1
|
Luoto HH, Nordbo E, Baykov AA, Lahti R, Malinen AM. Membrane Na+-pyrophosphatases can transport protons at low sodium concentrations. J Biol Chem 2013; 288:35489-99. [PMID: 24158447 DOI: 10.1074/jbc.m113.510909] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane-bound Na(+)-pyrophosphatase (Na(+)-PPase), working in parallel with the corresponding ATP-energized pumps, catalyzes active Na(+) transport in bacteria and archaea. Each ~75-kDa subunit of homodimeric Na(+)-PPase forms an unusual funnel-like structure with a catalytic site in the cytoplasmic part and a hydrophilic gated channel in the membrane. Here, we show that at subphysiological Na(+) concentrations (<5 mM), the Na(+)-PPases of Chlorobium limicola, four other bacteria, and one archaeon additionally exhibit an H(+)-pumping activity in inverted membrane vesicles prepared from recombinant Escherichia coli strains. H(+) accumulation in vesicles was measured with fluorescent pH indicators. At pH 6.2-8.2, H(+) transport activity was high at 0.1 mM Na(+) but decreased progressively with increasing Na(+) concentrations until virtually disappearing at 5 mM Na(+). In contrast, (22)Na(+) transport activity changed little over a Na(+) concentration range of 0.05-10 mM. Conservative substitutions of gate Glu(242) and nearby Ser(243) and Asn(677) residues reduced the catalytic and transport functions of the enzyme but did not affect the Na(+) dependence of H(+) transport, whereas a Lys(681) substitution abolished H(+) (but not Na(+)) transport. All four substitutions markedly decreased PPase affinity for the activating Na(+) ion. These results are interpreted in terms of a model that assumes the presence of two Na(+)-binding sites in the channel: one associated with the gate and controlling all enzyme activities and the other located at a distance and controlling only H(+) transport activity. The inherent H(+) transport activity of Na(+)-PPase provides a rationale for its easy evolution toward specific H(+) transport.
Collapse
Affiliation(s)
- Heidi H Luoto
- From the Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland and
| | | | | | | | | |
Collapse
|
2
|
Membrane-integral pyrophosphatase subfamily capable of translocating both Na+ and H+. Proc Natl Acad Sci U S A 2013; 110:1255-60. [PMID: 23297210 DOI: 10.1073/pnas.1217816110] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the strategies used by organisms to adapt to life under conditions of short energy supply is to use the by-product pyrophosphate to support cation gradients in membranes. Transport reactions are catalyzed by membrane-integral pyrophosphatases (PPases), which are classified into two homologous subfamilies: H(+)-transporting (found in prokaryotes, protists, and plants) and Na(+)-transporting (found in prokaryotes). Transport activities have been believed to require specific machinery for each ion, in accordance with the prevailing paradigm in membrane transport. However, experiments using a fluorescent pH probe and (22)Na(+) measurements in the current study revealed that five bacterial PPases expressed in Escherichia coli have the ability to simultaneously translocate H(+) and Na(+) into inverted membrane vesicles under physiological conditions. Consistent with data from phylogenetic analyses, our results support the existence of a third, dual-specificity bacterial Na(+),H(+)-PPase subfamily, which apparently evolved from Na(+)-PPases. Interestingly, genes for Na(+),H(+)-PPase have been found in the major microbes colonizing the human gastrointestinal tract. The Na(+),H(+)-PPases require Na(+) for hydrolytic and transport activities and are further activated by K(+). Based on ionophore effects, we conclude that the Na(+) and H(+) transport reactions are electrogenic and do not result from secondary antiport effects. Sequence comparisons further disclosed four Na(+),H(+)-PPase signature residues located outside the ion conductance channel identified earlier in PPases using X-ray crystallography. Our results collectively support the emerging paradigm that both Na(+) and H(+) can be transported via the same mechanism, with switching between Na(+) and H(+) specificities requiring only subtle changes in the transporter structure.
Collapse
|
3
|
Mutagenesis of the residues forming an ion binding pocket of the NtpK subunit of Enterococcus hirae V-ATPase. J Bacteriol 2012; 194:4546-9. [PMID: 22730119 DOI: 10.1128/jb.00714-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The crystal structures of the Na(+)- and Li(+)-bound NtpK rings of Enterococcus hirae V-ATPase have been obtained. The coupling ion (Na(+) or Li(+)) was surrounded by five oxygen atoms contributed by residues T64, Q65, Q110, E139, and L61, and the hydrogen bonds of the side chains of Q110, Y68, and T64 stabilized the position of the E139 γ carboxylate essential for ion occlusion (PDB accession numbers 2BL2 and 2CYD). We previously indicated that an NtpK mutant strain (E139D) lost tolerance to sodium but not to lithium at alkaline pHs and suggested that the E139 residue is indispensable for the enzymatic activity of E. hirae V-ATPase linked with the sodium tolerance of this bacterium. In this study, we examined the activities of V-ATPase in which these four residues, except for E139, were substituted. The V-ATPase activities of the Q65A and Y68A mutants were slightly retained, but those of the T64A and Q110A mutants were negligible. Among the residues, T64 and Q110 are indispensable for the ion coupling of E. hirae V-ATPase, in addition to the essential residue E139.
Collapse
|
4
|
Krah A, Pogoryelov D, Langer JD, Bond PJ, Meier T, Faraldo-Gómez JD. Structural and energetic basis for H+ versus Na+ binding selectivity in ATP synthase Fo rotors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:763-72. [DOI: 10.1016/j.bbabio.2010.04.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
|
5
|
Complete ion-coordination structure in the rotor ring of Na+-dependent F-ATP synthases. J Mol Biol 2009; 391:498-507. [PMID: 19500592 DOI: 10.1016/j.jmb.2009.05.082] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 05/28/2009] [Accepted: 05/29/2009] [Indexed: 11/23/2022]
Abstract
The membrane-embedded rotors of Na(+)-dependent F-ATP synthases comprise 11 c-subunits that form a ring, with 11 Na(+) binding sites in between adjacent subunits. Following an updated crystallographic analysis of the c-ring from Ilyobacter tartaricus, we report the complete ion-coordination structure of the Na(+) sites. In addition to the four residues previously identified, there exists a fifth ligand, namely, a buried structural water molecule. This water is itself coordinated by Thr67, which, sequence analysis reveals, is the only residue involved in binding that distinguishes Na(+) synthases from H(+)-ATP synthases known to date. Molecular dynamics simulations and free-energy calculations of the c-ring in a lipid membrane lend clear support to the notion that this fifth ligand is a water molecule, and illustrate its influence on the selectivity of the binding sites. Given the evolutionary ascendancy of sodium over proton bioenergetics, this structure uncovers an ancient strategy for selective ion coupling in ATP synthases.
Collapse
|
6
|
Abstract
In Propionigenium modestum, ATP is manufactured from ADP and phosphate by the enzyme ATP synthase using the free energy of an electrochemical gradient of Na+ ions. The P. modestum ATP synthase is a clear member of the family of F-type ATP synthases and the only major distinction is an extension of the coupling ion specificity to H+, Li+, or Na+, depending on the conditions. The use of Na+ as a coupling ion offers unique experimental options to decipher the ion-translocation mechanism and the osmotic and mechanical behavior of the enzyme. The single a subunit and the oligomer of c subunits are part of the stator and rotor, respectively, and operate together in the ion-translocation mechanism. During ATP synthesis, Na+ diffuses from the periplasm through the a subunit channel onto the Na+ binding site on a c subunit. From there it dissociates into the cytoplasm after the site has rotated out of the interface with subunit a. In the absence of a membrane potential, the rotor performs Brownian motions into either direction and Na+ ions are exchanged between the two compartments separated by the membrane. Upon applying voltage, however, the direction of Na+ flux and of rotation is biased by the potential. The motor generates torque to drive the rotation of the gamma subunit, thereby releasing tightly bound ATP from catalytic sites in F(1). Hence, the membrane potential plays a pivotal role in the torque-generating mechanism. This is corroborated by the fact that for ATP synthesis, at physiological rates, the membrane potential is indispensable. We propose a catalytic mechanism for torque generation by the F(o) motor that is in accord with all experimental data and is in quantitative agreement with the requirement for ATP synthesis.
