1
|
Chen J, Sun JJ, Ma YW, Zhu MQ, Hu J, Lu QJ, Cai ZG. Cancer-associated fibroblasts derived exosomal LINC01833 promotes the occurrence of non-small cell lung cancer through miR-335-5p -VAPA axis. J Biochem Mol Toxicol 2024; 38:e23769. [PMID: 39152098 DOI: 10.1002/jbt.23769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/25/2024] [Accepted: 07/05/2024] [Indexed: 08/19/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are an important component of the tumor microenvironment (TME) and can induce functional polarization of tumor macrophages. This study aimed to explore the effect of CAFs-derived exosome LINC01833 on the malignant biological behavior of non-small cell lung cancer (NSCLC) cells and its mechanism. Tumor tissues (n = 3) and adjacent noncancerous tissues (n = 3) were collected from patients with NSCLC, and fibroblasts (CAF, NF) were isolated from the two tissues. Expression of LINC01833/miR-335-5p/VAPA in NSCLC clinical tissues and cell lines was detected by RT-qPCR. Exosomes of CAFs and NFs were isolated by ultracentrifugation. Cell proliferation, migration, invasion, and M2 macrophage polarization were detected by MTT, transwell, wound-healing assay, and flow cytometry assay, while western blot was used to verify the expression of M2 macrophage polarization-related proteins. Tumor volume weight and M2 macrophage polarization were detected by tumor xenografts in nude mice. LINC01833 was highly expressed in NSCLC tumor tissues and cells. Knockdown of LINC01833 exosomes could significantly inhibit proliferation, migration, invasion of NSCLC cells, and M2 macrophage polarization of THP-1 cells, while simultaneous knockdown of miR-335-5p on the above basis could reverse the effect of knockdown of LINC01833. In vivo experiments also indicated that knockdown of LINC01833 exosomes suppressed tumor growth and M2 macrophage polarization. CAF-derived LINC01833 exosomes can promote the proliferation, migration and invasion of NSCLC cells and M2 macrophage polarization by inhibiting miR-335-5p and regulating VAPA activity.
Collapse
Affiliation(s)
- Jie Chen
- Naval Medical Center of PLA, Thoracic and Cardiac Surgery, Naval Medical University, Shanghai, China
| | - Jian-Jun Sun
- Naval Medical Center of PLA, Thoracic and Cardiac Surgery, Naval Medical University, Shanghai, China
| | - Ya-Wen Ma
- Department of Cardiology, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Meng-Qin Zhu
- Naval Medical Center of PLA, Thoracic and Cardiac Surgery, Naval Medical University, Shanghai, China
| | - Jing Hu
- Naval Medical Center of PLA, Thoracic and Cardiac Surgery, Naval Medical University, Shanghai, China
| | - Qi-Jue Lu
- Naval Medical Center of PLA, Thoracic and Cardiac Surgery, Naval Medical University, Shanghai, China
| | - Zhi-Gang Cai
- Naval Medical Center of PLA, Thoracic and Cardiac Surgery, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Ow MC, Nishiguchi MA, Dar AR, Butcher RA, Hall SE. RNAi-dependent expression of sperm genes in ADL chemosensory neurons is required for olfactory responses in Caenorhabditis elegans. Front Mol Biosci 2024; 11:1396587. [PMID: 39055986 PMCID: PMC11269235 DOI: 10.3389/fmolb.2024.1396587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/11/2024] [Indexed: 07/28/2024] Open
Abstract
Environmental conditions experienced early in the life of an animal can result in gene expression changes later in its life history. We have previously shown that C. elegans animals that experienced the developmentally arrested and stress resistant dauer stage (postdauers) retain a cellular memory of early-life stress that manifests during adulthood as genome-wide changes in gene expression, chromatin states, and altered life history traits. One consequence of developmental reprogramming in C. elegans postdauer adults is the downregulation of osm-9 TRPV channel gene expression in the ADL chemosensory neurons resulting in reduced avoidance to a pheromone component, ascr#3. This altered response to ascr#3 requires the principal effector of the somatic nuclear RNAi pathway, the Argonaute (AGO) NRDE-3. To investigate the role of the somatic nuclear RNAi pathway in regulating the developmental reprogramming of ADL due to early-life stress, we profiled the mRNA transcriptome of control and postdauer ADL in wild-type and nrde-3 mutant adults. We found 711 differentially expressed (DE) genes between control and postdauer ADL neurons, 90% of which are dependent upon NRDE-3. Additionally, we identified a conserved sequence that is enriched in the upstream regulatory sequences of the NRDE-3-dependent differentially expressed genes. Surprisingly, 214 of the ADL DE genes are considered "germline-expressed", including 21 genes encoding the Major Sperm Proteins and two genes encoding the sperm-specific PP1 phosphatases, GSP-3 and GSP-4. Loss of function mutations in gsp-3 resulted in both aberrant avoidance and attraction behaviors. We also show that an AGO pseudogene, Y49F6A.1 (wago-11), is expressed in ADL and is required for ascr#3 avoidance. Overall, our results suggest that small RNAs and reproductive genes program the ADL mRNA transcriptome during their developmental history and highlight a nexus between neuronal and reproductive networks in calibrating animal neuroplasticity.
Collapse
Affiliation(s)
- Maria C. Ow
- Biology Department, Syracuse University, Syracuse, NY, United States
| | | | - Abdul Rouf Dar
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Rebecca A. Butcher
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Sarah E. Hall
- Biology Department, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
3
|
Jiang T, Ruan N, Luo P, Wang Q, Wei X, Li Y, Dai Y, Lin L, Lv J, Liu Y, Zhang C. Modulation of ER-mitochondria tethering complex VAPB-PTPIP51: Novel therapeutic targets for aging-associated diseases. Ageing Res Rev 2024; 98:102320. [PMID: 38719161 DOI: 10.1016/j.arr.2024.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Aging is a gradual and irreversible natural process. With aging, the body experiences a functional decline, and the effects amplify the vulnerability to a range of age-related diseases, including neurodegenerative, cardiovascular, and metabolic diseases. Within the aging process, the morphology and function of mitochondria and the endoplasmic reticulum (ER) undergo alterations, particularly in the structure connecting these organelles known as mitochondria-associated membranes (MAMs). MAMs serve as vital intracellular signaling hubs, facilitating communication between the ER and mitochondria when regulating various cellular events, including calcium homeostasis, lipid metabolism, mitochondrial function, and apoptosis. The formation of MAMs is partly dependent on the interaction between the vesicle-associated membrane protein-associated protein-B (VAPB) and protein tyrosine phosphatase-interacting protein-51 (PTPIP51). Accumulating evidence has begun to elucidate the pivotal role of the VAPB-PTPIP51 tether in the initiation and progression of age-related diseases. In this study, we delineate the intricate structure and multifunctional role of the VAPB-PTPIP51 tether and discuss its profound implications in aging-associated diseases. Moreover, we provide a comprehensive overview of potential therapeutic interventions and pharmacological agents targeting the VAPB-PTPIP51-mediated MAMs, thereby offering a glimmer of hope in mitigating aging processes and treating age-related disorders.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Nan Ruan
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengcheng Luo
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiuxian Wei
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Li
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Dai
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Lin
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Division of Cardiology, Department of Internal Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiagao Lv
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Division of Cardiology, Department of Internal Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Liu
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
4
|
Murage B, Tan H, Mashimo T, Jackson M, Skehel PA. Spinal cord neurone loss and foot placement changes in a rat knock-in model of amyotrophic lateral sclerosis Type 8. Brain Commun 2024; 6:fcae184. [PMID: 38846532 PMCID: PMC11154649 DOI: 10.1093/braincomms/fcae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 04/10/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Amyotrophic lateral sclerosis is an age-dependent cell type-selective degenerative disease. Genetic studies indicate that amyotrophic lateral sclerosis is part of a spectrum of disorders, ranging from spinal muscular atrophy to frontotemporal dementia that share common pathological mechanisms. Amyotrophic lateral sclerosis Type 8 is a familial disease caused by mis-sense mutations in VAPB. VAPB is localized to the cytoplasmic surface of the endoplasmic reticulum, where it serves as a docking point for cytoplasmic proteins and mediates inter-organelle interactions with the endoplasmic reticulum membrane. A gene knock-in model of amyotrophic lateral sclerosis Type 8 based on the VapBP56S mutation and VapB gene deletion has been generated in rats. These animals display a range of age-dependent phenotypes distinct from those previously reported in mouse models of amyotrophic lateral sclerosis Type 8. A loss of motor neurones in VapBP56S/+ and VapBP56S/P56S animals is indicated by a reduction in the number of large choline acetyl transferase-staining cells in the spinal cord. VapB-/- animals exhibit a relative increase in cytoplasmic TDP-43 levels compared with the nucleus, but no large protein aggregates. Concomitant with these spinal cord pathologies VapBP56S/+ , VapBP56S/P56S and VapB-/- animals exhibit age-dependent changes in paw placement and exerted pressures when traversing a CatWalk apparatus, consistent with a somatosensory dysfunction. Extramotor dysfunction is reported in half the cases of motor neurone disease, and this is the first indication of an associated sensory dysfunction in a rodent model of amyotrophic lateral sclerosis. Different rodent models may offer complementary experimental platforms with which to understand the human disease.
Collapse
Affiliation(s)
- Brenda Murage
- Centre for Discovery Brain Sciences, Edinburgh University, Edinburgh EH8 9XD, UK
- Euan MacDonald Centre for MND Research, Edinburgh University, Edinburgh EH16 4SB, UK
| | - Han Tan
- Centre for Discovery Brain Sciences, Edinburgh University, Edinburgh EH8 9XD, UK
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Mandy Jackson
- Centre for Discovery Brain Sciences, Edinburgh University, Edinburgh EH8 9XD, UK
- Euan MacDonald Centre for MND Research, Edinburgh University, Edinburgh EH16 4SB, UK
| | - Paul A Skehel
- Centre for Discovery Brain Sciences, Edinburgh University, Edinburgh EH8 9XD, UK
- Euan MacDonald Centre for MND Research, Edinburgh University, Edinburgh EH16 4SB, UK
| |
Collapse
|
5
|
Chen Z, Antoni FA. Human adenylyl cyclase 9 is auto-stimulated by its isoform-specific C-terminal domain. Life Sci Alliance 2023; 6:e202201791. [PMID: 36657828 PMCID: PMC9873982 DOI: 10.26508/lsa.202201791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Human transmembrane adenylyl cyclase 9 (AC9) is not regulated by heterotrimeric G proteins. Key to the resistance to stimulation by Gs-coupled receptors (GsRs) is auto-inhibition by the COOH-terminal domain (C2b). The present study investigated the role of the C2b domain in the regulation of cyclic AMP production by AC9 in HEK293FT cells expressing the GloSensor22F cyclic AMP-reporter protein. Surprisingly, we found C2b to be essential for sustaining the basal output of cyclic AMP by AC9. A human mutation (E326D) in the parallel coiled-coil formed by the signalling helices of AC9 dramatically increased basal activity, which was also dependent on the C2b domain. Intriguingly, the same mutation enabled stimulation of AC9 by GsRs. In summary, auto-regulation by the C2b domain of AC9 sustains its basal activity and quenches activation by GsR. Thus, AC9 appears to be tailored to support constitutive activation of cyclic AMP effector systems. A switch from this paradigm to stimulation by GsRs may be occasioned by conformational changes at the coiled-coil or removal of the C2b domain.
