ganglia. Eur J Neurosci 2016; 45:1000-1012. [PMID: 27350120 DOI: 10.1111/ejn.13324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 01/15/2023]
Abstract
Neural synchrony in the basal ganglia, especially in the beta frequency band (13-30 Hz), is a hallmark of Parkinson's disease and considered as antikinetic. In contrast, the healthy basal ganglia show low levels of synchrony. It is currently unknown where synchrony and oscillations arise in the parkinsonian brain and how they are transmitted through the basal ganglia, as well as what makes them dependent on dopamine. The external part of the globus pallidus has recently been identified as a hub nucleus in the basal ganglia, possessing intrinsic inhibitory connections and possibly also gap junctions. In this study, we show that in a conductance-based network model of the basal ganglia, the combination of sparse, high-conductance inhibitory synapses and sparse, low-conductance gap junctions in the external part of the globus pallidus could effectively desynchronize the whole network. However, when gap junction coupling became strong enough, the effect was impeded and activity synchronized. In particular, sustained periods of beta coherence occurred between some neuron pairs. As gap junctions can change their conductance with the dopamine level, we suggest pallidal gap junction coupling as a mechanism contributing to the development of beta synchrony in the parkinsonian basal ganglia.
Collapse
Affiliation(s)
- Bettina C Schwab
- Applied Analysis, MIRA Institute of Technical Medicine and Biomedical Technology, University of Twente, 7500 AE, Enschede, The Netherlands.,Biomedical Signals and and Systems, MIRA Institute of Technical Medicine and Biomedical Technology, University of Twente, Enschede, The Netherlands
| | - Richard J A van Wezel
- Biomedical Signals and and Systems, MIRA Institute of Technical Medicine and Biomedical Technology, University of Twente, Enschede, The Netherlands.,Biophysics, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Stephan A van Gils
- Applied Analysis, MIRA Institute of Technical Medicine and Biomedical Technology, University of Twente, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
41
|
Beckmann A, Schubert M, Hainz N, Haase A, Martin U, Tschernig T, Meier C. Ultrastructural demonstration of Cx43 gap junctions in induced pluripotent stem cells from human cord blood. Histochem Cell Biol 2016; 146:529-537. [PMID: 27456332 DOI: 10.1007/s00418-016-1469-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 01/13/2023]
Abstract
Gap junction proteins are essential for direct intercellular communication but also influence cellular differentiation and migration. The expression of various connexin gap junction proteins has been demonstrated in embryonic stem cells, with Cx43 being the most intensely studied. As Cx43 is the most prominent gap junction protein in the heart, cardiomyocyte-differentiated stem cells have been studied intensely. To date, however, little is known about the expression and the subcellular distribution of Cx43 in undifferentiated stem cells or about the structural arrangement of channels. We, therefore, here investigate expression of Cx43 in undifferentiated human cord-blood-derived induced pluripotent stem cells (hCBiPS2). For this purpose, we carried out quantitative real-time PCR and immunohistochemistry. For analysis of Cx43 ultrastructure and protein assembly, we performed freeze-fracture replica immunogold labeling (FRIL). Cx43 expression was detected at mRNA and protein level in hCBIPS2 cells. For the first time, ultrastructural data are presented on gap junction morphology in induced pluripotent stem (iPS) cells from cord blood: Our FRIL and electron microscopical analysis revealed the occurrence of gap junction plaques in undifferentiated iPS cells. In addition, these gap junctions were shown to contain the gap junction protein Cx43.
Collapse
Affiliation(s)
- Anja Beckmann
- Department of Anatomy and Cell Biology, Saarland University, Kirrberger Straße, Building 61, 66421, Homburg/Saar, Germany
| | - Madline Schubert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, 30625, Hannover, Germany
| | - Nadine Hainz
- Department of Anatomy and Cell Biology, Saarland University, Kirrberger Straße, Building 61, 66421, Homburg/Saar, Germany
| | - Alexandra Haase
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, 30625, Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Tschernig
- Department of Anatomy and Cell Biology, Saarland University, Kirrberger Straße, Building 61, 66421, Homburg/Saar, Germany
| | - Carola Meier
- Department of Anatomy and Cell Biology, Saarland University, Kirrberger Straße, Building 61, 66421, Homburg/Saar, Germany.