Collapse
Affiliation(s)
- P Dimroth
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, ETH-Zentrum, CH-8092 Zürich, Switzerland. micro.biol.ethz.ch
| | | | | |
Collapse
|
7
|
Fillingame RH, Jiang W, Dmitriev OY. The oligomeric subunit C rotor in the fo sector of ATP synthase: unresolved questions in our understanding of function. J Bioenerg Biomembr 2009; 32:433-9. [PMID: 15254378 DOI: 10.1023/a:1005604722178] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have proposed a model for the oligomeric c-rotor of the F(o) sector of ATP synthase and its interaction with subunit a during H+-transport driven rotation. The model is based upon the solution structure of monomeric subunit c, determined by NMR, and an extensive series of cross-linking distance constraints between c subunits and between subunits c and a. To explain the complete set of cross-linking data, we have suggested that the second transmembrane helix rotates during its interaction with subunit a in the course of the H+-translocation cycle. The H+-transport coupled rotation of this helix is proposed to drive the stepwise movement of the c-oligomeric rotor. The model is testable and provides a useful framework for addressing questions raised by other experiments.
Collapse
Affiliation(s)
- R H Fillingame
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, 1300 University Avenue, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
8
|
Mulkidjanian AY, Galperin MY, Koonin EV. Co-evolution of primordial membranes and membrane proteins. Trends Biochem Sci 2009; 34:206-15. [PMID: 19303305 DOI: 10.1016/j.tibs.2009.01.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 01/14/2023]
Abstract
Studies of the past several decades have provided major insights into the structural organization of biological membranes and mechanisms of many membrane molecular machines. However, the origin(s) of the membrane(s) and membrane proteins remains enigmatic. We discuss different concepts of the origin and early evolution of membranes with a focus on the evolution of the (im)permeability to charged molecules such as proteins, nucleic acids and small ions. Reconstruction of the evolution of F-type and A/V-type membrane ATPases (ATP synthases), which are either proton- or sodium-dependent, might help us to understand not only the origin of membrane bioenergetics but also of membranes themselves. We argue that evolution of biological membranes occurred as a process of co-evolution of lipid bilayers, membrane proteins and membrane bioenergetics.
Collapse
|
9
|
Mulkidjanian AY, Dibrov P, Galperin MY. The past and present of sodium energetics: may the sodium-motive force be with you. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:985-92. [PMID: 18485887 DOI: 10.1016/j.bbabio.2008.04.028] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/18/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
Abstract
All living cells routinely expel Na(+) ions, maintaining lower concentration of Na(+) in the cytoplasm than in the surrounding milieu. In the vast majority of bacteria, as well as in mitochondria and chloroplasts, export of Na(+) occurs at the expense of the proton-motive force. Some bacteria, however, possess primary generators of the transmembrane electrochemical gradient of Na(+) (sodium-motive force). These primary Na(+) pumps have been traditionally seen as adaptations to high external pH or to high temperature. Subsequent studies revealed, however, the mechanisms for primary sodium pumping in a variety of non-extremophiles, such as marine bacteria and certain bacterial pathogens. Further, many alkaliphiles and hyperthermophiles were shown to rely on H(+), not Na(+), as the coupling ion. We review here the recent progress in understanding the role of sodium-motive force, including (i) the conclusion on evolutionary primacy of the sodium-motive force as energy intermediate, (ii) the mechanisms, evolutionary advantages and limitations of switching from Na(+) to H(+) as the coupling ion, and (iii) the possible reasons why certain pathogenic bacteria still rely on the sodium-motive force.
Collapse
|
10
|
Abstract
Background The F- and V-type ATPases are rotary molecular machines that couple translocation of protons or sodium ions across the membrane to the synthesis or hydrolysis of ATP. Both the F-type (found in most bacteria and eukaryotic mitochondria and chloroplasts) and V-type (found in archaea, some bacteria, and eukaryotic vacuoles) ATPases can translocate either protons or sodium ions. The prevalent proton-dependent ATPases are generally viewed as the primary form of the enzyme whereas the sodium-translocating ATPases of some prokaryotes are usually construed as an exotic adaptation to survival in extreme environments. Results We combine structural and phylogenetic analyses to clarify the evolutionary relation between the proton- and sodium-translocating ATPases. A comparison of the structures of the membrane-embedded oligomeric proteolipid rings of sodium-dependent F- and V-ATPases reveals nearly identical sets of amino acids involved in sodium binding. We show that the sodium-dependent ATPases are scattered among proton-dependent ATPases in both the F- and the V-branches of the phylogenetic tree. Conclusion Barring convergent emergence of the same set of ligands in several lineages, these findings indicate that the use of sodium gradient for ATP synthesis is the ancestral modality of membrane bioenergetics. Thus, a primitive, sodium-impermeable but proton-permeable cell membrane that harboured a set of sodium-transporting enzymes appears to have been the evolutionary predecessor of the more structurally demanding proton-tight membranes. The use of proton as the coupling ion appears to be a later innovation that emerged on several independent occasions. Reviewers This article was reviewed by J. Peter Gogarten, Martijn A. Huynen, and Igor B. Zhulin. For the full reviews, please go to the Reviewers' comments section.
Collapse
|
11
|
Audit B, Levy ED, Gilks WR, Goldovsky L, Ouzounis CA. CORRIE: enzyme sequence annotation with confidence estimates. BMC Bioinformatics 2007; 8 Suppl 4:S3. [PMID: 17570146 PMCID: PMC1892082 DOI: 10.1186/1471-2105-8-s4-s3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Using a previously developed automated method for enzyme annotation, we report the re-annotation of the ENZYME database and the analysis of local error rates per class. In control experiments, we demonstrate that the method is able to correctly re-annotate 91% of all Enzyme Classification (EC) classes with high coverage (755 out of 827). Only 44 enzyme classes are found to contain false positives, while the remaining 28 enzyme classes are not represented. We also show cases where the re-annotation procedure results in partial overlaps for those few enzyme classes where a certain inconsistency might appear between homologous proteins, mostly due to function specificity. Our results allow the interactive exploration of the EC hierarchy for known enzyme families as well as putative enzyme sequences that may need to be classified within the EC hierarchy. These aspects of our framework have been incorporated into a web-server, called CORRIE, which stands for Correspondence Indicator Estimation and allows the interactive prediction of a functional class for putative enzymes from sequence alone, supported by probabilistic measures in the context of the pre-calculated Correspondence Indicators of known enzymes with the functional classes of the EC hierarchy. The CORRIE server is available at: http://www.genomes.org/services/corrie/.
Collapse
Affiliation(s)
- Benjamin Audit
- Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure, 46 Allée d'Italie, F-69364 Lyon CEDEX 07, France
| | - Emmanuel D Levy
- Computational Genomics Group, The European Bioinformatics Institute, EMBL Cambridge Outstation, Cambridge CB10 1SD, UK
- Current address: Computational Genomics Group, MRC Laboratory of Molecular Biology, Hills Rd, Cambridge CB2 2QH, UK
| | - Wally R Gilks
- Medical Research Council Biostatistics Unit, Institute of Public Health, Cambridge CB2 2SR, UK
- Current address: Department of Statistics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Leon Goldovsky
- Computational Genomics Group, The European Bioinformatics Institute, EMBL Cambridge Outstation, Cambridge CB10 1SD, UK
- Current address: Computational Genomics Unit, Center for Research & Technology Hellas, PO Box 361, GR-57001 Thessalonica, Greece
| | - Christos A Ouzounis
- Computational Genomics Group, The European Bioinformatics Institute, EMBL Cambridge Outstation, Cambridge CB10 1SD, UK
- Current address: Computational Genomics Unit, Center for Research & Technology Hellas, PO Box 361, GR-57001 Thessalonica, Greece
- Current address: Institute of Agrobiotechnology, Center for Research & Technology Hellas, PO Box 361, GR-57001 Thessalonica, Greece
| |
Collapse
|
12
|
Müller V, Lemker T, Lingl A, Weidner C, Coskun U, Grüber G. Bioenergetics of archaea: ATP synthesis under harsh environmental conditions. J Mol Microbiol Biotechnol 2006; 10:167-80. [PMID: 16645313 DOI: 10.1159/000091563] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Archaea are a heterogeneous group of microorganisms that often thrive under harsh environmental conditions such as high temperatures, extreme pHs and high salinity. As other living cells, they use chemiosmotic mechanisms along with substrate level phosphorylation to conserve energy in form of ATP. Because some archaea are rooted close to the origin in the tree of life, these unusual mechanisms are considered to have developed very early in the history of life and, therefore, may represent first energy-conserving mechanisms. A key component in cellular bioenergetics is the ATP synthase. The enzyme from archaea represents a new class of ATPases, the A1A0 ATP synthases. They are composed of two domains that function as a pair of rotary motors connected by a central and peripheral stalk(s). The structure of the chemically-driven motor (A1) was solved by small-angle X-ray scattering in solution, and the structure of the first A1A0 ATP synthases was obtained recently by single particle analyses. These studies revealed novel structural features such as a second peripheral stalk and a collar-like structure. In addition, the membrane-embedded electrically-driven motor (A0) is very different in archaea with sometimes novel, exceptional subunit composition and coupling stoichiometries that may reflect the differences in energy-conserving mechanisms as well as adaptation to temperatures at or above 100 degrees C.
