1
|
Younger DS. Autonomic failure: Clinicopathologic, physiologic, and genetic aspects. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:55-102. [PMID: 37562886 DOI: 10.1016/b978-0-323-98818-6.00020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Over the past century, generations of neuroscientists, pathologists, and clinicians have elucidated the underlying causes of autonomic failure found in neurodegenerative, inherited, and antibody-mediated autoimmune disorders, each with pathognomonic clinicopathologic features. Autonomic failure affects central autonomic nervous system components in the α-synucleinopathy, multiple system atrophy, characterized clinically by levodopa-unresponsive parkinsonism or cerebellar ataxia, and pathologically by argyrophilic glial cytoplasmic inclusions (GCIs). Two other central neurodegenerative disorders, pure autonomic failure characterized clinically by deficits in norepinephrine synthesis and release from peripheral sympathetic nerve terminals; and Parkinson's disease, with early and widespread autonomic deficits independent of the loss of striatal dopamine terminals, both express Lewy pathology. The rare congenital disorder, hereditary sensory, and autonomic neuropathy type III (or Riley-Day, familial dysautonomia) causes life-threatening autonomic failure due to a genetic mutation that results in loss of functioning baroreceptors, effectively separating afferent mechanosensing neurons from the brain. Autoimmune autonomic ganglionopathy caused by autoantibodies targeting ganglionic α3-acetylcholine receptors instead presents with subacute isolated autonomic failure affecting sympathetic, parasympathetic, and enteric nervous system function in various combinations. This chapter is an overview of these major autonomic disorders with an emphasis on their historical background, neuropathological features, etiopathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
2
|
Kastriti ME, Kameneva P, Adameyko I. Stem cells, evolutionary aspects and pathology of the adrenal medulla: A new developmental paradigm. Mol Cell Endocrinol 2020; 518:110998. [PMID: 32818585 DOI: 10.1016/j.mce.2020.110998] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/20/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
The mammalian adrenal gland is composed of two main components; the catecholaminergic neural crest-derived medulla, found in the center of the gland, and the mesoderm-derived cortex producing steroidogenic hormones. The medulla is composed of neuroendocrine chromaffin cells with oxygen-sensing properties and is dependent on tissue interactions with the overlying cortex, both during development and in adulthood. Other relevant organs include the Zuckerkandl organ containing extra-adrenal chromaffin cells, and carotid oxygen-sensing bodies containing glomus cells. Chromaffin and glomus cells reveal a number of important similarities and are derived from the multipotent nerve-associated descendants of the neural crest, or Schwann cell precursors. Abnormalities in complex developmental processes during differentiation of nerve-associated and other progenitors into chromaffin and oxygen-sensing populations may result in different subtypes of paraganglioma, neuroblastoma and pheochromocytoma. Here, we summarize recent findings explaining the development of chromaffin and oxygen-sensing cells, as well as the potential mechanisms driving neuroendocrine tumor initiation.
Collapse
Affiliation(s)
- Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden; Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Polina Kameneva
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden; National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden; Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria; Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
|
4
|
Korner G, Noain D, Ying M, Hole M, Flydal MI, Scherer T, Allegri G, Rassi A, Fingerhut R, Becu-Villalobos D, Pillai S, Wueest S, Konrad D, Lauber-Biason A, Baumann CR, Bindoff LA, Martinez A, Thöny B. Brain catecholamine depletion and motor impairment in a Th knock-in mouse with type B tyrosine hydroxylase deficiency. Brain 2015; 138:2948-63. [PMID: 26276013 DOI: 10.1093/brain/awv224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/17/2015] [Indexed: 12/16/2023] Open
Abstract
Tyrosine hydroxylase catalyses the hydroxylation of L-tyrosine to l-DOPA, the rate-limiting step in the synthesis of catecholamines. Mutations in the TH gene encoding tyrosine hydroxylase are associated with the autosomal recessive disorder tyrosine hydroxylase deficiency, which manifests phenotypes varying from infantile parkinsonism and DOPA-responsive dystonia, also termed type A, to complex encephalopathy with perinatal onset, termed type B. We generated homozygous Th knock-in mice with the mutation Th-p.R203H, equivalent to the most recurrent human mutation associated with type B tyrosine hydroxylase deficiency (TH-p.R233H), often unresponsive to l-DOPA treatment. The Th knock-in mice showed normal survival and food intake, but hypotension, hypokinesia, reduced motor coordination, wide-based gate and catalepsy. This phenotype was associated with a gradual loss of central catecholamines and the serious manifestations of motor impairment presented diurnal fluctuation but did not improve with standard l-DOPA treatment. The mutant tyrosine hydroxylase enzyme was unstable and exhibited deficient stabilization by catecholamines, leading to decline of brain tyrosine hydroxylase-immunoreactivity in the Th knock-in mice. In fact the substantia nigra presented an almost normal level of mutant tyrosine hydroxylase protein but distinct absence of the enzyme was observed in the striatum, indicating a mutation-associated mislocalization of tyrosine hydroxylase in the nigrostriatal pathway. This hypomorphic mouse model thus provides understanding on pathomechanisms in type B tyrosine hydroxylase deficiency and a platform for the evaluation of novel therapeutics for movement disorders with loss of dopaminergic input to the striatum.
Collapse
Affiliation(s)
- Germaine Korner
- 1 Division of Metabolism, Department of Paediatrics, University of Zürich, Zürich, Switzerland 2 Affiliated with the Neuroscience Centre Zurich ZNZ, Zürich, Switzerland 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland
| | - Daniela Noain
- 4 Department of Neurology, University Hospital of Zurich, Zürich, Switzerland
| | - Ming Ying
- 5 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Magnus Hole
- 5 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Marte I Flydal
- 5 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Tanja Scherer
- 1 Division of Metabolism, Department of Paediatrics, University of Zürich, Zürich, Switzerland 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland
| | - Gabriella Allegri
- 1 Division of Metabolism, Department of Paediatrics, University of Zürich, Zürich, Switzerland 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland
| | - Anahita Rassi
- 6 Division of Clinical Chemistry and Biochemistry, Department of Paediatrics, University of Zürich, Zürich, Switzerland
| | - Ralph Fingerhut
- 7 Swiss Newborn Screening Laboratory, University Children's Hospital, Zurich, Switzerland 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland
| | | | - Samyuktha Pillai
- 9 Institute of Physiology, University of Zurich, Zürich, Switzerland
| | - Stephan Wueest
- 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland 10 Division of Endocrinology, Department of Pediatrics, University of Zurich, Switzerland
| | - Daniel Konrad
- 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland 10 Division of Endocrinology, Department of Pediatrics, University of Zurich, Switzerland
| | - Anna Lauber-Biason
- 11 Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Christian R Baumann
- 2 Affiliated with the Neuroscience Centre Zurich ZNZ, Zürich, Switzerland 4 Department of Neurology, University Hospital of Zurich, Zürich, Switzerland
| | - Laurence A Bindoff
- 12 Department of Clinical Medicine K1, University of Bergen, Norway 13 Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Aurora Martinez
- 5 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Beat Thöny
- 1 Division of Metabolism, Department of Paediatrics, University of Zürich, Zürich, Switzerland 2 Affiliated with the Neuroscience Centre Zurich ZNZ, Zürich, Switzerland 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland
| |
Collapse
|
5
|
Boonen E, Bornstein SR, Van den Berghe G. New insights into the controversy of adrenal function during critical illness. Lancet Diabetes Endocrinol 2015; 3:805-15. [PMID: 26071883 DOI: 10.1016/s2213-8587(15)00224-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/17/2014] [Accepted: 10/17/2014] [Indexed: 12/18/2022]
Abstract
Critical illness represents a life-threatening disorder necessitating recruitment of defence mechanisms for survival. Herein, the hypothalamic-pituitary-adrenal axis is essential. However, the relevance of a relative insufficiency of the hypothalamic-pituitary-adrenal axis in critical illness, which is diagnosed by a suppressed cortisol response to exogenous adrenocorticotropic hormone (ACTH) irrespective of the plasma cortisol concentration, is controversial. Findings from several studies have provided insights that clarify at least part of this controversy. Rather than an activated hypothalamic-pituitary-adrenal axis, ACTH-independent regulators have been reported to contribute to increased cortisol availability during critical illness. One of these regulators is reduced cortisol breakdown, mediated by suppressed expression and activity of cortisol metabolising enzymes in the liver and kidneys. This downstream mechanism increases concentrations of plasma cortisol, but the ensuing feedback-inhibited ACTH release, when sustained for more than 1 week, has been shown to negatively affect adrenocortical integrity and function. Reduced adrenocortical ACTH signalling could explain reduced cortisol responses to exogenous ACTH. Whether such reduced cortisol responses in the presence of raised plasma (free) cortisol identifies adrenal failure needing treatment is unlikely. Additionally, reduced cortisol breakdown affects the optimum dose of hydrocortisone treatment during critical illness. Identification of patients with an insufficient hypothalamic-pituitary-adrenal axis response and the optimum treatment for this disorder clearly need more well designed preclinical and clinical studies.
