1
|
Torres A, Michea MA, Végvári Á, Arce M, Pérez V, Alcota M, Morales A, Vernal R, Budini M, Zubarev RA, González FE. A multi-platform analysis of human gingival crevicular fluid reveals ferroptosis as a relevant regulated cell death mechanism during the clinical progression of periodontitis. Int J Oral Sci 2024; 16:43. [PMID: 38802345 PMCID: PMC11130186 DOI: 10.1038/s41368-024-00306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Ferroptosis is implicated in the pathogenesis of numerous chronic-inflammatory diseases, yet its association with progressive periodontitis remains unexplored. To investigate the involvement and significance of ferroptosis in periodontitis progression, we assessed sixteen periodontitis-diagnosed patients. Disease progression was clinically monitored over twelve weeks via weekly clinical evaluations and gingival crevicular fluid (GCF) collection was performed for further analyses. Clinical metrics, proteomic data, in silico methods, and bioinformatics tools were combined to identify protein profiles linked to periodontitis progression and to explore their potential connection with ferroptosis. Subsequent western blot analyses validated key findings. Finally, a single-cell RNA sequencing (scRNA-seq) dataset (GSE164241) for gingival tissues was analyzed to elucidate cellular dynamics during periodontitis progression. Periodontitis progression was identified as occurring at a faster rate than traditionally thought. GCF samples from progressing and non-progressing periodontal sites showed quantitative and qualitatively distinct proteomic profiles. In addition, specific biological processes and molecular functions during progressive periodontitis were revealed and a set of hub proteins, including SNCA, CA1, HBB, SLC4A1, and ANK1 was strongly associated with the clinical progression status of periodontitis. Moreover, we found specific proteins - drivers or suppressors - associated with ferroptosis (SNCA, FTH1, HSPB1, CD44, and GCLC), revealing the co-occurrence of this specific type of regulated cell death during the clinical progression of periodontitis. Additionally, the integration of quantitative proteomic data with scRNA-seq analysis suggested the susceptibility of fibroblasts to ferroptosis. Our analyses reveal proteins and processes linked to ferroptosis for the first time in periodontal patients, which offer new insights into the molecular mechanisms of progressive periodontal disease. These findings may lead to novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Alfredo Torres
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago, Chile
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - M Angélica Michea
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Marion Arce
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Valentina Pérez
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Marcela Alcota
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Alicia Morales
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Rolando Vernal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Mauricio Budini
- Laboratory of Cellular and Molecular Pathology, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Roman A Zubarev
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Fermín E González
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago, Chile.
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile.
| |
Collapse
|
2
|
Abstract
In this comprehensive review, we will dissect the impact of research on proteoglycans focusing on recent developments involved in their synthesis, degradation, and interactions, while critically assessing their usefulness in various biological processes. The emerging roles of proteoglycans in global infections, specifically the SARS-CoV-2 pandemic, and their rising functions in regenerative medicine and biomaterial science have significantly affected our current view of proteoglycans and related compounds. The roles of proteoglycans in cancer biology and their potential use as a next-generation protein-based adjuvant therapy to combat cancer is also emerging as a constructive and potentially beneficial therapeutic strategy. We will discuss the role of proteoglycans in selected and emerging areas of proteoglycan science, such as neurodegenerative diseases, autophagy, angiogenesis, cancer, infections and their impact on mammalian diseases.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
3
|
Kubo E, Shibata S, Shibata T, Sasaki H, Singh DP. Role of Decorin in the Lens and Ocular Diseases. Cells 2022; 12:cells12010074. [PMID: 36611867 PMCID: PMC9818407 DOI: 10.3390/cells12010074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Decorin is an archetypal member of the small leucine-rich proteoglycan gene family and is involved in various biological functions and many signaling networks, interacting with extra-cellular matrix (ECM) components, growth factors, and receptor tyrosine kinases. Decorin also modulates the growth factors, cell proliferation, migration, and angiogenesis. It has been reported to be involved in many ischemic and fibrotic eye diseases, such as congenital stromal dystrophy of the cornea, anterior subcapsular fibrosis of the lens, proliferative vitreoretinopathy, et al. Furthermore, recent evidence supports its role in secondary posterior capsule opacification (PCO) after cataract surgery. The expression of decorin mRNA in lens epithelial cells in vitro was found to decrease upon transforming growth factor (TGF)-β-2 addition and increase upon fibroblast growth factor (FGF)-2 addition. Wound healing of the injured lens in mice transgenic for lens-specific human decorin was promoted by inhibiting myofibroblastic changes. Decorin may be associated with epithelial-mesenchymal transition and PCO development in the lens. Gene therapy and decorin administration have the potential to serve as excellent therapeutic approaches for modifying impaired wound healing, PCO, and other eye diseases related to fibrosis and angiogenesis. In this review, we present findings regarding the roles of decorin in the lens and ocular diseases.
Collapse
Affiliation(s)
- Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 920-0293, Ishikawa, Japan
- Correspondence: ; Tel.: +81-76-286-2211 (ext. 3412); Fax: +81-76-286-1010
| | - Shinsuke Shibata
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 920-0293, Ishikawa, Japan
| | - Teppei Shibata
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 920-0293, Ishikawa, Japan
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 920-0293, Ishikawa, Japan
| | - Dhirendra P. Singh
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
4
|
The Role of Decorin in Autoimmune and Inflammatory Diseases. J Immunol Res 2022; 2022:1283383. [PMID: 36033387 PMCID: PMC9402370 DOI: 10.1155/2022/1283383] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/17/2022] Open
Abstract
Decorin is an extracellular matrix protein that belongs to the family of small leucine-rich proteoglycans. As a matrix protein, the first discovered role of decorin is participating in collagen fibril formation. Many other functions of decorin in various biological processes have been subsequently identified. Decorin is involved in an extensive signaling network and can interact with other extracellular matrix components, growth factors, receptor tyrosine kinases, and various proteases. Decorin has been shown to be involved in wound repair, cell cycle, angiogenesis, tumor metastasis, and autophagy. Recent evidence indicates that it also plays a role in immune regulation and inflammatory diseases. This review summarizes the characteristics of decorin in immune and inflammatory diseases, including inflammatory bowel disease (IBD), Sjögren's syndrome (SS), chronic obstructive pulmonary disease (COPD), IgA nephropathy, rheumatoid arthritis (RA), spondyloarthritis (SpA), osteoarthritis, multiple sclerosis (MS), idiopathic inflammatory myopathies (IIM), and systemic sclerosis (SSc) and discusses the potential role in these disorders.
Collapse
|
5
|
Xie C, Mondal DK, Ulas M, Neill T, Iozzo RV. Oncosuppressive roles of decorin through regulation of multiple receptors and diverse signaling pathways. Am J Physiol Cell Physiol 2022; 322:C554-C566. [PMID: 35171698 PMCID: PMC8917911 DOI: 10.1152/ajpcell.00016.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Decorin is a stromal-derived prototype member of the small leucine-rich proteoglycan gene family. In addition to its functions as a regulator of collagen fibrillogenesis and TGF-β activity soluble decorin acts as a pan-receptor tyrosine kinase (RTK) inhibitor. Decorin binds to various RTKs including EGFR HER2 HGFR/Met VEGFR2 TLR and IGFR. Although the molecular mechanism for the action of decorin on these receptors is not entirely elucidated overall decorin evokes transient activation of these receptors with suppression of downstream signaling cascades culminating in growth inhibition followed by their physical downregulation via caveosomal internalization and degradation. In the case of Met decorin leads to decreased β-catenin signaling pathway and growth suppression. As most of these RTKs are responsible for providing a growth advantage to cancer cells the result of decorin treatment is oncosuppression. Another decorin-driven mechanism to restrict cancer growth and dissemination is by impeding angiogenesis via vascular endothelial growth factor receptor 2 (VEGFR2) and the concurrent activation of protracted endothelial cell autophagy. In this review we will dissect the multiple roles of decorin in cancer biology and its potential use as a next-generation protein-based adjuvant therapy to combat cancer.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dipon K. Mondal
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mikdat Ulas
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Baghy K, Reszegi A, Horváth Z, Kovalszky I. The Role of Decorin in Cancer. BIOLOGY OF EXTRACELLULAR MATRIX 2022:23-47. [DOI: 10.1007/978-3-030-99708-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Down-Regulation of the Proteoglycan Decorin Fills in the Tumor-Promoting Phenotype of Ionizing Radiation-Induced Senescent Human Breast Stromal Fibroblasts. Cancers (Basel) 2021; 13:cancers13081987. [PMID: 33924197 PMCID: PMC8074608 DOI: 10.3390/cancers13081987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Ionizing radiation (a typical remedy for breast cancer) results in the premature senescence of the adjacent to the neoplastic cells stromal fibroblasts. Here, we showed that these senescent fibroblasts are characterized by the down-regulation of the small leucine-rich proteoglycan decorin, a poor prognostic factor for the progression of the disease. Decorin down-regulation is mediated by secreted growth factors in an autocrine and paracrine (due to the interaction with breast cancer cells) manner, with bFGF and VEGF being the key players of this regulation in young and senescent breast stromal fibroblasts. Autophagy activation increases decorin mRNA levels, indicating that impaired autophagy is implicated in the reduction in decorin in this cell model. Decorin down-regulation acts additively to the already tumor-promoting phenotype of ionizing radiation-induced prematurely senescent human stromal fibroblasts, confirming that stromal senescence is a side-effect of radiotherapy that should be taken into account in the design of anticancer treatments. Abstract Down-regulation of the small leucine-rich proteoglycan decorin in the stroma is considered a poor prognostic factor for breast cancer progression. Ionizing radiation, an established treatment for breast cancer, provokes the premature senescence of the adjacent to the tumor stromal fibroblasts. Here, we showed that senescent human breast stromal fibroblasts are characterized by the down-regulation of decorin at the mRNA and protein level, as well as by its decreased deposition in the pericellular extracellular matrix in vitro. Senescence-associated decorin down-regulation is a long-lasting process rather than an immediate response to γ-irradiation. Growth factors were demonstrated to participate in an autocrine manner in decorin down-regulation, with bFGF and VEGF being the critical mediators of the phenomenon. Autophagy inhibition by chloroquine reduced decorin mRNA levels, while autophagy activation using the mTOR inhibitor rapamycin enhanced decorin transcription. Interestingly, the secretome from a series of both untreated and irradiated human breast cancer cell lines with different molecular profiles inhibited decorin expression in young and senescent stromal fibroblasts, which was annulled by SU5402, a bFGF and VEGF inhibitor. The novel phenotypic trait of senescent human breast stromal fibroblasts revealed here is added to their already described cancer-promoting role via the formation of a tumor-permissive environment.