Collapse
Affiliation(s)
- V Müller
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Campus Riedberg, Frankfurt a. Main, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Lewalter K, Müller V. Bioenergetics of archaea: ancient energy conserving mechanisms developed in the early history of life. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:437-45. [PMID: 16806054 DOI: 10.1016/j.bbabio.2006.04.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 03/23/2006] [Accepted: 04/19/2006] [Indexed: 11/18/2022]
Abstract
A key component in cellular bioenergetics is the ATP synthase. The enzyme from archaea represents a new class of ATPases, the A1AO ATP synthases. They are composed of two domains that function as a pair of rotary motors connected by a central and peripheral stalk(s). The structure of the chemically-driven motor (A1) was solved by small angle X-ray scattering in solution, and the structure of the first A1AO ATP synthases (from methanoarchaea) was obtained recently by single particle analyses. These studies revealed novel structural features such as a second peripheral stalk and a collar-like structure. Interestingly, the membrane-embedded electrically-driven motor (AO) is very different in archaea with sometimes novel, exceptional subunit composition.
Collapse
Affiliation(s)
- Kim Lewalter
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Campus Riedberg, Max-von-Laue-Str. 9, D-60438 Frankfurt/Main, Germany
| | | |
Collapse
|
14
|
Kita-Tsukamoto K, Wada M, Yao K, Nishino T, Kogure K. Flagellar motors of marine bacteriaHalomonasare driven by both protons and sodium ions. Can J Microbiol 2004; 50:369-74. [PMID: 15213745 DOI: 10.1139/w04-021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacterial cells in aquatic environments are able to reach or stay near nutrient patches by using motility. Motility is usually attained by rotating flagellar motors that are energized by electrochemical potential of H+or Na+. In this paper, the ion specificity for flagellar rotation of two marine isolates Halomonas spp. strains US172 and US201 was investigated. Both isolates require sodium for growth and possess a respiratory-driven primary sodium pump. They are motile because of lateral flagella regardless of the presence of sodium ions. Their swimming speed under various concentrations of sodium ions with and without carbonylcyanide m-chlorophenylhydrazone, a proton conductor, and with and without phenamil, a specific inhibitor for the sodium-driven flagellar motors, was examined. The effect of carbonylcyanide m-chlorophenylhydrazone on the transmembrane proton gradient was also determined. Our results showed that the flagellar motors of the Halomonas strains were energized by both H+and Na+in one cell. The bimodal nature of Halomonas spp. motility with respect to the driving energy source may reflect ecophysiological versatility to adapt to a wide range of salt conditions of the marine environment.Key words: marine bacteria, Halomonas, flagellar motor, sodium, proton.
Collapse
|
15
|
Affiliation(s)
- Volker Müller
- Section of Microbiology, Department of Biology I, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
16
|
Fillingame RH, Angevine CM, Dmitriev OY. Mechanics of coupling proton movements to c-ring rotation in ATP synthase. FEBS Lett 2004; 555:29-34. [PMID: 14630314 DOI: 10.1016/s0014-5793(03)01101-3] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
F1F0 ATP synthases generate ATP by a rotary catalytic mechanism in which H+ transport is coupled to rotation of an oligomeric ring of c subunits extending through the membrane. Protons bind to and then are released from the aspartyl-61 residue of subunit c at the center of the membrane. Subunit a of the F0 sector is thought to provide proton access channels to and from aspartyl-61. Here, we summarize new information on the structural organization of Escherichia coli subunit a and the mapping of aqueous-accessible residues in the second, fourth and fifth transmembrane helices (TMHs). Aqueous-accessible regions of these helices extend to both the cytoplasmic and periplasmic surface. We propose that aTMH4 rotates to alternately expose the periplasmic or cytoplasmic half-channels to aspartyl-61 of subunit c during the proton transport cycle. The concerted rotation of interacting helices in subunit a and subunit c is proposed to be the mechanical force driving rotation of the c-rotor, using a mechanism akin to meshed gears.
Collapse
Affiliation(s)
- Robert H Fillingame
- Department of Biomolecular Chemistry, 1300 University Avenue, University of Wisconsin Medical School, Madison, WI 53706, USA.
| | | | | |
Collapse
|
17
|
Abstract
The role of subunit a in proton translocation by the Escherichia coli F(1)F(o) ATP synthase is poorly understood. In the membrane-bound F(o) sector of the enzyme, H(+) binding and release occurs at Asp(61) in the middle of the second transmembrane helix (TMH) of subunit c. Protons are thought to reach Asp(61) via an aqueous access pathway formed at least in part by one or more of the five TMHs of subunit a. In this report, we have substituted Cys into a 19-residue span of the fourth TMH of subunit a and used chemical modification to obtain information about the aqueous accessibility of residues along this helix. Residues 206, 210, and 214 are N-ethylmaleimide-accessible from the cytoplasmic side of the membrane and may lie on the H(+) transport route. Residues 215 and 218 on TMH4, as well as residue 245 on TMH5, are Ag(+)-accessible but N-ethylmaleimide-inaccessible and may form part of an aqueous pocket extending from Asp(61) of subunit c to the periplasmic surface.
Collapse
Affiliation(s)
- Christine M Angevine
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
18
|
Fillingame RH, Dmitriev OY. Structural model of the transmembrane Fo rotary sector of H+-transporting ATP synthase derived by solution NMR and intersubunit cross-linking in situ. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1565:232-45. [PMID: 12409198 DOI: 10.1016/s0005-2736(02)00572-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
H(+)-transporting, F(1)F(o)-type ATP synthases utilize a transmembrane H(+) potential to drive ATP formation by a rotary catalytic mechanism. ATP is formed in alternating beta subunits of the extramembranous F(1) sector of the enzyme, synthesis being driven by rotation of the gamma subunit in the center of the F(1) molecule between the alternating catalytic sites. The H(+) electrochemical potential is thought to drive gamma subunit rotation by first coupling H(+) transport to rotation of an oligomeric rotor of c subunits within the transmembrane F(o) sector. The gamma subunit is forced to turn with the c-oligomeric rotor due to connections between subunit c and the gamma and epsilon subunits of F(1). In this essay we will review recent studies on the Escherichia coli F(o) sector. The monomeric structure of subunit c, determined by NMR, shows that subunit c folds in a helical hairpin with the proton carrying Asp(61) centered in the second transmembrane helix (TMH). A model for the structural organization of the c(10) oligomer in F(o) was deduced from extensive cross-linking studies and by molecular modeling. The model indicates that the H(+)-carrying carboxyl of subunit c is occluded between neighboring subunits of the c(10) oligomer and that two c subunits pack in a "front-to-back" manner to form the H(+) (cation) binding site. In order for protons to gain access to Asp(61) during the protonation/deprotonation cycle, we propose that the outer, Asp(61)-bearing TMH-2s of the c-ring and TMHs from subunits composing the inlet and outlet channels must turn relative to each other, and that the swiveling motion associated with Asp(61) protonation/deprotonation drives the rotation of the c-ring. The NMR structures of wild-type subunit c differs according to the protonation state of Asp(61). The idea that the conformational state of subunit c changes during the catalytic cycle is supported by the cross-linking evidence in situ, and two recent NMR structures of functional mutant proteins in which critical residues have been switched between TMH-1 and TMH-2. The structural information is considered in the context of the possible mechanism of rotary movement of the c(10) oligomer during coupled synthesis of ATP.
Collapse
Affiliation(s)
- Robert H Fillingame
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706-1532, USA.
| | | |
Collapse
|
19
|
Ostroumov E, Dzioba J, Loewen PC, Dibrov P. Asp(344) and Thr(345) are critical for cation exchange mediated by NhaD, Na(+)/H(+) antiporter of Vibrio cholerae. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1564:99-106. [PMID: 12101001 DOI: 10.1016/s0005-2736(02)00407-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Vc-NhaD is an Na(+)/H(+) antiporter from Vibrio cholerae belonging to a new family of bacterial Na(+)/H(+) antiporters, the NhaD family. In the present work we mutagenized five conserved Asp and Glu residues and one conserved Thr residue to Ala in order to identify amino acids that are critical for the antiport activity. All mutations fall into two distinct groups: (i) four variants, Glu(100)Ala, Glu(251)Ala, Glu(342)Ala, and Asp(393)Ala, did not abolish antiport activity but shifted the pH optimum to more alkaline pH, and (ii) variants Asp(344)Ala, Asp(344)Asn, and Thr(345)Ala caused a complete loss of both Na(+)/H(+) and Li(+)/H(+) antiport activity whereas the Asp(344)Glu variant exhibited reduced Na(+)/H(+) and Li(+)/H(+) antiport activity. This is the first mutational analysis of the antiporter of NhaD type and the first demonstration of Thr residue being indispensable for Na(+)/H(+) antiport. We discuss the possible role of Asp(344) and Thr(345) in the functioning of Vc-NhaD.