Collapse
Affiliation(s)
- Zhihao Chen
- Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Ferenc A Antoni
- Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Lambert-Smith IA, Saunders DN, Yerbury JJ. Progress in biophysics and molecular biology proteostasis impairment and ALS. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 174:3-27. [PMID: 35716729 DOI: 10.1016/j.pbiomolbio.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disease that results from the loss of both upper and lower motor neurons. It is the most common motor neuron disease and currently has no effective treatment. There is mounting evidence to suggest that disturbances in proteostasis play a significant role in ALS pathogenesis. Proteostasis is the maintenance of the proteome at the right level, conformation and location to allow a cell to perform its intended function. In this review, we present a thorough synthesis of the literature that provides evidence that genetic mutations associated with ALS cause imbalance to a proteome that is vulnerable to such pressure due to its metastable nature. We propose that the mechanism underlying motor neuron death caused by defects in mRNA metabolism and protein degradation pathways converges on proteostasis dysfunction. We propose that the proteostasis network may provide an effective target for therapeutic development in ALS.
Collapse
Affiliation(s)
- Isabella A Lambert-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Darren N Saunders
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
7
|
Vargas G, Cortés O, Arias-Muñoz E, Hernández S, Cerda-Troncoso C, Hernández L, González AE, Tatham MH, Bustamante HA, Retamal C, Cancino J, Varas-Godoy M, Hay RT, Rojas-Fernández A, Cavieres VA, Burgos PV. Negative Modulation of Macroautophagy by Stabilized HERPUD1 is Counteracted by an Increased ER-Lysosomal Network With Impact in Drug-Induced Stress Cell Survival. Front Cell Dev Biol 2022; 10:743287. [PMID: 35309917 PMCID: PMC8924303 DOI: 10.3389/fcell.2022.743287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
Macroautophagy and the ubiquitin proteasome system work as an interconnected network in the maintenance of cellular homeostasis. Indeed, efficient activation of macroautophagy upon nutritional deprivation is sustained by degradation of preexisting proteins by the proteasome. However, the specific substrates that are degraded by the proteasome in order to activate macroautophagy are currently unknown. By quantitative proteomic analysis we identified several proteins downregulated in response to starvation independently of ATG5 expression. Among them, the most significant was HERPUD1, an ER membrane protein with low expression and known to be degraded by the proteasome under normal conditions. Contrary, under ER stress, levels of HERPUD1 increased rapidly due to a blockage in its proteasomal degradation. Thus, we explored whether HERPUD1 stability could work as a negative regulator of autophagy. In this work, we expressed a version of HERPUD1 with its ubiquitin-like domain (UBL) deleted, which is known to be crucial for its proteasome degradation. In comparison to HERPUD1-WT, we found the UBL-deleted version caused a negative role on basal and induced macroautophagy. Unexpectedly, we found stabilized HERPUD1 promotes ER remodeling independent of unfolded protein response activation observing an increase in stacked-tubular structures resembling previously described tubular ER rearrangements. Importantly, a phosphomimetic S59D mutation within the UBL mimics the phenotype observed with the UBL-deleted version including an increase in HERPUD1 stability and ER remodeling together with a negative role on autophagy. Moreover, we found UBL-deleted version and HERPUD1-S59D trigger an increase in cellular size, whereas HERPUD1-S59D also causes an increased in nuclear size. Interestingly, ER remodeling by the deletion of the UBL and the phosphomimetic S59D version led to an increase in the number and function of lysosomes. In addition, the UBL-deleted version and phosphomimetic S59D version established a tight ER-lysosomal network with the presence of extended patches of ER-lysosomal membrane-contact sites condition that reveals an increase of cell survival under stress conditions. Altogether, we propose stabilized HERPUD1 downregulates macroautophagy favoring instead a closed interplay between the ER and lysosomes with consequences in drug-cell stress survival.
Collapse
Affiliation(s)
- Gabriela Vargas
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Omar Cortés
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Eloisa Arias-Muñoz
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, Chile
| | - Sergio Hernández
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Cristobal Cerda-Troncoso
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Laura Hernández
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alexis E González
- Facultad de Medicina, Instituto de Fisiología, Universidad Austral de Chile, Valdivia, Chile
| | - Michael H Tatham
- Center for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Hianara A Bustamante
- Facultad de Medicina, Instituto de Microbiología Clínica, Universidad Austral de Chile, Valdivia, Chile
| | - Claudio Retamal
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Jorge Cancino
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Manuel Varas-Godoy
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Ronald T Hay
- Center for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alejandro Rojas-Fernández
- Center for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom.,Instituto de Medicina & Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Viviana A Cavieres
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, Chile
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, Chile.,Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| |
Collapse
|
8
|
Kors S, Costello JL, Schrader M. VAP Proteins - From Organelle Tethers to Pathogenic Host Interactors and Their Role in Neuronal Disease. Front Cell Dev Biol 2022; 10:895856. [PMID: 35756994 PMCID: PMC9213790 DOI: 10.3389/fcell.2022.895856] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/25/2022] [Indexed: 12/26/2022] Open
Abstract
Vesicle-associated membrane protein (VAMP)-associated proteins (VAPs) are ubiquitous ER-resident tail-anchored membrane proteins in eukaryotic cells. Their N-terminal major sperm protein (MSP) domain faces the cytosol and allows them to interact with a wide variety of cellular proteins. Therefore, VAP proteins are vital to many cellular processes, including organelle membrane tethering, lipid transfer, autophagy, ion homeostasis and viral defence. Here, we provide a timely overview of the increasing number of VAPA/B binding partners and discuss the role of VAPA/B in maintaining organelle-ER interactions and cooperation. Furthermore, we address how viruses and intracellular bacteria hijack VAPs and their binding partners to induce interactions between the host ER and pathogen-containing compartments and support pathogen replication. Finally, we focus on the role of VAP in human disease and discuss how mutated VAPB leads to the disruption of cellular homeostasis and causes amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Suzan Kors
- *Correspondence: Suzan Kors, ; Michael Schrader,
| | | | | |
Collapse
|
9
|
James C, Kehlenbach RH. The Interactome of the VAP Family of Proteins: An Overview. Cells 2021; 10:cells10071780. [PMID: 34359948 PMCID: PMC8306308 DOI: 10.3390/cells10071780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Membrane contact sites (MCS) are sites of close apposition of two organelles that help in lipid transport and synthesis, calcium homeostasis and several other biological processes. The VAMP-associated proteins (VAPs) VAPA, VAPB, MOSPD2 and the recently described MOSPD1 and MOSPD3 are tether proteins of MCSs that are mainly found at the endoplasmic reticulum (ER). VAPs interact with various proteins with a motif called FFAT (two phenylalanines in an acidic tract), recruiting the associated organelle to the ER. In addition to the conventional FFAT motif, the recently described FFNT (two phenylalanines in a neutral tract) and phospho-FFAT motifs contribute to the interaction with VAPs. In this review, we summarize and compare the recent interactome studies described for VAPs, including in silico and proximity labeling methods. Collectively, the interaction repertoire of VAPs is very diverse and highlights the complexity of interactions mediated by the different FFAT motifs to the VAPs.
Collapse
|
10
|
Dudás EF, Huynen MA, Lesk AM, Pastore A. Invisible leashes: The tethering VAPs from infectious diseases to neurodegeneration. J Biol Chem 2021; 296:100421. [PMID: 33609524 PMCID: PMC8005810 DOI: 10.1016/j.jbc.2021.100421] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Intracellular organelles do not, as thought for a long time, act in isolation but are dynamically tethered together by entire machines responsible for interorganelle trafficking and positioning. Among the proteins responsible for tethering is the family of VAMP-associated proteins (VAPs) that appear in all eukaryotes and are localized primarily in the endoplasmic reticulum. The major functional role of VAPs is to tether the endoplasmic reticulum with different organelles and regulate lipid metabolism and transport. VAPs have gained increasing attention because of their role in human pathology where they contribute to infections by viruses and bacteria and participate in neurodegeneration. In this review, we discuss the structure, evolution, and functions of VAPs, focusing more specifically on VAP-B for its relationship with amyotrophic lateral sclerosis and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Erika F Dudás
- UK Dementia Research Institute at King's College London, The Maurice Wohl Institute, London, UK
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Centre, GA Nijmegen, Netherlands
| | - Arthur M Lesk
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Annalisa Pastore
- UK Dementia Research Institute at King's College London, The Maurice Wohl Institute, London, UK.
| |
Collapse
|
11
|
Zein-Sabatto H, Cole T, Hoang HD, Tiwary E, Chang C, Miller MA. The type II integral ER membrane protein VAP-B homolog in C. elegans is cleaved to release the N-terminal MSP domain to signal non-cell-autonomously. Dev Biol 2020; 470:10-20. [PMID: 33160939 DOI: 10.1016/j.ydbio.2020.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/18/2022]
Abstract
VAMP/synaptobrevin-associated protein B (VAP-B) is a type II ER membrane protein, but its N-terminal MSP domain (MSPd) can be cleaved and secreted. Mutations preventing the cleavage and secretion of MSPd have been implicated in cases of human neurodegenerative diseases. The site of VAP cleavage and the tissues capable in releasing the processed MSPd are not understood. In this study, we analyze the C. elegans VAP-B homolog, VPR-1, for its processing and secretion from the intestine. We show that intestine-specific expression of an N-terminally FLAG-tagged VPR-1 rescues underdeveloped gonad and sterility defects in vpr-1 null hermaphrodites. Immunofluorescence studies reveal that the tagged intestinal expressed VPR-1 is present at the distal gonad. Mass spectrometry analysis of a smaller product of the N-terminally tagged VPR-1 identifies a specific cleavage site at Leu156. Mutation of the leucine results in loss of gonadal MSPd signal and reduced activity of the mutant VPR-1. Thus, we report for the first time the cleavage site of VPR-1 and provide direct evidence that intestinally expressed VPR-1 can be released and signal in the distal gonad. These results establish the foundation for further exploration of VAP cleavage, MSPd secretion, and non-cell-autonomous signaling in development and diseases.