Collapse
|
8
|
Jyothsna KM, Sarkar P, Jha KK, A S LK, Raghunathan V, Bhat R. A biphasic response of polymerized Type 1 collagen architectures to dermatan sulfate. J Biomed Mater Res A 2021; 109:1646-1656. [PMID: 33687134 DOI: 10.1002/jbm.a.37160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 01/31/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022]
Abstract
Collagen I, the most abundant extracellular matrix (ECM) protein in vertebrate tissues provides mechanical durability to tissue microenvironments and regulates cell function. Its fibrillogenesis in biological milieu is predominantly regulated by dermatan sulfate proteoglycans, proteins conjugated with iduronic acid-containing dermatan sulfate (DS) glycosaminoglycans (GAG). Although DS is known to regulate tissue function through its modulation of Coll I architecture, a precise understanding of the latter remains elusive. We investigated this problem by visualizing the fibrillar pattern of fixed Coll I gels polymerized in the presence of varying concentrations of DS using second harmonic generation microscopy. Measuring mean second harmonic generation signal (which estimates the ordering of the fibrils), and surface occupancy (which estimates the space occupied by fibrils) supported by confocal reflectance microscopy, our observations indicated that the effect on fibril pattern of DS is contextual upon the latter's concentrations: Lower levels of DS resulted in sparse disorganized fibrils; higher levels restore organization, with fibrils occupying greater space. An appropriate change in elasticity as a result of DS levels was also observed through atomic force microscopy. Examination of dye-based GAG staining and scanning electron microscopy suggested distinct constitutions of Coll I gels when polymerized with higher and lower levels of DS. We observed that adhesion of the invasive ovarian cancer cells SKOV3 decreased for lower DS levels but was partially restored at higher DS levels. Our study shows how the Coll I gel pattern-tuning of DS is of relevance for understanding its biomaterial applications and possibly, pathophysiological functions.
Collapse
Affiliation(s)
- Konkada Manattayil Jyothsna
- Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Purba Sarkar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Keshav Kumar Jha
- Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore, Karnataka, India.,Department of Functional Interfaces, Leibniz Institute of Photonic Technology, Jena, Germany
| | - Lal Krishna A S
- Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Varun Raghunathan
- Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ramray Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
9
|
Mao L, Yang J, Yue J, Chen Y, Zhou H, Fan D, Zhang Q, Buraschi S, Iozzo RV, Bi X. Decorin deficiency promotes epithelial-mesenchymal transition and colon cancer metastasis. Matrix Biol 2020; 95:1-14. [PMID: 33065248 DOI: 10.1016/j.matbio.2020.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022]
Abstract
The tumor microenvironment encompasses a complex cellular network that includes cancer-associated fibroblasts, inflammatory cells, neo-vessels, and an extracellular matrix enriched in angiogenic growth factors. Decorin is one of the main components of the tumor stroma, but it is not expressed by cancer cells. Lack of this proteoglycan correlates with down-regulation of E-cadherin and induction of β-catenin signaling. In this study, we investigated the role of a decorin-deficient tumor microenvironment in colon carcinoma progression and metastasis. We utilized an established model of colitis-associated cancer by administering Azoxymethane/Dextran sodium sulfate to adult wild-type and Dcn-/- mice. We discovered that after 12 weeks, all the animals developed intestinal tumors independently of their genotype. However, the number of intestinal neoplasms was significantly higher in the Dcn-/- microenvironment vis-à-vis wild-type mice. Mechanistically, we found that under unchallenged basal conditions, the intestinal epithelium of the Dcn-/- mice showed a significant increase in the protein levels of epithelial-mesenchymal transition associated factors including Snail, Slug, Twist, and MMP2. In comparison, in the colitis-associated cancer evoked in the Dcn-/- mice, we found that intercellular adhesion molecule 1 (ICAM-1) was also significantly increased, in parallel with epithelial-mesenchymal transition signaling pathway-related factors. Furthermore, a combined Celecoxib/decorin treatment revealed a promising therapeutic efficacy in treating human colorectal cancer cells, in decorin-deficient animals. Collectively, our results shed light on colorectal cancer progression and provide a protein-based therapy, i.e., treatment using recombinant decorin, to target the tumor microenvironment.
Collapse
Affiliation(s)
- Liping Mao
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Jinxue Yang
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Jiaxin Yue
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Yang Chen
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Hongrui Zhou
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Dongdong Fan
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Qiuhua Zhang
- Department of Pharmacology, Liaoning University of Traditional Chinese Medicine, Shenyang 110036, China
| | - Simone Buraschi
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States.
| | - Xiuli Bi
- College of Life Science, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
10
|
Baghy K, Reszegi A, Tátrai P, Kovalszky I. Decorin in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:17-38. [PMID: 32845500 DOI: 10.1007/978-3-030-48457-6_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The tumor microenvironment plays a determining role in cancer development through a plethora of interactions between the extracellular matrix and tumor cells. Decorin is a prototype member of the SLRP family found in a variety of tissues and is expressed in the stroma of various forms of cancer. Decorin has gained recognition for its essential roles in inflammation, fibrotic disorders, and cancer, and due to its antitumor properties, it has been proposed to act as a "guardian from the matrix." Initially identified as a natural inhibitor of transforming growth factor-β, soluble decorin is emerging as a pan-RTK inhibitor targeting a multitude of RTKs, including EGFR, Met, IGF-IR, VEGFR2, and PDGFR. Besides initiating signaling, decorin/RTK interaction can induce caveosomal internalization and receptor degradation. Decorin also triggers cell cycle arrest and apoptosis and evokes antimetastatic and antiangiogenic processes. In addition, as a novel regulatory mechanism, decorin was shown to induce conserved catabolic processes, such as endothelial cell autophagy and tumor cell mitophagy. Therefore, decorin is a promising candidate for combatting cancer, especially the cancer types heavily dependent on RTK signaling.
Collapse
Affiliation(s)
- Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| | - Andrea Reszegi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
11
|
Gáspár R, Gömöri K, Kiss B, Szántai Á, Pálóczi J, Varga ZV, Pipis J, Váradi B, Ágg B, Csont T, Ferdinandy P, Barteková M, Görbe A. Decorin Protects Cardiac Myocytes against Simulated Ischemia/Reperfusion Injury. Molecules 2020; 25:molecules25153426. [PMID: 32731559 PMCID: PMC7436189 DOI: 10.3390/molecules25153426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 01/13/2023] Open
Abstract
Search for new cardioprotective therapies is of great importance since no cardioprotective drugs are available on the market. In line with this need, several natural biomolecules have been extensively tested for their potential cardioprotective effects. Previously, we have shown that biglycan, a member of a diverse group of small leucine-rich proteoglycans, enhanced the expression of cardioprotective genes and decreased ischemia/reperfusion-induced cardiomyocyte death via a TLR-4 dependent mechanism. Therefore, in the present study we aimed to test whether decorin, a small leucine-rich proteoglycan closely related to biglycan, could exert cardiocytoprotection and to reveal possible downstream signaling pathways. Methods: Primary cardiomyocytes isolated from neonatal and adult rat hearts were treated with 0 (Vehicle), 1, 3, 10, 30 and 100 nM decorin as 20 h pretreatment and maintained throughout simulated ischemia and reperfusion (SI/R). In separate experiments, to test the mechanism of decorin-induced cardio protection, 3 nM decorin was applied in combination with inhibitors of known survival pathways, that is, the NOS inhibitor L-NAME, the PKG inhibitor KT-5823 and the TLR-4 inhibitor TAK-242, respectively. mRNA expression changes were measured after SI/R injury. Results: Cell viability of both neonatal and adult cardiomyocytes was significantly decreased due to SI/R injury. Decorin at 1, 3 and 10 nM concentrations significantly increased the survival of both neonatal and adult myocytes after SI/R. At 3nM (the most pronounced protective concentration), it had no effect on apoptotic rate of neonatal cardiac myocytes. No one of the inhibitors of survival pathways (L-NAME, KT-5823, TAK-242) influenced the cardiocytoprotective effect of decorin. MYND-type containing 19 (Zmynd19) and eukaryotic translation initiation factor 4E nuclear import factor 1 (Eif4enif1) were significantly upregulated due to the decorin treatment. In conclusion, this is the first demonstration that decorin exerts a direct cardiocytoprotective effect possibly independent of NO-cGMP-PKG and TLR-4 dependent survival signaling.
Collapse
Affiliation(s)
- Renáta Gáspár
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom ter 9, H-6720 Szeged, Hungary; (R.G.); (T.C.)
| | - Kamilla Gömöri
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, University of Szeged, Dom ter 12, H-6720 Szeged, Hungary; (K.G.); (Á.S.); (J.P.)
| | - Bernadett Kiss
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvarad ter 4, H-1089 Budapest, Hungary; (B.K.); (Z.V.V.); (B.V.); (B.Á.); (P.F.)
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Ágnes Szántai
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, University of Szeged, Dom ter 12, H-6720 Szeged, Hungary; (K.G.); (Á.S.); (J.P.)
| | - János Pálóczi
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, University of Szeged, Dom ter 12, H-6720 Szeged, Hungary; (K.G.); (Á.S.); (J.P.)
| | - Zoltán V. Varga
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvarad ter 4, H-1089 Budapest, Hungary; (B.K.); (Z.V.V.); (B.V.); (B.Á.); (P.F.)
| | - Judit Pipis
- Pharmahungary Group, Hajnoczy utca 6, H-6722 Szeged, Hungary;
| | - Barnabás Váradi
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvarad ter 4, H-1089 Budapest, Hungary; (B.K.); (Z.V.V.); (B.V.); (B.Á.); (P.F.)
| | - Bence Ágg
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvarad ter 4, H-1089 Budapest, Hungary; (B.K.); (Z.V.V.); (B.V.); (B.Á.); (P.F.)
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
- Pharmahungary Group, Hajnoczy utca 6, H-6722 Szeged, Hungary;
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom ter 9, H-6720 Szeged, Hungary; (R.G.); (T.C.)
| | - Péter Ferdinandy
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvarad ter 4, H-1089 Budapest, Hungary; (B.K.); (Z.V.V.); (B.V.); (B.Á.); (P.F.)
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
- Pharmahungary Group, Hajnoczy utca 6, H-6722 Szeged, Hungary;
| | - Monika Barteková
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovak
- Institute of Physiology, Comenius University in Bratislava, Sasinkova 2, 813 72 Bratislava, Slovak
- Correspondence: (M.B.); (A.G.)
| | - Anikó Görbe
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, University of Szeged, Dom ter 12, H-6720 Szeged, Hungary; (K.G.); (Á.S.); (J.P.)
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvarad ter 4, H-1089 Budapest, Hungary; (B.K.); (Z.V.V.); (B.V.); (B.Á.); (P.F.)
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
- Pharmahungary Group, Hajnoczy utca 6, H-6722 Szeged, Hungary;
- Correspondence: (M.B.); (A.G.)
| |
Collapse
|
12
|
Pessentheiner AR, Ducasa GM, Gordts PLSM. Proteoglycans in Obesity-Associated Metabolic Dysfunction and Meta-Inflammation. Front Immunol 2020; 11:769. [PMID: 32508807 PMCID: PMC7248225 DOI: 10.3389/fimmu.2020.00769] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Proteoglycans are a specific subset of glycoproteins found at the cell surface and in the extracellular matrix, where they interact with a plethora of proteins involved in metabolic homeostasis and meta-inflammation. Over the last decade, new insights have emerged on the mechanism and biological significance of these interactions in the context of diet-induced disorders such as obesity and type-2 diabetes. Complications of energy metabolism drive most diet-induced metabolic disorders, which results in low-grade chronic inflammation, thereby affecting proper function of many vital organs involved in energy homeostasis, such as the brain, liver, kidney, heart and adipose tissue. Here, we discuss how heparan, chondroitin and keratan sulfate proteoglycans modulate obesity-induced metabolic dysfunction and low-grade inflammation that impact the initiation and progression of obesity-associated morbidities.