Collapse
Affiliation(s)
- Eva Boonen
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven University, Leuven, Belgium
| | - Stefan R Bornstein
- Department of Medicine III, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Germany; Diabetes and Nutritional Sciences, Rayne Institute, Denmark Hill Campus, King's College London, London, UK
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven University, Leuven, Belgium.
| |
Collapse
|
6
|
Gutierrez-Triana JA, Herget U, Castillo-Ramirez LA, Lutz M, Yeh CM, De Marco RJ, Ryu S. Manipulation of Interrenal Cell Function in Developing Zebrafish Using Genetically Targeted Ablation and an Optogenetic Tool. Endocrinology 2015; 156:3394-401. [PMID: 26132917 DOI: 10.1210/en.2015-1021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Zebrafish offer an opportunity to study conserved mechanisms underlying the ontogeny and physiology of the hypothalamic-pituitary-adrenal/interrenal axis. As the final effector of the hypothalamic-pituitary-adrenal/interrenal axis, glucocorticoids exert both rapid and long-term regulatory functions. To elucidate their specific effects in zebrafish, transgenic approaches are necessary to complement pharmacological studies. Here, we report a robust approach to specifically manipulate endogenous concentrations of cortisol by targeting heterologous proteins to interrenal cells using a promoter element of the steroidogenic acute regulatory protein. To test this approach, we first used this regulatory region to generate a transgenic line expressing the bacterial nitroreductase protein, which allows conditional targeted ablation of interrenal cells. We demonstrate that this line can be used to specifically ablate interrenal cells, drastically reducing both basal and stress-induced cortisol concentrations. Next, we coupled this regulatory region to an optogenetic actuator, Beggiatoa photoactivated adenylyl cyclase, to increase endogenous cortisol concentrations in a blue light-dependent manner. Thus, our approach allows specific manipulations of steroidogenic interrenal cell activity for studying the effects of both hypo- and hypercortisolemia in zebrafish.
Collapse
Affiliation(s)
- Jose Arturo Gutierrez-Triana
- Developmental Genetics of the Nervous System (J.A.G.-T., U.H., L.A.C.-R., M.L., C.-M.Y., R.J.D.M., S.R.), Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany; and The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (U.H., L.A.C.-R.), University of Heidelberg, D-69120 Germany
| | - Ulrich Herget
- Developmental Genetics of the Nervous System (J.A.G.-T., U.H., L.A.C.-R., M.L., C.-M.Y., R.J.D.M., S.R.), Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany; and The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (U.H., L.A.C.-R.), University of Heidelberg, D-69120 Germany
| | - Luis A Castillo-Ramirez
- Developmental Genetics of the Nervous System (J.A.G.-T., U.H., L.A.C.-R., M.L., C.-M.Y., R.J.D.M., S.R.), Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany; and The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (U.H., L.A.C.-R.), University of Heidelberg, D-69120 Germany
| | - Markus Lutz
- Developmental Genetics of the Nervous System (J.A.G.-T., U.H., L.A.C.-R., M.L., C.-M.Y., R.J.D.M., S.R.), Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany; and The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (U.H., L.A.C.-R.), University of Heidelberg, D-69120 Germany
| | - Chen-Min Yeh
- Developmental Genetics of the Nervous System (J.A.G.-T., U.H., L.A.C.-R., M.L., C.-M.Y., R.J.D.M., S.R.), Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany; and The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (U.H., L.A.C.-R.), University of Heidelberg, D-69120 Germany
| | - Rodrigo J De Marco
- Developmental Genetics of the Nervous System (J.A.G.-T., U.H., L.A.C.-R., M.L., C.-M.Y., R.J.D.M., S.R.), Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany; and The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (U.H., L.A.C.-R.), University of Heidelberg, D-69120 Germany
| | - Soojin Ryu
- Developmental Genetics of the Nervous System (J.A.G.-T., U.H., L.A.C.-R., M.L., C.-M.Y., R.J.D.M., S.R.), Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany; and The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (U.H., L.A.C.-R.), University of Heidelberg, D-69120 Germany
| |
Collapse
|
7
|
Reul JM, Collins A, Saliba RS, Mifsud KR, Carter SD, Gutierrez-Mecinas M, Qian X, Linthorst AC. Glucocorticoids, epigenetic control and stress resilience. Neurobiol Stress 2015; 1:44-59. [PMID: 27589660 PMCID: PMC4721318 DOI: 10.1016/j.ynstr.2014.10.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/01/2014] [Accepted: 10/04/2014] [Indexed: 11/25/2022] Open
Abstract
Glucocorticoid hormones play a pivotal role in the response to stressful challenges. The surge in glucocorticoid hormone secretion after stress needs to be tightly controlled with characteristics like peak height, curvature and duration depending on the nature and severity of the challenge. This is important as chronic hyper- or hypo-responses are detrimental to health due to increasing the risk for developing a stress-related mental disorder. Proper glucocorticoid responses to stress are critical for adaptation. Therefore, the tight control of baseline and stress-evoked glucocorticoid secretion are important constituents of an organism's resilience. Here, we address a number of mechanisms that illustrate the multitude and complexity of measures safeguarding the control of glucocorticoid function. These mechanisms include the control of mineralocorticoid (MR) and glucocorticoid receptor (GR) occupancy and concentration, the dynamic control of free glucocorticoid hormone availability by corticosteroid-binding globulin (CBG), and the control exerted by glucocorticoids at the signaling, epigenetic and genomic level on gene transcriptional responses to stress. We review the beneficial effects of regular exercise on HPA axis and sleep physiology, and cognitive and anxiety-related behavior. Furthermore, we describe that, possibly through changes in the GABAergic system, exercise reduces the impact of stress on a signaling pathway specifically in the dentate gyrus that is strongly implicated in the behavioral response to that stressor. These observations underline the impact of life style on stress resilience. Finally, we address how single nucleotide polymorphisms (SNPs) affecting glucocorticoid action can compromise stress resilience, which becomes most apparent under conditions of childhood abuse.
Collapse
Affiliation(s)
- Johannes M.H.M. Reul
- Neuro-Epigenetics Research Group, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
| | - Andrew Collins
- Neuro-Epigenetics Research Group, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
| | - Richard S. Saliba
- Neuro-Epigenetics Research Group, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
| | - Karen R. Mifsud
- Neuro-Epigenetics Research Group, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
| | - Sylvia D. Carter
- Neuro-Epigenetics Research Group, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
| | - Maria Gutierrez-Mecinas
- Neuro-Epigenetics Research Group, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
| | - Xiaoxiao Qian
- Neurobiology of Stress and Behaviour Research Group, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
| | - Astrid C.E. Linthorst
- Neurobiology of Stress and Behaviour Research Group, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
| |
Collapse
|
8
|
Eto K, Mazilu-Brown JK, Henderson-MacLennan N, Dipple KM, McCabe ER. Development of catecholamine and cortisol stress responses in zebrafish. Mol Genet Metab Rep 2014; 1:373-377. [PMID: 27896111 PMCID: PMC5121345 DOI: 10.1016/j.ymgmr.2014.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 08/15/2014] [Indexed: 11/30/2022] Open
Abstract
Both adrenal catecholamines and steroids are known to be involved in the stress response, immune function, blood pressure and energy homeostasis. The response to stress is characterized by the activation of the hypothalamus–pituitary–adrenal (HPA) axis and the sympathetic-adrenomedullary system, though the correlation with activation and development is not well understood. We evaluated the stress response of both cortisol and catecholamines during development in zebrafish. Zebrafish at two different stages of development were stressed in one of two different ways and cortisol and catecholamine were measured. Cortisol was measured by enzyme immune assay and catecholamine was measured by ELISA. Our results show that stress responses are delayed until after the synthesis of both cortisol and catecholamines. These observations suggest that the development of HPA axis may be required for the acquisition of the stress response for cortisol and catecholamines.