Collapse
Affiliation(s)
- Elena Ostroumov
- Faculty of Science, Department of Microbiology, University of Manitoba, R3T 2N2 Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
20
|
Vonck J, von Nidda TK, Meier T, Matthey U, Mills DJ, Kühlbrandt W, Dimroth P. Molecular architecture of the undecameric rotor of a bacterial Na+-ATP synthase. J Mol Biol 2002; 321:307-16. [PMID: 12144787 DOI: 10.1016/s0022-2836(02)00597-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The sodium ion-translocating F(1)F(0) ATP synthase from the bacterium Ilyobacter tartaricus contains a remarkably stable rotor ring composed of 11 c subunits. The rotor ring was isolated, crystallised in two dimensions and analysed by electron cryo-microscopy. Here, we present an alpha-carbon model of the c-subunit ring. Each monomeric c subunit of 89 amino acid residues folds into a helical hairpin consisting of two membrane-spanning helices and a cytoplasmic loop. The 11 N-terminal helices are closely spaced within an inner ring surrounding a cavity of approximately 17A (1.7 nm). The tight helix packing leaves no space for side-chains and is accounted for by a highly conserved motif of four glycine residues in the inner, N-terminal helix. Each inner helix is connected by a clearly visible loop to an outer C-terminal helix. The outer helix has a kink near the position of the ion-binding site residue Glu65 in the centre of the membrane and another kink near the C terminus. Two helices from the outer ring and one from the inner ring form the ion-binding site in the middle of the membrane and a potential access channel from the binding site to the cytoplasmic surface. Three possible inter-subunit ion-bridges are likely to account for the remarkable temperature stability of I.tartaricus c-rings compared to those of other organisms.
Collapse
Affiliation(s)
- Janet Vonck
- Max-Planck-Institute of Biophysics, Heinrich-Hoffmann-Str. 7, Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Häse CC, Fedorova ND, Galperin MY, Dibrov PA. Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons. Microbiol Mol Biol Rev 2001; 65:353-70, table of contents. [PMID: 11528000 PMCID: PMC99031 DOI: 10.1128/mmbr.65.3.353-370.2001] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Analysis of the bacterial genome sequences shows that many human and animal pathogens encode primary membrane Na+ pumps, Na+-transporting dicarboxylate decarboxylases or Na+ translocating NADH:ubiquinone oxidoreductase, and a number of Na+ -dependent permeases. This indicates that these bacteria can utilize Na+ as a coupling ion instead of or in addition to the H+ cycle. This capability to use a Na+ cycle might be an important virulence factor for such pathogens as Vibrio cholerae, Neisseria meningitidis, Salmonella enterica serovar Typhi, and Yersinia pestis. In Treponema pallidum, Chlamydia trachomatis, and Chlamydia pneumoniae, the Na+ gradient may well be the only energy source for secondary transport. A survey of preliminary genome sequences of Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans, and Treponema denticola indicates that these oral pathogens also rely on the Na+ cycle for at least part of their energy metabolism. The possible roles of the Na+ cycling in the energy metabolism and pathogenicity of these organisms are reviewed. The recent discovery of an effective natural antibiotic, korormicin, targeted against the Na+ -translocating NADH:ubiquinone oxidoreductase, suggests a potential use of Na+ pumps as drug targets and/or vaccine candidates. The antimicrobial potential of other inhibitors of the Na+ cycle, such as monensin, Li+ and Ag+ ions, and amiloride derivatives, is discussed.
Collapse
Affiliation(s)
- C C Häse
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | |
Collapse
|
22
|
Kaim G. The Na(+)-translocating F(1)F(0) ATP synthase of Propionigenium modestum: mechanochemical insights into the F(0) motor that drives ATP synthesis. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1505:94-107. [PMID: 11248192 DOI: 10.1016/s0005-2728(00)00280-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The ATP synthase of Propionigenium modestum encloses a rotary motor involved in the production of ATP from ADP and inorganic phosphate utilizing the free energy of an electrochemical Na(+) ion gradient. This enzyme clearly belongs to the family of F(1)F(0) ATP synthases and uses exclusively Na(+) ions as the physiological coupling ion. The motor domain, F(0), comprises subunit a and the b subunit dimer which are part of the stator and the subunit c oligomer acting as part of the rotor. During ATP synthesis, Na(+) translocation through F(0) proceeds from the periplasm via the stator channel (subunit a) onto a Na(+) binding site of the rotor (subunit c). Upon rotation of the subunit c oligomer versus subunit a, the occupied rotor site leaves the interface with the stator and the Na(+) ion can freely dissociate into the cytoplasm. Recent experiments demonstrate that the membrane potential is crucial for ATP synthesis under physiological conditions. These findings support the view that voltage generates torque in F(0), which drives the rotation of the gamma subunit thus liberating tightly bound ATP from the catalytic sites in F(1). We suggest a mechanochemical model for the transduction of transmembrane Na(+)-motive force into rotary torque by the F(0) motor that can account quantitatively for the experimental data.
Collapse
Affiliation(s)
- G Kaim
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, ETH-Zentrum, Schmelzbergstrasse 7, CH-8092, Zürich, Switzerland.
| |
Collapse
|
23
|
Abstract
Bacterial flagellar motors are molecular machines powered by the electrochemical potential gradient of specific ions across the membrane. Bacteria move using rotating helical flagellar filaments. The flagellar motor is located at the base of the filament and is buried in the cytoplasmic membrane. Flagellar motors are classified into two types according to the coupling ion: namely the H(+)-driven motor and the Na(+)-driven motor. Analysis of the flagellar motor at the molecular level is far more advanced in the H(+)-driven motor than in the Na(+)-driven motor. Recently, the genes of the Na(+)-driven motor have been cloned from a marine bacterium of Vibrio sp. and some of the motor proteins have been purified and characterized. In this review, we summarize recent studies of the Na(+)-driven flagellar motor.
Collapse
Affiliation(s)
- T Yorimitsu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, 464-8602, Nagoya, Japan
| | | |
Collapse
|
24
|
Müller V, Aufurth S, Rahlfs S. The Na(+) cycle in Acetobacterium woodii: identification and characterization of a Na(+) translocating F(1)F(0)-ATPase with a mixed oligomer of 8 and 16 kDa proteolipids. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1505:108-20. [PMID: 11248193 DOI: 10.1016/s0005-2728(00)00281-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The homoacetogenic bacterium Acetobacterium woodii relies on a sodium ion current across its cytoplasmic membrane for energy-dependent reactions. The sodium ion potential is established by a yet to be identified primary, electrogenic pump connected to the Wood-Ljungdahl pathway. Reactions possibly involved in Na(+) export are discussed. The electrochemical sodium ion potential generated is used to drive endergonic reactions such as flagellar rotation and ATP synthesis. Biochemical and molecular data identified the Na(+)-ATPase of A. woodii as a typical member of the F(1)F(0) class of ATPases. Its catalytic properties and the hypothetical sodium ion binding site in subunit c are discussed. The encoding genes were cloned and, surprisingly, the atp operon was shown to contain multiple copies of genes encoding subunit c. Two copies encode identical 8 kDa proteolipids, and a third copy arose by duplication and subsequent fusion of two genes. Furthermore, the duplicated subunit c does not contain the ion binding site in hair pin two. Biochemical and molecular data revealed that all three copies of subunit c constitute a mixed oligomer. The evolution of the structure and function of subunit c in ATPases from eucarya, bacteria, and archaea is discussed.
Collapse
Affiliation(s)
- V Müller
- Lehrstuhl für Mikrobiologie der LMU München, Maria-Ward-Strasse 1a, 80638, Munich, Germany.
| | | | | |
Collapse
|
25
|
Metzler DE, Metzler CM, Sauke DJ. Electron Transport, Oxidative Phosphorylation, and Hydroxylation. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Grauslund M, Rønnow B. Carbon source-dependent transcriptional regulation of the mitochondrial glycerol-3-phosphate dehydrogenase gene, GUT2, from Saccharomyces cerevisiae. Can J Microbiol 2000; 46:1096-100. [PMID: 11142398 DOI: 10.1139/w00-105] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytosolic glycerol kinase (Gut1p) and mitochondrial glycerol-3-phosphate dehydrogenase (Gut2p) constitute the glycerol utilization pathway in Saccharomyces cerevisiae. Transcriptional analysis of the GUT2 gene showed that it was repressed by glucose and derepressed on the non-fermentable carbon sources, glycerol, lactate and ethanol. Derepression of GUT2 requires the protein kinase Snflp as well as the heteromeric protein complex, Hap2/3/4/5, and its putative DNA-binding site (UASHAP) located in the promoter region. Furthermore, glucose repression of GUT2 requires the negative regulator, Opi1p.