Collapse
Affiliation(s)
- Ariane R. Pessentheiner
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
| | - G. Michelle Ducasa
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
| | - Philip L. S. M. Gordts
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
13
|
Reszegi A, Horváth Z, Fehér H, Wichmann B, Tátrai P, Kovalszky I, Baghy K. Protective Role of Decorin in Primary Hepatocellular Carcinoma. Front Oncol 2020; 10:645. [PMID: 32477937 PMCID: PMC7235294 DOI: 10.3389/fonc.2020.00645] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/07/2020] [Indexed: 01/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents one of the most frequent type of primary liver cancers. Decorin, a small leucine-rich proteoglycan of the extracellular matrix, represents a powerful tumor cell growth and migration inhibitor by hindering receptor tyrosine kinases and inducing p21WAF1/CIP1. In this study, first we tested decorin expression in HCCs utilizing in silico data, as well as formalin fixed paraffin embedded tissue samples of HCC in a tissue microarray (TMA). In silico data revealed that DCN/SMA mRNA ratio is decreased in HCC compared to normal tissues and follows the staging of the disease. Among TMA samples, 52% of HCCs were decorin negative, 33% exhibited low, and 15% high decorin levels corroborating in silico results. In addition, applying conditioned media of hepatoma cells inhibited decorin expression in LX2 stellate cells in vitro. These results raise the possibility that decorin acts as a tumor suppressor in liver cancer and that is why its expression decreased in HCCs. To further test the protective role of decorin, the proteoglycan was overexpressed in a mouse model of hepatocarcinogenesis evoked by thioacetamide (TA). After transfection, the excessive proteoglycan amount was mainly detected in hepatocytes around the central veins. Upon TA-induced hepatocarcinogenesis, the highest tumor count was observed in mice with no decorin production. Decorin gene delivery reduced tumor formation, in parallel with decreased pEGFR, increased pIGF1R levels, and with concomitant induction of pAkt (T308) and phopho-p53, suggesting a novel mechanism of action. Our results suggest the idea that decorin can be utilized as an anti-cancer agent.
Collapse
Affiliation(s)
- Andrea Reszegi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsolt Horváth
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Hajnalka Fehér
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Barnabás Wichmann
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | | | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
14
|
Jiang N, Zhang Q, Chau MK, Yip MS, Lui SL, Liu S, Chu KM, Ngan HY, Chan TM, Yung S. Anti-fibrotic effect of decorin in peritoneal dialysis and PD-associated peritonitis. EBioMedicine 2020; 52:102661. [PMID: 32062358 PMCID: PMC7016379 DOI: 10.1016/j.ebiom.2020.102661] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/11/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Progressive peritoneal fibrosis is a common complication in patients on long-term peritoneal dialysis (PD). PD-associated peritonitis is a major exacerbating factor. We investigated the anti-fibrotic properties of decorin secreted by peritoneal mesothelial cells. METHODS Dialysate decorin level in stable PD patients and those with peritonitis was measured. In vitro experiments were conducted to investigate the effect of decorin in fibrotic response in human peritoneal mesothelial cells (HPMC). FINDINGS Increasing PD duration was associated with a progressive decrease of dialysate decorin and CA125 levels. Dialysate decorin level correlated with CA125 level. Peritonitis episodes were associated with a massive drop of dialysate decorin, which persisted for over three months despite clinical recovery. Dialysate decorin level correlated with that of TGF-β1, but was inversely related to IL-1β and IL-8. TGF-β1, IL-1β, IL-6, IL-8, or TNF-α reduced decorin secretion in HPMC, but induced fibronectin expression. The effects were mediated in part through increased p38 MAPK and AKT/PI3K phosphorylation. Decorin abrogated the induction of fibronectin expression in mesothelial cells by PD fluids or pro-fibrotic cytokines, through decreased TGF-βRI, p38 MAPK and AKT/PI3K phosphorylation and increased glycogen synthase kinase-3β phosphorylation. Decorin gene-silencing resulted in increased fibronectin expression under these conditions. INTERPRETATION Our data demonstrate anti-fibrotic actions of decorin in HPMC, when these cells are subjected to the pro-fibrotic effect of peritoneal dialysate and pro-fibrotic cytokines in PD, especially during peritonitis.
Collapse
Affiliation(s)
- Na Jiang
- Department of Medicine, The University of Hong Kong, Hong Kong; Department of Nephrology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Zhang
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Mel Km Chau
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Ming S Yip
- Department of Medicine, The University of Hong Kong, Hong Kong
| | | | | | - Kent Man Chu
- Department of Surgery, The University of Hong Kong, Hong Kong
| | | | - Tak Mao Chan
- Department of Medicine, The University of Hong Kong, Hong Kong.
| | - Susan Yung
- Department of Medicine, The University of Hong Kong, Hong Kong.
| |
Collapse
|
15
|
Bazzichetto C, Conciatori F, Luchini C, Simionato F, Santoro R, Vaccaro V, Corbo V, Falcone I, Ferretti G, Cognetti F, Melisi D, Scarpa A, Ciuffreda L, Milella M. From Genetic Alterations to Tumor Microenvironment: The Ariadne's String in Pancreatic Cancer. Cells 2020; 9:cells9020309. [PMID: 32012917 PMCID: PMC7072496 DOI: 10.3390/cells9020309] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Abstract
The threatening notoriety of pancreatic cancer mainly arises from its negligible early diagnosis, highly aggressive progression, failure of conventional therapeutic options and consequent very poor prognosis. The most important driver genes of pancreatic cancer are the oncogene KRAS and the tumor suppressors TP53, CDKN2A, and SMAD4. Although the presence of few drivers, several signaling pathways are involved in the oncogenesis of this cancer type, some of them with promising targets for precision oncology. Pancreatic cancer is recognized as one of immunosuppressive phenotype cancer: it is characterized by a fibrotic-desmoplastic stroma, in which there is an intensive cross-talk between several cellular (e.g., fibroblasts, myeloid cells, lymphocytes, endothelial, and myeloid cells) and acellular (collagen, fibronectin, and soluble factors) components. In this review; we aim to describe the current knowledge of the genetic/biological landscape of pancreatic cancer and the composition of its tumor microenvironment; in order to better direct in the intrinsic labyrinth of this complex tumor type. Indeed; disentangling the genetic and molecular characteristics of cancer cells and the environment in which they evolve may represent the crucial step towards more effective therapeutic strategies
Collapse
Affiliation(s)
- Chiara Bazzichetto
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Fabiana Conciatori
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
- Correspondence: ; Tel.: +39-06-52665185
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy;
| | - Francesca Simionato
- Division of Oncology, University of Verona, 37126 Verona, Italy; (F.S.); (M.M.)
| | - Raffaela Santoro
- Medicine-Digestive Molecular Clinical Oncology Research Unit, University of Verona, 37126 Verona, Italy; (R.S.); (D.M.)
| | - Vanja Vaccaro
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Vincenzo Corbo
- ARC-Net Research Centre, University and Hospital Trust of Verona, 37126 Verona, Italy; (V.C.); (A.S.)
| | - Italia Falcone
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Gianluigi Ferretti
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Francesco Cognetti
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Davide Melisi
- Medicine-Digestive Molecular Clinical Oncology Research Unit, University of Verona, 37126 Verona, Italy; (R.S.); (D.M.)
| | - Aldo Scarpa
- ARC-Net Research Centre, University and Hospital Trust of Verona, 37126 Verona, Italy; (V.C.); (A.S.)
| | - Ludovica Ciuffreda
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Michele Milella
- Division of Oncology, University of Verona, 37126 Verona, Italy; (F.S.); (M.M.)
| |
Collapse
|
16
|
Marsi TCO, Ricci R, Toniato TV, Vasconcellos LMR, Elias CDMV, Silva ADR, Furtado ASA, Magalhães LSSM, Silva-Filho EC, Marciano FR, Zille A, Webster TJ, Lobo AO. Electrospun Nanofibrous Poly (Lactic Acid)/Titanium Dioxide Nanocomposite Membranes for Cutaneous Scar Minimization. Front Bioeng Biotechnol 2019; 7:421. [PMID: 31921824 PMCID: PMC6932955 DOI: 10.3389/fbioe.2019.00421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/29/2019] [Indexed: 11/16/2022] Open
Abstract
Poly (lactic acid) (PLA) has been increasingly used in cutaneous tissue engineering due to its low cost, ease of handling, biodegradability, and biocompatibility, as well as its ability to form composites. However, these polymers possess a structure with nanoporous that mimic the cellular environment. In this study, nanocomposites are prepared using PLA and titanium dioxide (TiO2) (10 and 35%-w/w) nanoparticles that also function as an active anti-scarring agent. The nanocomposites were prepared using an electrospinning technique. Three different solutions were prepared as follows: PLA, 10% PLA/TiO2, and 35% PLA/TiO2 (w/w%). Electrospun PLA and PLA/TiO2 nanocomposites were characterized morphologically, structurally, and chemically using electron scanning microscopy, transmission electron microscopy, goniometry, and X-ray diffraction. L929 fibroblast cells were used for in vitro tests. The cytotoxic effect was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Versicam (VCAN), biglicam (BIG), interleukin-6 (IL6), interleukin-10 (IL-10), and type-1 collagen (COL1A1) genes were evaluated by RT-qPCR. In vivo tests using Wistar rats were conducted for up to 15 days. Nanofibrous fibers were obtained for all groups that did not contain residual solvents. No cytotoxic effects were observed for up to 168 h. The genes expressed showed the highest values of versican and collagen-1 (p < 0.05) for PLA/TiO2 nanocomposite scaffolds when compared to the control group (cells). Histological images showed that PLA at 10 and 35% w/w led to a discrete inflammatory infiltration and expression of many newly formed vessels, indicating increased metabolic activity of this tissue. To summarize, this study supported the potential of PLA/TiO2 nanocomposites ability to reduce cutaneous scarring in scaffolds.
Collapse
Affiliation(s)
- Teresa C. O. Marsi
- Institute of Research and Development, University of Vale Do Paraiba, São José dos Campos, Brazil
| | - Ritchelli Ricci
- Institute of Research and Development, University of Vale Do Paraiba, São José dos Campos, Brazil
| | - Tatiane V. Toniato
- Institute of Research and Development, University of Vale Do Paraiba, São José dos Campos, Brazil
| | - Luana M. R. Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, São Paulo, Brazil
| | | | | | - Andre S. A. Furtado
- LIMAV - Interdisciplinary Laboratory for Advanced Materials, Materials Science & Engineering Graduate Program, UFPI-Federal University of Piaui, Teresina, Brazil
| | - Leila S. S. M. Magalhães
- LIMAV - Interdisciplinary Laboratory for Advanced Materials, Materials Science & Engineering Graduate Program, UFPI-Federal University of Piaui, Teresina, Brazil
| | - Edson C. Silva-Filho
- LIMAV - Interdisciplinary Laboratory for Advanced Materials, Materials Science & Engineering Graduate Program, UFPI-Federal University of Piaui, Teresina, Brazil
| | | | - Andrea Zille
- Department of Textile Engineering, Centre for Textile Science and Technology, University of Minho, Guimarães, Portugal
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Anderson O. Lobo
- LIMAV - Interdisciplinary Laboratory for Advanced Materials, Materials Science & Engineering Graduate Program, UFPI-Federal University of Piaui, Teresina, Brazil
| |
Collapse
|
17
|
Han B, Li Q, Wang C, Patel P, Adams SM, Doyran B, Nia HT, Oftadeh R, Zhou S, Li CY, Liu XS, Lu XL, Enomoto-Iwamoto M, Qin L, Mauck RL, Iozzo RV, Birk DE, Han L. Decorin Regulates the Aggrecan Network Integrity and Biomechanical Functions of Cartilage Extracellular Matrix. ACS NANO 2019; 13:11320-11333. [PMID: 31550133 PMCID: PMC6892632 DOI: 10.1021/acsnano.9b04477] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Joint biomechanical functions rely on the integrity of cartilage extracellular matrix. Understanding the molecular activities that govern cartilage matrix assembly is critical for developing effective cartilage regeneration strategies. This study elucidated the role of decorin, a small leucine-rich proteoglycan, in the structure and biomechanical functions of cartilage. In decorin-null cartilage, we discovered a substantial reduction of aggrecan content, the major proteoglycan of cartilage matrix, and mild changes in collagen fibril nanostructure. This loss of aggrecan resulted in significantly impaired biomechanical properties of cartilage, including decreased modulus, elevated hydraulic permeability, and reduced energy dissipation capabilities. At the cellular level, we found that decorin functions to increase the retention of aggrecan in the neo-matrix of chondrocytes, rather than to directly influence the biosynthesis of aggrecan. At the molecular level, we demonstrated that decorin significantly increases the adhesion between aggrecan and aggrecan molecules and between aggrecan molecules and collagen II fibrils. We hypothesize that decorin plays a crucial structural role in mediating the matrix integrity and biomechanical functions of cartilage by providing physical linkages to increase the adhesion and assembly of aggrecan molecules at the nanoscale.