Collapse
Affiliation(s)
- Kaoru Eto
- Department of Pediatrics, University of California, Los Angeles, USA
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | | | | | - Katrina M. Dipple
- Department of Pediatrics, University of California, Los Angeles, USA
- Department of Human Genetics, University of California, Los Angeles, USA
| | - Edward R.B. McCabe
- Department of Pediatrics, University of California, Los Angeles, USA
- Department of Bioengineering, University of California, Los Angeles, USA
- Department of Human Genetics, University of California, Los Angeles, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Corresponding author at: March of Dimes Foundation, 1275 Mamaroneck Avenue, White Plains, NY 10605, USA. Fax: + 1 914 428 7849.
| |
Collapse
|
9
|
Functional programming of the autonomic nervous system by early life immune exposure: implications for anxiety. PLoS One 2013; 8:e57700. [PMID: 23483921 PMCID: PMC3590226 DOI: 10.1371/journal.pone.0057700] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/23/2013] [Indexed: 12/13/2022] Open
Abstract
Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p.) exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA) axis functioning. Altered autonomic nervous system (ANS) activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH) in the adrenal glands on postnatal days (PNDs) 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli). Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of physiological processes.
Collapse
|
10
|
Engeland WC. Sensitization of endocrine organs to anterior pituitary hormones by the autonomic nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2013; 117:37-44. [DOI: 10.1016/b978-0-444-53491-0.00004-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
11
|
Goldstein DS. Differential responses of components of the autonomic nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2013; 117:13-22. [DOI: 10.1016/b978-0-444-53491-0.00002-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Desarménien MG, Jourdan C, Toutain B, Vessières E, Hormuzdi SG, Guérineau NC. Gap junction signalling is a stress-regulated component of adrenal neuroendocrine stimulus-secretion coupling in vivo. Nat Commun 2013; 4:2938. [PMID: 24356378 DOI: 10.1038/ncomms3938] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/14/2013] [Indexed: 01/06/2023] Open
Abstract
Elucidating the mechanisms whereby neuroendocrine tissues coordinate their input and output signals to ensure appropriate hormone secretion is currently a topical issue. In particular, whether a direct communication mediated by gap junctions between neurosecretory cells contributes to hormone release in vivo still remains unknown. Here we address this issue using a microsurgical approach allowing combined monitoring of adrenal catecholamine secretion and splanchnic nerve stimulation in anaesthetised mice. Pharmacological blockade of adrenal gap junctions by the uncoupling agent carbenoxolone reduces nerve stimulation-evoked catecholamine release in control mice and to a larger extent in stressed mice. In parallel, the gap junction-coupled cell network is extended in stressed mice. Altogether, this argues for a significant contribution of adrenomedullary gap junctions to catecholamine secretion in vivo. As such, gap junctional signalling appears to be a substantial component for neuroendocrine function in the adrenal medulla, as it may represent an additional lever regulating hormone release.
Collapse
Affiliation(s)
- Michel G Desarménien
- 1] CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier F-34094, France [2] INSERM, U661, Montpellier F-34094, France [3] Universités de Montpellier 1 & 2, UMR-5203, Montpellier F-34094, France [4]
| | - Carole Jourdan
- 1] CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier F-34094, France [2] INSERM, U661, Montpellier F-34094, France [3] Universités de Montpellier 1 & 2, UMR-5203, Montpellier F-34094, France [4]
| | - Bertrand Toutain
- 1] Department of Integrated Neurovascular and Mitochondrial Biology, Angers F-49045, France [2] CNRS UMR6214, Angers F-49045, France [3] INSERM U1083, Angers F-49045, France [4] University of Angers, Angers F-49045, France
| | - Emilie Vessières
- 1] Department of Integrated Neurovascular and Mitochondrial Biology, Angers F-49045, France [2] CNRS UMR6214, Angers F-49045, France [3] INSERM U1083, Angers F-49045, France [4] University of Angers, Angers F-49045, France
| | - Sheriar G Hormuzdi
- Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Nathalie C Guérineau
- 1] Department of Integrated Neurovascular and Mitochondrial Biology, Angers F-49045, France [2] CNRS UMR6214, Angers F-49045, France [3] INSERM U1083, Angers F-49045, France [4] University of Angers, Angers F-49045, France
| |
Collapse
|
13
|
Abstract
Chromaffin cells probably are the most intensively studied of the neural crest derivates. They are closely related to the nervous system, share with neurons some fundamental mechanisms and thus were the ideal model to study the basic mechanisms of neurobiology for many years. The lessons we have learned from chromaffin cell biology as a peripheral model for the brain and brain diseases pertain more than ever to the cutting edge research in neurobiology. Here, we highlight how studying this cell model can help unravel the basic mechanisms of cell renewal and regeneration both in the central nervous system (CNS) and neuroendocrine tissue and also can help in designing new strategies for regenerative therapies of the CNS.
Collapse
|
14
|
Tyrosine hydroxylase, chromogranin A, and steroidogenic acute regulator as markers for successful separation of human adrenal medulla. Cell Tissue Res 2010; 340:607-12. [PMID: 20440513 DOI: 10.1007/s00441-010-0965-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
Abstract
Progress in high throughput "-omic" techniques now allows the simultaneous measurement of expression levels of thousands of genes and promises the improved understanding of the molecular biology of diseases such as cancer. Detection of the dysfunction of molecular pathways in diseases requires healthy control tissue. This is difficult to obtain from pheochromocytomas (PHEOs), rare chromaffin tumors derived from adrenal medulla. The two options for obtaining adrenal tissue are: (1) whole organ removal post-mortem or during radical nephrectomy; (2) removal during PHEO surgery. Access to high quality normal adrenal tissue is limited. Removal of whole adrenals during nephrectomy is rare, because of improved surgical techniques. For adrenals removed post-mortem, the lag time to proper organ perfusion causes uncontrolled tissue degradation. Adjacent normal adrenal tissue can almost never be obtained from resected PHEOs, because they often replace the entire medulla or are well-encapsulated. If a margin of normal adrenal is attached to a resected PHEO, it seldom contains any medulla. The clean separation of medulla and cortex is further complicated, because their border is convoluted, and because adult adrenal consists of approximately 90% cortex. Thus, the quality of separation has to be evaluated with specific medullary and cortical markers. We describe the successful dissection of highly pure, medullary tissue from adrenals snap-frozen upon resection during radical nephrectomy or after brain death. Separation quality has been verified by quantitative reverse transcription with polymerase chain reaction for the medullary enzymes, tyrosine hydroxylase, and chromogranin A, and for the cortical enzyme, steroidogenic acute regulator.
Collapse
|
15
|
Alpha-methyltyrosine inhibits formation of reactive oxygen species and diminishes apoptosis in PC12 cells. Brain Res 2009; 1296:137-47. [DOI: 10.1016/j.brainres.2009.07.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 07/23/2009] [Accepted: 07/24/2009] [Indexed: 12/21/2022]
|
16
|
Ehrhart-Bornstein M, Bornstein SR. Cross-talk between Adrenal Medulla and Adrenal Cortex in Stress. Ann N Y Acad Sci 2008; 1148:112-7. [DOI: 10.1196/annals.1410.053] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Engström L, Rosén K, Angel A, Fyrberg A, Mackerlova L, Konsman JP, Engblom D, Blomqvist A. Systemic immune challenge activates an intrinsically regulated local inflammatory circuit in the adrenal gland. Endocrinology 2008; 149:1436-50. [PMID: 18174279 DOI: 10.1210/en.2007-1456] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is evidence from in vitro studies that inflammatory messengers influence the release of stress hormone via direct effects on the adrenal gland; however, the mechanisms underlying these effects in the intact organism are unknown. Here we demonstrate that systemic inflammation in rats elicited by iv injection of lipopolysaccharide results in dynamic changes in the adrenal immune cell population, implying a rapid depletion of dendritic cells in the inner cortical layer and the recruitment of immature cells to the outer layers. These changes are accompanied by an induced production of IL-1beta and IL-1 receptor type 1 as well as cyclooxygenase-2 and microsomal prostaglandin E synthase-1 in these cells, implying local cytokine-mediated prostaglandin E(2) production in the adrenals, which also displayed prostaglandin E(2) receptors of subtypes 1 and 3 in the cortex and medulla. The IL-1beta expression was also induced by systemically administrated IL-1beta and was in both cases attenuated by IL-1 receptor antagonist, consistent with an autocrine signaling loop. IL-1beta similarly induced expression of cyclooxygenase-2, but the cyclooxygenase-2 expression was, in contrast, further enhanced by IL-1 receptor antagonist. These data demonstrate a mechanism by which systemic inflammatory agents activate an intrinsically regulated local signaling circuit that may influence the adrenals' response to immune stress and may help explain the dissociation between plasma levels of ACTH and corticosteroids during chronic immune perturbations.