Collapse
Affiliation(s)
- Hala Zein-Sabatto
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL, 35294-0006, USA.
| | - Tim Cole
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Hieu D Hoang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Ekta Tiwary
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Chenbei Chang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Michael A Miller
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL, 35294-0006, USA
| |
Collapse
|
12
|
Slee JA, Levine TP. Systematic prediction of FFAT motifs across eukaryote proteomes identifies nucleolar and eisosome proteins with the predicted capacity to form bridges to the endoplasmic reticulum. ACTA ACUST UNITED AC 2019; 2:1-21. [PMID: 31777772 DOI: 10.1177/2515256419883136] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER), the most pervasive organelle, exchanges information and material with many other organelles, but the extent of its inter-organelle connections and the proteins that form bridges are not well known. The integral ER membrane protein VAMP-associated protein (VAP) is found in multiple bridges, interacting with many proteins that contain a short linear motif consisting of "two phenylalanines in an acidic tract" (FFAT). The VAP-FFAT interaction is the most common mechanism by which cytoplasmic proteins, particularly inter-organelle bridges, target the ER. Therefore, predicting new FFAT motifs may both find new individual peripheral ER proteins and identify new routes of communication involving the ER. Here we searched for FFAT motifs across whole proteomes. The excess of eukaryotic proteins with FFAT motifs over background was ≥0.8%, suggesting this is the minimum number of peripheral ER proteins. In yeast, where VAP was previously known to bind 4 proteins with FFAT motifs, a detailed analysis of a subset of proteins predicted 20 FFAT motifs. Extrapolating these findings to the whole proteome estimated the number of FFAT motifs in yeast at approximately 50-55 (0.9% of proteome). Among these previously unstudied FFAT motifs, most have known functions outside the ER, so could be involved in inter-organelle communication. Many of these can target well-characterised membrane contact sites, however some are in nucleoli and eisosomes, organelles previously unknown to have molecular bridges to the ER. We speculate that the nucleolar and eisosomal proteins with predicted motifs may function while bridging to the ER, indicating novel ER-nucleolus and ER-eisosome routes of inter-organelle communication.
Collapse
Affiliation(s)
| | - Timothy P Levine
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
13
|
Zhao J, Chi Y, Zhang XJ, Wang XW, Liu SS. Implication of whitefly vesicle associated membrane protein-associated protein B in the transmission of Tomato yellow leaf curl virus. Virology 2019; 535:210-217. [PMID: 31319278 DOI: 10.1016/j.virol.2019.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
Tomato yellow leaf curl virus (TYLCV) poses serious threat to tomato production worldwide, and the vector, Bemisia tabaci, plays a key role in the transmission of this virus. However, the molecular mechanisms underlying the transmission remain poorly understood. In this study, firstly, we identified the whitefly proteins that presumably interact with TYLCV coat protein (CP) using split-ubiquitin yeast two-hybrid system. Next, we conducted GST pull-down and immunofluorescence to examine the potential interaction between TYLCV CP and one of the proteins identified, namely vesicle associated membrane protein-associated protein B (VAPB), an protein abundantly expressed in whitefly midgut. Further experiments demonstrated that VAPB was significantly up-regulated upon virus acquisition, and silencing VAPB led to a significant increase of relative virus quantity in whitefly haemolymph and salivary glands, as well as an increase of TYLCV transmission efficiency. These findings indicate an important role of VAPB in the transmission of TYLCV by whiteflies.
Collapse
Affiliation(s)
- Jing Zhao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yao Chi
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Xin-Jia Zhang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
14
|
Kamemura K, Chihara T. Multiple functions of the ER-resident VAP and its extracellular role in neural development and disease. J Biochem 2019; 165:391-400. [PMID: 30726905 DOI: 10.1093/jb/mvz011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/05/2019] [Indexed: 12/14/2022] Open
Abstract
VAP (VAMP-associated protein) is a type II integral membrane protein of the endoplasmic reticulum (ER), and its N-terminal major sperm protein (MSP) domain faces the cytoplasmic side. VAP functions as a tethering molecule at the membrane contact sites between the ER and intracellular organelles and regulates a wide variety of cellular functions, including lipid transport, membrane trafficking, microtubule reorganization and unfolded protein response. VAP-point mutations in human vapb are strongly associated with amyotrophic lateral sclerosis. Importantly, the MSP domain of VAP is cleaved, secreted and interacts with the axon growth cone guidance receptors (Eph, Robo, Lar), suggesting that VAP could function as a circulating hormone similar to the Caenorhabditis elegans MSP protein. In this review, we discuss not only the intracellular functions of VAP but also the recently discovered extracellular functions and their implications for neurodegenerative disease.
Collapse
Affiliation(s)
- Kosuke Kamemura
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Takahiro Chihara
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
15
|
Silbernagel N, Walecki M, Schäfer MKH, Kessler M, Zobeiri M, Rinné S, Kiper AK, Komadowski MA, Vowinkel KS, Wemhöner K, Fortmüller L, Schewe M, Dolga AM, Scekic-Zahirovic J, Matschke LA, Culmsee C, Baukrowitz T, Monassier L, Ullrich ND, Dupuis L, Just S, Budde T, Fabritz L, Decher N. The VAMP-associated protein VAPB is required for cardiac and neuronal pacemaker channel function. FASEB J 2018; 32:6159-6173. [PMID: 29879376 PMCID: PMC6629115 DOI: 10.1096/fj.201800246r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels encode neuronal and cardiac pacemaker currents. The composition of pacemaker channel complexes in different tissues is poorly understood, and the presence of additional HCN modulating subunits was speculated. Here we show that vesicle-associated membrane protein-associated protein B (VAPB), previously associated with a familial form of amyotrophic lateral sclerosis 8, is an essential HCN1 and HCN2 modulator. VAPB significantly increases HCN2 currents and surface expression and has a major influence on the dendritic neuronal distribution of HCN2. Severe cardiac bradycardias in VAPB-deficient zebrafish and VAPB-/- mice highlight that VAPB physiologically serves to increase cardiac pacemaker currents. An altered T-wave morphology observed in the ECGs of VAPB-/- mice supports the recently proposed role of HCN channels for ventricular repolarization. The critical function of VAPB in native pacemaker channel complexes will be relevant for our understanding of cardiac arrhythmias and epilepsies, and provides an unexpected link between these diseases and amyotrophic lateral sclerosis.-Silbernagel, N., Walecki, M., Schäfer, M.-K. H., Kessler, M., Zobeiri, M., Rinné, S., Kiper, A. K., Komadowski, M. A., Vowinkel, K. S., Wemhöner, K., Fortmüller, L., Schewe, M., Dolga, A. M., Scekic-Zahirovic, J., Matschke, L. A., Culmsee, C., Baukrowitz, T., Monassier, L., Ullrich, N. D., Dupuis, L., Just, S., Budde, T., Fabritz, L., Decher, N. The VAMP-associated protein VAPB is required for cardiac and neuronal pacemaker channel function.
Collapse
Affiliation(s)
- Nicole Silbernagel
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany
| | - Magdalena Walecki
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany
| | - Martin K-H Schäfer
- Institute of Anatomy and Cell Biology, Philipps University, Marburg, Germany
| | - Mirjam Kessler
- Molecular Cardiology, Department of Internal Medicine II, University Hospital Ulm, Ulm, Germany
| | | | - Susanne Rinné
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany
| | - Aytug K Kiper
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany
| | - Marlene A Komadowski
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany.,Institute of Anatomy and Cell Biology, Philipps University, Marburg, Germany
| | - Kirsty S Vowinkel
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany
| | - Konstantin Wemhöner
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany
| | - Lisa Fortmüller
- Department of Cardiology II - Electrophysiology, University Hospital Münster, University of Münster, Munster, Germany
| | - Marcus Schewe
- Institute of Physiology, Christian-Albrechts University, Kiel, Germany
| | - Amalia M Dolga
- Institute of Pharmacology and Clinical Pharmacy, Phillips University, Marburg, Germany
| | - Jelena Scekic-Zahirovic
- Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Lina A Matschke
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Phillips University, Marburg, Germany
| | - Thomas Baukrowitz
- Institute of Physiology, Christian-Albrechts University, Kiel, Germany
| | - Laurent Monassier
- Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Nina D Ullrich
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Luc Dupuis
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,INSERM, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University Hospital Ulm, Ulm, Germany
| | - Thomas Budde
- Institute for Physiology I, University of Münster, Munster, Germany
| | - Larissa Fabritz
- Department of Cardiology II - Electrophysiology, University Hospital Münster, University of Münster, Munster, Germany.,Institute of Cardiovascular Sciences, University Hospital Birmingham, University of Birmingham, Birmingham, United Kingdom.,Department of Cardiology, University Hospital Birmingham, University of Birmingham, Birmingham, United Kingdom.,Division of Rhythmology, Department of Genetic Epidemiology, University Hospital Münster, University of Münster, Munster, Germany.,Institute of Human Genetics, Department of Genetic Epidemiology, University Hospital Münster, University of Münster, Munster, Germany
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany
| |
Collapse
|
16
|
Singh B, Khurana P, Khurana JP, Singh P. Gene encoding vesicle-associated membrane protein-associated protein from Triticum aestivum (TaVAP) confers tolerance to drought stress. Cell Stress Chaperones 2018; 23:411-428. [PMID: 29116579 PMCID: PMC5904086 DOI: 10.1007/s12192-017-0854-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/08/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
Abiotic stresses like drought, salinity, high and low temperature, and submergence are major factors that limit the crop productivity. Hence, identification of genes associated with stress response in crops is a prerequisite for improving their tolerance to adverse environmental conditions. In an earlier study, we had identified a drought-inducible gene, vesicle-associated membrane protein-associated protein (TaVAP), in developing grains of wheat. In this study, we demonstrate that TaVAP is able to complement yeast and Arabidopsis mutants, which are impaired in their respective orthologs, signifying functional conservation. Constitutive expression of TaVAP in Arabidopsis imparted tolerance to water stress conditions without any apparent yield penalty. Enhanced tolerance to water stress was associated with maintenance of higher relative water content, photosynthetic efficiency, and antioxidant activities. Compared to wild type, the TaVAP-overexpressing plants showed enhanced lateral root proliferation that was attributed to higher endogenous levels of IAA. These studies are the first to demonstrate that TaVAP plays a critical role in growth and development in plants, and is a potential candidate for improving the abiotic stress tolerance in crop plants.
Collapse
Affiliation(s)
- Brinderjit Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
17
|
Gan G, Zhang C. The precise subcellular localization of Dlg in the Drosophila larva body wall using improved pre-embedding immuno-EM. J Neurosci Res 2017; 96:467-480. [PMID: 29231975 DOI: 10.1002/jnr.24139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/12/2017] [Accepted: 07/21/2017] [Indexed: 12/21/2022]
Abstract
Discs-large (Dlg) plays important roles in nerve tissue and epithelial tissue in Drosophila. However, the precise positioning of Dlg in the neuromuscular junction remains to be confirmed using an optimized labeling method. In this study, we improved the method of pre-embedding immunogold electron microscopy without the osmic tetroxide procedure, and we found that Lowicryl K4 M resin and low temperature helped to preserve the authenticity of the labeling signal with relatively good contrast. Dlg was strongly expressed in the entire subsynaptic reticulum (SSR) membrane of type Ib boutons, expressed in parts of the SSR membrane of type Is boutons, weakly expressed in axon terminals and axons, and not expressed in pre- or postsynaptic membranes of type Is boutons. In muscle cells and stratum corneum cells, Dlg was expressed both in the cytoplasm and in organelles with biomembranes. The precise location of Dlg in SSR membranes, rather than in postsynaptic membranes, shows that Dlg, with its multiple domains, acts as a remote or indirect regulator in postsynaptic signal transduction.