Collapse
Affiliation(s)
- Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Qing Li
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Pavan Patel
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Sheila M. Adams
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Basak Doyran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hadi T. Nia
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Ramin Oftadeh
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Siyuan Zhou
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Christopher Y. Li
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - X. Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - X. Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland 21201, United States
| | - Ling Qin
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Renato V. Iozzo
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - David E. Birk
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
18
|
Yamada T, Ohta K, Motooka Y, Fujino K, Kudoh S, Tenjin Y, Sato Y, Matsuo A, Ikeda K, Suzuki M, Ito T. Significance of Tsukushi in lung cancer. Lung Cancer 2019; 131:104-111. [DOI: 10.1016/j.lungcan.2019.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
|
19
|
Kabadi PK, Rodd AL, Simmons AE, Messier NJ, Hurt RH, Kane AB. A novel human 3D lung microtissue model for nanoparticle-induced cell-matrix alterations. Part Fibre Toxicol 2019; 16:15. [PMID: 30943996 PMCID: PMC6448215 DOI: 10.1186/s12989-019-0298-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/15/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Multi-walled carbon nanotubes (MWCNT) have been shown to elicit the release of inflammatory and pro-fibrotic mediators, as well as histopathological changes in lungs of exposed animals. Current standards for testing MWCNTs and other nanoparticles (NPs) rely on low-throughput in vivo studies to assess acute and chronic toxicity and potential hazard to humans. Several alternative testing approaches utilizing two-dimensional (2D) in vitro assays to screen engineered NPs have reported conflicting results between in vitro and in vivo assays. Compared to conventional 2D in vitro or in vivo animal model systems, three-dimensional (3D) in vitro platforms have been shown to more closely recapitulate human physiology, providing a relevant, more efficient strategy for evaluating acute toxicity and chronic outcomes in a tiered nanomaterial toxicity testing paradigm. RESULTS As inhalation is an important route of nanomaterial exposure, human lung fibroblasts and epithelial cells were co-cultured with macrophages to form scaffold-free 3D lung microtissues. Microtissues were exposed to multi-walled carbon nanotubes, M120 carbon black nanoparticles or crocidolite asbestos fibers for 4 or 7 days, then collected for characterization of microtissue viability, tissue morphology, and expression of genes and selected proteins associated with inflammation and extracellular matrix remodeling. Our data demonstrate the utility of 3D microtissues in predicting chronic pulmonary endpoints following exposure to MWCNTs or asbestos fibers. These test nanomaterials were incorporated into 3D human lung microtissues as visualized using light microscopy. Differential expression of genes involved in acute inflammation and extracellular matrix remodeling was detected using PCR arrays and confirmed using qRT-PCR analysis and Luminex assays of selected genes and proteins. CONCLUSION 3D lung microtissues provide an alternative testing platform for assessing nanomaterial-induced cell-matrix alterations and delineation of toxicity pathways, moving towards a more predictive and physiologically relevant approach for in vitro NP toxicity testing.
Collapse
Affiliation(s)
- Pranita K Kabadi
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA.,AstraZeneca, Gaithersburg, MD, 20878, USA
| | - April L Rodd
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA.
| | - Alysha E Simmons
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA
| | - Norma J Messier
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA
| | - Robert H Hurt
- School of Engineering, Brown University, Providence, Rhode Island, 02912, USA
| | - Agnes B Kane
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA.
| |
Collapse
|
20
|
Vu TT, Marquez J, Le LT, Nguyen ATT, Kim HK, Han J. The role of decorin in cardiovascular diseases: more than just a decoration. Free Radic Res 2018; 52:1210-1219. [PMID: 30468093 DOI: 10.1080/10715762.2018.1516285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Decorin (DCN) is a proteoglycan constituent of the extracellular matrix (ECM) possessing powerful antifibrotic, anti-inflammation, antioxidant, and antiangiogenic properties. By attaching to receptors in the cell surface or to several ECM molecules, it regulates plenty of cellular functions, consequently influencing cell differentiation, proliferation, and apoptosis. These processes are dependent on cell types, biological contexts, and interfere with pathological processes such as cardiovascular diseases. In this review, we briefly discuss the potential of DCN targeting in addressing cardiovascular diseases (CVD). We dive into its interactome and discuss how its interaction with the proteins can affect disease progression, and how DCN can be a possible target for CVD therapeutics.
Collapse
Affiliation(s)
- Thu Thi Vu
- a Faculty of Biology, National Key Laboratory of Enzyme and Protein Technology , VNU University of Science , Hanoi , Vietnam
| | - Jubert Marquez
- b National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,c National Research Laboratory for Mitochondrial Signaling, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea
| | - Long Thanh Le
- b National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,c National Research Laboratory for Mitochondrial Signaling, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea
| | - Anh Thi Tuyet Nguyen
- b National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,c National Research Laboratory for Mitochondrial Signaling, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea
| | - Hyoung Kyu Kim
- b National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,c National Research Laboratory for Mitochondrial Signaling, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,d Department of Integrated Biomedical Science , College of Medicine, Inje University , Busan , Korea
| | - Jin Han
- b National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,c National Research Laboratory for Mitochondrial Signaling, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea
| |
Collapse
|
21
|
Liao Y, Ivanova L, Zhu H, Plumer T, Hamby C, Mehta B, Gevertz A, Christiano AM, McGrath JA, Cairo MS. Cord Blood-Derived Stem Cells Suppress Fibrosis and May Prevent Malignant Progression in Recessive Dystrophic Epidermolysis Bullosa. Stem Cells 2018; 36:1839-1850. [PMID: 30247783 DOI: 10.1002/stem.2907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/06/2018] [Accepted: 08/09/2018] [Indexed: 12/26/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin fragility disorder caused by mutations in the Col7a1 gene. Patients with RDEB suffer from recurrent erosions in skin and mucous membranes and have a high risk for developing cutaneous squamous cell carcinoma (cSCCs). TGFβ signaling has been associated with fibrosis and malignancy in RDEB. In this study, the activation of TGFβ signaling was demonstrated in col7a1-/- mice as early as a week after birth starting in the interdigital folds of the paws, accompanied by increased deposition of collagen fibrils and elevated dermal expression of matrix metalloproteinase (MMP)-9 and MMP-13. Furthermore, human cord blood-derived unrestricted somatic stem cells (USSCs) that we previously demonstrated to significantly improve wound healing and prolong the survival of col7a1-/- mice showed the ability to suppress TGFβ signaling and MMP-9 and MMP-13 expression meanwhile upregulating anti-fibrotic TGFβ3 and decorin. In parallel, we cocultured USSCs in a transwell with RDEB patient-derived fibroblasts, keratinocytes, and cSCC, respectively. The patient-derived cells were constitutively active for STAT, but not TGFβ signaling. Moreover, the levels of MMP-9 and MMP-13 were significantly elevated in the patient derived-keratinocytes and cSCCs. Although USSC coculture did not inhibit STAT signaling, it significantly suppressed the secretion of MMP-9 and MMP-13, and interferon (IFN)-γ from RDEB patient-derived cells. Since epithelial expression of these MMPs is a biomarker of malignant transformation and correlates with the degree of tumor invasion, these results suggest a potential role for USSCs in mitigating epithelial malignancy, in addition to their anti-inflammatory and anti-fibrotic functions. Stem Cells 2018;36:1839-12.
Collapse
Affiliation(s)
- Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Larisa Ivanova
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Hongwen Zhu
- Department of Surgery, Tianjin Hospital, Tianjin Academy of Integrative Medicine, Tianjin, People's Republic of China
| | - Trevor Plumer
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Carl Hamby
- Department of Immunology & Microbiology, New York Medical College, Valhalla, New York
| | - Brinda Mehta
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Annie Gevertz
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Angela M Christiano
- Department of Dermatology, Columbia University Medical Center, New York, New York, USA
| | - John A McGrath
- St John's Institute of Dermatology, King's College, London, United Kingdom
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York.,Department of Immunology & Microbiology, New York Medical College, Valhalla, New York.,Department of Medicine, New York Medical College, Valhalla, New York.,Department of Pathology, New York Medical College, Valhalla, New York.,Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York
| |
Collapse
|
22
|
Nikaido T, Tanino Y, Wang X, Sato Y, Togawa R, Kikuchi M, Misa K, Saito K, Fukuhara N, Kawamata T, Rikimaru M, Umeda T, Morimoto J, Koizumi T, Suzuki Y, Hirai K, Uematsu M, Minemura H, Fukuhara A, Sato S, Saito J, Yokouchi H, Kanazawa K, Shibata Y. Serum decorin is a potential prognostic biomarker in patients with acute exacerbation of idiopathic pulmonary fibrosis. J Thorac Dis 2018; 10:5346-5358. [PMID: 30416782 DOI: 10.21037/jtd.2018.08.60] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Decorin is a small leucine-rich repeat proteoglycan that plays a critical role in collagen fibrillogenesis, and regulates inflammation, wound healing and angiogenesis. In idiopathic pulmonary fibrosis (IPF), decorin is expressed in fibrotic lesions; furthermore, intratracheal gene transfer of decorin has been demonstrated to inhibit bleomycin-induced pulmonary fibrosis. Although these results suggest the critical role of decorin in pulmonary fibrosis, the role of decorin in the acute exacerbation of idiopathic interstitial pneumonia (AE-IIP) has not been clarified in detail. Thus, the goal of this study was to determine the role of decorin in AE-IIP. Methods We retrospectively analyzed AE-IIP patients who had been admitted to our hospital. First, serum decorin levels were compared among patients with AE-IIP, patients with stable idiopathic interstitial pneumonia (SD-IIP), and healthy subjects. Next, the relationship between serum decorin levels and clinical parameters was analyzed in AE-IIP patients. Finally, the association between serum decorin levels and prognosis was evaluated in AE-IIP patients. IIP was divided into IPF and non-IPF, according to the published guidelines. Results The serum decorin levels of AE-IIP patients were significantly lower than those of both healthy subjects and SD-IIP patients. Serum decorin levels were not related with the clinical parameters and prognosis, when all IIP patients were analyzed. In IPF patients, serum decorin levels had a significant correlation with oxygenation, and IPF patients with low serum decorin levels had a significantly higher survival rate than those with high serum decorin levels. Conclusions Serum decorin levels are a potential prognostic biomarker in AE-IPF.