| |
Collapse
|
42
|
Kay CWP, Ursu D, Sher E, King AE. The role of Cx36 and Cx43 in 4-aminopyridine-induced rhythmic activity in the spinal nociceptive dorsal horn: an electrophysiological study in vitro. Physiol Rep 2016; 4:e12852. [PMID: 27462070 PMCID: PMC4962069 DOI: 10.14814/phy2.12852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 01/09/2023] Open
Abstract
Connexin (Cx) proteins and gap junctions support the formation of neuronal and glial syncytia that are linked to different forms of rhythmic firing and oscillatory activity in the CNS. In this study, quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to profile developmental expression of two specific Cx proteins, namely glial Cx43 and neuronal Cx36, in postnatal lumbar spinal cord aged 4, 7, and 14 days. Extracellular electrophysiology was used to determine the contribution of Cx36 and Cx43 to a previously described form of 4-aminopyridine (4-AP)-induced 4-12 Hz rhythmic activity within substantia gelatinosa (SG) of rat neonatal dorsal horn (DH) in vitro. The involvement of Cx36 and Cx43 was probed pharmacologically using quinine, a specific uncoupler of Cx36 and the mimetic peptide blocker Gap 26 which targets Cx43. After establishment of 4-12 Hz rhythmic activity by 4-AP (25 μmol/L), coapplication of quinine (250 μmol/L) reduced 4-AP-induced 4-12 Hz rhythmic activity (P < 0.05). Preincubation of spinal cord slices with Gap 26 (100 μmol/L), compromised the level of 4-AP-induced 4-12 Hz rhythmic activity in comparison with control slices preincubated in ACSF alone (P < 0.05). Conversely, the nonselective gap junction "opener" trimethylamine (TMA) enhanced 4-12 Hz rhythmic behavior (P < 0.05), further supporting a role for Cx proteins and gap junctions. These data have defined a physiological role for Cx36 and Cx43 in rhythmic firing in SG, a key nociceptive processing area of DH. The significance of these data in the context of pain and Cx proteins as a future analgesic drug target requires further study.
Collapse
Affiliation(s)
- Christopher W P Kay
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Daniel Ursu
- Eli Lilly & Co., Lilly Research Centre Erl Wood Manor, Windlesham, Surrey, GU20 6PH, United Kingdom
| | - Emanuele Sher
- Eli Lilly & Co., Lilly Research Centre Erl Wood Manor, Windlesham, Surrey, GU20 6PH, United Kingdom
| | - Anne E King
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
43
|
Evans JA. Collective timekeeping among cells of the master circadian clock. J Endocrinol 2016; 230:R27-49. [PMID: 27154335 PMCID: PMC4938744 DOI: 10.1530/joe-16-0054] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/06/2016] [Indexed: 01/09/2023]
Abstract
The suprachiasmatic nucleus (SCN) of the anterior hypothalamus is the master circadian clock that coordinates daily rhythms in behavior and physiology in mammals. Like other hypothalamic nuclei, the SCN displays an impressive array of distinct cell types characterized by differences in neurotransmitter and neuropeptide expression. Individual SCN neurons and glia are able to display self-sustained circadian rhythms in cellular function that are regulated at the molecular level by a 24h transcriptional-translational feedback loop. Remarkably, SCN cells are able to harmonize with one another to sustain coherent rhythms at the tissue level. Mechanisms of cellular communication in the SCN network are not completely understood, but recent progress has provided insight into the functional roles of several SCN signaling factors. This review discusses SCN organization, how intercellular communication is critical for maintaining network function, and the signaling mechanisms that play a role in this process. Despite recent progress, our understanding of SCN circuitry and coupling is far from complete. Further work is needed to map SCN circuitry fully and define the signaling mechanisms that allow for collective timekeeping in the SCN network.
Collapse
Affiliation(s)
- Jennifer A Evans
- Department of Biomedical SciencesMarquette University, Milwaukee, WI, USA
| |
Collapse
|
44
|
Haas JS, Greenwald CM, Pereda AE. Activity-dependent plasticity of electrical synapses: increasing evidence for its presence and functional roles in the mammalian brain. BMC Cell Biol 2016; 17 Suppl 1:14. [PMID: 27230776 PMCID: PMC4896267 DOI: 10.1186/s12860-016-0090-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Gap junctions mediate electrical synaptic transmission between neurons. While the actions of neurotransmitter modulators on the conductance of gap junctions have been extensively documented, increasing evidence indicates they can also be influenced by the ongoing activity of neural networks, in most cases via local interactions with nearby glutamatergic synapses. We review here early evidence for the existence of activity-dependent regulatory mechanisms as well recent examples reported in mammalian brain. The ubiquitous distribution of both neuronal connexins and the molecules involved suggest this phenomenon is widespread and represents a property of electrical transmission in general.