Collapse
Affiliation(s)
- Guangming Gan
- Medical School Southeast University, Nanjing, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, China
| | - Chenchen Zhang
- Medical School Southeast University, Nanjing, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, China
| |
Collapse
|
18
|
Hoffmann PC, Kukulski W. Perspective on architecture and assembly of membrane contact sites. Biol Cell 2017; 109:400-408. [PMID: 28960356 DOI: 10.1111/boc.201700031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 01/25/2023]
Abstract
Membrane contact sites (MCS) are platforms of physical contact between different organelles. They are formed through interactions involving lipids and proteins, and function in processes such as calcium and lipid exchange, metabolism and organelle biogenesis. In this article, we discuss emerging questions regarding the architecture, organisation and assembly of MCS, such as: What is the contribution of different components to the interaction between organelles? How is the specific composition of different types of membrane contacts sites established and maintained? How are proteins and lipids spatially organised at MCS and how does that influence their function? How dynamic are MCS on the molecular and ultrastructural level? We highlight current state of research and point out experimental approaches that promise to contribute to a spatiomechanistic understanding of MCS functions.
Collapse
Affiliation(s)
- Patrick C Hoffmann
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Wanda Kukulski
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
19
|
Sun J, Yu S, Zhang X, Capac C, Aligbe O, Daudelin T, Bonder EM, Gao N. A Wntless-SEC12 complex on the ER membrane regulates early Wnt secretory vesicle assembly and mature ligand export. J Cell Sci 2017; 130:2159-2171. [PMID: 28515233 DOI: 10.1242/jcs.200634] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/11/2017] [Indexed: 01/02/2023] Open
Abstract
Wntless (Wls) transports Wnt molecules for secretion; however, the cellular mechanism underlying the initial assembly of Wnt secretory vesicles is still not fully defined. Here, we performed proteomic and mutagenic analyses of mammalian Wls, and report a mechanism for formation of early Wnt secretory vesicles on ER membrane. Wls forms a complex with SEC12 (also known as PREB), an ER membrane-localized guanine nucleotide-exchange factor (GEF) activator of the SAR1 (the SAR1A isoform) small GTPase. Compared to palmitoylation-deficient Wnt molecules, binding of mature Wnt to Wls increases Wls-SEC12 interaction and promotes association of Wls with SAR1, the key activator of the COPII machinery. Incorporation of Wls into this exporting ER compartment is affected by Wnt ligand binding and SEC12 binding to Wls, as well as the structural integrity and, potentially, the folding of the cytosolic tail of Wls. In contrast, Wls-SEC12 binding is stable, with the interacting interface biochemically mapped to cytosolic segments of individual proteins. Mutant Wls that fails to communicate with the COPII machinery cannot effectively support Wnt secretion. These data suggest that formation of early Wnt secretory vesicles is carefully regulated to ensure proper export of functional ligands.
Collapse
Affiliation(s)
- Jiaxin Sun
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Shiyan Yu
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Xiao Zhang
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Catherine Capac
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | | | - Timothy Daudelin
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA .,Rutgers Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
20
|
Dimidi E, Christodoulides S, Scott SM, Whelan K. Mechanisms of Action of Probiotics and the Gastrointestinal Microbiota on Gut Motility and Constipation. Adv Nutr 2017; 8:484-494. [PMID: 28507013 PMCID: PMC5421123 DOI: 10.3945/an.116.014407] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Constipation is a common and burdensome gastrointestinal disorder that may result from altered gastrointestinal motility. The effect of probiotics on constipation has been increasingly investigated in both animal and human studies, showing promising results. However, there is still uncertainty regarding the mechanisms of action of probiotics on gut motility and constipation. Several factors are vital to normal gut motility, including immune and nervous system function, bile acid metabolism and mucus secretion, and the gastrointestinal microbiota and fermentation; an imbalance or dysfunction in any of these components may contribute to aberrant gut motility and, consequently, symptoms of constipation. For example, adults with functional constipation have significantly decreased numbers of bifidobacteria (with one study showing a mean difference of 1 log10/g) and lactobacilli (mean difference, 1.4 log10/g) in stool samples, as well as higher breath methane, compared with control subjects. Modifying the gut luminal environment with certain probiotic strains may affect motility and secretion in the gut and, hence, provide a benefit for patients with constipation. Therefore, this review explores the mechanisms through which probiotics may exert an effect on gut motility and constipation. Nevertheless, the majority of current evidence is derived from animal studies, and therefore, further human studies are needed to determine the mechanisms through specific probiotic strains that might be effective in constipation.
Collapse
Affiliation(s)
- Eirini Dimidi
- Faculty of Life Sciences and Medicine, Diabetes and Nutritional Sciences Division, King’s College London, London, United Kingdom; and,Centre for Neuroscience and Trauma, Neurogastroenterology Group and GI Physiology Unit, Queen Mary University of London, London, United Kingdom
| | - Stephanos Christodoulides
- Faculty of Life Sciences and Medicine, Diabetes and Nutritional Sciences Division, King’s College London, London, United Kingdom; and,Centre for Neuroscience and Trauma, Neurogastroenterology Group and GI Physiology Unit, Queen Mary University of London, London, United Kingdom
| | - S Mark Scott
- Centre for Neuroscience and Trauma, Neurogastroenterology Group and GI Physiology Unit, Queen Mary University of London, London, United Kingdom
| | - Kevin Whelan
- Faculty of Life Sciences and Medicine, Diabetes and Nutritional Sciences Division, King's College London, London, United Kingdom; and
| |
Collapse
|
21
|
Abstract
Amyotrophic lateral sclerosis is a complex neurodegenerative disease. Limitations in animal models have impeded progress in studying disease pathology and potential drug discovery. Here, we will review recent advances in the development of stem cell models for the study of ALS. Additionally, we will discuss the progress toward therapeutic development derived from these stem cell based assays.
Collapse
Affiliation(s)
- A Sophie de Boer
- a The Howard Hughes Medical Institute; The Harvard Stem Cell Institute; The Stanley Center for Psychiatric Research ; The Department of Stem Cell and Regenerative Biology ; Harvard University ; Cambridge , MA USA.,b Department of Anatomy & Embryology ; Leiden University Medical Center ; The Netherlands
| | - Kevin Eggan
- a The Howard Hughes Medical Institute; The Harvard Stem Cell Institute; The Stanley Center for Psychiatric Research ; The Department of Stem Cell and Regenerative Biology ; Harvard University ; Cambridge , MA USA
| |
Collapse
|
22
|
VAP, a Versatile Access Point for the Endoplasmic Reticulum: Review and analysis of FFAT-like motifs in the VAPome. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:952-961. [PMID: 26898182 DOI: 10.1016/j.bbalip.2016.02.009] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/12/2016] [Accepted: 02/12/2016] [Indexed: 11/24/2022]
Abstract
Dysfunction of VAMP-associated protein (VAP) is associated with neurodegeneration, both Amyotrophic Lateral Sclerosis and Parkinson's disease. Here we summarize what is known about the intracellular interactions of VAP in humans and model organisms. VAP is a simple, small and highly conserved protein on the cytoplasmic face of the endoplasmic reticulum (ER). It is the sole protein on that large organelle that acts as a receptor for cytoplasmic proteins. This may explain the extremely wide range of interacting partners of VAP, with components of many cellular pathways binding it to access the ER. Many proteins that bind VAP also target other intracellular membranes, so VAP is a component of multiple molecular bridges at membrane contact sites between the ER and other organelles. So far approximately 100 proteins have been identified in the VAP interactome (VAPome), of which a small minority have a "two phenylalanines in an acidic tract" (FFAT) motif as it was originally defined. We have analyzed the entire VAPome in humans and yeast using a simple algorithm that identifies many more FFAT-like motifs. We show that approximately 50% of the VAPome binds directly or indirectly via the VAP-FFAT interaction. We also review evidence on pathogenesis in genetic disorders of VAP, which appear to arise from reduced overall VAP levels, leading to ER stress. It is not possible to identify one single interaction that underlies disease. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
23
|
Darbyson A, Ngsee JK. Oxysterol-binding protein ORP3 rescues the Amyotrophic Lateral Sclerosis-linked mutant VAPB phenotype. Exp Cell Res 2016; 341:18-31. [PMID: 26812496 DOI: 10.1016/j.yexcr.2016.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 12/13/2022]
Abstract
A mutation in VAPB causes a familial form of Amyotrophic Lateral Sclerosis. The mutant protein (VAPB-P56S) is aggregate prone and blocks retrograde traffic from the endoplasmic reticulum (ER) Golgi intermediate compartment (ERGIC) including trafficking to the nuclear envelope (NE). Here we report a morphological screen where overexpression of oxysterol binding protein-related protein-3 (ORP3) rescued the mutant VAPB phenotype. It resolved the mutant VAPB-induced membrane expansions, restored solubility of the mutant protein in non-ionic detergent, and restored trafficking of Emerin to the NE. Knockdown of ORP3 or VAPB increased the intracellular level of phosphatidylinositol 4-phosphate (PtdIns4P). Decreasing PtdIns4P levels by inhibiting its synthesis reduced the severity of the mutant VAPB-induced membrane expansions and restored Emerin trafficking to the NE. Thus, VAPB and its interacting partners cooperatively regulate protein trafficking through the ERGIC by modulating PtdIns4P levels.
Collapse
Affiliation(s)
- Angie Darbyson
- Ottawa Hospital Research Institute Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Johnny K Ngsee
- Ottawa Hospital Research Institute Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5.
| |
Collapse
|
24
|
Ernst WL, Shome K, Wu CC, Gong X, Frizzell RA, Aridor M. VAMP-associated Proteins (VAP) as Receptors That Couple Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Proteostasis with Lipid Homeostasis. J Biol Chem 2016; 291:5206-20. [PMID: 26740627 DOI: 10.1074/jbc.m115.692749] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 12/27/2022] Open
Abstract
Unesterified cholesterol accumulates in late endosomes in cells expressing the misfolded cystic fibrosis transmembrane conductance regulator (CFTR). CFTR misfolding in the endoplasmic reticulum (ER) or general activation of ER stress led to dynein-mediated clustering of cholesterol-loaded late endosomes at the Golgi region, a process regulated by ER-localized VAMP-associated proteins (VAPs). We hypothesized that VAPs serve as intracellular receptors that couple lipid homeostasis through interactions with two phenylalanines in an acidic track (FFAT) binding signals (found in lipid sorting and sensing proteins, LSS) with proteostasis regulation. VAPB inhibited the degradation of ΔF508-CFTR. The activity was mapped to the ligand-binding major sperm protein (MSP) domain, which was sufficient in regulating CFTR biogenesis. We identified mutations in an unstructured loop within the MSP that uncoupled VAPB-regulated CFTR biogenesis from basic interactions with FFAT. Using this information, we defined functional and physical interactions between VAPB and proteostasis regulators (ligands), including the unfolded protein response sensor ATF6 and the ER degradation cluster that included FAF1, VCP, BAP31, and Derlin-1. VAPB inhibited the degradation of ΔF508-CFTR in the ER through interactions with the RMA1-Derlin-BAP31-VCP pathway. Analysis of pseudoligands containing tandem FFAT signals supports a competitive model for VAP interactions that direct CFTR biogenesis. The results suggest a model in which VAP-ligand binding couples proteostasis and lipid homeostasis leading to observed phenotypes of lipid abnormalities in protein folding diseases.