Collapse
Affiliation(s)
- Linda Engström
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Orlando GF, Langnaese K, Schulz C, Wolf G, Engelmann M. Neuronal nitric oxide synthase gene inactivation reduces the expression of vasopressin in the hypothalamic paraventricular nucleus and of catecholamine biosynthetic enzymes in the adrenal gland of the mouse. Stress 2008; 11:42-51. [PMID: 17853069 DOI: 10.1080/10253890701449867] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The impact of a lifelong absence of the neuronal nitric oxide synthase (nNOS) in the neuroendocrine stress response was investigated in nNOS knockout (KO) and wild type (WT) mice under basal conditions and in response to forced swimming. In the hypothalamic paraventricular nucleus oxytocin and corticotropin-releasing-hormone mRNA levels did not differ between these genotypes under resting conditions, whereas vasopressin mRNA levels were significantly lower in nNOS KO than in WT animals. Also, in the adrenal glands basal levels of tyrosine hydroxylase protein, the rate-limiting enzyme for catecholamine biosynthesis, and of phenylethanolamine N-methyltransferase, which converts norepinephrine to epinephrine, were significantly reduced in nNOS KO mice. Plasma adrenocorticotropin, corticosterone, norepinephrine and epinephrine levels were similar in the KO and WT genotypes under resting conditions. In response to forced swimming, a similar increase in plasma adrenocorticotropin and corticosterone was observed in KO and WT animals. Stressor exposure triggered also an increased epinephrine release in WT animals, but did not significantly alter plasma epinephrine levels in KO mice. These data suggest that the chronic absence of nNOS reduces the capacity of epinephrine synthesising enzymes in the adrenal gland to respond to acute stressor exposure with an adequate epinephrine release.
Collapse
Affiliation(s)
- G F Orlando
- Institute of Medical Neurobiology, Otto von Guericke University, Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
19
|
Kajihara S, Sakamoto T, Kachi T. A qualitative and quantitative electron microscopic study of differences in adrenomedullary adrenaline cells between golden hamsters and rats, with special reference to the Golgi apparatus. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2007; 70:147-61. [PMID: 18079584 DOI: 10.1679/aohc.70.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ultrastructural features of adrenomedullary adrenaline (A) cells in golden hamsters and rats were investigated qualitatively and quantitatively with special reference to the Golgi apparatus. The A cells displayed a characteristic follicular arrangement, with each cell showing structural polarity in hamsters, but not apparently in rats. In hamsters, the Golgi apparatus of A cells was larger (t-test: P<0.001) and more frequently showed large and complexly organized structures (chi(2)-test: P<0.005) compared with that of rats. Quantitative analysis of the Golgi apparatus revealed differences in the size and numerical density of Golgi vesicles in relation to the animal species and region. Two-way analysis of variance (ANOVA) confirmed species difference in the size of coated vesicles (P<0.005) and interaction between species and region concerning the size of smooth-clear vesicles (P<0.01) and numerical density of granular vesicles (P<0.05). One-way ANOVA revealed regional differences in the size and numerical density of smooth-clear vesicles in rats and hamsters (P<0.01 approximately 0.001), and in the numerical density of coated vesicles in hamsters (P<0.05). Data were further analyzed by Tukey-Kramer's method. These and other reported results suggest that, in hamster A cells, the Golgi apparatus has different structural, molecular, and functional mechanisms which are at least partly related to the distinct cellular polarity and higher concentration of peptide hormones in secretory vesicles, and that in rat A cells, in contrast, loading secretory vesicles with A during the post-Golgi stage is predominant. In conclusion, the Golgi apparatus in hamster A cells shows markedly different ultrastructural features compared with that in rat A cells.
Collapse
Affiliation(s)
- Satoshi Kajihara
- Department of Anatomical Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | | | | |
Collapse
|
20
|
Gerits N, Van Belle W, Moens U. Transgenic mice expressing constitutive active MAPKAPK5 display gender-dependent differences in exploration and activity. Behav Brain Funct 2007; 3:58. [PMID: 17997833 PMCID: PMC2238755 DOI: 10.1186/1744-9081-3-58] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 11/12/2007] [Indexed: 12/30/2022] Open
Abstract
Background The mitogen-activated protein kinases, MAPKs for short, constitute cascades of signalling pathways involved in the regulation of several cellular processes that include cell proliferation, differentiation and motility. They also intervene in neurological processes like fear conditioning and memory. Since little remains known about the MAPK-Activated Protein Kinase, MAPKAPK5, we constructed the first MAPKAPK knockin mouse model, using a constitutive active variant of MAPKAPK5 and analyzed the resulting mice for changes in anxiety-related behaviour. Methods We performed primary SHIRPA observations during background breeding into the C57BL/6 background and assessed the behaviour of the background-bred animals on the elevated plus maze and in the light-dark test. Our results were analyzed using Chi-square tests and homo- and heteroscedatic T-tests. Results Female transgenic mice displayed increased amounts of head dips and open arm time on the maze, compared to littermate controls. In addition, they also explored further into the open arm on the elevated plus maze and were less active in the closed arm compared to littermate controls. Male transgenic mice displayed no differences in anxiety, but their locomotor activity increased compared to non-transgenic littermates. Conclusion Our results revealed anxiety-related traits and locomotor differences between transgenic mice expressing constitutive active MAPKAPK5 and control littermates.
Collapse
Affiliation(s)
- Nancy Gerits
- Department of Microbiology and Virology, Institute of Medical Biology, Faculty of Medicine, University of Tromsø, N-9037 Tromsø, Norway.
| | | | | |
Collapse
|
21
|
Kameda Y, Nishimaki T, Chisaka O, Iseki S, Sucov HM. Expression of the epithelial marker E-cadherin by thyroid C cells and their precursors during murine development. J Histochem Cytochem 2007; 55:1075-88. [PMID: 17595340 DOI: 10.1369/jhc.7a7179.2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Studies of chick-quail chimeras have reported that avian ultimobranchial C cells originate from the neural crest. It has consequently been assumed, without much supporting evidence, that mammalian thyroid C cells also originate from the neural crest. To test this notion, we employed both Connexin43-lacZ and Wnt1-Cre/R26R transgenic mice, because their neural crest cells can be marked. We also examined the immunohistochemical expression of a number of markers that identify migratory or postmigratory neural crest cells, namely, TuJ1, neurofilament 160, nestin, P75NTR, and Sox10. Moreover, we examined the expression of E-cadherin, an epithelial cell marker. At embryonic day (E)10.5, the neural crest cells densely populated the pharyngeal arches but were not distributed in the pharyngeal pouches, including the fourth pouch. At E11.5, the ultimobranchial rudiment formed from the fourth pouch and was located close to the fourth arch artery. At E13.0, this organ came into contact with the thyroid lobe, and at E13.5, it fused with this lobe. However, the ultimobranchial body was not colonized by neural crest-derived cells at any of these developmental stages. Instead, all ultimobranchial cells, as well as the epithelium of the fourth pharyngeal pouch, were intensely immunoreactive for E-cadherin. Furthermore, confocal microscopy of newborn mouse thyroid glands revealed colocalization of calcitonin and E-cadherin in the C cells. The cells, however, were not marked in the Wnt-Cre/R26R mice. These results indicated that murine thyroid C cells are derived from the endodermal epithelial cells of the fourth pharyngeal pouch and do not originate from neural crest cells.
Collapse
Affiliation(s)
- Yoko Kameda
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 228-8555, Japan.
| | | | | | | | | |
Collapse
|
22
|
Otawa M, Arai H, Atomi Y. Molecular aspects of adrenal regulation for circadian glucocorticoid synthesis by chronic voluntary exercise. Life Sci 2007; 80:725-31. [PMID: 17222430 DOI: 10.1016/j.lfs.2006.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 10/26/2006] [Accepted: 10/31/2006] [Indexed: 10/23/2022]
Abstract
Chronic voluntary running of mice is known to increase the circadian peak of plasma corticosterone without change in the level of adrenocorticotropic hormone (ACTH). In order to investigate how chronic exercise modulates the circadian HPA axis, we used two weeks of voluntary wheel running of mice and confirmed the significant increase of the circadian peak of plasma corticosterone without alteration in ACTH level. To elucidate the mechanisms of exercise modulation on corticosterone synthesis, we first examined the levels of transcripts involved in corticosterone synthesis of the adrenal gland. Among them, only steroidogenic acute regulatory protein (StAR), the rate-limiting factor that transfers substrate cholesterol into inner mitochondrial membrane, showed significantly higher expression in the exercise group. Since the splanchnic nerve input to the adrenal gland has been reported as a factor involved in the direct modulation of corticosterone synthesis, we next examined the expression levels of enzymes for the catecholamine synthesis as indices of sympatho-adrenomedullary activity. We found that the only rate-limiting enzyme, tyrosine hydroxylase (TH), was significantly higher in the adrenals of exercise group. In addition to the increment of StAR and TH mRNA in response to the chronic exercise, surprisingly, we found only these factors showed the circadian variation in its expression levels that was correlated to the circadian rhythm of corticosterone. Chronic exercise seems to alter the circadian corticosterone synthesis, at least partially via altering the levels of circadian-regulated transcripts, StAR and TH of the adrenal gland.