Collapse
Affiliation(s)
- Julie S Haas
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, 18015, USA.
| | - Corey M Greenwald
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, 18015, USA
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY, 10461, USA
| |
Collapse
|
45
|
Hegeman DJ, Hong ES, Hernández VM, Chan CS. The external globus pallidus: progress and perspectives. Eur J Neurosci 2016; 43:1239-65. [PMID: 26841063 PMCID: PMC4874844 DOI: 10.1111/ejn.13196] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
The external globus pallidus (GPe) of the basal ganglia is in a unique and powerful position to influence processing of motor information by virtue of its widespread projections to all basal ganglia nuclei. Despite the clinical importance of the GPe in common motor disorders such as Parkinson's disease, there is only limited information about its cellular composition and organizational principles. In this review, recent advances in the understanding of the diversity in the molecular profile, anatomy, physiology and corresponding behaviour during movement of GPe neurons are described. Importantly, this study attempts to build consensus and highlight commonalities of the cellular classification based on existing but contentious literature. Additionally, an analysis of the literature concerning the intricate reciprocal loops formed between the GPe and major synaptic partners, including both the striatum and the subthalamic nucleus, is provided. In conclusion, the GPe has emerged as a crucial node in the basal ganglia macrocircuit. While subtleties in the cellular makeup and synaptic connection of the GPe create new challenges, modern research tools have shown promise in untangling such complexity, and will provide better understanding of the roles of the GPe in encoding movements and their associated pathologies.
Collapse
Affiliation(s)
- Daniel J Hegeman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ellie S Hong
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Vivian M Hernández
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
46
|
Soares ES, Mendonça MCP, Rocha T, Kalapothakis E, da Cruz-Höfling MA. Are Synchronized Changes in Connexin-43 and Caveolin-3 a Bystander Effect in a Phoneutria nigriventer Venom Model of Blood-Brain Barrier Breakdown? J Mol Neurosci 2016; 59:452-63. [PMID: 27067308 DOI: 10.1007/s12031-016-0749-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/23/2016] [Indexed: 12/17/2022]
Abstract
Upregulation of caveolin-3 (Cav-3) or connexin-43 (Cx43) in astrocytes has been associated with important brain pathologies. We used Phoneutria nigriventer spider venom (PNV), which induces blood-brain barrier breakdown in rats, in order to investigate Cav-3 and Cx43 expression in the cerebellum over critical periods of rat envenomation. By immunofluorescence, western blotting (WB), and transmission electron microscopy (TEM), we assessed changes at 1, 2, 5, 24, and 72 h post-venom. WB showed immediate increases in Cav-3 and Cx43 at 1 h (interval of greatest manifestations of envenomation) that persisted at 5 h (when there were signs of recovery) and peaked at 24 h when no signs of envenomation were detectable. At 2 and 72 h, Cav-3 was downregulated and Cx43 had returned to baseline. PNV markedly intensified Cx43 in molecular, Purkinje and granular layers and Cav-3 in astrocytes whose colocalization to increased GFAP suggests interaction between reactive astrogliosis and Cav-3 upregulation. TEM showed swollen perivascular astrocytic end-feet and synaptic contact alterations that had generally resolved by 72 h. It is uncertain whether such PNV-induced synchronized changes are an interactive effect between Cav-3 and Cx43, or a bystander effect. Evidences indicate that Cav-3 downregulation coupled to Cx43 return to baseline at 72 h when no signs of envenomation were visible, suggesting homeostasis reestablishment. This experimental model is relevant to studying mechanisms involved in neurological disorders associated with Cav-3 overexpression.