Collapse
Affiliation(s)
- Wayne L Ernst
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Kuntala Shome
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Christine C Wu
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Xiaoyan Gong
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Raymond A Frizzell
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Meir Aridor
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
25
|
Haase G, Rabouille C. Golgi Fragmentation in ALS Motor Neurons. New Mechanisms Targeting Microtubules, Tethers, and Transport Vesicles. Front Neurosci 2015; 9:448. [PMID: 26696811 PMCID: PMC4672084 DOI: 10.3389/fnins.2015.00448] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/13/2015] [Indexed: 12/12/2022] Open
Abstract
Pathological alterations of the Golgi apparatus, such as its fragmentation represent an early pre-clinical feature of many neurodegenerative diseases and have been widely studied in the motor neuron disease amyotrophic lateral sclerosis (ALS). Yet, the underlying molecular mechanisms have remained cryptic. In principle, Golgi fragmentation may result from defects in three major classes of proteins: structural Golgi proteins, cytoskeletal proteins and molecular motors, as well as proteins mediating transport to and through the Golgi. Here, we present the different mechanisms that may underlie Golgi fragmentation in animal and cellular models of ALS linked to mutations in SOD1, TARDBP (TDP-43), VAPB, and C9Orf72 and we propose a novel one based on findings in progressive motor neuronopathy (pmn) mice. These mice are mutated in the TBCE gene encoding the cis-Golgi localized tubulin-binding cofactor E, one of five chaperones that assist in tubulin folding and microtubule polymerization. Loss of TBCE leads to alterations in Golgi microtubules, which in turn impedes on the maintenance of the Golgi architecture. This is due to down-regulation of COPI coat components, dispersion of Golgi tethers and strong accumulation of ER-Golgi SNAREs. These effects are partially rescued by the GTPase ARF1 through recruitment of TBCE to the Golgi. We hypothesize that defects in COPI vesicles, microtubules and their interaction may also underlie Golgi fragmentation in human ALS linked to other mutations, spinal muscular atrophy (SMA), and related motor neuron diseases. We also discuss the functional relevance of pathological Golgi alterations, in particular their potential causative, contributory, or compensatory role in the degeneration of motor neuron cell bodies, axons and synapses.
Collapse
Affiliation(s)
- Georg Haase
- Centre National de la Recherche Scientifique and Aix-Marseille Université UMR 7289, Institut de Neurosciences de la Timone Marseille, France
| | - Catherine Rabouille
- The Department of Cell Biology, Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
26
|
Sundaramoorthy V, Sultana JM, Atkin JD. Golgi fragmentation in amyotrophic lateral sclerosis, an overview of possible triggers and consequences. Front Neurosci 2015; 9:400. [PMID: 26578862 PMCID: PMC4621950 DOI: 10.3389/fnins.2015.00400] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is an invariably fatal neurodegenerative disorder, which specifically targets motor neurons in the brain, brain stem and spinal cord. Whilst the etiology of ALS remains unknown, fragmentation of the Golgi apparatus is detected in ALS patient motor neurons and in animal/cellular disease models. The Golgi is a highly dynamic organelle that acts as a dispatching station for the vesicular transport of secretory/transmembrane proteins. It also mediates autophagy and maintains endoplasmic reticulum (ER) and axonal homeostasis. Both the trigger for Golgi fragmentation and the functional consequences of a fragmented Golgi apparatus in ALS remain unclear. However, recent evidence has highlighted defects in vesicular trafficking as a pathogenic mechanism in ALS. This review summarizes the evidence describing Golgi fragmentation in ALS, with possible links to other disease processes including cellular trafficking, ER stress, defective autophagy, and axonal degeneration.
Collapse
Affiliation(s)
- Vinod Sundaramoorthy
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney Sydney, NSW, Australia
| | - Jessica M Sultana
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney Sydney, NSW, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney Sydney, NSW, Australia ; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Melbourne, VIC, Australia
| |
Collapse
|
27
|
Kentala H, Pfisterer SG, Olkkonen VM, Weber-Boyvat M. Sterol liganding of OSBP-related proteins (ORPs) regulates the subcellular distribution of ORP-VAPA complexes and their impacts on organelle structure. Steroids 2015; 99:248-58. [PMID: 25681634 DOI: 10.1016/j.steroids.2015.01.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 01/20/2023]
Abstract
Oxysterol-binding protein (OSBP) and its homologues (ORPs) are lipid-binding/transfer proteins with affinity for oxysterols, cholesterol and glycerophospholipids. In addition to a ligand-binding domain, a majority of the ORPs carry a pleckstrin homology domain that targets organelle membranes via phosphoinositides, and a motif targeting the endoplasmic reticulum (ER) via VAMP-associated proteins (VAPs). We employed here Bimolecular Fluorescence Complementation (BiFC) to systematically assess the effects of sterol manipulation of HuH7 cells on complexes of established sterol-binding ORPs with their ER receptor, VAMP-associated protein A (VAPA). Depletion of cellular cholesterol with lipoprotein-deficient medium and Mevastatin caused concentration of OSBP-VAPA complexes and Golgi complex markers at a juxtanuclear position, an effect reversed by low-density lipoprotein treatment. A similar redistribution of OSBP-VAPA but not of sterol-binding deficient mutant OSBP(ΔELSK)-VAPA, occurred upon treatment with the high-affinity ligand, 25-hydroxycholesterol (25OHC), which reduced total and free cholesterol. ORP2-VAPA complexes, which localize in untreated cells at blob-like ER structures with associated lipid droplets, were redistributed upon treatment with the ORP2 ligand 22(R)OHC to a diffuse cytoplasmic/ER pattern and the plasma membrane. Analogously, distribution of ORP4L-VAPA complexes between the plasma membrane and vimentin intermediate filament associated compartments was modified by statin or 25OHC treatment. The treatments resulted in loss of vimentin co-localization, and sterol-binding deficient ORP4L(ΔELSR)-VAPA localized predominantly to the plasma membrane. In conclusion, treatment with statin or oxysterol ligands modify the subcellular targeting of ORP-VAPA complexes, consistent with the notion that this machinery controls lipid homeostasis and signaling at organelle interfaces.
Collapse
Affiliation(s)
- Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290 Helsinki, Finland
| | - Simon G Pfisterer
- Institute of Biomedicine, Anatomy, FI-00014 University of Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290 Helsinki, Finland; Institute of Biomedicine, Anatomy, FI-00014 University of Helsinki, Finland
| | - Marion Weber-Boyvat
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290 Helsinki, Finland.
| |
Collapse
|
28
|
Weber-Boyvat M, Kentala H, Peränen J, Olkkonen VM. Ligand-dependent localization and function of ORP-VAP complexes at membrane contact sites. Cell Mol Life Sci 2015; 72:1967-87. [PMID: 25420878 PMCID: PMC11114005 DOI: 10.1007/s00018-014-1786-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/17/2014] [Accepted: 11/17/2014] [Indexed: 01/08/2023]
Abstract
Oxysterol-binding protein/OSBP-related proteins (ORPs) constitute a conserved family of sterol/phospholipid-binding proteins with lipid transporter or sensor functions. We investigated the spatial occurrence and regulation of the interactions of human OSBP/ORPs or the S. cerevisiae orthologs, the Osh (OSBP homolog) proteins, with their endoplasmic reticulum (ER) anchors, the VAMP-associated proteins (VAPs), by employing bimolecular fluorescence complementation and pull-down set-ups. The ORP-VAP interactions localize frequently at distinct subcellular sites, shown in several cases to represent membrane contact sites (MCSs). Using established ORP ligand-binding domain mutants and pull-down assays with recombinant proteins, we show that ORP liganding regulates the ORP-VAP association, alters the subcellular targeting of ORP-VAP complexes, or modifies organelle morphology. There is distinct protein specificity in the effects of the mutants on subcellular targeting of ORP-VAP complexes. We provide evidence that complexes of human ORP2 and VAPs at ER-lipid droplet interfaces regulate the hydrolysis of triglycerides and lipid droplet turnover. The data suggest evolutionarily conserved, complex ligand-dependent functions of ORP-VAP complexes at MCSs, with implications for cellular lipid homeostasis and signaling.
Collapse
Affiliation(s)
- Marion Weber-Boyvat
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Johan Peränen
- Cell and Molecular Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Vesa M. Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290 Helsinki, Finland
- Institute of Biomedicine, Anatomy, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
29
|
Deivasigamani S, Verma HK, Ueda R, Ratnaparkhi A, Ratnaparkhi GS. A genetic screen identifies Tor as an interactor of VAPB in a Drosophila model of amyotrophic lateral sclerosis. Biol Open 2014; 3:1127-38. [PMID: 25361581 PMCID: PMC4232771 DOI: 10.1242/bio.201410066] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disorder characterized by selective death of motor neurons. In 5–10% of the familial cases, the disease is inherited because of mutations. One such mutation, P56S, was identified in human VAPB that behaves in a dominant negative manner, sequestering wild type protein into cytoplasmic inclusions. We have conducted a reverse genetic screen to identify interactors of Drosophila VAPB. We screened 2635 genes and identified 103 interactors, of which 45 were enhancers and 58 were suppressors of VAPB function. Interestingly, the screen identified known ALS loci – TBPH, alsin2 and SOD1. Also identified were genes involved in cellular energetics and homeostasis which were used to build a gene regulatory network of VAPB modifiers. One key modifier identified was Tor, whose knockdown reversed the large bouton phenotype associated with VAP(P58S) expression in neurons. A similar reversal was seen by over-expressing Tuberous Sclerosis Complex (Tsc1,2) that negatively regulates TOR signaling as also by reduction of S6K activity. In comparison, the small bouton phenotype associated with VAP(wt) expression was reversed with Tsc1 knock down as well as S6K-CA expression. Tor therefore interacts with both VAP(wt) and VAP(P58S), but in a contrasting manner. Reversal of VAP(P58S) bouton phenotypes in larvae fed with the TOR inhibitor Rapamycin suggests upregulation of TOR signaling in response to VAP(P58S) expression. The VAPB network and further mechanistic understanding of interactions with key pathways, such as the TOR cassette, will pave the way for a better understanding of the mechanisms of onset and progression of motor neuron disease.
Collapse
Affiliation(s)
| | | | - Ryu Ueda
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
30
|
Weber-Boyvat M, Kentala H, Lilja J, Vihervaara T, Hanninen R, Zhou Y, Peränen J, Nyman TA, Ivaska J, Olkkonen VM. OSBP-related protein 3 (ORP3) coupling with VAMP-associated protein A regulates R-Ras activity. Exp Cell Res 2014; 331:278-91. [PMID: 25447204 DOI: 10.1016/j.yexcr.2014.10.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 12/20/2022]
Abstract
ORP3 is an R-Ras interacting oxysterol-binding protein homolog that regulates cell adhesion and is overexpressed in several cancers. We investigated here a novel function of ORP3 dependent on its targeting to both the endoplasmic reticulum (ER) and the plasma membrane (PM). Using biochemical and cell imaging techniques we demonstrate the mechanistic requirements for the subcellular targeting and function of ORP3 in control of R-Ras activity. We show that hyperphosphorylated ORP3 (ORP3-P) selectively interacts with the ER membrane protein VAPA, and ORP3-VAPA complexes are targeted to PM sites via the ORP3 pleckstrin homology (PH) domain. A novel FFAT (two phenylalanines in an acidic tract)-like motif was identified in ORP3; only disruption of both the FFAT-like and canonical FFAT motif abolished the phorbol-12-myristate-13-acetate (PMA) stimulated interaction of ORP3-P with VAPA. Co-expression of ORP3 and VAPA induced R-Ras activation, dependent on the interactions of ORP3 with VAPA and the PM. Consistently, downstream AktS473 phosphorylation and β1-integrin activity were enhanced by ORP3-VAPA. To conclude, phosphorylation of ORP3 controls its association with VAPA. Furthermore, we present evidence that ORP3-VAPA complexes stimulate R-Ras signaling.