Collapse
Affiliation(s)
- Mayumi Otawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Tokyo, Japan
| | | | | |
Collapse
|
23
|
Moura E, Afonso J, Hein L, Vieira-Coelho MA. Alpha2-adrenoceptor subtypes involved in the regulation of catecholamine release from the adrenal medulla of mice. Br J Pharmacol 2006; 149:1049-58. [PMID: 17075569 PMCID: PMC2014633 DOI: 10.1038/sj.bjp.0706950] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE This study was carried out to elucidate which alpha(2)-adrenoceptor subtypes mediated the inhibition of noradrenaline and adrenaline release from the adrenal medulla of mice. EXPERIMENTAL APPROACH Isolated adrenal medullae from wild-type and alpha(2A), alpha(2B) and alpha(2C)-adrenoceptor knockout (KO) mice were placed in superfusion chambers. Catecholamine overflow was evoked by 1,1-dimethyl-4-phenylpiperazinium (500 microM) in absence or in presence of the alpha(2)-adrenoceptor agonist medetomidine. The effect of medetomidine was tested in presence of the alpha-adrenoceptor antagonists rauwolscine, WB 4101, spiroxatrine, phentolamine and prazosin. KEY RESULTS In wild-type mice, medetomidine reduced noradrenaline and adrenaline overflow in a concentration-dependent manner (EC(50) in nM: 1.54 and 1.92; E(max) in % of inhibition: 91 and 94, for noradrenaline and adrenaline, respectively). The pK (D) values of the antagonists for noradrenaline overflow did not correlate with pK(D) values at alpha(2A), alpha(2B), or alpha(2C) binding sites. The pK (D) values of the antagonists for adrenaline overflow correlated positively with pK(D) values at alpha(2C) binding sites (opossum kidney cells). The effect of medetomidine (100 nM) on noradrenaline overflow was significantly reduced in all three alpha(2)KO mice (57, 54, 44 % inhibition, for alpha(2A), alpha(2B), and alpha(2C), respectively), whereas the effect of medetomidine on adrenaline overflow was greatly reduced in alpha(2C)KO mice (14 % inhibition). CONCLUSIONS AND IMPLICATIONS In the adrenal medulla of mice, all three alpha(2)-adrenoceptor subtypes (alpha(2A), alpha(2B), and alpha(2C)) play an equal role in the inhibition of noradrenaline overflow, whereas the alpha(2C)-adrenoceptor is the predominant alpha(2)-adrenoceptor subtype involved in the inhibitory mechanism controlling adrenaline overflow.
Collapse
Affiliation(s)
- E Moura
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro Porto, Portugal
- Institute for Molecular and Cell Biology, University of Porto, Rua do Campo Alegre Porto, Portugal
| | - J Afonso
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro Porto, Portugal
| | - L Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Albertstrasse Freiburg, Germany
| | - M A Vieira-Coelho
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro Porto, Portugal
- Institute for Molecular and Cell Biology, University of Porto, Rua do Campo Alegre Porto, Portugal
- Author for correspondence:
| |
Collapse
|
24
|
Guillemot J, Aït-Ali D, Turquier V, Montero-Hadjadje M, Fournier A, Vaudry H, Anouar Y, Yon L. Involvement of multiple signaling pathways in PACAP-induced EM66 secretion from chromaffin cells. ACTA ACUST UNITED AC 2006; 137:79-88. [PMID: 16963134 DOI: 10.1016/j.regpep.2006.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 04/10/2006] [Accepted: 04/22/2006] [Indexed: 10/24/2022]
Abstract
Secretoneurin (SN) and EM66 are two highly conserved peptides that derive from the processing of secretogranin II (SgII), one of the major constituents of chromaffin cell secretory vesicles. It has been shown that PACAP regulates SgII gene transcription and SN release in bovine adrenochromaffin cells. The aim of the present study was to localize and characterize EM66 in the bovine adrenal gland, and to examine the signaling pathways activated by PACAP to regulate the secretion of EM66 from cultured chromaffin cells. Double immunohistochemical labeling showed an intense EM66-immunoreactive (EM66-IR) signal in TH-positive medullary chromaffin cells of the adrenal gland. HPLC analysis combined with RIA detection revealed, in adrenal medulla extracts and cultured chromaffin cell media, the presence of a major EM66-IR peak co-eluting with the recombinant peptide. PACAP dose-dependently stimulated EM66 release from chromaffin cells (ED(50)=4.8 nM). The effect of PACAP on EM66 secretion was observed after 6 h of treatment and increased to reach a 2.6-fold stimulation at 48 h. The nonselective calcium channel blocker NiCl(2), the cytosolic calcium chelator BAPTA-AM and the L-type calcium channel blocker nimodipine significantly inhibited the stimulatory effect of PACAP on EM66 release. The secretory response to PACAP was also significantly lowered by the protein kinase A inhibitor H89 and by the protein kinase C inhibitor chelerythrine. Concomitant administration of chelerythrine, H89, NiCl(2) and BAPTA totally abolished PACAP-stimulated EM66 secretion. The MAPK inhibitors U0126 and SB203580 respectively decreased by 63% and 72% PACAP-evoked EM66 release. These results indicate that, in bovine adrenal medulla, SgII is processed to generate the EM66 peptide and that PACAP activates multiple signaling pathways to regulate EM66 release from chromaffin cells, suggesting that EM66 may act downstream of the trans-synaptic stimulation of the adrenal medulla by neurocrine factors.
Collapse
Affiliation(s)
- Johann Guillemot
- INSERM U413, European Institute for Peptide Research IFRMP 23, Laboratory of Cellular and Molecular Neuroendocrinology, University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Cavadas C, Céfai D, Rosmaninho-Salgado J, Vieira-Coelho MA, Moura E, Busso N, Pedrazzini T, Grand D, Rotman S, Waeber B, Aubert JF, Grouzmann E. Deletion of the neuropeptide Y (NPY) Y1 receptor gene reveals a regulatory role of NPY on catecholamine synthesis and secretion. Proc Natl Acad Sci U S A 2006; 103:10497-10502. [PMID: 16798884 PMCID: PMC1502486 DOI: 10.1073/pnas.0600913103] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The contribution of neuropeptide Y (NPY), deriving from adrenal medulla, to the adrenosympathetic tone is unknown. We found that in response to NPY, primary cultures of mouse adrenal chromaffin cells secreted catecholamine, and that this effect was abolished in cultures from NPY Y(1) receptor knockout mice (Y(1)-/-). Compared with wild-type mice (Y(1)+/+), the adrenal content and constitutive release of catecholamine were increased in chromaffin cells from Y(1)-/- mice. In resting animals, catecholamine plasma concentrations were higher in Y(1)-/- mice. Comparing the adrenal glands of both genotypes, no differences were observed in the area of the medulla, cortex, and X zone. The high turnover of adrenal catecholamine in Y(1)-/- mice was explained by the enhancement of tyrosine hydroxylase (TH) activity, although no change in the affinity of the enzyme was observed. The molecular interaction between the Y(1) receptor and TH was demonstrated by the fact that NPY markedly inhibited the forskolin-induced luciferin activity in Y(1) receptor-expressing SK-N-MC cells transfected with a TH promoter sequence. We propose that NPY controls the release and synthesis of catecholamine from the adrenal medulla and consequently contributes to the sympathoadrenal tone.