Collapse
Affiliation(s)
- M Grauslund
- Danisco Cultor Innovation, Copenhagen, Denmark.
| | | |
Collapse
|
27
|
Aufurth S, Schägger H, Müller V. Identification of subunits a, b, and c1 from Acetobacterium woodii Na+-F1F0-ATPase. Subunits c1, c2, AND c3 constitute a mixed c-oligomer. J Biol Chem 2000; 275:33297-301. [PMID: 10913149 DOI: 10.1074/jbc.m005134200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na(+)-F(1)F(0)-ATPase operon of Acetobacterium woodii was recently shown to contain, among eleven atp genes, those genes that encode subunit a and b, a gene encoding a 16-kDa proteolipid (subunit c(1)), and two genes encoding 8-kDa proteolipids (subunits c(2) and c(3)). Because subunits a, b, and c(1) were not found in previous enzyme preparations, we re-determined the subunit composition of the enzyme. The genes were overproduced, and specific antibodies were raised. Western blots revealed that subunits a, b, and c(1) are produced and localized in the cytoplasmic membrane. Membrane protein complexes were solubilized by dodecylmaltoside and separated by blue native-polyacrylamide gel electrophoresis, and the ATPase subunits were resolved by SDS-polyacrylamide gel electrophoresis. N-terminal sequence analyses revealed the presence of subunits a, c(2), c(3), b, delta, alpha, gamma, beta, and epsilon. Biochemical and immunological analyses revealed that subunits c(1), c(2), and c(3) are all part of the c-oligomer, the first of a F(1)F(0)-ATPase that contains 8- and 16-kDa proteolipids.
Collapse
Affiliation(s)
- S Aufurth
- Lehrstuhl für Mikrobiologie der Ludwig-Maximilians-Universität, Maria-Ward-Strasse 1a, 80638 München, Germany
| | | | | |
Collapse
|
28
|
Jones PC, Hermolin J, Jiang W, Fillingame RH. Insights into the rotary catalytic mechanism of F0F1 ATP synthase from the cross-linking of subunits b and c in the Escherichia coli enzyme. J Biol Chem 2000; 275:31340-6. [PMID: 10882728 DOI: 10.1074/jbc.m003687200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transmembrane sector of the F(0)F(1) rotary ATP synthase is proposed to organize with an oligomeric ring of c subunits, which function as a rotor, interacting with two b subunits at the periphery of the ring, the b subunits functioning as a stator. In this study, cysteines were introduced into the C-terminal region of subunit c and the N-terminal region of subunit b. Cys of N2C subunit b was cross-linked with Cys at positions 74, 75, and 78 of subunit c. In each case, a maximum of 50% of the b subunit could be cross-linked to subunit c, which suggests that either only one of the two b subunits lie adjacent to the c-ring or that both b subunits interact with a single subunit c. The results support a topological arrangement of these subunits, in which the respective N- and C-terminal ends of subunits b and c extend to the periplasmic surface of the membrane and cAsp-61 lies at the center of the membrane. The cross-linking of Cys between bN2C and cV78C was shown to inhibit ATP-driven proton pumping, as would be predicted from a rotary model for ATP synthase function, but unexpectedly, cross-linking did not lead to inhibition of ATPase activity. ATP hydrolysis and proton pumping are therefore uncoupled in the cross-linked enzyme. The c subunit lying adjacent to subunit b was shown to be mobile and to exchange with c subunits that initially occupied non-neighboring positions. The movement or exchange of subunits at the position adjacent to subunit b was blocked by dicyclohexylcarbodiimide. These experiments provide a biochemical verification that the oligomeric c-ring can move with respect to the b-stator and provide further support for a rotary catalytic mechanism in the ATP synthase.
Collapse
Affiliation(s)
- P C Jones
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
29
|
Asai Y, Kawagishi I, Sockett RE, Homma M. Coupling ion specificity of chimeras between H(+)- and Na(+)-driven motor proteins, MotB and PomB, in Vibrio polar flagella. EMBO J 2000; 19:3639-48. [PMID: 10899118 PMCID: PMC313984 DOI: 10.1093/emboj/19.14.3639] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We have shown that a hybrid motor consisting of proton-type Rhodobacter sphaeroides MotA and sodium-type VIBRIO: alginolyticus PomB, MotX and MotY, can work as a sodium-driven motor in VIBRIO: cells. In this study, we tried to substitute the B subunits, which contain a putative ion-binding site in the transmembrane region. Rhodobacter sphaeroides MotB did not work with either MotA or PomA in Vibrio cells. Therefore, we constructed chimeric proteins (MomB), which had N-terminal MotB and C-terminal PomB. MomB proteins, with the entire transmembrane region derived from the H(+)-type MotB, gave rise to an Na(+) motor with MotA. The other two MomB proteins, in which the junction sites were within the transmembrane region, also formed Na(+) motors with PomA, but were changed for Na(+) or Li(+) specificity. These results show that the channel part consisting of the transmembrane regions from the A and B subunits can interchange Na(+)- and H(+)-type subunits and this can affect the ion specificity. This is the first report to have changed the specificity of the coupling ions in a bacterial flagellar motor.
Collapse
Affiliation(s)
- Y Asai
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-Ku, Nagoya 464-8602, Japan
| | | | | | | |
Collapse
|
30
|
Groth G. Molecular models of the structural arrangement of subunits and the mechanism of proton translocation in the membrane domain of F(1)F(0) ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:417-27. [PMID: 10838055 DOI: 10.1016/s0005-2728(00)00091-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Subunit c of the proton-transporting ATP synthase of Escherichia coli forms an oligomeric complex in the membrane domain that functions in transmembrane proton conduction. The arrangement of subunit c monomers in this oligomeric complex was studied by scanning mutagenesis. On the basis of these studies and structural information on subunit c, different molecular models for the potential arrangement of monomers in the c-oligomer are discussed. Intersubunit contacts in the F(0) domain that have been analysed in the past by chemical modification and mutagenesis studies are summarised. Transient contacts of the c-oligomer with subunit a might play a crucial role in the mechanism of proton translocation. Schematic models presented by several authors that interpret proton transport in the F(0) domain by a relative rotation of the c-subunit oligomer against subunit a are reviewed against the background of the molecular models of the oligomer.
Collapse
Affiliation(s)
- G Groth
- Heinrich-Heine Universität Düssseldorf, Biochemie der Pflanzen, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
31
|
Fillingame RH, Jiang W, Dmitriev OY, Jones PC. Structural interpretations of F(0) rotary function in the Escherichia coli F(1)F(0) ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:387-403. [PMID: 10838053 DOI: 10.1016/s0005-2728(00)00089-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
F(1)F(0) ATP synthases are known to synthesize ATP by rotary catalysis in the F(1) sector of the enzyme. Proton translocation through the F(0) membrane sector is now proposed to drive rotation of an oligomer of c subunits, which in turn drives rotation of subunit gamma in F(1). The primary emphasis of this review will be on recent work from our laboratory on the structural organization of F(0), which proves to be consistent with the concept of a c(12) oligomeric rotor. From the NMR structure of subunit c and cross-linking studies, we can now suggest a detailed model for the organization of the c(12) oligomer in F(0) and some of the transmembrane interactions with subunits a and b. The structural model indicates that the H(+)-carrying carboxyl of subunit c is located between subunits of the c(12) oligomer and that two c subunits pack in a front-to-back manner to form the proton (cation) binding site. The proton carrying Asp61 side chain is occluded between subunits and access to it, for protonation and deprotonation via alternate entrance and exit half-channels, requires a swiveled opening of the packed c subunits and stepwise association with different transmembrane helices of subunit a. We suggest how some of the structural information can be incorporated into models of rotary movement of the c(12) oligomer during coupled synthesis of ATP in the F(1) portion of the molecule.