Collapse
Affiliation(s)
- Marion Weber-Boyvat
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290 Helsinki, Finland
| | - Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290 Helsinki, Finland
| | - Johanna Lilja
- VTT Medical Biotechnology and Turku Centre for Biotechnology, University of Turku, FI-20520 Turku, Finland
| | - Terhi Vihervaara
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290 Helsinki, Finland
| | - Raisa Hanninen
- National Institute for Health and Welfare, Biomedicum 1, FI-00290 Helsinki, Finland
| | - You Zhou
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290 Helsinki, Finland
| | - Johan Peränen
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Tuula A Nyman
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Johanna Ivaska
- VTT Medical Biotechnology and Turku Centre for Biotechnology, University of Turku, FI-20520 Turku, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290 Helsinki, Finland; Institute of Biomedicine/Anatomy, FI-00014 University of Helsinki, Finland.
| |
Collapse
|
31
|
Hong SE, Song HK, Kim DH. Identification of tissue-enriched novel transcripts and novel exons in mice. BMC Genomics 2014; 15:592. [PMID: 25017872 PMCID: PMC4111849 DOI: 10.1186/1471-2164-15-592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/03/2014] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND RNA sequencing (RNA-seq) has revolutionized the detection of transcriptomic signatures due to its high-throughput sequencing ability. Therefore, genomic annotations on different animal species have been rapidly updated using information from tissue-enriched novel transcripts and novel exons. RESULTS 34 putative novel transcripts and 236 putative tissue-enriched exons were identified using RNA-Seq datasets representing six tissues available in mouse databases. RT-PCR results indicated that expression of 21 and 2 novel transcripts were enriched in testes and liver, respectively, while 31 of the 39 selected novel exons were detected in the testes or heart. The novel isoforms containing the identified novel exons exhibited more dominant expression than the known isoforms in heart and testes. We also identified an example of pathology-associated exclusion of heart-enriched novel exons such as Sorbs1 and Cluh during pressure-overload cardiac hypertrophy. CONCLUSION The present study depicted tissue-enriched novel transcripts, a tissue-specific isoform switch, and pathology-associated alternative splicing in a mouse model, suggesting tissue-specific genomic diversity and plasticity.
Collapse
Affiliation(s)
| | | | - Do Han Kim
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro (Oryong-dong), Buk-gu, Gwangju 500-712, Korea.
| |
Collapse
|
32
|
Baron Y, Pedrioli PG, Tyagi K, Johnson C, Wood NT, Fountaine D, Wightman M, Alexandru G. VAPB/ALS8 interacts with FFAT-like proteins including the p97 cofactor FAF1 and the ASNA1 ATPase. BMC Biol 2014; 12:39. [PMID: 24885147 PMCID: PMC4068158 DOI: 10.1186/1741-7007-12-39] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/12/2014] [Indexed: 11/10/2022] Open
Abstract
Background FAF1 is a ubiquitin-binding adaptor for the p97 ATPase and belongs to the UBA-UBX family of p97 cofactors. p97 converts the energy derived from ATP hydrolysis into conformational changes of the p97 hexamer, which allows the dissociation of its targets from cellular structures or from larger protein complexes to facilitate their ubiquitin-dependent degradation. VAPB and the related protein VAPA form homo- and heterodimers that are anchored in the endoplasmic reticulum membrane and can interact with protein partners carrying a FFAT motif. Mutations in either VAPB or p97 can cause amyotrophic lateral sclerosis, a neurodegenerative disorder that affects upper and lower motor neurons. Results We show that FAF1 contains a non-canonical FFAT motif that allows it to interact directly with the MSP domain of VAPB and, thereby, to mediate VAPB interaction with p97. This finding establishes a link between two proteins that can cause amyotrophic lateral sclerosis when mutated, VAPB/ALS8 and p97/ALS14. Subsequently, we identified a similar FFAT-like motif in the ASNA1 subunit of the transmembrane-domain recognition complex (TRC), which in turn mediates ASNA1 interaction with the MSP domain of VAPB. Proteasome inhibition leads to the accumulation of ubiquitinated species in VAPB immunoprecipitates and this correlates with an increase in FAF1 and p97 binding. We found that VAPB interaction with ubiquitinated proteins is strongly reduced in cells treated with FAF1 siRNA. Our efforts to determine the identity of the ubiquitinated targets common to VAPB and FAF1 led to the identification of RPN2, a subunit of an oligosaccharyl-transferase located at the endoplasmic reticulum, which may be regulated by ubiquitin-mediated degradation. Conclusions The FFAT-like motifs we identified in FAF1 and ASNA1 demonstrate that sequences containing a single phenylalanine residue with the consensus (D/E)(D/E)FEDAx(D/E) are also proficient to mediate interaction with VAPB. Our findings indicate that the repertoire of VAPB interactors is more diverse than previously anticipated and link VAPB to the function of ATPase complexes such as p97/FAF1 and ASNA1/TRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gabriela Alexandru
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit (MRC-PPU), College of Life Sciences, University of Dundee, Dow St, Dundee DD1 5EH, UK.
| |
Collapse
|
33
|
Vinay Kumar C, Kumar KM, Swetha R, Ramaiah S, Anbarasu A. Protein aggregation due to nsSNP resulting in P56S VABP protein is associated with amyotrophic lateral sclerosis. J Theor Biol 2014; 354:72-80. [PMID: 24681403 DOI: 10.1016/j.jtbi.2014.03.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/14/2014] [Accepted: 03/16/2014] [Indexed: 12/13/2022]
Abstract
Mutations in the gene encoding vesicle-associated membrane protein (VAPB) cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. The VAPB gene is mapped to chromosome number 20 and can be found at cytogenetic location 20q13.33 of the chromosome. VAPB is seen to play a significant role in the unfolded protein response (UPR), which is a process that suppresses the accumulation of unfolded proteins in the endoplasmic reticulum. Earlier studies have reported two points; which we have analyzed in our study. Firstly, the mutation P56S in the VAPB is seen to increase the stability of the protein and secondly, the mutation P56S in VAPB is seen to interrupt the functioning of the gene and loses its ability to be involved in the activation of the IRE1/XBP1 pathway which leads to ALS. With correlation on the previous research studies on the stability of this protein, we carried out Molecular dynamics (MD) simulation. We analyzed the SNP results of 17 nsSNPs obtained from dbSNP using SIFT, polyphen, I-Mutant, SNP&GO, PhDSNP and Mutpred to predict the role of nsSNPs in VAPB. MD simulation is carried out and plots for RMSD, RMSF, Rg, SASA, H-bond and PCA are obtained to check and prove the stability of the wild type and the mutant protein structure. The protein is checked for its aggregation and the results obtained show changes in the protein structure that might result in the loss of function.
Collapse
Affiliation(s)
- Chundi Vinay Kumar
- School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - K M Kumar
- School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Rayapadi Swetha
- School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Sudha Ramaiah
- School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Anand Anbarasu
- School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
34
|
Sanhueza M, Zechini L, Gillespie T, Pennetta G. Gain-of-function mutations in the ALS8 causative gene VAPB have detrimental effects on neurons and muscles. Biol Open 2014; 3:59-71. [PMID: 24326187 PMCID: PMC3892161 DOI: 10.1242/bio.20137070] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a motor neuron degenerative disease characterized by a progressive, and ultimately fatal, muscle paralysis. The human VAMP-Associated Protein B (hVAPB) is the causative gene of ALS type 8. Previous studies have shown that a loss-of-function mechanism is responsible for VAPB-induced ALS. Recently, a novel mutation in hVAPB (V234I) has been identified but its pathogenic potential has not been assessed. We found that neuronal expression of the V234I mutant allele in Drosophila (DVAP-V260I) induces defects in synaptic structure and microtubule architecture that are opposite to those associated with DVAP mutants and transgenic expression of other ALS-linked alleles. Expression of DVAP-V260I also induces aggregate formation, reduced viability, wing postural defects, abnormal locomotion behavior, nuclear abnormalities, neurodegeneration and upregulation of the heat-shock-mediated stress response. Similar, albeit milder, phenotypes are associated with the overexpression of the wild-type protein. These data show that overexpressing the wild-type DVAP is sufficient to induce the disease and that DVAP-V260I is a pathogenic allele with increased wild-type activity. We propose that a combination of gain- and loss-of-function mechanisms is responsible for VAPB-induced ALS.
Collapse
Affiliation(s)
- Mario Sanhueza
- Centre for Integrative Physiology, Euan MacDonald Centre for Motor Neuron Disease Research, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | | | | | | |
Collapse
|
35
|
Moustaqim-Barrette A, Lin YQ, Pradhan S, Neely GG, Bellen HJ, Tsuda H. The amyotrophic lateral sclerosis 8 protein, VAP, is required for ER protein quality control. Hum Mol Genet 2013; 23:1975-89. [PMID: 24271015 DOI: 10.1093/hmg/ddt594] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A familial form of Amyotrophic lateral sclerosis (ALS8) is caused by a point mutation (P56S) in the vesicle-associated membrane protein associated protein B (VapB). Human VapB and Drosophila Vap-33-1 (Vap) are homologous type II transmembrane proteins that are localized to the ER. However, the precise consequences of the defects associated with the P56S mutation in the endoplasmic reticulum (ER) and its role in the pathology of ALS are not well understood. Here we show that Vap is required for ER protein quality control (ERQC). Loss of Vap in flies shows various ERQC associated defects, including protein accumulation, ER expansion, and ER stress. We also show that wild type Vap, but not the ALS8 mutant Vap, interacts with a lipid-binding protein, Oxysterol binding protein (Osbp), and that Vap is required for the proper localization of Osbp to the ER. Restoring the expression of Osbp in the ER suppresses the defects associated with loss of Vap and the ALS8 mutant Vap. Hence, we propose that the ALS8 mutation impairs the interaction of Vap with Osbp, resulting in hypomorphic defects that might contribute to the pathology of ALS8.