Collapse
Affiliation(s)
- Edilene Siqueira Soares
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Monique Culturato Padilha Mendonça
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil.,Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Thalita Rocha
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil.,Multidisciplinary Research Laboratory, São Francisco University (USF), Bragança Paulista, SP, Brazil
| | - Evanguedes Kalapothakis
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Maria Alice da Cruz-Höfling
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil. .,Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
47
|
Evans JA, Gorman MR. In synch but not in step: Circadian clock circuits regulating plasticity in daily rhythms. Neuroscience 2016; 320:259-80. [PMID: 26861419 DOI: 10.1016/j.neuroscience.2016.01.072] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 11/16/2022]
Abstract
The suprachiasmatic nucleus (SCN) is a network of neural oscillators that program daily rhythms in mammalian behavior and physiology. Over the last decade much has been learned about how SCN clock neurons coordinate together in time and space to form a cohesive population. Despite this insight, much remains unknown about how SCN neurons communicate with one another to produce emergent properties of the network. Here we review the current understanding of communication among SCN clock cells and highlight a collection of formal assays where changes in SCN interactions provide for plasticity in the waveform of circadian rhythms in behavior. Future studies that pair analytical behavioral assays with modern neuroscience techniques have the potential to provide deeper insight into SCN circuit mechanisms.
Collapse
Affiliation(s)
- J A Evans
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA.
| | - M R Gorman
- Department of Psychology, University of San Diego, La Jolla, CA, USA
| |
Collapse
|
48
|
Liu L, Li CJ, Lu Y, Zong XG, Luo C, Sun J, Guo LJ. Baclofen mediates neuroprotection on hippocampal CA1 pyramidal cells through the regulation of autophagy under chronic cerebral hypoperfusion. Sci Rep 2015; 5:14474. [PMID: 26412641 PMCID: PMC4585985 DOI: 10.1038/srep14474] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/01/2015] [Indexed: 12/13/2022] Open
Abstract
GABA receptors play an important role in ischemic brain injury. Studies have indicated that autophagy is closely related to neurodegenerative diseases. However, during chronic cerebral hypoperfusion, the changes of autophagy in the hippocampal CA1 area, the correlation between GABA receptors and autophagy, and their influences on hippocampal neuronal apoptosis have not been well established. Here, we found that chronic cerebral hypoperfusion resulted in rat hippocampal atrophy, neuronal apoptosis, enhancement and redistribution of autophagy, down-regulation of Bcl-2/Bax ratio, elevation of cleaved caspase-3 levels, reduction of surface expression of GABAA receptor α1 subunit and an increase in surface and mitochondrial expression of connexin 43 (CX43) and CX36. Chronic administration of GABAB receptors agonist baclofen significantly alleviated neuronal damage. Meanwhile, baclofen could up-regulate the ratio of Bcl-2/Bax and increase the activation of Akt, GSK-3β and ERK which suppressed cytodestructive autophagy. The study also provided evidence that baclofen could attenuate the decrease in surface expression of GABAA receptor α1 subunit, and down-regulate surface and mitochondrial expression of CX43 and CX36, which might enhance protective autophagy. The current findings suggested that, under chronic cerebral hypoperfusion, the effects of GABAB receptors activation on autophagy regulation could reverse neuronal damage.
Collapse
Affiliation(s)
- Li Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Chang-jun Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Neurology Department, Huanggang central hospital, Hubei Province, Huanggang, 438000, PR China
| | - Yun Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xian-gang Zong
- Center for Integrated Protein Science (CIPSM) and Zentrum für Pharmaforschung, Department Pharmazie, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Chao Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jun Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Lian-jun Guo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Hubei Province, Wuhan 430030, China
| |
Collapse
|
49
|
Rubio ME, Nagy JI. Connexin36 expression in major centers of the auditory system in the CNS of mouse and rat: Evidence for neurons forming purely electrical synapses and morphologically mixed synapses. Neuroscience 2015; 303:604-29. [PMID: 26188286 PMCID: PMC4576740 DOI: 10.1016/j.neuroscience.2015.07.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 10/23/2022]
Abstract
Electrical synapses formed by gap junctions composed of connexin36 (Cx36) are widely distributed in the mammalian central nervous system (CNS). Here, we used immunofluorescence methods to document the expression of Cx36 in the cochlear nucleus and in various structures of the auditory pathway of rat and mouse. Labeling of Cx36 visualized exclusively as Cx36-puncta was densely distributed primarily on the somata and initial dendrites of neuronal populations in the ventral cochlear nucleus, and was abundant in superficial layers of the dorsal cochlear nucleus. Other auditory centers displaying Cx36-puncta included the medial nucleus of the trapezoid body (MNTB), regions surrounding the lateral superior olivary nucleus, the dorsal nucleus of the medial lemniscus, the nucleus sagulum, all subnuclei of the inferior colliculus, and the auditory cerebral cortex. In EGFP-Cx36 transgenic mice, EGFP reporter was detected in neurons located in each of auditory centers that harbored Cx36-puncta. In the ventral cochlear nuclei and the MNTB, many neuronal somata were heavily innervated by nerve terminals containing vesicular glutamate transporter-1 (vglut1) and Cx36 was frequently localized at these terminals. Cochlear ablation caused a near total depletion of vglut1-positive terminals in the ventral cochlear nuclei, with a commensurate loss of labeling for Cx36 around most neuronal somata, but preserved Cx36-puncta at somatic neuronal appositions. The results suggest that electrical synapses formed by Cx36-containing gap junctions occur in most of the widely distributed centers of the auditory system. Further, it appears that morphologically mixed chemical/electrical synapses formed by nerve terminals are abundant in the ventral cochlear nucleus, including those at endbulbs of Held formed by cochlear primary afferent fibers, and those at calyx of Held synapses on MNTB neurons.