Collapse
Affiliation(s)
- R H Fillingame
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
32
|
Pänke O, Gumbiowski K, Junge W, Engelbrecht S. F-ATPase: specific observation of the rotating c subunit oligomer of EF(o)EF(1). FEBS Lett 2000; 472:34-8. [PMID: 10781800 DOI: 10.1016/s0014-5793(00)01436-8] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The rotary motion in response to ATP hydrolysis of the ring of c subunits of the membrane portion, F(o), of ATP synthase, F(o)F(1), is still under contention. It was studied with EF(o)EF(1) (Escherichia coli) using microvideography with a fluorescent actin filament. To overcome the limited specificity of actin attachment through a Cys-maleimide couple which might have hampered the interpretation of previous work, we engineered a 'strep-tag' sequence into the C-terminal end of subunit c. It served (a) to purify the holoenzyme and (b) to monospecifically attach a fluorescent actin filament to subunit c. EF(o)EF(1) was immobilized on a Ni-NTA-coated glass slide by the engineered His-tag at the N-terminus of subunit beta. In the presence of MgATP we observed up to five counterclockwise rotating actin filaments per picture frame of 2000 microm(2) size, in some cases yielding a proportion of 5% rotating over total filaments. The rotation was unequivocally attributable to the ring of subunit c. The new, doubly engineered construct serves as a firmer basis for ongoing studies on torque and angular elastic distortions between F(1) and F(o).
Collapse
Affiliation(s)
- O Pänke
- Universität Osnabrück, Fachbereich Biologie, Abteilung Biophysik, Barbarastr. 11, 49069, Osnabrück, Germany
| | | | | | | |
Collapse
|
33
|
Asai Y, Kawagishi I, Sockett RE, Homma M. Hybrid motor with H(+)- and Na(+)-driven components can rotate Vibrio polar flagella by using sodium ions. J Bacteriol 1999; 181:6332-8. [PMID: 10515922 PMCID: PMC103767 DOI: 10.1128/jb.181.20.6332-6338.1999] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial flagellar motor is a molecular machine that converts ion flux across the membrane into flagellar rotation. The coupling ion is either a proton or a sodium ion. The polar flagellar motor of the marine bacterium Vibrio alginolyticus is driven by sodium ions, and the four protein components, PomA, PomB, MotX, and MotY, are essential for motor function. Among them, PomA and PomB are similar to MotA and MotB of the proton-driven motors, respectively. PomA shows greatest similarity to MotA of the photosynthetic bacterium Rhodobacter sphaeroides. MotA is composed of 253 amino acids, the same length as PomA, and 40% of its residues are identical to those of PomA. R. sphaeroides MotB has high similarity only to the transmembrane region of PomB. To examine whether the R. sphaeroides motor genes can function in place of the pomA and pomB genes of V. alginolyticus, we constructed plasmids including both motA and motB or motA alone and transformed them into missense and null pomA-paralyzed mutants of V. alginolyticus. The transformants from both strains showed restored motility, although the swimming speeds were low. On the other hand, pomB mutants were not restored to motility by any plasmid containing motA and/or motB. Next, we tested which ions (proton or sodium) coupled to the hybrid motor function. The motor did not work in sodium-free buffer and was inhibited by phenamil and amiloride, sodium motor-specific inhibitors, but not by a protonophore. Thus, we conclude that the proton motor component, MotA, of R. sphaeroides can generate torque by coupling with the sodium ion flux in place of PomA of V. alginolyticus.
Collapse
Affiliation(s)
- Y Asai
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-Ku, Nagoya 464-8602, Japan
| | | | | | | |
Collapse
|
34
|
Nakamoto RK, Ketchum CJ, al-Shawi MK. Rotational coupling in the F0F1 ATP synthase. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1999; 28:205-34. [PMID: 10410801 DOI: 10.1146/annurev.biophys.28.1.205] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The F0F1 ATP synthase is a large multisubunit complex that couples translocation of protons down an electrochemical gradient to the synthesis of ATP. Recent advances in structural analyses have led to the demonstration that the enzyme utilizes a rotational catalytic mechanism. Kinetic and biochemical evidence is consistent with the expected equal participation of the three catalytic sites in the alpha 3 beta 3 hexamer, which operate in sequential, cooperative reaction pathways. The rotation of the core gamma subunit plays critical roles in establishing the conformation of the sites and the cooperative interactions. Mutational analyses have shown that the rotor subunits are responsible for coupling and in doing so transmit specific conformational information between transport and catalysis.
Collapse
Affiliation(s)
- R K Nakamoto
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22906, USA.
| | | | | |
Collapse
|
35
|
Dmitriev OY, Jones PC, Fillingame RH. Structure of the subunit c oligomer in the F1Fo ATP synthase: model derived from solution structure of the monomer and cross-linking in the native enzyme. Proc Natl Acad Sci U S A 1999; 96:7785-90. [PMID: 10393899 PMCID: PMC22139 DOI: 10.1073/pnas.96.14.7785] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structure of the subunit c oligomer of the H+-transporting ATP synthase of Escherichia coli has been modeled by molecular dynamics and energy minimization calculations from the solution structure of monomeric subunit c and 21 intersubunit distance constraints derived from cross-linking of subunits. Subunit c folds in a hairpin-like structure with two transmembrane helices. In the c12 oligomer model, the subunits pack to form a compact hollow cylinder with an outer diameter of 55-60 A and an inner space with a minimal diameter of 11-12 A. Phospholipids are presumed to pack in the inner space in the native membrane. The transmembrane helices pack in two concentric rings with helix 1 inside and helix 2 outside. The calculations strongly favor this structure versus a model with helix 2 inside and helix 1 outside. Asp-61, the H+-transporting residue, packs toward the center of the four transmembrane helices of two interacting subunits. From this position at the front face of one subunit, the Asp-61 carboxylate lies proximal to side chains of Ala-24, Ile-28, and Ala-62, projecting from the back face of a second subunit. These interactions were predicted from previous mutational analyses. The packing supports the suggestion that a c-c dimer is the functional unit. The positioning of the Asp-61 carboxyl in the center of the interacting transmembrane helices, rather than at the periphery of the cylinder, has important implications regarding possible mechanisms of H+-transport-driven rotation of the c oligomer during ATP synthesis.
Collapse
Affiliation(s)
- O Y Dmitriev
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, WI 53706, USA
| | | | | |
Collapse
|
36
|
Rahlfs S, Müller V. Sequence of subunit a of the Na(+)-translocating F1F0-ATPase of Acetobacterium woodii: proposal for residues involved in Na+ binding. FEBS Lett 1999; 453:35-40. [PMID: 10403370 DOI: 10.1016/s0014-5793(99)00576-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Na+ transport through the F0 domain of Na(+)-F1F0-ATPases involves the combined action of subunits c and a but the residues involved in Na+ liganding in subunit a are unknown. As a first step towards the identification of these residues, we have cloned and sequenced the gene encoding subunit a of the Na(+)-F1F0-ATPase of Acetobacterium woodii. This is the second sequence available now for this subunit from Na(+)-F1F0-ATPases. A comparison of subunit a from Na(+)-F1F0-ATPases with those from H(+)-translocating enzymes unraveled structural similarity in a C-terminal segment including the ultimate and penultimate transmembrane helix. Seven residues are conserved in this region and, therefore, likely to be involved in Na+ liganding.
Collapse
Affiliation(s)
- S Rahlfs
- Institut für Mikrobiologie und Genetik der Georg-August-Universität Göttingen, Germany
| | | |
Collapse
|
37
|
Fillingame RH, Divall S. Proton ATPases in bacteria: comparison to Escherichia coli F1F0 as the prototype. NOVARTIS FOUNDATION SYMPOSIUM 1999; 221:218-29; discussion 229-34. [PMID: 10207922 DOI: 10.1002/9780470515631.ch14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The F1F0 ATP synthase complex of Escherichia coli functions reversibly in coupling proton translocation to ATP synthesis or hydrolysis. The structural organization and subunit composition corresponds to that seen in many other bacteria, i.e. a membrane extrinsic F1 sector with five subunits in an alpha 3 beta 3 gamma delta epsilon stoichiometry, and a membrane-traversing F0 sector with three subunits in an a1b2c12 stoichiometry. The structure of much of the F1 sector is known from a X-ray diffraction model. During function, The gamma subunit is known to rotate within a hexameric ring of alternating alpha and beta subunits to promote sequential substrate binding and product release from catalytic sites on the three beta subunits. Proton transport through F0 must be coupled to this rotation. Subunit c folds in the membrane as a hairpin to two alpha helices to generate the proton-binding site in F0. Its structure was determined by NMR, and the structure of the c oligomer was deduced by cross-linking experiments and molecular mechanics calculations. The implications of the oligomeric structure of subunit c will be considered and related to the H+/ATP pumping ratio, P/O ratios and the cation-binding site in other types of F0. The possible limits of the structure in changing the ion-binding specificity, stoichiometry and routes of proton entrance/exit to the binding site will be considered.