Collapse
Affiliation(s)
- Takefumi Nikaido
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yoshinori Tanino
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Xintao Wang
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuki Sato
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Ryuichi Togawa
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Masami Kikuchi
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kenichi Misa
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kazue Saito
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Naoko Fukuhara
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takaya Kawamata
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Mami Rikimaru
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takashi Umeda
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Julia Morimoto
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tatsuhiko Koizumi
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yasuhito Suzuki
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kenichiro Hirai
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Manabu Uematsu
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroyuki Minemura
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Atsuro Fukuhara
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Suguru Sato
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Junpei Saito
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroshi Yokouchi
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kenya Kanazawa
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yoko Shibata
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
23
|
Simões RS, Soares JM, Simões MJ, Nader HB, Baracat MCP, Maciel GAR, Serafini PC, Azziz R, Baracat EC. Small leucine-rich proteoglycans (SLRPs) in the endometrium of polycystic ovary syndrome women: a pilot study. J Ovarian Res 2017; 10:54. [PMID: 28789706 PMCID: PMC5549392 DOI: 10.1186/s13048-017-0349-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/20/2017] [Indexed: 01/09/2023] Open
Abstract
Background Small leucine-rich proteoglycans (SLRPs) play an important role in tissue homeostasis and cell proliferation since these proteoglycans sequester multiple growth factors. However, the content of SLRPs in the endometrium of polycystic ovary syndrome (PCOS) women is unknown. Our purpose was to test the hypothesis that excessive endometrial proliferation in PCOS may be partly related to abnormalities in SLRPs. Methods In a cross section study a total of 20 endometrial samples were collected from 10 patients with PCOS and 10 ovulatory women during their proliferative (pre-ovulatory) phase. The study subjects were matched for age, body mass index and race. The age range was 20 to 35 years. All volunteers were evaluated in reproductive endocrinology clinic, Gynecology Division, Clinics Hospital, University of São Paulo Medical School Profile and concentration of small leucine-rich proteoglycans (decorin, lumican, fibromodulin and biglycan) were determined by immunohistochemical testing and Western blotting. Results Decorin and lumican demonstrated higher immunoreactivity and relative expression in the endometrium of women with PCOS compared to that of women with regular menstrual cycles. Conclusion Our data suggests that the endometrium of PCOS women demonstrate a greater content of SLRP than controls; decorin and lumican, in particular, were found in higher concentrations in the endometrium of PCOS women during the proliferative phase. These differences may, in part, explain the excess of endometrial proliferation frequently observed in PCOS. Further studies are warranted.
Collapse
Affiliation(s)
- Ricardo Santos Simões
- Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - José Maria Soares
- Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil. .,, Av. Dr. Enéas de Carvalho Aguiar, 255 - 10o.andar - Sala 10.167 - 05403-900, São Paulo, SP, Brazil.
| | - Manuel J Simões
- Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Helena B Nader
- Department of Molecular Biology, Federal University of São Paulo, São Paulo, Brazil
| | - Maria Cândida P Baracat
- Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo Arantes R Maciel
- Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Paulo C Serafini
- Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo Azziz
- Departments of Obstetrics and Gynecology and of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Edmund C Baracat
- Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Schaefer L, Tredup C, Gubbiotti MA, Iozzo RV. Proteoglycan neofunctions: regulation of inflammation and autophagy in cancer biology. FEBS J 2017; 284:10-26. [PMID: 27860287 PMCID: PMC5226885 DOI: 10.1111/febs.13963] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/27/2016] [Accepted: 11/11/2016] [Indexed: 12/18/2022]
Abstract
Inflammation and autophagy have emerged as prominent issues in the context of proteoglycan signaling. In particular, two small, leucine-rich proteoglycans, biglycan and decorin, play pivotal roles in the regulation of these vital cellular pathways and, as such, are intrinsically involved in cancer initiation and progression. In this minireview, we will address novel functions of biglycan and decorin in inflammation and autophagy, and analyze new emerging signaling events triggered by these proteoglycans, which directly or indirectly modulate these processes. We will critically discuss the dual role of proteoglycan-driven inflammation and autophagy in tumor biology, and delineate the potential mechanisms through which soluble extracellular matrix constituents affect the microenvironment associated with inflammatory and neoplastic diseases.
Collapse
Affiliation(s)
- Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Claudia Tredup
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Maria A. Gubbiotti
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
25
|
Zhao H, Xi H, Wei B, Cai A, Wang T, Wang Y, Zhao X, Song Y, Chen L. Expression of decorin in intestinal tissues of mice with inflammatory bowel disease and its correlation with autophagy. Exp Ther Med 2016; 12:3885-3892. [PMID: 28105121 PMCID: PMC5228524 DOI: 10.3892/etm.2016.3908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/15/2016] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to investigate the expression of decorin (DCN) in the intestinal tissues of mice with inflammatory bowel disease (IBD) and its correlation with autophagy. The IBD mouse model was created by intrarectal injection of trinitrobenzene sulfonic acid. The pathology of colon tissues of the mice was examined using hematoxylin and eosin staining. Expression of DCN and the proteins associated with autophagy was detected using immunohistochemistry. Normal human colon mucosal epithelial cells (NCM460 cells) were transfected with DCN expression plasmid and the expression of DCN and autophagy-associated proteins was detected by western blot analysis. Cell apoptosis was studied using an Annexin V apoptosis detection assay and intracellular autophagosomes were observed using electron microscopy. The IBD mouse model was successfully established. Thickening, edema and inflammatory cell infiltration of the intestinal wall were observed in the IBD mice. The expression of DCN as well as the autophagy-associated proteins beclin 1 and LC3B, was increased in the intestinal tissues of the IBD mice. Furthermore, in the NCM460 cells transfected with DCN, the expression of beclin 1 and LC3B was upregulated, while p62 expression was downregulated. Intracellular autophagosomes were increased and apoptosis was decreased in the cells with DCN overexpression. Inhibition of autophagy reversed the effects of DCN on apoptosis. Therefore, DCN is able to induce autophagy and protect intestinal cells during the occurrence and development of IBD.
Collapse
Affiliation(s)
- Huazhou Zhao
- Department of General Surgery, General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China; Department of General Surgery, 309 Hospital of Chinese People's Liberation Army, Beijing 100091, P.R. China
| | - Hongqing Xi
- Department of General Surgery, General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Bo Wei
- Department of General Surgery, General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Aizhen Cai
- Department of General Surgery, General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Ting Wang
- Medical Administration Division of Beijing Chaoyang Hospital, Beijing 100020, P.R. China
| | - Yi Wang
- Department of General Surgery, General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China; Department of General Surgery, 309 Hospital of Chinese People's Liberation Army, Beijing 100091, P.R. China
| | - Xudong Zhao
- Department of General Surgery, General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Yanjing Song
- Department of General Surgery, General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Lin Chen
- Department of General Surgery, General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| |
Collapse
|
26
|
Extracellular Signal-Regulated Kinase 2 and CHOP Restrict the Expression of the Growth Arrest-Specific p20K Lipocalin Gene to G0. Mol Cell Biol 2016; 36:2890-2902. [PMID: 27601586 DOI: 10.1128/mcb.00338-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022] Open
Abstract
The activation of the growth arrest-specific (gas) p20K gene depends on the interaction of C/EBPβ with two elements of a 48-bp promoter region termed the quiescence-responsive unit (QRU). Here we identify extracellular signal-related kinase 2 (ERK2) as a transcriptional repressor of the p20K QRU in cycling chicken embryo fibroblasts (CEF). ERK2 binds to repeated GAAAG sequences overlapping the C/EBPβ sites of the QRU. The recruitment of ERK2 and C/EBPβ is mutually exclusive and dictates the expression of p20K. C/EBP homologous protein (CHOP) was associated with C/EBPβ under conditions promoting endoplasmic reticulum (ER) stress and, to a lesser extent, in cycling CEF but was not detectable when C/EBPβ was immunoprecipitated from contact-inhibited cells. During ER stress, overexpression of CHOP inhibited p20K, while its downregulation promoted p20K, indicating that CHOP is also a potent inhibitor of p20K. Transcriptome analyses revealed that hypoxia-responsive genes are strongly induced in contact-inhibited but not serum-starved CEF, and elevated levels of nitroreductase activity, a marker of hypoxia, were detected at confluence. Conditions of hypoxia (2% O2) induced growth arrest in subconfluent CEF and markedly stimulated p20K expression, suggesting that the control of proliferation and gas gene expression is closely linked to limiting oxygen concentrations associated with high cell densities.
Collapse
|
27
|
Gubbiotti MA, Vallet SD, Ricard-Blum S, Iozzo RV. Decorin interacting network: A comprehensive analysis of decorin-binding partners and their versatile functions. Matrix Biol 2016; 55:7-21. [PMID: 27693454 DOI: 10.1016/j.matbio.2016.09.009] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Decorin, a prototype small leucine-rich proteoglycan, regulates a vast array of cellular processes including collagen fibrillogenesis, wound repair, angiostasis, tumor growth, and autophagy. This functional versatility arises from a wide array of decorin/protein interactions also including interactions with its single glycosaminoglycan side chain. The decorin-binding partners encompass numerous categories ranging from extracellular matrix molecules to cell surface receptors to growth factors and enzymes. Despite the diversity of the decorin interacting network, two main roles emerge as prominent themes in decorin function: maintenance of cellular structure and outside-in signaling, culminating in anti-tumorigenic effects. Here we present contemporary knowledge regarding the decorin interacting network and discuss in detail the biological relevance of these pleiotropic interactions, some of which could be targeted by therapeutic interventions.
Collapse
Affiliation(s)
- Maria A Gubbiotti
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sylvain D Vallet
- Pericellular and Extracellular Supramolecular Assemblies, Institute of Molecular and Supramolecular Chemistry and Biochemistry, University Claude Bernard, Lyon, France
| | - Sylvie Ricard-Blum
- Pericellular and Extracellular Supramolecular Assemblies, Institute of Molecular and Supramolecular Chemistry and Biochemistry, University Claude Bernard, Lyon, France
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
28
|
Thu VT, Kim HK, Long LT, Thuy TT, Huy NQ, Kim SH, Kim N, Ko KS, Rhee BD, Han J. NecroX-5 exerts anti-inflammatory and anti-fibrotic effects via modulation of the TNFα/Dcn/TGFβ1/Smad2 pathway in hypoxia/reoxygenation-treated rat hearts. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:305-14. [PMID: 27162485 PMCID: PMC4860373 DOI: 10.4196/kjpp.2016.20.3.305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 12/12/2022]
Abstract
Inflammatory and fibrotic responses are accelerated during the reperfusion period, and excessive fibrosis and inflammation contribute to cardiac malfunction. NecroX compounds have been shown to protect the liver and heart from ischemia-reperfusion injury. The aim of this study was to further define the role and mechanism of action of NecroX-5 in regulating infl ammation and fi brosis responses in a model of hypoxia/reoxygenation (HR). We utilized HR-treated rat hearts and lipopolysaccharide (LPS)-treated H9C2 culture cells in the presence or absence of NecroX-5 (10 µmol/L) treatment as experimental models. Addition of NecroX-5 signifi cantly increased decorin (Dcn) expression levels in HR-treated hearts. In contrast, expression of transforming growth factor beta 1 (TGFβ1) and Smad2 phosphorylation (pSmad2) was strongly attenuated in NecroX-5-treated hearts. In addition, signifi cantly increased production of tumor necrosis factor alpha (TNFα), TGFβ1, and pSmad2, and markedly decreased Dcn expression levels, were observed in LPS-stimulated H9C2 cells. Interestingly, NecroX-5 supplementation effectively attenuated the increased expression levels of TNFα, TGFβ1, and pSmad2, as well as the decreased expression of Dcn. Thus, our data demonstrate potential antiinflammatory and anti-fibrotic effects of NecroX-5 against cardiac HR injuries via modulation of the TNFα/Dcn/TGFβ1/Smad2 pathway.