Collapse
Affiliation(s)
- Cláudia Cavadas
- *Center for Neurosciences and Cell Biology and Faculty of Pharmacy, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | - Joana Rosmaninho-Salgado
- *Center for Neurosciences and Cell Biology and Faculty of Pharmacy, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | - Eduardo Moura
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, 4200-319 Porto, Portugal
| | | | | | | | - Samuel Rotman
- Institute of Pathology, Centre Hospitalier Universaire Vaudois, 1011 Lausanne, Switzerland; and
| | | | | | | |
Collapse
|
26
|
Lee MS, Jun DH, Hwang CI, Park SS, Kang JJ, Park HS, Kim J, Kim JH, Seo JS, Park WY. Selection of neural differentiation-specific genes by comparing profiles of random differentiation. Stem Cells 2006; 24:1946-55. [PMID: 16627687 DOI: 10.1634/stemcells.2005-0325] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Differentiation of embryonic stem cells (ESCs) into neurons requires a high level of transcriptional regulation. To further understand the transcriptional regulation of neural differentiation of ESCs, we used oligonucleotide microarray to examine the gene expressions of the guided differentiation (GD) model for dopaminergic (DA) neurons from mouse ESCs. We also determined the gene expression profiles of the random differentiation (RD) model of mouse ESCs into embryoid bodies. From K-means clustering analysis using the expression patterns of the two models, most of the genes (1,282 of 1,884 genes [68.0%]) overlapped in their expression patterns. Six hundred twenty-two differentially expressed genes (DEGs) from the GD model by random variance F-test were classified by their critical molecular functions in neurogenesis and DNA replication (Gene Ontology analysis). However, 400 genes among GD-DEGs (64.3%) showed a high correlation with RD in Spearman's correlation analysis (Spearman's coefficient p(s) >or= .6). The genes showing marginal correlation (-.4 < p(s) < .6) were present in the early stages of differentiation of both GD and RD, which were non-specific to brain development. Finally, we distinguished 66 GD-specific genes based on p(s) <or= -.4, the molecular functions of which were related mainly to vesicle formation, neurogenesis, and transcription factors. From among these GD-specific genes, we confirmed the expression of Serpini1 and Rab33a in P19 differentiation models and adult brains. From these results, we identified the specific genes required for neural differentiation by comparing gene expressions of GD with RD; these would potentially be the highly specific candidate genes necessary for differentiation of DA neurons.
Collapse
Affiliation(s)
- Min Su Lee
- Department of Computer Science and Engineering, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mahapatra NR, O'Connor DT, Vaingankar SM, Hikim APS, Mahata M, Ray S, Staite E, Wu H, Gu Y, Dalton N, Kennedy BP, Ziegler MG, Ross J, Mahata SK. Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J Clin Invest 2005; 115:1942-52. [PMID: 16007257 PMCID: PMC1159140 DOI: 10.1172/jci24354] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Accepted: 04/19/2005] [Indexed: 01/21/2023] Open
Abstract
The secretory prohormone chromogranin A (CHGA) is overexpressed in essential hypertension, a complex trait with genetic predisposition, while its catecholamine release-inhibitory fragment catestatin is diminished, and low catestatin predicts augmented adrenergic pressor responses. These findings from studies on humans suggest a mechanism whereby diminished catestatin might increase the risk for hypertension. We generated Chga and humanized mice through transgenic insertion of a human CHGA haplotype in order to probe CHGA and catestatin in vivo. Chga mice displayed extreme phenotypic changes, including: (a) decreased chromaffin granule size and number; (b) elevated BP; (c) loss of diurnal BP variation; (d) increased left ventricular mass and cavity dimensions; (e) decreased adrenal catecholamine, neuropeptide Y (Npy), and ATP contents; (f) increased catecholamine/ATP ratio in the chromaffin granule; and (g) increased plasma catecholamine and Npy levels. Rescue of elevated BP to normalcy was achieved by either exogenous catestatin replacement or humanization of Chga mice. Loss of the physiological "brake" catestatin in Chga mice coupled with dysregulation of transmitter storage and release may act in concert to alter autonomic control of the circulation in vivo, eventuating in hypertension.
Collapse
|
28
|
Abstract
Adrenal catecholamines and steroids are important regulators of the stress response, immune function, blood pressure, and energy homeostasis. Historically, the two cell populations within the adrenal gland-the steroid-producing adrenocortical cells and the catecholamine-producing chromaffin cells-have been regarded as two independent endocrine systems. Research on adrenal physiology and pathophysiology has therefore largely focused on the individual understanding of each cell type. However, adrenal cortex and medulla appear to be interwoven and show multiple contact zones without separation by connective tissue or interstitial membranes. In vitro studies, animal models, and the analysis of human adrenal pathophysiology have demonstrated critical importance of cortical-chromaffin crosstalk for adrenal function and disease. Thus, chromaffin cells regulate steroid-hormone release by the adrenal cortex and steroids induce catecholamine production in the medulla. Consequently, disorders of the adrenal cortex have been shown to affect chromaffin cell function and vice versa. Mouse models of adrenal cortical dysfunction, such as the targeted disruption of the 21-hydroxylase- or the CRHR1 genes, show alterations in chromaffin cell function, while disruption of tyrosine hydroxylase, a key enzyme in catecholamine synthesis, impairs adrenal cortical function. Accordingly, patients with congenital adrenal hyperplasia (CAH) and Addison's disease show reduced catecholamine biosynthesis. Immense progress in characterizing the mechanisms of chromaffin-cortical interactions has been achieved in recent years. Here, we summarize the current view on intraadrenal communication with respect to adrenal pathophysiology.
Collapse
Affiliation(s)
- Sven Schinner
- Department of Endocrinology, Diabetes and Rheumatology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | | |
Collapse
|
29
|
Albrecht M, Doroszewicz J, Gillen S, Gomes I, Wilhelm B, Stief T, Aumüller G. Proliferation of prostate cancer cells and activity of neutral endopeptidase is regulated by bombesin and IL-1beta with IL-1beta acting as a modulator of cellular differentiation. Prostate 2004; 58:82-94. [PMID: 14673956 DOI: 10.1002/pros.10288] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Neutral endopeptidase (NEP) is a cell-surface bound enzyme that cleaves and inactivates neuropeptides such as bombesin and substance P and is involved in the transition from hormonally regulated androgen-dependent prostate cancer (PC) to androgen-independent PC. Neuropeptides are implicated in growth regulation of different cell types and function as transmitters between the neuroendocrine and the immune system. METHODS NEP-expression, enzymatic activity of the membrane bound protein, cell proliferation, procalcitonin (PCT) production, and secretion as well as changes in cell morphology of prostatic cells were evaluated after treatment with the immunomodulatory cytokine interleukin-1beta (IL-1beta), neuropeptides (bombesin, substance P), and neuropeptide-conditioned media derived from a human neuroendocrine cell line. RESULTS Incubation of LNCaP tumor cells with IL-1beta resulted in a diminished proliferative activity, induction of neurite-like outgrowth which was accompanied by the formation of tubular-type mitochondria typical for neuronal/neuroendocrine cells, and an increased production and secretion of PCT. Conversely, proliferation of prostatic stromal cells was enhanced by the cytokine coming along with an increased number of Golgi-apparatuses and ER-cisternae. Bombesin had an antimitotic effect on LNCaP, but not on stromal cells. Substance P did not influence the growth of any of the cell types investigated, whereas neuropeptide-conditioned media exerted a slightly mitogenic effect on both cell types. The activity of LNCaP cell-surface bound NEP was enhanced by bombesin, but was diminished by substance P and neuropeptide-conditioned media. CONCLUSIONS Proliferation and activity of neuropeptide degrading NEP is regulated differently by immunomodulatory substances in PC cells and cells derived from the prostatic stroma with IL-1beta being a potent modulator of cellular differentiation and a potential target for anticancer drug design in PC cells.
Collapse
Affiliation(s)
- Martin Albrecht
- Department of Anatomy and Cell Biology, Philipps-University, Marburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
30
|
Coutant R, Maurey H, Rouleau S, Mathieu E, Mercier P, Limal JM, Le Bouil A. Defect in epinephrine production in children with craniopharyngioma: functional or organic origin? J Clin Endocrinol Metab 2003; 88:5969-75. [PMID: 14671198 DOI: 10.1210/jc.2003-030552] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Despite pituitary hormone replacement, patients with craniopharyngioma often complain of fatigue. They may have deficient control of catecholamine secretion caused by hypothalamic lesion. Another hypothesis is a functional defect in catecholamine production through either glucocorticoid deficiency because high intraadrenal glucocorticoid concentration is necessary for epinephrine synthesis or unrecognized hypoglycemia, which can intrinsically alter epinephrine secretion. We measured catecholamine response to insulin-induced hypoglycemia and orthostasis, and 24-h urinary catecholamine excretion, in 16 children with craniopharyngioma (patients) and 27 sex- and age-matched short children. We also studied the influence of a 4-fold increase in the usual daily dose of hydrocortisone on catecholamine excretion (50 vs. 12 mg/m(2) of body surface area) in the glucocorticoid-deficient patients. Last, we compared 24-h continuous sc glucose in patients and 10 sex- and age-matched healthy children. The results are expressed as medians (25th, 75th). For a similar blood glucose nadir after insulin administration, peak plasma epinephrine in response to hypoglycemia was lower in patients vs. controls [420 (120, 715) vs. 730 (460, 1200) ng/liter, P < 0.01], whereas peak plasma norepinephrine was higher [390 (280, 550) vs. 270 (180, 280) ng/liter, P < 0.05]. Catecholamine response to orthostasis did not differ between groups. Urinary epinephrine was significantly lower in patients (P < 0.001), whereas urinary norepinephrine was similar. The extent of epinephrine deficiency correlated with neither tumor size nor hypothalamic involvement. A 4-fold higher hydrocortisone dose did not correct the defective epinephrine excretion in the glucocorticoid-deficient patients. Last, the 24-h sc glucose values were similar between patients and controls. In conclusion, children with craniopharyngioma have a defect in epinephrine but not norepinephrine production. There is no proof of a univocal origin, either organic or functional. Whether abnormal catecholamine secretion alters glucose level during fasting or acute illness, or hampers adaptation to exercise, requires further studies.