Collapse
Affiliation(s)
- R H Fillingame
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison 53706, USA
| | | |
Collapse
|
38
|
Oplatka A. Do the bacterial flagellar motor and ATP synthase operate as water turbines? Biochem Biophys Res Commun 1998; 249:573-8. [PMID: 9731177 DOI: 10.1006/bbrc.1998.8969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite much progress in the study of the rotary motors ATP synthase (F0F1) and the bacterial flagellar motor, we still cannot answer the most basic and simple question, how the random thermal movement of H+ (or Na+) ions down a pH (or Na+) gradient spins the rotors. I suggest consideration of the possibility that the motors operate like water turbines, i.e., rotation is the outcome of water mini-jets impinging tangentially on the rotors. The vectorial jets are formed when the cations lose part or all of their hydration water upon interacting with a properly positioned site on a protein component which is part of the rotor or is located on a peripheral protein.
Collapse
Affiliation(s)
- A Oplatka
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
39
|
Jones PC, Jiang W, Fillingame RH. Arrangement of the multicopy H+-translocating subunit c in the membrane sector of the Escherichia coli F1F0 ATP synthase. J Biol Chem 1998; 273:17178-85. [PMID: 9642286 DOI: 10.1074/jbc.273.27.17178] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multicopy subunit c of the H+-transporting F1F0 ATP synthase of Escherichia coli is thought to fold across the membrane as a hairpin of two hydrophobic alpha-helices. The conserved Asp61, centered in the second transmembrane helix, is essential for H+ transport. In this study, we have made sequential Cys substitutions across both transmembrane helices and used disulfide cross-link formation to determine the oligomeric arrangement of the c subunits. Cross-link formation between single Cys substitutions in helix 1 provided initial limitations on how the subunits could be arranged. Double Cys substitutions at positions 14/16, 16/18, and 21/23 in helix 1 and 70/72 in helix 2 led to the formation of cross-linked multimers upon oxidation. Double Cys substitutions in helix 1 and helix 2, at residues 14/72, 21/65, and 20/66, respectively, also formed cross-linked multimers. These results indicate that at least 10 and probably 12 subunits c interact in a front-to-back fashion to form a ring-like arrangement in F0. Helix 1 packs at the interior and helix 2 at the periphery of the ring. The model indicates that the Asp61 carboxylate is centered between the helical faces of adjacent subunit c at the center of a four-helix bundle.
Collapse
Affiliation(s)
- P C Jones
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
40
|
Girvin ME, Rastogi VK, Abildgaard F, Markley JL, Fillingame RH. Solution structure of the transmembrane H+-transporting subunit c of the F1F0 ATP synthase. Biochemistry 1998; 37:8817-24. [PMID: 9636021 DOI: 10.1021/bi980511m] [Citation(s) in RCA: 253] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Subunit c is the H+-translocating component of the F1F0 ATP synthase complex. H+ transport is coupled to conformational changes that ultimately lead to ATP synthesis by the enzyme. The properties of the monomeric subunit in a single-phase solution of chloroform-methanol-water (4:4:1) have been shown to mimic those of the protein in the native complex. Triple resonance NMR experiments were used to determine the complete structure of monomeric subunit c in this solvent mixture. The structure of the protein was defined by >2000 interproton distances, 64 (3)JN alpha, and 43 hydrogen-bonding NMR-derived restraints. The root mean squared deviation for the backbone atoms of the two transmembrane helices was 0.63 A. The protein folds as a hairpin of two antiparallel helical segments, connected by a short structured loop. The conserved Arg41-Gln42-Pro43 form the top of this loop. The essential H+-transporting Asp61 residue is located at a slight break in the middle of the C-terminal helix, just prior to Pro64. The C-terminal helix changes direction by 30 +/- 5 degrees at the conserved Pro64. In its protonated form, the Asp61 lies in a cavity created by the absence of side chains at Gly23 and Gly27 in the N-terminal helix. The shape and charge distribution of the molecular surface of the monomeric protein suggest a packing arrangement for the oligomeric protein in the F0 complex, with the front face of one monomer packing favorably against the back face of a second monomer. The packing suggests that the proton (cation) binding site lies between packed pairs of adjacent subunit c.
Collapse
Affiliation(s)
- M E Girvin
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison 53706, USA.
| | | | | | | | | |
Collapse
|
41
|
Fillingame RH, Jones PC, Jiang W, Valiyaveetil FI, Dmitriev OY. Subunit organization and structure in the F0 sector of Escherichia coli F1F0 ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1365:135-42. [PMID: 9693732 DOI: 10.1016/s0005-2728(98)00053-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this review, we summarize recent work from our laboratory which establishes the topology and nearest neighbor organization of subunits in the F0 sector of the H+ transporting ATP synthase of Escherichia coli. The E. coli F0 sector is composed of three subunits in an a1b2c12 stoichiometric ratio. Crosslinking experiments with genetically introduced Cys establish a ring-like organization of the 12 c subunits with subunits a and b lying to the outside of the ring. The results are interpreted using an atomic resolution structural model of monomeric subunit c in a chloroform-methanol-water (4:4:1, v/v/v) solution, derived by heteronuclear NMR (M.E. Girvin, F. Abildgaard, V. Rastogi, J. Markley, R.H. Fillingame, in press). The crosslinking results validate many predictions of the structural model and confirm a front-to-back-type packing of two subunit c into a functional dimer, as was first predicted from genetic studies. Aspartyl-61, the proton translocating residue, lies at the center of the four transmembrane helices of the functional dimer, rather than at the periphery of the subunit c ring. Subunit a is shown to fold with five transmembrane helices, and a functionally important interaction of transmembrane helix-4 with transmembrane helix-2 of subunit c is established. The single transmembrane helices of the two subunit b dimerize in the membrane. The structure of the transmembrane segment of subunit b is predicted from the NMR structure of the monomeric peptide.
Collapse
Affiliation(s)
- R H Fillingame
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison 53705, USA
| | | | | | | | | |
Collapse
|
42
|
Jiang W, Fillingame RH. Interacting helical faces of subunits a and c in the F1Fo ATP synthase of Escherichia coli defined by disulfide cross-linking. Proc Natl Acad Sci U S A 1998; 95:6607-12. [PMID: 9618459 PMCID: PMC22573 DOI: 10.1073/pnas.95.12.6607] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/1998] [Accepted: 04/20/1998] [Indexed: 02/07/2023] Open
Abstract
Subunits a and c of Fo are thought to cooperatively catalyze proton translocation during ATP synthesis by the Escherichia coli F1Fo ATP synthase. Optimizing mutations in subunit a at residues A217, I221, and L224 improves the partial function of the cA24D/cD61G double mutant and, on this basis, these three residues were proposed to lie on one face of a transmembrane helix of subunit a, which then interacted with the transmembrane helix of subunit c anchoring the essential aspartyl group. To test this model, in the present work Cys residues were introduced into the second transmembrane helix of subunit c and the predicted fourth transmembrane helix of subunit a. After treating the membrane vesicles of these mutants with Cu(1, 10-phenanthroline)2SO4 at 0 degrees, 10 degrees, or 20 degreesC, strong a-c dimer formation was observed at all three temperatures in membranes of 7 of the 65 double mutants constructed, i.e., in the aS207C/cI55C, aN214C/cA62C, aN214C/cM65C, aI221C/cG69C, aI223C/cL72C, aL224C/cY73C, and aI225C/cY73C double mutant proteins. The pattern of cross-linking aligns the helices in a parallel fashion over a span of 19 residues with the aN214C residue lying close to the cA62C and cM65C residues in the middle of the membrane. Lesser a-c dimer formation was observed in nine other double mutants after treatment at 20 degreesC in a pattern generally supporting that indicated by the seven landmark residues cited above. Cross-link formation was not observed between helix-1 of subunit c and helix-4 of subunit a in 19 additional combinations of doubly Cys-substituted proteins. These results provide direct chemical evidence that helix-2 of subunit c and helix-4 of subunit a pack close enough to each other in the membrane to interact during function. The proximity of helices supports the possibility of an interaction between Arg210 in helix-4 of subunit a and Asp61 in helix-2 of subunit c during proton translocation, as has been suggested previously.