Collapse
Affiliation(s)
- Vu Thi Thu
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea.; VNU University of Science, Hanoi 120036, Vietnam
| | - Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea.; Department of Integrated Biomedical Science, College of Medicine, Inje University, Busan 47392, Korea
| | - Le Thanh Long
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | | | | | - Soon Ha Kim
- Product Strategy and Development, LG Life Sciences Ltd., Seoul 03184, Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| |
Collapse
|
29
|
Castañeda-Gill JM, Vishwanatha JK. Antiangiogenic mechanisms and factors in breast cancer treatment. J Carcinog 2016; 15:1. [PMID: 27013929 PMCID: PMC4785777 DOI: 10.4103/1477-3163.176223] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is known to metastasize in its latter stages of existence. The different angiogenic mechanisms and factors that allow for its progression are reviewed in this article. Understanding these mechanisms and factors will allow researchers to design drugs to inhibit angiogenic behaviors and control the rate of tumor growth.
Collapse
Affiliation(s)
- Jessica M. Castañeda-Gill
- Department of Molecular and Medical Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Jamboor K. Vishwanatha
- Department of Molecular and Medical Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
- Institute for Cancer Research, Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
30
|
Gubbiotti MA, Neill T, Frey H, Schaefer L, Iozzo RV. Decorin is an autophagy-inducible proteoglycan and is required for proper in vivo autophagy. Matrix Biol 2015; 48:14-25. [PMID: 26344480 DOI: 10.1016/j.matbio.2015.09.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 12/13/2022]
Abstract
We have recently discovered that soluble extracellular matrix constituents regulate autophagy via an outside-in signaling pathway. Decorin, a secreted proteoglycan, evokes autophagy in endothelial cells and mitophagy in breast carcinoma cells. However, it is not known whether decorin expression can be regulated by autophagic stimuli such as mTOR inhibition or nutrient deprivation. Thus, we tested whether pro-autophagic stimuli could affect decorin expression in mouse cardiac tissue and whether the absence of decorin could disrupt the in vivo autophagic response. We found that nutrient deprivation induced decorin at the mRNA and protein level in vivo and in vitro, a process regulated at the transcriptional level by inhibiting the canonical mTOR pathway. Moreover, Dcn-/- mice displayed an aberrant response to fasting compared to wild-type mice. Our study establishes a new role for an extracellular matrix proteoglycan and provides a mechanistic role for soluble decorin in regulating a fundamental intracellular catabolic process.
Collapse
Affiliation(s)
- Maria A Gubbiotti
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Helena Frey
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
31
|
Farace C, Oliver JA, Melguizo C, Alvarez P, Bandiera P, Rama AR, Malaguarnera G, Ortiz R, Madeddu R, Prados J. Microenvironmental Modulation of Decorin and Lumican in Temozolomide-Resistant Glioblastoma and Neuroblastoma Cancer Stem-Like Cells. PLoS One 2015; 10:e0134111. [PMID: 26230845 PMCID: PMC4521885 DOI: 10.1371/journal.pone.0134111] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022] Open
Abstract
The presence of cancer stem cells (CSCs) or tumor-initiating cells can lead to cancer recurrence in a permissive cell–microenvironment interplay, promoting invasion in glioblastoma (GBM) and neuroblastoma (NB). Extracellular matrix (ECM) small leucine-rich proteoglycans (SLRPs) play multiple roles in tissue homeostasis by remodeling the extracellular matrix (ECM) components and modulating intracellular signaling pathways. Due to their pan-inhibitory properties against receptor tyrosine kinases (RTKs), SLRPs are reported to exert anticancer effects in vitro and in vivo. However, their roles seem to be tissue-specific and they are also involved in cancer cell migration and drug resistance, paving the way to complex different scenarios. The aim of this study was to determine whether the SLRPs decorin (DCN) and lumican (LUM) are recruited in cell plasticity and microenvironmental adaptation of differentiated cancer cells induced towards stem-like phenotype. Floating neurospheres were generated by applying CSC enrichment medium (neural stem cell serum-free medium, NSC SFM) to the established SF-268 and SK-N-SH cancer cell lines, cellular models of GBM and NB, respectively. In both models, the time-dependent synergistic activation of DCN and LUM was observed. The highest DCN and LUM mRNA/protein expression was detected after cell exposure to NSC SFM for 8/12 days, considering these cells as SLRP-expressing (SLRP+) CSC-like. Ultrastructural imaging showed the cellular heterogeneity of both the GBM and NB neurospheres and identified the inner living cells. Parental cell lines of both GBM and NB grew only in soft agar + NSC SFM, whereas the secondary neurospheres (originated from SLRP+ t8 CSC-like) showed lower proliferation rates than primary neurospheres. Interestingly, the SLRP+ CSC-like from the GBM and NB neurospheres were resistant to temozolomide (TMZ) at concentrations >750 μM. Our results suggest that GBM and NB CSC-like promote the activation of huge quantities of SLRP in response to CSC enrichment, simultaneously acquiring TMZ resistance, cellular heterogeneity, and a quiescent phenotype, suggesting a novel pivotal role for SLRP in drug resistance and cell plasticity of CSC-like, allowing cell survival and ECM/niche modulation potential.
Collapse
Affiliation(s)
- Cristiano Farace
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- * E-mail: (CF); (RM)
| | | | - Consolacion Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada, Spain
- Department of Anatomy and Embryology, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs.Granada), SAS-University of Granada, Granada, Spain
| | - Pablo Alvarez
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada, Spain
- Biosanitary Institute of Granada (ibs.Granada), SAS-University of Granada, Granada, Spain
| | - Pasquale Bandiera
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ana Rosa Rama
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada, Spain
- Biosanitary Institute of Granada (ibs.Granada), SAS-University of Granada, Granada, Spain
- Department of Health Science, University of Jaén, Jaén, Spain
| | - Giulia Malaguarnera
- Research Center "The Great Senescence", University of Catania, Catania, Italy
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada, Spain
- Biosanitary Institute of Granada (ibs.Granada), SAS-University of Granada, Granada, Spain
- Department of Health Science, University of Jaén, Jaén, Spain
| | - Roberto Madeddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- National Institute of Biostructures and Biosystem (INBB), Rome, Italy
- * E-mail: (CF); (RM)
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada, Spain
- Department of Anatomy and Embryology, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs.Granada), SAS-University of Granada, Granada, Spain
| |
Collapse
|
32
|
Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol 2015; 42:11-55. [PMID: 25701227 PMCID: PMC4859157 DOI: 10.1016/j.matbio.2015.02.003] [Citation(s) in RCA: 830] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
We provide a comprehensive classification of the proteoglycan gene families and respective protein cores. This updated nomenclature is based on three criteria: Cellular and subcellular location, overall gene/protein homology, and the utilization of specific protein modules within their respective protein cores. These three signatures were utilized to design four major classes of proteoglycans with distinct forms and functions: the intracellular, cell-surface, pericellular and extracellular proteoglycans. The proposed nomenclature encompasses forty-three distinct proteoglycan-encoding genes and many alternatively-spliced variants. The biological functions of these four proteoglycan families are critically assessed in development, cancer and angiogenesis, and in various acquired and genetic diseases where their expression is aberrant.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
33
|
Reciprocity in breast cancer progression. Oncotarget 2014; 5:10967-8. [PMID: 25526025 PMCID: PMC4294359 DOI: 10.18632/oncotarget.2853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
34
|
Matrikine and matricellular regulators of EGF receptor signaling on cancer cell migration and invasion. J Transl Med 2014; 94:31-40. [PMID: 24247562 PMCID: PMC4038324 DOI: 10.1038/labinvest.2013.132] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 02/07/2023] Open
Abstract
Cancer invasion is a complex process requiring, among other events, extensive remodeling of the extracellular matrix including deposition of pro-migratory and pro-proliferative moieties. In recent years, it has been described that while invading through matrices cancer cells can change shape and adapt their migration strategies depending on the microenvironmental context. Although intracellular signaling pathways governing the mesenchymal to amoeboid migration shift and vice versa have been mostly elucidated, the extracellular signals promoting these shifts are largely unknown. In this review, we summarize findings that point to matrikines that bind specifically to the EGF receptor as matricellular molecules that enable cancer cell migrational plasticity and promote invasion.
Collapse
|
35
|
A comparison of the behavioral and anatomical outcomes in sub-acute and chronic spinal cord injury models following treatment with human mesenchymal precursor cell transplantation and recombinant decorin. Exp Neurol 2013; 248:343-59. [PMID: 23867131 DOI: 10.1016/j.expneurol.2013.06.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 01/01/2023]
Abstract
This study assessed the potential of highly purified (Stro-1(+)) human mesenchymal precursor cells (hMPCs) in combination with the anti-scarring protein decorin to repair the injured spinal cord (SC). Donor hMPCs isolated from spinal cord injury (SCI) patients were transplanted into athymic rats as a suspension graft, alone or after previous treatment with, core (decorin(core)) and proteoglycan (decorin(pro)) isoforms of purified human recombinant decorin. Decorin was delivered via mini-osmotic pumps for 14 days following sub-acute (7 day) or chronic (1 month) SCI. hMPCs were delivered to the spinal cord at 3 weeks or 6 weeks after the initial injury at T9 level. Behavioral and anatomical analysis in this study showed statistically significant improvement in functional recovery, tissue sparing and cyst volume reduction following hMPC therapy. The combination of decorin infusion followed by hMPC therapy did not improve these measured outcomes over the use of cell therapy alone, in either sub-acute or chronic SCI regimes. However, decorin infusion did improve tissue sparing, reduce spinal tissue cavitation and increase transplanted cell survivability as compared to controls. Immunohistochemical analysis of spinal cord sections revealed differences in glial, neuronal and extracellular matrix molecule expression within each experimental group. hMPC transplanted spinal cords showed the increased presence of serotonergic (5-HT) and sensory (CGRP) axonal growth within and surrounding transplanted hMPCs for up to 2 months; however, no evidence of hMPC transdifferentiation into neuronal or glial phenotypes. The number of hMPCs was dramatically reduced overall, and no transplanted cells were detected at 8 weeks post-injection using lentiviral GFP labeling and human nuclear antigen antibody labeling. The presence of recombinant decorin in the cell transplantation regimes delayed in part the loss of donor cells, with small numbers remaining at 2 months after transplantation. In vitro co-culture experiments with embryonic dorsal root ganglion explants revealed the growth promoting properties of hMPCs. Decorin did not increase axonal outgrowth from that achieved by hMPCs. We provide evidence for the first time that (Stro-1(+)) hMPCs provide: i) an advantageous source of allografts for stem cell transplantation for sub-acute and chronic spinal cord therapy, and (ii) a positive host microenvironment that promotes tissue sparing/repair that subsequently improves behavioral outcomes after SCI. This was not measurably improved by recombinant decorin treatment, but does provide important information for the future development and potential use of decorin in contusive SCI therapy.