Collapse
Affiliation(s)
- Régis Coutant
- Department of Pediatrics, University Hospital, 49000 Angers, France.
| | | | | | | | | | | | | |
Collapse
|
31
|
Grouzmann E, Cavadas C, Grand D, Moratel M, Aubert JF, Brunner HR, Mazzolai L. Blood sampling methodology is crucial for precise measurement of plasma catecholamines concentrations in mice. Pflugers Arch 2003; 447:254-8. [PMID: 12905032 DOI: 10.1007/s00424-003-1140-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2003] [Revised: 06/17/2003] [Accepted: 06/19/2003] [Indexed: 11/26/2022]
Abstract
Epinephrine (E) and norepinephrine (NE) play a major role in regulating metabolism and cardiovascular physiology. Both are secreted in response to stress and their measurement in plasma allows the study of sympathoadrenal function. Several studies investigating sympathoadrenal physiology are conducted using mice. Review of the literature revealed that basal mouse NE and E plasma concentrations range within 4-140 nM depending on the blood sampling method. Such variability doesn't allow study comparison and may conceal catecholamine variations in response to stress. Therefore, our aim was to determine a reliable sampling method to measure mouse plasma catecholamine concentrations. Results showed that arterial catheterization is the most accurate sampling method: E and NE basal levels were similar to those found in humans (1.1+/-0.3 nM and 4.1+/-0.5 nM, respectively). Retro-orbital bleeding led to analogous results. On the contrary, decapitation was stressful for mice and consequently NE and E concentrations were high (24.6+/-2.7 nM and 27.3+/-3.8 nM, respectively). These different bleeding methods were compared in terms of their ability to detect sympathoadrenal system stimulation (cold-pressure test). With catheter and retro-orbital samplings the expected increase in NE and E levels was easily perceived. In contrast, with decapitation no significant change in E was detected. In conclusion, arterial-catheter and retro-orbital blood sampling methods appear to be the most accurate procedures for studying the sympathetic nervous system in mice in both unstressed and stressed conditions.
Collapse
Affiliation(s)
- Eric Grouzmann
- Division of Clinical Pharmacology and Toxicology, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
32
|
Bornstein SR, Yoshida-Hiroi M, Sotiriou S, Levine M, Hartwig HG, Nussbaum RL, Eisenhofer G. Impaired adrenal catecholamine system function in mice with deficiency of the ascorbic acid transporter (SVCT2). FASEB J 2003; 17:1928-30. [PMID: 12897061 DOI: 10.1096/fj.02-1167fje] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ascorbic acid (vitamin C) is a cofactor required in catecholamine synthesis for conversion of dopamine to norepinephrine by dopamine beta-hydroxylase. Mutant mice lacking the plasma membrane ascorbic acid transporter (SVCT2) have severely reduced tissue levels of ascorbic acid and die after birth. We therefore investigated whether these mice might have impaired synthesis of catecholamines. Levels of catecholamines in brain were unaffected by SVCT2 deficiency. In heart, the only evidence for impaired dopamine beta-hydroxylase activity was a twofold increase in tissue dopamine. An influence of the deficiency on tissue catecholamines was most prominent in the adrenals where norepinephrine was decreased by 50% and epinephrine, by 81%. On the ultrastructural level, adrenal chromaffin cells in SVCT2 null mice showed depletion of catecholamine storage vesicles, increased amounts of rough endoplasmic reticulum, signs of apoptosis, and increased glycogen storage. Decreased plasma levels of corticosterone indicated additional effects of the deficiency on adrenal cortical function. These data show that deranged catecholamine system function in SVCT2 null mice is largely restricted to the adrenal medulla and cannot account for the lethality in these animals. The data, however, establish a crucial role for ascorbic acid in adrenal chromaffin cell function.
Collapse
|
33
|
Montero-Hadjadje M, Pelletier G, Yon L, Li S, Guillemot J, Magoul R, Tillet Y, Vaudry H, Anouar Y. Biochemical characterization and immunocytochemical localization of EM66, a novel peptide derived from secretogranin II, in the rat pituitary and adrenal glands. J Histochem Cytochem 2003; 51:1083-95. [PMID: 12871990 DOI: 10.1177/002215540305100812] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Characterization of secretogranin II (SgII) mRNA in various vertebrates has revealed selective conservation of the amino acid sequences of two regions of the protein, i.e., the bioactive peptide secretoneurin and a flanking novel peptide that we named EM66. To help elucidate the possible role of EM66, we examined the occurrence as well as the cellular and subcellular distribution of EM66 in rat pituitary and adrenal glands by using a polyclonal antibody raised against the recombinant human EM66 peptide. High-performance liquid chromatography (HPLC) analysis of rat pituitary and adrenal extracts combined with a radioimmunoassay resolved EM66-immunoreactive material exhibiting the same retention time as recombinant EM66. In the rat pituitary, double-labeling immunohistochemical (IHC) studies showed that EM66 immunoreactivity (IR) was present in gonadotrophs, lactotrophs, thyrotrophs, and melanotrophs, whereas corticotrophs were devoid of labeling. EM66-IR was also observed in nerve endings in the neural lobe. Immunocytochemical staining at the electron microscopic level revealed that EM66-IR is sequestered in the secretory granules within gonadotrophs and lactotrophs. In the adrenal medulla, double IHC labeling showed that EM66-IR occurs exclusively in epinephrine-synthesizing cells. At the ultrastructural level, EM66-IR was seen in chromaffin vesicles of adrenomedullary cells. These results demonstrate that post-translational processing of SgII generates a novel peptide that exhibits a cell-specific distribution in the rat pituitary and adrenal glands where it is stored in secretory granules, supporting the notion that EM66 may play a role in the endocrine system.
Collapse
Affiliation(s)
- Maité Montero-Hadjadje
- European Institute for Peptide Research (IFRMP 23), Laboratory of Cellular and Molecular Neuroendocrinology, INSERM U413, UA CNRS, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chai C, Liu YW, Chan WK. Ff1b is required for the development of steroidogenic component of the zebrafish interrenal organ. Dev Biol 2003; 260:226-44. [PMID: 12885566 DOI: 10.1016/s0012-1606(03)00219-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The zebrafish ftz-f1 gene, ff1b, is activated in two cell clusters lateral to the midline in the trunk during late embryogenesis. These cell clusters coalesce to form a discrete organ at around 30 hpf, which then begins to acquire a steroidogenic identity as evidenced by the expression of the steroidogenic enzyme genes, cyp11a and 3beta-hsd. The migration of the cell clusters to the midline is impaired in zebrafish midline signaling mutants. Knockdown of Ff1b activity by antisense ff1b morpholino oligonucleotide (ff1bMO) leads to phenotypes that are consistent with impaired osmoregulation. Injection of ff1bMO was also shown to downregulate the expression of cyp11a and 3beta-hsd. Histological comparison of wild-type and ff1b morphants at various embryonic and juvenile stages revealed the absence of interrenal tissue development in ff1b morphants. The morphological defects of ff1b morphants could be mimicked by treatment with aminoglutethimide, an inhibitor of de novo steroid synthesis. Based on these data, we propose that ff1b is required for the development of the steroidogenic tissue of the interrenal organ.
Collapse
Affiliation(s)
- Chou Chai
- Institute of Molecular Agrobiology, 1 Research Link, 117604, Singapore
| | | | | |
Collapse
|
35
|
Vrezas I, Willenberg HS, Mansmann G, Hiroi N, Fritzen R, Bornstein SR. Ectopic adrenocorticotropin (ACTH) and corticotropin-releasing hormone (CRH) production in the adrenal gland: basic and clinical aspects. Microsc Res Tech 2003; 61:308-14. [PMID: 12768546 DOI: 10.1002/jemt.10340] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is integrated in the human stress system and controls the metabolism of many cell systems in the body. Therefore, hypofunction or hyperfunction of the HPA axis potentially threatens the life of the whole organism. Noncontrolled overproduction of its key regulators, CRH and ACTH, causes dysfunction of the stress system. Ectopic secretion of these compounds may be part of extraadrenal paraneoplastic syndromes caused by various benign or malignant tumors. However, ectopic ACTH and CRH may originate from the adrenal itself. A local CRH/ACTH system exists in the normal human adrenal medulla. Overproduction of CRH and ACTH has been documented in pheochromocytomas causing Cushing's syndrome. Finally, ectopic production of ACTH causing Cushing's syndrome has also been demonstrated in adrenocortical cells. This suggests a marked plasticity within the HPA axis and the neuroendocrine cell system.