Collapse
Affiliation(s)
- W Jiang
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, WI 53706, USA
| | | |
Collapse
|
43
|
Dibrov P, Fliegel L. Comparative molecular analysis of Na+/H+ exchangers: a unified model for Na+/H+ antiport? FEBS Lett 1998; 424:1-5. [PMID: 9537504 DOI: 10.1016/s0014-5793(98)00119-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite 30 years of study on Na+/H+ exchange, the molecular mechanisms of antiport remain obscure. Most challenging, the identity of amino acids involved in binding transported cations is still unknown. We review data examining the identity of residues that are involved in cation binding and translocation of prokaryotic and eukaryotic Na+/H+ antiporters. Several polar residues specifically distributed within or immediately adjacent to membrane spanning regions are implicated as being important. These key amino acids are conserved in prokaryotes and in some lower eukaryotic forms of the Na+/ H+ antiporter, despite their being dispersed throughout the protein and despite an overall low similarity in the linear sequence of these Na+/H+ antiporters. We suggest that this conservation of isolated residues (together with distances between them) reflects a general physicochemical mechanism of cation binding by exchangers. The binding could be based on coordination of the substrate cation by a crown ether-like cluster of polar atomic groups amino acids, as has been hypothesized by Boyer. Traditional screening for the extended, highly conserved linear protein sequences might not be applicable when searching for functional domains of ion transporters. Three-dimensional constellations of polar residues (3D-motifs) may be evolutionary conserved rather than linear primary sequence.
Collapse
Affiliation(s)
- P Dibrov
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
44
|
Kaim G, Matthey U, Dimroth P. Mode of interaction of the single a subunit with the multimeric c subunits during the translocation of the coupling ions by F1F0 ATPases. EMBO J 1998; 17:688-95. [PMID: 9450994 PMCID: PMC1170418 DOI: 10.1093/emboj/17.3.688] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have recently isolated a mutant (aK220R, aV264E, aI278N) of the Na+-translocating Escherichia coli/Propionigenium modestum ATPase hybrid with a Na+-inhibited growth phenotype on succinate. ATP hydrolysis by the reconstituted mutant ATPase was inhibited by external (N side) NaCl but not by internal (P side) NaCl. In contrast, LiCl activated the ATPase from the N side and inhibited it from the P side. A similar pattern of activation and inhibition was observed with NaCl and the ATPase from the parent strain PEF42. We conclude from these results that the binding sites for the coupling ions on the c subunits are freely accessible from the N side. Upon occupation of these sites, the ATPase becomes more active, provided that the ions can be further translocated to the P side through a channel of the a subunit. If by mutation of the a subunit this channel becomes impermeable for Na+, N side Na+ ions specifically inhibit the ATPase activity. These conclusions were corroborated by the observation that proton transport into proteoliposomes containing the mutant ATPase was abolished by N side but not by P side Na+ ions. In contrast, LiCl affected proton translocation from either side, similar to the sidedness effect of Na+ ions on H+ transport by the parent hybrid ATPase. If the ATPase carrying the mutated a subunit was incubated with 22NaCl and ATP, 1 mol 22Na+/mol enzyme was occluded. With the parent hybrid ATPase, 22Na+ occlusion was not observed. The occluded 22Na+ could be removed from its tight binding site by 20 mM LiCl, while incubation with 20 mM NaCl was without effect. Li+ but not Na+ is therefore apparently able to pass through the mutated a subunit and make the entrapped Na+ ions accessible again to the aqueous environment. These results suggest an ion translocation mechanism through F0 that in the ATP hydrolysis mode involves binding of the coupling ions from the cytoplasm to the multiple c subunits, ATP-driven rotation to bring a Na+, Li+, or H+-loaded c subunit into a contact site with the a subunit and release of the coupling ions through the a subunit channel to the periplasmic surface of the membrane.
Collapse
Affiliation(s)
- G Kaim
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Schmelzbergstr. 7, CH-8092 Zürich, Switzerland
| | | | | |
Collapse
|
45
|
West IC. Ligand conduction and the gated-pore mechanism of transmembrane transport. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1331:213-34. [PMID: 9512653 DOI: 10.1016/s0304-4157(97)00007-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- I C West
- University of Newcastle upon Tyne, Department of Biochemistry and Genetics, Medical School, UK.
| |
Collapse
|
46
|
Jorgensen PL, Rasmussen JH, Nielsen JM, Pedersen PA. Transport-linked conformational changes in Na,K-ATPase. Structure-function relationships of ligand binding and E1-E2 conformational transitions. Ann N Y Acad Sci 1997; 834:161-74. [PMID: 9405805 DOI: 10.1111/j.1749-6632.1997.tb52248.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- P L Jorgensen
- Biomembrane Research Centre, August Krogh Institute, Copenhagen University, Denmark.
| | | | | | | |
Collapse
|
47
|
Matthey U, Kaim G, Dimroth P. Subunit c from the sodium-ion-translocating F1F0-ATPase of Propionigenium modestum--production, purification and properties of the protein in dodecylsulfate solution. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:820-5. [PMID: 9288903 DOI: 10.1111/j.1432-1033.1997.t01-1-00820.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Escherichia coli strain PEF42 produces a sodium-ion-dependent hybrid F1F0-ATPase consisting of the Propionigenium modestum subunits a, b, c and delta, of a hybrid alpha subunit and of the E. coli subunits beta, gamma and epsilon. The gene encoding subunit c of the P. modestum F1F0-ATPase was cloned into the pT7-7 expression vector to yield plasmid pT7c. E. coli PEF42 was transformed with plasmid pT7c together with plasmid pGP1-2, which harbours the gene for the T7 RNA polymerase. The production of the P. modestum subunit c was induced by a temperature shift from 30 degrees C to 42 degrees C for 30 min and led to an increased concentration of this protein in the membrane of the host strain. The c subunit produced in E. coli moved as a monomer in dodecylsulfate electrophoresis. The protein was extracted from the cells with chloroform/methanol, purified and incorporated into sodium dodecylsulfate micelles. Circular dichroism of subunit c in sodium dodecylsulfate showed a temperature-stable spectrum (between 20-60 degrees C) with a high proportion of alpah-helical structure. Upon incubation of subunit c with [14C]dicyclohexylcarbodiimide the protein became labelled in a sodium-ion-dependent manner, similar to the labelling observed if the purified F1F0-ATPase of P. modestum, was treated with the radioactive carbodiimide. The Na+-specific site was therefore retained in the isolated c subunit dissolved in dodecylsulfate.
Collapse
Affiliation(s)
- U Matthey
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | |
Collapse
|
48
|
Abstract
A model is described of a dodecameric complex consisting of the integral membrane component subunit c of the H+-transporting Fo domain of Escherichia coli F-ATPase. A high-resolution partial structure of monomeric subunit c resulting from 1H-NMR studies [1] was used for constructing the model. The validity of the proposed arrangement of protomers in the dodecameric complex was tested by amino acid substitution analysis and chemical, biochemical and genetic data on subunit c.
Collapse
Affiliation(s)
- G Groth
- Heinrich-Heine-Universität Düsseldorf, Biochemie der Pflanzen, Germany.
| | | |
Collapse
|
49
|
Abstract
The vacuolar H+-ATPase (V-ATPase) is a universal component of eukaryotic organisms. It is present in the membranes of many organelles, where its proton-pumping action creates the low intra-vacuolar pH found, for example, in lysosomes. In addition, there are a number of differentiated cell types that have V-ATPases on their surface that contribute to the physiological functions of these cells. The V-ATPase is a multi-subunit enzyme composed of a membrane sector and a cytosolic catalytic sector. It is related to the familiar FoF1 ATP synthase (F-ATPase), having the same basic architectural construction, and many of the subunits from the two display identity with one another. All the core subunits of the V-ATPase have now been identified and much is known about the assembly, regulation and pharmacology of the enzyme. Recent genetic analysis has shown the V-ATPase to be a vital component of higher eukaryotes. At least one of the subunits, i.e. subunit c (ductin), may have multifunctional roles in membrane transport, providing a possible pathway of communication between cells. The structure of the membrane sector is known in some detail, and it is possible to begin to suggest how proton pumping is coupled to ATP hydrolysis.
Collapse
Affiliation(s)
- M E Finbow
- CRC Beatson Laboratories, Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, U.K
| | | |
Collapse
|
50
|
Abstract
The structure of the core catalytic unit of ATP synthase, alpha 3 beta 3 gamma, has been determined by X-ray crystallography, revealing a roughly symmetrical arrangement of alternating alpha and beta subunits around a central cavity in which helical portions of gamma are found. A low-resolution structural model of F0, based on electron spectroscopic imaging, locates subunit a and the two copies of subunit b outside of a subunit c oligomer. The structures of individual subunits epsilon and c (largely) have been solved by NMR spectroscopy, but the oligomeric structure of c is still unknown. The structures of subunits a and delta remain undefined, that of b has not yet been defined but biochemical evidence indicates a credible model. Subunits gamma, epsilon, b, and delta are at the interface between F1 and F0; gamma epsilon complex forms one element of the stalk, interacting with c at the base and alpha and beta at the top. The locations of b and delta are less clear. Elucidation of the structure F0, of the stalk, and of the entire F1F0 remains a challenging goal.
Collapse
Affiliation(s)
- J Weber
- Department of Biochemistry, University of Rochester Medical Center, NY 14642, USA
| | | |
Collapse
|