Collapse
|
36
|
Buraschi S, Neill T, Owens RT, Iniguez LA, Purkins G, Vadigepalli R, Evans B, Schaefer L, Peiper SC, Wang ZX, Iozzo RV. Decorin protein core affects the global gene expression profile of the tumor microenvironment in a triple-negative orthotopic breast carcinoma xenograft model. PLoS One 2012; 7:e45559. [PMID: 23029096 PMCID: PMC3446891 DOI: 10.1371/journal.pone.0045559] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/21/2012] [Indexed: 12/21/2022] Open
Abstract
Decorin, a member of the small leucine-rich proteoglycan gene family, exists and functions wholly within the tumor microenvironment to suppress tumorigenesis by directly targeting and antagonizing multiple receptor tyrosine kinases, such as the EGFR and Met. This leads to potent and sustained signal attenuation, growth arrest, and angiostasis. We thus sought to evaluate the tumoricidal benefits of systemic decorin on a triple-negative orthotopic breast carcinoma xenograft model. To this end, we employed a novel high-density mixed expression array capable of differentiating and simultaneously measuring gene signatures of both Mus musculus (stromal) and Homo sapiens (epithelial) tissue origins. We found that decorin protein core modulated the differential expression of 374 genes within the stromal compartment of the tumor xenograft. Further, our top gene ontology classes strongly suggests an unexpected and preferential role for decorin protein core to inhibit genes necessary for immunomodulatory responses while simultaneously inducing expression of those possessing cellular adhesion and tumor suppressive gene properties. Rigorous verification of the top scoring candidates led to the discovery of three genes heretofore unlinked to malignant breast cancer that were reproducibly found to be induced in several models of tumor stroma. Collectively, our data provide highly novel and unexpected stromal gene signatures as a direct function of systemic administration of decorin protein core and reveals a fundamental basis of action for decorin to modulate the tumor stroma as a biological mechanism for the ascribed anti-tumorigenic properties.
Collapse
Affiliation(s)
- Simone Buraschi
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Rick T. Owens
- LifeCell Corporation, Branchburg, New Jersey, United States of America
| | - Leonardo A. Iniguez
- Roche NimbleGen, Inc., Research and Development, Madison, Wisconsin, United States of America
| | - George Purkins
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Barry Evans
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Liliana Schaefer
- Department of Pharmacology, Goethe University, Frankfurt, Germany
| | - Stephen C. Peiper
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Zi-Xuan Wang
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
37
|
Adam M, Saller S, Ströbl S, Hennebold JD, Dissen GA, Ojeda SR, Stouffer RL, Berg D, Berg U, Mayerhofer A. Decorin is a part of the ovarian extracellular matrix in primates and may act as a signaling molecule. Hum Reprod 2012; 27:3249-58. [PMID: 22888166 DOI: 10.1093/humrep/des297] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
STUDY QUESTION Is decorin (DCN), a putative modulator of growth factor (GF) signaling, expressed in the primate ovary and does it play a role in ovarian biology? SUMMARY ANSWER DCN expression in the theca, the corpus luteum (CL), its presence in the follicular fluid (FF) and its actions revealed in human IVF-derived granulosa cells (GCs), suggest that it plays multiple roles in the ovary including folliculogenesis, ovulation and survival of the CL. WHAT IS KNOWN ALREADY DCN is a secreted proteoglycan, which has a structural role in the extracellular matrix (ECM) and also interferes with the signaling of multiple GF/GF receptors (GFRs). However, DCN expression and action in the primate ovary has yet to be determined. STUDY DESIGN, SIZE, DURATION Archival human and monkey ovarian samples were analyzed. Studies were conducted using FF and GC samples collected from IVF patients. PARTICIPANTS/MATERIALS, SETTING, METHODS Immunohistochemistry, western blotting, RT-PCR, quantitative RT-PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA) studies were complemented by cellular studies, including the measurements of intracellular Ca²⁺, reactive oxygen species (ROS), epidermal GF receptor (EGFR) phosphorylation by DCN and caspase activity. MAIN RESULTS AND THE ROLE OF CHANCE Immunohistochemistry revealed strong DCN staining in the connective tissue and follicular thecal compartments, but not in GCs of pre-antral and antral follicles. Pre-ovulatory follicles could not be studied, but DCN was associated with connective tissue of CL samples and the cytoplasm of luteal cells. DCN expression in monkey CL doubled (P < 0.05) towards the end of the luteal lifespan. DCN was found in human FF obtained from IVF patients (mean: 12.9 ng/ml; n = 20) as determined by ELISA. DCN mRNA and/or protein were detected in freshly isolated and cultured, luteinized human GCs. In the latter, exogenous human recombinant DCN increased intracellular Ca²⁺ levels and induced the production of ROS in a concentration-dependent manner. DCN, like epidermal GF, phosphorylated EGFR significantly (P < 0.05) and reduced the activity of caspase 3/7 in cultured GCs. The data indicate the expression of DCN in the theca of growing follicles, in FF of ovulatory follicles and in the CL. Therefore, DCN may exert paracrine actions via GF/GFR systems in multiple ovarian compartments. LIMITATIONS, REASONS FOR CAUTION Functional studies were performed in cultures of human luteinized GCs, which are an apt model but may not fully mirror the pre-ovulatory GC compartment or the CL. Other human ovarian cells, including the thecal cells, were not available. WIDER IMPLICATIONS OF THE FINDINGS In accordance with its evolving roles in other organs, ovarian DCN is an ECM-associated component, which acts as a multifunctional regulator of GF signaling in the primate ovary. DCN may thus be involved in folliculogenesis, ovulation and the regulation of the CL survival in primates. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by Deutsche Forschungsgemeinschaft (DFG) MA1080/17-3 and in part DFG MA1080/21-1 (to AM), NIH grants HD24870 (S.R.O. and R.L.S.), the Eunice Kennedy Shriver NICHD/NIH through cooperative agreement HD18185 as part of the Specialized Cooperative Centers Program in Reproduction and Infertility Research (S.R.O.) and 8P51OD011092-53 for the operation of the Oregon National Primate Research Center (G.A.D., J.D.H., S.R.O. and R.L.S).
Collapse
Affiliation(s)
- M Adam
- Anatomy and Cell Biology, Ludwig-Maximilians-University Munich, Munich 80802, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Adam M, Urbanski HF, Garyfallou VT, Welsch U, Köhn FM, Ullrich Schwarzer J, Strauss L, Poutanen M, Mayerhofer A. High levels of the extracellular matrix proteoglycan decorin are associated with inhibition of testicular function. ACTA ACUST UNITED AC 2011; 35:550-61. [PMID: 22413766 DOI: 10.1111/j.1365-2605.2011.01225.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Decorin (DCN), a component of the extracellular matrix of the peritubular wall and the interstitial areas of the human testis, can interact with growth factor (GF) signalling, thereby blocking downstream actions of GFs. In the present study the expression and regulation of DCN using both human testes and two experimental animal models, namely the rhesus monkey and mouse, were examined. DCN protein was present in peritubular and interstitial areas of adult human and monkey testes, while it was almost undetectable in adult wild type mice. Interestingly, the levels and sites of testicular DCN expression in the monkeys were inversely correlated with testicular maturation markers. A strong DCN expression associated with the abundant connective tissue of the interstitial areas in the postnatal through pre-pubertal phases was observed. In adult and old monkeys the DCN pattern was similar to the one in normal human testes, presenting strong expression at the peritubular region. In the testes of both infertile men and in a mouse model of inflammation associated infertility (aromatase-overexpressing transgenic mice), the fibrotic changes and increased numbers of tumour necrosis factor (TNF)-α-producing immune cells were shown to be associated with increased production of DCN. Furthermore, studies with human testicular peritubular cells isolated from fibrotic testis indicated that TNF-α significantly increased DCN production. The data, thus, show that an increased DCN level is associated with impaired testicular function, supporting our hypothesis that DCN interferes with paracrine signalling of the testis in health and disease.
Collapse
Affiliation(s)
- M Adam
- Anatomy and Cell Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Adam M, Schwarzer J, Köhn F, Strauss L, Poutanen M, Mayerhofer A. Mast cell tryptase stimulates production of decorin by human testicular peritubular cells: possible role of decorin in male infertility by interfering with growth factor signaling. Hum Reprod 2011; 26:2613-25. [DOI: 10.1093/humrep/der245] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Iozzo RV, Sanderson RD. Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. J Cell Mol Med 2011; 15:1013-31. [PMID: 21155971 PMCID: PMC3633488 DOI: 10.1111/j.1582-4934.2010.01236.x] [Citation(s) in RCA: 422] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 12/08/2010] [Indexed: 12/12/2022] Open
Abstract
Proteoglycans, key molecular effectors of cell surface and pericellular microenvironments, perform multiple functions in cancer and angiogenesis by virtue of their polyhedric nature and their ability to interact with both ligands and receptors that regulate neoplastic growth and neovascularization. Some proteoglycans such as perlecan, have pro- and anti-angiogenic activities, whereas other proteoglycans, such as syndecans and glypicans, can also directly affect cancer growth by modulating key signalling pathways. The bioactivity of these proteoglycans is further modulated by several classes of enzymes within the tumour microenvironment: (i) sheddases that cleave transmembrane or cell-associated syndecans and glypicans, (ii) various proteinases that cleave the protein core of pericellular proteoglycans and (iii) heparanases and endosulfatases which modify the structure and bioactivity of various heparan sulphate proteoglycans and their bound growth factors. In contrast, some of the small leucine-rich proteoglycans, such as decorin and lumican, act as tumour repressors by physically antagonizing receptor tyrosine kinases including the epidermal growth factor and the Met receptors or integrin receptors thereby evoking anti-survival and pro-apoptotic pathways. In this review we will critically assess the expanding repertoire of molecular interactions attributed to various proteoglycans and will discuss novel proteoglycan functions modulating cancer progression, invasion and metastasis and how these factors regulate the tumour microenvironment.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson UniversityPhiladelphia, PA, USA
| | - Ralph D Sanderson
- Department of Pathology, and the Comprehensive Cancer Center, University of Alabama at BirminghamBirmingham, AL, USA
| |
Collapse
|
42
|
Hamaguchi T, Wakabayashi H, Matsumine A, Sudo A, Uchida A. TNF inhibitor suppresses bone metastasis in a breast cancer cell line. Biochem Biophys Res Commun 2011; 407:525-30. [PMID: 21414299 DOI: 10.1016/j.bbrc.2011.03.051] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 12/13/2022]
Abstract
In the evolution of cancer, tumor necrosis factor-alpha (TNF-α) plays a paradoxical role. High doses induce significant anticancer effects, but conversely, physiologic and pathologic levels of TNF-α may be involved in cancer promotion, tumor growth, and metastasis. Infliximab is a chimeric murine monoclonal antibody that binds with high affinity to soluble and membrane TNF-α and inhibits binding of TNF-α to its receptors. In the present study, we investigated the effect of infliximab, a TNF-α antagonist, on breast cancer aggressiveness and bone metastases. Infliximab greatly reduced cell motility and bone metastases in a metastatic breast cancer cell line, MDA-MB-231. The mechanism of bone metastasis inhibition involved decreased expression of CXC chemokine receptor 4 (CXCR4) and increased expression of decorin, which is the prototype of an expanding family of small leucine-rich proteoglycans. These results suggest a novel role for TNF-α inhibition in the reduction or prevention of bone metastases in this breast cancer model. Our study suggests that inhibition of TNF-α using infliximab may become a preventive therapeutic option for breast cancer.