Collapse
Affiliation(s)
- M E Rubio
- Departments of Otolaryngology and Neurobiology, University of Pittsburgh Medical School, Pittsburgh, USA
| | - J I Nagy
- Department of Physiology and Pathophysiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
50
|
Voytenko LP, Lushnikova IV, Savotchenko AV, Isaeva EV, Skok MV, Lykhmus OY, Patseva MA, Skibo GG. Hippocampal GABAergic interneurons coexpressing alpha7-nicotinic receptors and connexin-36 are able to improve neuronal viability under oxygen-glucose deprivation. Brain Res 2015; 1616:134-45. [PMID: 25966616 DOI: 10.1016/j.brainres.2015.04.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/10/2015] [Accepted: 04/30/2015] [Indexed: 01/09/2023]
Abstract
The hippocampal interneurons are very diverse by chemical profiles and rather inconsistent by sensitivity to CI. Some hippocampal GABAergic interneurons survive certain time after ischemia while ischemia-sensitive interneurons and pyramidal neurons are damaged. GABAergic signaling, nicotinic receptors expressing α7-subunit (α7nAChRs(+)) and connexin-36 (Cx36(+), electrotonic gapjunctions protein) contradictory modulate post-ischemic environment. We hypothesized that hippocampal ischemia-resistant GABAergic interneurons coexpressing glutamate decarboxylase-67 isoform (GAD67(+)), α7nAChRs(+), Cx36(+) are able to enhance neuronal viability. To check this hypothesis the histochemical and electrophysiological investigations have been performed using rat hippocampal organotypic culture in the condition of 30-min oxygen-glucose deprivation (OGD). Post-OGD reoxygenation (4h) revealed in CA1 pyramidal layer numerous damaged cells, decreased population spike amplitude and increased pair-pulse depression. In these conditions GAD67(+) interneurons displayed the OGD-resistance and significant increase of GABA synthesis/metabolism (GAD67-immunofluorescence, mitochondrial activity). The α7nAChRs(+) and Cx36(+) co-localizations were revealed in resistant GAD67(+) interneurons. Under OGD: GABAA-receptors (GABAARs) blockade increased cell damage and exacerbated the pair-pulse depression in CA1 pyramidal layer; α7nAChRs and Cx36-channels separate blockades sufficiently decreased cell damage while interneuronal GAD67-immunofluorescence and mitochondrial activity were similar to the control. Thus, hippocampal GABAergic interneurons co-expressing α7nAChRs and Cx36 remained resistant certain time after OGD and were able to modulate CA1 neuron survival through GABAARs, α7nAChRs and Cx36-channels activity. The enhancements of the neuronal viability together with GABA synthesis/metabolism normalization suggest cooperative neuroprotective mechanism that could be used for increase in efficiency of therapeutic strategies against post-ischemic pathology.
Collapse
Affiliation(s)
- L P Voytenko
- Department of Cytology, Bogomoletz Institute of Physiology, Kiev, Ukraine.
| | - I V Lushnikova
- Department of Cytology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - A V Savotchenko
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Ukraine
| | - E V Isaeva
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Ukraine
| | - M V Skok
- Palladin Institute of Biochemistry, Kiev, Ukraine
| | - O Yu Lykhmus
- Palladin Institute of Biochemistry, Kiev, Ukraine
| | - M A Patseva
- Department of Cytology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - G G Skibo
- Department of Cytology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| |
Collapse
|