Collapse
Affiliation(s)
- Ilias Vrezas
- Department of Endocrinology, University Hospital of Duesseldorf, 40225 Duesseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Yoshida-Hiroi M, Bradbury MJ, Eisenhofer G, Hiroi N, Vale WW, Novotny GE, Hartwig HG, Scherbaum WA, Bornstein SR. Chromaffin cell function and structure is impaired in corticotropin-releasing hormone receptor type 1-null mice. Mol Psychiatry 2003; 7:967-74. [PMID: 12399950 DOI: 10.1038/sj.mp.4001143] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2001] [Revised: 02/18/2002] [Accepted: 02/21/2002] [Indexed: 11/08/2022]
Abstract
Corticotropin-releasing hormone (CRH) is both a main regulator of the hypothalamic-pituitary-adrenocortical axis and the autonomic nervous system. CRH receptor type 1 (CRHR1)-deficient mice demonstrate alterations in behavior, impaired stress responses with adrenocortical insufficiency and aberrant neuroendocrine development, but the adrenal medulla has not been analyzed in these animals. Therefore we studied the production of adrenal catecholamines, expression of the enzyme responsible for catecholamine biosynthesis neuropeptides and the ultrastructure of chromaffin cells in CRHR1 null mice. In addition we examined whether treatment of CRHR1 null mice with adrenocorticotropic hormone (ACTH) could restore function of the adrenal medulla. CRHR1 null mice received saline or ACTH, and wild-type or heterozygous mice injected with saline served as controls. Adrenal epinephrine levels in saline-treated CRHR1 null mice were 44% those of controls (P<0.001), and the phenylethanolamine N-methyltransferase (PNMT) mRNA levels in CRHR1 null mice were only 25% of controls (P <0.001). ACTH treatment increased epinephrine and PNMT mRNA level in CRHR1 null mice but failed to restore them to normal levels. Proenkephalin mRNA in both saline- and ACTH-treated CRHR1 null mice were higher than in control animals (215.8% P <0.05, 268.9% P <0.01) whereas expression of neuropeptide Y and chromogranin B did not differ. On the ultrastructural level, chromaffin cells in saline-treated CRHR1 null mice exhibited a marked depletion in epinephrine-storing secretory granules that was not completely normalized by ACTH-treatment. In conclusion, CRHR1 is required for a normal chromaffin cell structure and function and deletion of this gene is associated with a significant impairment of epinephrine biosynthesis.
Collapse
Affiliation(s)
- M Yoshida-Hiroi
- Pediatric and Reproductive Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Avraham Y, Hao S, Mendelson S, Berry EM. Hypothalamic-pituitary-adrenal responses to weight loss in mice following diet restriction, activity or separation stress: effects of tyrosine. Nutr Neurosci 2002; 5:327-35. [PMID: 12385595 DOI: 10.1080/1028415021000033794] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have studied three different types of weight-loss stress caused by Diet restriction, Activity or Separation, for their effects on the hypothalamic-pituitary axis in young female mice and their responses to tyrosine 100 mg/kg/day. Plasma was assayed for ACTH and glucocorticoid determinations, and brain catecholamine concentrations were measured by HPLC/ECD. A similar weight loss of 24-28% was observed in the models despite significant differences in food intake. Diet restriction to 60% and Separation models produced a significant increase in hypothalamic noradrenaline (p < 0.01), while there was a significant decrease (p < 0.05) in the Diet restriction to 40% that was restored after tyrosine. After Activity, noradrenaline levels did not change. ACTH concentrations decreased following Diet restriction (p < 0.05) but were unaffected by Separation or Activity. The peripheral glucocorticoid response increased significantly after Activity and Diet restriction (p < 0.001), but decreased significantly after Separation (p < 0.001). Tyrosine increased glucocorticoid concentrations in the Activity and Separation models (p < 0.05), but not after Diet restriction. Despite similar weight loss in the three models there were no predictable associations between hypothalamic noradrenaline metabolism and plasma ACTH or glucocorticoid concentrations. Tyrosine might alleviate some of the different pathophysiological problems associated with the stress of weight loss.
Collapse
Affiliation(s)
- Yosefa Avraham
- Department of Human Nutrition and Metabolism, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
38
|
Willenberg HS, Päth G, Vögeli TA, Scherbaum WA, Bornstein SR. Role of interleukin-6 in stress response in normal and tumorous adrenal cells and during chronic inflammation. Ann N Y Acad Sci 2002; 966:304-14. [PMID: 12114287 DOI: 10.1111/j.1749-6632.2002.tb04230.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interleukin-6 (IL-6) is the end-product of a cytokine signaling cascade and is secreted by specialized immune cells during inflammation. It has a great influence on many functions, including differentiation, stimulation, and activation of immune cells, or other cells of neuroendocrine origin. Thus, IL-6 serves as a key messenger in its communication with the neuroendocrine system, and serves as a potent activator of the hypothalamic-pituitary-adrenal axis at all levels. Changes in the levels of expression of this cytokine and its receptor have been observed during chronic inflammatory disease, and have been associated with tumorigenesis. Therefore, we studied the effect of IL-6 on normal and adenomatous human adrenal cells in vitro. The expression of IL-6 receptor mRNA was quantified within the same tissue. IL-6 potently stimulated cortisol secretion from dispersed normal human adrenal cells. We found immunoreactivity for the IL-6 receptor on cultured cells and paraffin-embedded sections of adrenal tissues. Further, there was a more pronounced expression of IL-6 mRNA in adrenal adenomas of patients with Cushing's syndrome, compared to normal human adrenals. Despite this fact, the sensitivity of cells of adenomatous adrenal glands to IL-6 was significantly decreased relative to cells from normal controls. These results were confirmed employing the permanent adrenocortical cancer cell line model NCI-H295. We infer that the loss of responsivity of tumorous adrenal cells to IL-6, and in part corticotropin, is an important step in the process of adrenal tumorigenesis by which regulation by differentiating proteins is bypassed.
Collapse
Affiliation(s)
- Holger S Willenberg
- Department of Endocrinology at the University of Düsseldorf, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
39
|
Abstract
The neurotransmitter norepinephrine has been the focus of intense investigation for nearly a century. With advances in technology come novel approaches for testing hypotheses about the physiological roles of norepinephrine and the genes involved in norepinephrine (NE) biosynthesis, metabolism, and noradrenergic signaling. Homologous recombination techniques, which generate mice deficient in specific gene products, aid the integrated physiologist and pharmacologist in the evaluation of protein function. Mouse models lacking proteins involved in NE biosynthesis or metabolism provide tools to expand the knowledge previously gleaned from pharmacologic studies. Removal of the biosynthetic enzymes tyrosine hydroxylase and dopamine-beta-hydroxylase yield animals deficient in norepinephrine and have been used to further examine the role of NE in diverse physiologic roles. Complete removal of the vesicular monoamine transporter has demonstrated that mobilizing neurotransmitters to vesicles is required for animal survival. Lastly, the generation of animals in which the ability to remove NE from the synapse is impaired (norepinephrine transporter deficiency and extraneuronal monoamine transporter deficiency) and in which the enzymes responsible for the metabolism of NE have been removed (catechol-O-methyltransferase and monoamine oxidase) has facilitated the study of the long-term physiological consequences of altered NE homeostasis.
Collapse
Affiliation(s)
- Robert P Carson
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-2195, USA
| | | |
Collapse
|
40
|
Böttner A, Bornstein SR. Lessons learned from gene targeting and transgenesis for adrenal physiology and disease. Rev Endocr Metab Disord 2001; 2:275-87. [PMID: 11705133 DOI: 10.1023/a:1011568516406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- A Böttner
- Children's Hospital, University of Leipzig 04317, Germany.
| | | |
Collapse
|
41
|
Delarue C, Contesse V, Lenglet S, Sicard F, Perraudin V, Lefebvre H, Kodjo M, Leboulenger F, Yon L, Gallo-Payet N, Vaudry H. Role of neurotransmitters and neuropeptides in the regulation of the adrenal cortex. Rev Endocr Metab Disord 2001; 2:253-67. [PMID: 11708293 DOI: 10.1023/a:1011512415497] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- C Delarue
- European Institute for Peptide Research (IFRMP 23), Institut National de la Santé et de la Recherche Médicale (INSERM U-413), Unité Affiliée au Centre National de la Recherche Scientifique (UA CNRS), University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|