Collapse
Affiliation(s)
- Takahiko Hamaguchi
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Japan
| | | | | | | | | |
Collapse
|
43
|
Iozzo RV, Schaefer L. Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans. FEBS J 2010; 277:3864-75. [PMID: 20840584 DOI: 10.1111/j.1742-4658.2010.07797.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The small leucine-rich proteoglycans (SLRPs) are involved in many aspects of mammalian biology, both in health and disease. They are now being recognized as key signaling molecules with an expanding repertoire of molecular interactions affecting not only growth factors, but also various receptors involved in controlling cell growth, morphogenesis and immunity. The complexity of SLRP signaling and the multitude of affected signaling pathways can be reconciled with a hierarchical affinity-based interaction of various SLRPs in a cell- and tissue-specific context. Here, we review this interacting network, describe new relationships of the SLRPs with tyrosine kinase and Toll-like receptors and critically assess their roles in cancer and innate immunity.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
44
|
Decorin suppresses prostate tumor growth through inhibition of epidermal growth factor and androgen receptor pathways. Neoplasia 2010; 11:1042-53. [PMID: 19794963 DOI: 10.1593/neo.09760] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/09/2009] [Accepted: 07/10/2009] [Indexed: 12/30/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and androgen receptor (AR) pathways play pivotal roles in prostate cancer progression. Therefore, agents with dual-targeting ability may have important therapeutic potential. Decorin, a proteoglycan present in the tumor microenvironment, is known to regulate matrix assembly, growth factor binding, and receptor tyrosine kinase activity. Here, we show that in prostate-specific Pten(P-/-) mice, a genetically defined, immune-competent mouse model of prostate cancer, systemic delivery of decorin inhibits tumor progression by targeting cell proliferation and survival pathways. Moreover, in human prostate cancer cells, we show that decorin specifically inhibits EGFR and AR phosphorylation and cross talk between these pathways. This prevents AR nuclear translocation and inhibits the production of prostate specific antigen. Further, the phosphatidylinositol-3 kinase (PI3K)/Akt cell survival pathway is suppressed leading to tumor cell apoptosis. Those findings highlight the effectiveness of decorin in the presence of a powerful genetic cancer risk and implicate decorin as a potential new agent for prostate cancer therapy by targeting EGFR/AR-PI3K-Akt pathways.
Collapse
|
45
|
Noordhoek JA, Postma DS, Chong LL, Menkema L, Kauffman HF, Timens W, van Straaten JFM, van der Geld YM. Different Modulation of Decorin Production by Lung Fibroblasts from Patients with Mild and Severe Emphysema. COPD 2009; 2:17-25. [PMID: 17136957 DOI: 10.1081/copd-200050678] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have previously reported diminished immunohistochemical staining of decorin in lung tissue from patients with severe emphysema. The aim of this study is to investigate whether this diminished staining is due to a quantitative abnormal production of decorin by pulmonary fibroblasts in vitro. Therefore, we measured decorin (Western blot), collagen type I (ELISA), and fibronectin (ELISA) production by fibroblasts obtained from lung tissue of patients with severe and mild emphysema at basal culture conditions and after modulation with transforming growth factor-beta1, basic fibroblast growth factor, and interferon-gamma. Decorin production at basal culture conditions was significantly higher in fibroblast cultures from patients with severe emphysema compared to fibroblasts from mild emphysema. After stimulation with transforming growth factor-beta1 and basic fibroblast growth factor, decorin production was significantly more reduced in fibroblast cultures from patients with severe emphysema whereas collagen type I and fibronectin production were not affected. We conclude that decorin production by lung fibroblasts of patients with severe emphysema is dysregulated after modulation with cytokines known to be important in smoking associated inflammation. This dysregulation of decorin production may contribute to the impaired lung tissue repair, present in patients with emphysema, since these alterations in the extracellular matrix may cause diminished cytokine binding and neutralization.
Collapse
Affiliation(s)
- Jacobien A Noordhoek
- Department of Pulmonology, University Medical Center Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Santra M, Santra S, Zhang J, Chopp M. Ectopic decorin expression up-regulates VEGF expression in mouse cerebral endothelial cells via activation of the transcription factors Sp1, HIF1alpha, and Stat3. J Neurochem 2007; 105:324-37. [PMID: 18021292 DOI: 10.1111/j.1471-4159.2007.05134.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We demonstrate that a proteoglycan decorin (DCN) up-regulates the vascular endothelial growth factor (VEGF) expression with activation of VEGF regulating transcription factors Sp1, hypoxia-inducible factor 1alpha (HIF1alpha), and signal transducer and activator of transcription 3 (Stat3) via epidermal growth factor receptor (EGFR), mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 (ERK1/2), and protein kinase B (AKT) pathways in DCN transfected mouse cerebral endothelial (MCE) cells. Treatment with pharmacological inhibitors and small interfering RNAs reveal that induction and activation of Sp1, HIF1alpha, and Stat3 facilitate their nuclear localization and binding to their specific motifs of the VEGF promoter and induce VEGF expression via two independent pathways, DCN/EGFR/phosphoinositide-3 kinase/AKT and DCN/EGFR/ERK1/2, respectively, in DCN synthesizing MCE cells. The cell type specific glycosylation protects Sp1 and HIF1alpha from proteosome degradation and plays an important and novel role in the regulation of VEGF in DCN transfected MCE cells. Induction of gelatinases (matrix metalloproteinase 2 and 9), the serine protease tissue plasminogen activator and plasmin by DCN transfection in MCE cells leads to extracellular proteolysis and to release of matrix-bound VEGF and activation of angiogenesis. In this study, we demonstrate that two independent downstream signal pathways, DCN/EGFR/ERK1/2 and DCN/EGFR/phosphoinositide-3 kinase/AKT, mediate up-regulation and activation of transcription factors of VEGF such as HIF1alpha, Stat3, and Sp1 and increase VEGF transcription and angiogenesis in MCE cells.
Collapse
Affiliation(s)
- Manoranjan Santra
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
47
|
Kou I, Nakajima M, Ikegawa S. Expression and Regulation of the Osteoarthritis-associated Protein Asporin. J Biol Chem 2007; 282:32193-9. [PMID: 17804408 DOI: 10.1074/jbc.m706262200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Asporin (ASPN) is a small leucine-rich proteoglycan that is involved in pathological processes of osteoarthritis. Previously, we showed that asporin can inhibit transforming growth factor-beta1 (TGF-beta1)-mediated expression of cartilage matrix genes and chondrogenesis in vitro (Kizawa, H., Kou, I., Iida, A., Sudo, A., Miyamoto, Y., Fukuda, A., Mabuchi, A., Kotani, A., Kawakami, A., Yamamoto, S., Uchida, A., Nakamura, K., Notoya, K., Nakamura, Y., and Ikegawa, S. (2005) Nat. Genet. 37, 138-144). However, details about regulation of asporin itself are not yet known. Here, we examined ASPN expression in skeletal tissue and potential regulation of ASPN by TGF-beta. In situ hybridization revealed the presence of ASPN mRNA in the perichondrium/periosteum of long bones, but its absence in articular cartilage and growth plates. Immunohistochemical analysis also showed ASPN protein expression predominantly in the perichondrium/periosteum. TGF-beta1 induced endogenous ASPN mRNA expression over time in vitro, and this induction was suppressed by the TGF-beta type I receptor kinase inhibitor SB431542. Inhibition of Smad3 significantly reduced TGF-beta1-induced ASPN expression, whereas overexpression of Smad3 augmented the induction. Characterization of the human ASPN promoter region revealed a region from -126 to -82 that is sufficient for full promoter activity; however, TGF-beta1 failed to increase activity through the ASPN promoter. Our findings indicate that TGF-beta1 induces ASPN through Smad3 but that this induction is indirect.
Collapse
Affiliation(s)
- Ikuyo Kou
- Laboratory for Bone and Joint Disease, SNP Research Center, RIKEN, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
48
|
Nakatani T, Honda E, Hayakawa S, Sato M, Satoh K, Kudo M, Munakata H. Effects of decorin on the expression of α-smooth muscle actin in a human myofibroblast cell line. Mol Cell Biochem 2007; 308:201-7. [DOI: 10.1007/s11010-007-9629-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 10/09/2007] [Indexed: 01/09/2023]
|
49
|
Tran KT, Lamb P, Deng JS. Matrikines and matricryptins: Implications for cutaneous cancers and skin repair. J Dermatol Sci 2005; 40:11-20. [PMID: 15993569 DOI: 10.1016/j.jdermsci.2005.05.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 05/06/2005] [Accepted: 05/13/2005] [Indexed: 11/30/2022]
Abstract
Dermatologists are faced daily with the need to optimize skin repair and excise cutaneous cancers. The extracellular matrix plays a pivotal role in cellular migration, proliferation, and gene regulation during wound healing and progression of melanoma, basal cell carcinoma, and squamous cell carcinoma. Within the last few years, a new class of ligand, the matrikine or matricryptin, has been characterized as subdomains of various ECM proteins capable of signaling to the cell through receptors, such as growth factor receptors. Two classes exist: the "natural" matrikines, which signal directly from the extracellular milieu and "cryptic" matrikines (matricryptins) that require proteolytic processing to reveal the ligand or to release the ligand from its ECM protein. Unlike traditional soluble growth factors, most matrikines possess low binding affinity to their receptors and are often presented in multiple valency that likely increase avidity to receptors. The presentation of these ligands within the ECM can result in unique outcomes. The EGF-like repeats of tenascin-C and laminin-5 signal to EGFR preferentially to upregulate migration during skin repair and tumor progression. Other matrikines in collagen, elastin, decorin, and laminin-1 can promote chemotaxis, mitogenesis, and metastasis in cancers, such as melanoma. Finally, the unique properties of matrikines have been utilized in cancer therapeutics and tissue engineering. Within the next few years, the nature and function of this emerging class of matrikine ligands will have an impact on dermatology, as these proteins are altered in wound repair and skin diseases.
Collapse
Affiliation(s)
- Kien T Tran
- Department of Dermatology, University of Pittsburgh School of Medicine, P.O. Box 19392, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
50
|
Verlinden I, Güngör N, Wouters K, Janssens J, Raus J, Michiels L. Parity-induced changes in global gene expression in the human mammary gland. Eur J Cancer Prev 2005; 14:129-37. [PMID: 15785316 DOI: 10.1097/00008469-200504000-00008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The protective effect of an early first full-term pregnancy in relation to breast cancer risk is well established, but the molecular and cell-specific changes in the human mammary gland involved remain unclear. To identify the molecular changes associated with pregnancy-induced differentiation, we analysed the global gene expression profiles of normal mammary tissues from both a parous and a nulliparous woman, using serial analysis of gene expression. This approach allowed us to identify sets of genes, known and unknown, that are differentially expressed in parous versus age-matched nulliparous mammary gland tissues. The normal mammary gland of a multiparous woman is characterized by several known differentiation markers such as casein kappa, casein beta, keratin 14, CCAAT/enhancer binding protein beta and delta and adipsin. Candidate genes involved in cytoarchitectural remodelling and growth inhibition with a potential role in pregnancy-induced protection against breast cancer were also observed. Several genes that are highly expressed in the nulliparous mammary gland and that are lost after pregnancy, encode for growth promoting, cytoskeletal and extracellular matrix proteins. One of these genes, the small breast epithelial mucin, is almost completely downregulated upon a first full-term pregnancy but is known to be expressed in more than 90% of invasive ductal carcinomas.
Collapse
Affiliation(s)
- I Verlinden
- Biomedisch Onderzoeksinstituut, Limburgs Universitair Centrum, School for Life Sciences, Transnational University Limburg, Universitaire Campus Gebouw A, B-3590 Diepenbeek, Belgium
| | | | | | | | | | | |
Collapse
|