Collapse
Affiliation(s)
- Amina Moustaqim-Barrette
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal H3A 2B4 Canada
| | | | | | | | | | | |
Collapse
|
36
|
Alpy F, Rousseau A, Schwab Y, Legueux F, Stoll I, Wendling C, Spiegelhalter C, Kessler P, Mathelin C, Rio MC, Levine TP, Tomasetto C. STARD3 or STARD3NL and VAP form a novel molecular tether between late endosomes and the ER. J Cell Sci 2013; 126:5500-12. [PMID: 24105263 DOI: 10.1242/jcs.139295] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inter-organelle membrane contacts sites (MCSs) are specific subcellular regions favoring the exchange of metabolites and information. We investigated the potential role of the late-endosomal membrane-anchored proteins StAR related lipid transfer domain-3 (STARD3) and STARD3 N-terminal like (STARD3NL) in the formation of MCSs involving late-endosomes (LEs). We demonstrate that both STARD3 and STARD3NL create MCSs between LEs and the endoplasmic reticulum (ER). STARD3 and STARD3NL use a conserved two phenylalanines in an acidic tract (FFAT)-motif to interact with ER-anchored VAP proteins. Together, they form an LE-ER tethering complex allowing heterologous membrane apposition. This LE-ER tethering complex affects organelle dynamics by altering the formation of endosomal tubules. An in situ proximity ligation assay between STARD3, STARD3NL and VAP proteins identified endogenous LE-ER MCS. Thus, we report here the identification of proteins involved in inter-organellar interaction.
Collapse
Affiliation(s)
- Fabien Alpy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Functional Genomics and Cancer Department, 1 rue Laurent Fries, Illkirch, 67404, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kuijpers M, Yu KL, Teuling E, Akhmanova A, Jaarsma D, Hoogenraad CC. The ALS8 protein VAPB interacts with the ER-Golgi recycling protein YIF1A and regulates membrane delivery into dendrites. EMBO J 2013; 32:2056-72. [PMID: 23736259 DOI: 10.1038/emboj.2013.131] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 05/07/2013] [Indexed: 02/06/2023] Open
Abstract
The vesicle-associated membrane protein (VAMP) associated protein B (VAPB) is an integral membrane protein localized to the endoplasmic reticulum (ER). The P56S mutation in VAPB has been linked to motor neuron degeneration in amyotrophic lateral sclerosis type 8 (ALS8) and forms ER-like inclusions in various model systems. However, the role of wild-type and mutant VAPB in neurons is poorly understood. Here, we identified Yip1-interacting factor homologue A (YIF1A) as a new VAPB binding partner and important component in the early secretory pathway. YIF1A interacts with VAPB via its transmembrane regions, recycles between the ER and Golgi and is mainly localized to the ER-Golgi intermediate compartments (ERGICs) in rat hippocampal neurons. VAPB strongly affects the distribution of YIF1A and is required for intracellular membrane trafficking into dendrites and normal dendritic morphology. When VAPB-P56S is present, YIF1A is recruited to the VAPB-P56S clusters and loses its ERGIC localization. These data suggest that both VAPB and YIF1A are important for ER-to-Golgi transport and that missorting of YIF1A may contribute to VAPB-associated motor neuron disease.
Collapse
Affiliation(s)
- Marijn Kuijpers
- Division of Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
38
|
Passantino R, Cascio C, Deidda I, Galizzi G, Russo D, Spedale G, Guarneri P. Identifying protein partners of CLN8, an ER-resident protein involved in neuronal ceroid lipofuscinosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:529-40. [DOI: 10.1016/j.bbamcr.2012.10.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/29/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
|
39
|
Abstract
Mutations in VAPB have been identified in a familial form of amyotrophic lateral sclerosis (ALS), and reduced VAPB levels have been found in patients with sporadic ALS. Vap protein family members from different species and cell types have been implicated in a number of cellular functions, but how Vap dysfunction in neurons and/or muscles contributes to motor neuron degeneration and death is poorly understood. Using Drosophila as a model organism, we show that Vap physically interacts with and affects the axonal functions of the Down syndrome cell adhesion molecule (Dscam). Dscam is a cell-surface receptor involved in axon and dendritic patterning and neuron self-recognition and avoidance. Alternative splicing of the Dscam transcript leads to the production of Dscam isoforms that contain one of two possible transmembrane (TM) domain and flanking sequences that either restrict the isoform to dendrites and cell bodies (TM1) or target the isoform to axon processes (TM2). We find that Vap specifically interacts with Dscam isoforms that contain the TM2 cytoplasmic juxtamembrane flanking sequences. Using loss-of-function genetics, we further show that Vap is required for localization of Dscam isoforms containing TM2 to axons and that Vap loss suppresses Dscam gain-of-function axon phenotypes. We propose that Vap function is required in neurons to selectively traffic proteins to axons, and disruption of this function may contribute to the pathology of ALS.
Collapse
|
40
|
Qin H, Wang W, Song J. ALS-causing P56S mutation and splicing variation on the hVAPB MSP domain transform its β-sandwich fold into lipid-interacting helical conformations. Biochem Biophys Res Commun 2013; 431:398-403. [DOI: 10.1016/j.bbrc.2013.01.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
|
41
|
Qiu L, Qiao T, Beers M, Tan W, Wang H, Yang B, Xu Z. Widespread aggregation of mutant VAPB associated with ALS does not cause motor neuron degeneration or modulate mutant SOD1 aggregation and toxicity in mice. Mol Neurodegener 2013; 8:1. [PMID: 23281774 PMCID: PMC3538568 DOI: 10.1186/1750-1326-8-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 12/29/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A proline-to-serine substitution at position-56 (P56S) of vesicle-associated membrane protein-associated protein B (VAPB) causes a form of dominantly inherited motor neuron disease (MND), including typical and atypical amyotrophic lateral sclerosis (ALS) and a mild late-onset spinal muscular atrophy (SMA). VAPB is an integral endoplasmic reticulum (ER) protein and has been implicated in various cellular processes, including ER stress, the unfolded protein response (UPR) and Ca2+ homeostasis. However, it is unclear how the P56S mutation leads to neurodegeneration and muscle atrophy in patients. The formation of abnormal VAPB-positive inclusions by mutant VAPB suggests a possible toxic gain of function as an underlying mechanism. Furthermore, the amount of VAPB protein is reported to be reduced in sporadic ALS patients and mutant SOD1G93A mice, leading to the hypothesis that wild type VAPB plays a role in the pathogenesis of ALS without VAPB mutations. RESULTS To investigate the pathogenic mechanism in vivo, we generated human wild type (wtVAPB) and mutant VAPB (muVAPB) transgenic mice that expressed the transgenes broadly in the CNS. We observed robust VAPB-positive aggregates in the spinal cord of muVAPB transgenic mice. However, we failed to find an impairment of motor function and motor neuron degeneration. We also did not detect any change in the endogenous VAPB level or evidence for induction of the unfolded protein response (UPR) and coaggregation of VAPA with muVAPB. Furthermore, we crossed these VAPB transgenic mice with mice that express mutant SOD1G93A and develop motor neuron degeneration. Overexpression of neither wtVAPB nor muVAPB modulated the protein aggregation and disease progression in the SOD1G93A mice. CONCLUSION Overexpression of VAPBP56S mutant to approximately two-fold of the endogenous VAPB in mouse spinal cord produced abundant VAPB aggregates but was not sufficient to cause motor dysfunction or motor neuron degeneration. Furthermore, overexpression of either muVAPB or wtVAPB does not modulate the course of ALS in SOD1G93A mice. These results suggest that changes in wild type VAPB do not play a significant role in ALS cases that are not caused by VAPB mutations. Furthermore, these results suggest that muVAPB aggregates are innocuous and do not cause motor neuron degeneration by a gain-of-toxicity, and therefore, a loss of function may be the underlying mechanism.
Collapse
Affiliation(s)
- Linghua Qiu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01602, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
VAMP-associated protein B (VAPB) promotes breast tumor growth by modulation of Akt activity. PLoS One 2012; 7:e46281. [PMID: 23049696 PMCID: PMC3462209 DOI: 10.1371/journal.pone.0046281] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/28/2012] [Indexed: 12/31/2022] Open
Abstract
VAPB (VAMP- associated protein B) is an ER protein that regulates multiple biological functions. Although aberrant expression of VAPB is associated with breast cancer, its function in tumor cells is poorly understood. In this report, we provide evidence that VAPB regulates breast tumor cell proliferation and AKT activation. VAPB protein expression is elevated in primary and metastatic tumor specimens, and VAPB mRNA expression levels correlated negatively with patient survival in two large breast tumor datasets. Overexpression of VAPB in mammary epithelial cells increased cell growth, whereas VAPB knockdown in tumor cells inhibited cell proliferation in vitro and suppressed tumor growth in orthotopic mammary gland allografts. The growth regulation of mammary tumor cells controlled by VAPB appears to be mediated, at least in part, by modulation of AKT activity. Overexpression of VAPB in MCF10A-HER2 cells enhances phosphorylation of AKT. In contrast, knockdown of VAPB in MMTV-Neu tumor cells inhibited pAKT levels. Pharmacological inhibition of AKT significantly reduced three-dimensional spheroid growth induced by VAPB. Collectively, the genetic, functional and mechanistic analyses suggest a role of VAPB in tumor promotion in human breast cancer.
Collapse
|
44
|
Goyal S, Gupta G, Qin H, Upadya MH, Tan YJ, Chow VTK, Song J. VAPC, an human endogenous inhibitor for hepatitis C virus (HCV) infection, is intrinsically unstructured but forms a "fuzzy complex" with HCV NS5B. PLoS One 2012; 7:e40341. [PMID: 22815741 PMCID: PMC3398895 DOI: 10.1371/journal.pone.0040341] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/04/2012] [Indexed: 01/11/2023] Open
Abstract
Nearly 200 million people are infected by hepatitis C virus (HCV) worldwide. For replicating the HCV genome, the membrane-associated machinery needs to be formed by both HCV non-structural proteins (including NS5B) and human host factors such as VAPB. Recently, the 99-residue VAPC, a splicing variant of VAPB, was demonstrated to inhibit HCV replication via binding to NS5B, thus acting as an endogenous inhibitor of HCV infection. So far, the structure of VAPC remains unknown, and its interaction with NS5B has not been biophysically characterized. In this study, we conducted extensive CD and NMR investigations on VAPC which led to several striking findings: 1) although the N-terminal 70 residues are identical in VAPC and VAPB, they constitute the characteristic β-barrel MSP fold in VAPB, while VAPC is entirely unstructured in solution, only with helical-like conformations weakly populated. 2) VAPC is indeed capable of binding to NS5B, with an average dissociation constant (Kd) of ∼20 µM. Intriguingly, VAPC remains dynamic even in the complex, suggesting that the VAPC-NS5B is a “fuzzy complex”. 3) NMR mapping revealed that the major binding region for NS5B is located over the C-terminal half of VAPC, which is composed of three discrete clusters, of which only the first contains the region identical in VAPC and VAPB. The second region containing ∼12 residues appears to play a key role in binding since mutation of 4 residues within this region leads to almost complete loss of the binding activity. 4) A 14-residue mimetic, VAPC-14 containing the second region, only has a ∼3-fold reduction of the affinity. Our study not only provides critical insights into how a human factor mediates the formation of the HCV replication machinery, but also leads to design of VAPC-14 which may be further used to explore the function of VAPC and to develop anti-HCV molecules.
Collapse
Affiliation(s)
- Shaveta Goyal
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | | | | | | | | | | | | |
Collapse
|
45
|
Gupta G, Qin H, Song J. Intrinsically unstructured domain 3 of hepatitis C Virus NS5A forms a "fuzzy complex" with VAPB-MSP domain which carries ALS-causing mutations. PLoS One 2012; 7:e39261. [PMID: 22720086 PMCID: PMC3374797 DOI: 10.1371/journal.pone.0039261] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/22/2012] [Indexed: 01/26/2023] Open
Abstract
Hepatitis C virus (HCV) affects nearly 200 million people worldwide and is a leading factor for serious chronic liver diseases. For replicating HCV genome, the membrane-associated replication machinery needs to be formed by both HCV non-structural proteins including NS5A and human host factors. Recently NS5A has been identified to bind ER-anchored human VAP proteins and consequently this interaction may serve as a novel target for design of anti-HCV drugs. So far no biophysical characterization of this interaction has been reported. Here, we dissected the 243-residue VAPB into 4 and 447-residue NS5A into 10 fragments, followed by CD and NMR characterization of their structural properties. Subsequently, binding interactions between these fragments have been extensively assessed by NMR HSQC titration which is very powerful in detecting even very weak binding. The studies lead to three important findings: 1). a "fuzzy complex" is formed between the intrinsically-unstructured third domain (D3) of NS5A and the well-structured MSP domain of VAPB, with an average dissociation constant (Kd) of ~5 µM. 2). The binding-important residues on both NS5A-D3 and VAPB-MSP have been successfully mapped out, which provided experimental constraints for constructing the complex structure. In the complex, unstructured D3 binds to three surface pockets on one side of the MSP structure. Interestingly, two ALS-causing mutations T46I and P56S are also located on the D3-MSP interface. Moreover, NS5A-D3, FFAT-containing proteins and EphA4 appear to have overlapped binding interfaces on the MSP domain. 3). NS5A-D3 has been experimentally confirmed to competes with EphA4 in binding to the MSP domain, and T46I mutation of MSP dramatically abolishes its binding ability to D3. Our study not only provides essential foundation for further deciphering structure and function of the HCV replication machinery, but may also shed light on rationalizing a recent observation that a chronic HCV patient surprisingly developed ALS-like syndrome.
Collapse
Affiliation(s)
- Garvita Gupta
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Haina Qin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- * E-mail:
| |
Collapse
|
46
|
De Vos KJ, Mórotz GM, Stoica R, Tudor EL, Lau KF, Ackerley S, Warley A, Shaw CE, Miller CC. VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum Mol Genet 2012; 21:1299-311. [PMID: 22131369 PMCID: PMC3284118 DOI: 10.1093/hmg/ddr559] [Citation(s) in RCA: 420] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/01/2011] [Accepted: 11/22/2011] [Indexed: 12/12/2022] Open
Abstract
A proline to serine substitution at position 56 in the gene encoding vesicle-associated membrane protein-associated protein B (VAPB) causes some dominantly inherited familial forms of motor neuron disease including amyotrophic lateral sclerosis (ALS) type-8. VAPB is an integral endoplasmic reticulum (ER) protein whose amino-terminus projects into the cytosol. Overexpression of ALS mutant VAPBP56S disrupts ER structure but the mechanisms by which it induces disease are not properly understood. Here we show that VAPB interacts with the outer mitochondrial membrane protein, protein tyrosine phosphatase-interacting protein 51 (PTPIP51). ER and mitochondria are both stores for intracellular calcium (Ca(2+)) and Ca(2+) exchange between these organelles occurs at regions of ER that are closely apposed to mitochondria. These are termed mitochondria-associated membranes (MAM). We demonstrate that VAPB is a MAM protein and that loss of either VAPB or PTPIP51 perturbs uptake of Ca(2+) by mitochondria following release from ER stores. Finally, we demonstrate that VAPBP56S has altered binding to PTPIP51 and increases Ca(2+) uptake by mitochondria following release from ER stores. Damage to ER, mitochondria and Ca(2+) homeostasis are all seen in ALS and we discuss the implications of our findings in this context.
Collapse
Affiliation(s)
- Kurt J. De Vos
- Department of Neuroscience and
- Department of Clinical Neurosciences, MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London SE5 8AF, UK
| | | | | | | | - Kwok-Fai Lau
- Department of Neuroscience and
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong and
| | | | - Alice Warley
- Centre for Ultrastructural Imaging, King's College London, London SE1 1UL, UK
| | - Christopher E. Shaw
- Department of Clinical Neurosciences, MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London SE5 8AF, UK
| | - Christopher C.J. Miller
- Department of Neuroscience and
- Department of Clinical Neurosciences, MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London SE5 8AF, UK
| |
Collapse
|
47
|
Lacomble S, Vaughan S, Deghelt M, Moreira-Leite FF, Gull K. A Trypanosoma brucei protein required for maintenance of the flagellum attachment zone and flagellar pocket ER domains. Protist 2011; 163:602-15. [PMID: 22186015 PMCID: PMC3405529 DOI: 10.1016/j.protis.2011.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 10/31/2011] [Accepted: 10/31/2011] [Indexed: 01/24/2023]
Abstract
Trypanosomes and Leishmanias are important human parasites whose cellular architecture is centred on the single flagellum. In trypanosomes, this flagellum is attached to the cell along a complex flagellum attachment zone (FAZ), comprising flagellar and cytoplasmic components, the integrity of which is required for correct cell morphogenesis and division. The cytoplasmic FAZ cytoskeleton is conspicuously associated with a sheet of endoplasmic reticulum termed the ‘FAZ ER’. In the present work, 3D electron tomography of bloodstream form trypanosomes was used to clarify the nature of the FAZ ER. We also identified TbVAP, a T. brucei protein whose knockdown by RNAi in procyclic form cells leads to a dramatic reduction in the FAZ ER, and in the ER associated with the flagellar pocket. TbVAP is an orthologue of VAMP-associated proteins (VAPs), integral ER membrane proteins whose mutation in humans has been linked to familial motor neuron disease. The localisation of tagged TbVAP and the phenotype of TbVAP RNAi in procyclic form trypanosomes are consistent with a function for TbVAP in the maintenance of sub-populations of the ER associated with the FAZ and the flagellar pocket. Nevertheless, depletion of TbVAP did not affect cell viability or cell cycle progression.
Collapse
Affiliation(s)
- Sylvain Lacomble
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Molecular motor proteins and amyotrophic lateral sclerosis. Int J Mol Sci 2011; 12:9057-82. [PMID: 22272119 PMCID: PMC3257116 DOI: 10.3390/ijms12129057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting motor neurons in the brain, brainstem and spinal cord, which is characterized by motor dysfunction, muscle dystrophy and progressive paralysis. Both inherited and sporadic forms of ALS share common pathological features, however, the initial trigger of neurodegeneration remains unknown. Motor neurons are uniquely targeted by ubiquitously expressed proteins in ALS but the reason for this selectively vulnerability is unclear. However motor neurons have unique characteristics such as very long axons, large cell bodies and high energetic metabolism, therefore placing high demands on cellular transport processes. Defects in cellular trafficking are now widely reported in ALS, including dysfunction to the molecular motors dynein and kinesin. Abnormalities to dynein in particular are linked to ALS, and defects in dynein-mediated axonal transport processes have been reported as one of the earliest pathologies in transgenic SOD1 mice. Furthermore, dynein is very highly expressed in neurons and neurons are particularly sensitive to dynein dysfunction. Hence, unravelling cellular transport processes mediated by molecular motor proteins may help shed light on motor neuron loss in ALS.
Collapse
|
49
|
Lua S, Qin H, Lim L, Shi J, Gupta G, Song J. Structural, stability, dynamic and binding properties of the ALS-causing T46I mutant of the hVAPB MSP domain as revealed by NMR and MD simulations. PLoS One 2011; 6:e27072. [PMID: 22069488 PMCID: PMC3206076 DOI: 10.1371/journal.pone.0027072] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/09/2011] [Indexed: 12/31/2022] Open
Abstract
T46I is the second mutation on the hVAPB MSP domain which was recently identified from non-Brazilian kindred to cause a familial amyotrophic lateral sclerosis (ALS). Here using CD, NMR and molecular dynamics (MD) simulations, we characterized the structure, stability, dynamics and binding capacity of the T46I-MSP domain. The results reveal: 1) unlike P56S which we previously showed to completely eliminate the native MSP structure, T46I leads to no significant disruption of the native secondary and tertiary structures, as evidenced from its far-UV CD spectrum, as well as Cα and Cβ NMR chemical shifts. 2) Nevertheless, T46I does result in a reduced thermodynamic stability and loss of the cooperative urea-unfolding transition. As such, the T46I-MSP domain is more prone to aggregation than WT at high protein concentrations and temperatures in vitro, which may become more severe in the crowded cellular environments. 3) T46I only causes a 3-fold affinity reduction to the Nir2 peptide, but a significant elimination of its binding to EphA4. 4) EphA4 and Nir2 peptide appear to have overlapped binding interfaces on the MSP domain, which strongly implies that two signaling networks may have a functional interplay in vivo. 5) As explored by both H/D exchange and MD simulations, the MSP domain is very dynamic, with most loop residues and many residues on secondary structures highly fluctuated or/and exposed to bulk solvent. Although T46I does not alter overall dynamics, it does trigger increased dynamics of several local regions of the MSP domain which are implicated in binding to EphA4 and Nir2 peptide. Our study provides the structural and dynamic understanding of the T46I-causing ALS; and strongly highlights the possibility that the interplay of two signaling networks mediated by the FFAT-containing proteins and Eph receptors may play a key role in ALS pathogenesis.
Collapse
Affiliation(s)
- Shixiong Lua
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Haina Qin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jiahai Shi
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Garvita Gupta
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
50
|
Mitne-Neto M, Machado-Costa M, Marchetto MCN, Bengtson MH, Joazeiro CA, Tsuda H, Bellen HJ, Silva HCA, Oliveira ASB, Lazar M, Muotri AR, Zatz M. Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients. Hum Mol Genet 2011; 20:3642-52. [PMID: 21685205 PMCID: PMC3159551 DOI: 10.1093/hmg/ddr284] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neuromuscular disease that leads to a profound loss of life quality and premature death. Around 10% of the cases are inherited and ALS8 is an autosomal dominant form of familial ALS caused by mutations in the vamp-associated protein B/C (VAPB) gene. The VAPB protein is involved in many cellular processes and it likely contributes to the pathogenesis of other forms of ALS besides ALS8. A number of successful drug tests in ALS animal models could not be translated to humans underscoring the need for novel approaches. The induced pluripotent stem cells (iPSC) technology brings new hope, since it can be used to model and investigate diseases in vitro. Here we present an additional tool to study ALS based on ALS8-iPSC. Fibroblasts from ALS8 patients and their non-carrier siblings were successfully reprogrammed to a pluripotent state and differentiated into motor neurons. We show for the first time that VAPB protein levels are reduced in ALS8-derived motor neurons but, in contrast to over-expression systems, cytoplasmic aggregates could not be identified. Our results suggest that optimal levels of VAPB may play a central role in the pathogenesis of ALS8, in agreement with the observed reduction of VAPB in sporadic ALS.
Collapse
Affiliation(s)
- Miguel Mitne-Neto
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children’s Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, 9500 Gilman Dr, La Jolla, CA 92093, MC 0695, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|