1
|
Stevens TL, Cohen HM, Garbincius JF, Elrod JW. Mitochondrial calcium uniporter channel gatekeeping in cardiovascular disease. NATURE CARDIOVASCULAR RESEARCH 2024; 3:500-514. [PMID: 39185387 PMCID: PMC11343476 DOI: 10.1038/s44161-024-00463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/18/2024] [Indexed: 08/27/2024]
Abstract
The mitochondrial calcium (mCa2+) uniporter channel (mtCU) resides at the inner mitochondrial membrane and is required for Ca2+ to enter the mitochondrial matrix. The mtCU is essential for cellular function, as mCa2+ regulates metabolism, bioenergetics, signaling pathways and cell death. mCa2+ uptake is primarily regulated by the MICU family (MICU1, MICU2, MICU3), EF-hand-containing Ca2+-sensing proteins, which respond to cytosolic Ca2+ concentrations to modulate mtCU activity. Considering that mitochondrial function and Ca2+ signaling are ubiquitously disrupted in cardiovascular disease, mtCU function has been a hot area of investigation for the last decade. Here we provide an in-depth review of MICU-mediated regulation of mtCU structure and function, as well as potential mtCU-independent functions of these proteins. We detail their role in cardiac physiology and cardiovascular disease by highlighting the phenotypes of different mutant animal models, with an emphasis on therapeutic potential and targets of interest in this pathway.
Collapse
Affiliation(s)
- Tyler L. Stevens
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Henry M. Cohen
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Joanne F. Garbincius
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - John W. Elrod
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Pain P, Spinelli F, Gherardi G. Mitochondrial Cation Signalling in the Control of Inflammatory Processes. Int J Mol Sci 2023; 24:16724. [PMID: 38069047 PMCID: PMC10706693 DOI: 10.3390/ijms242316724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Mitochondria are the bioenergetic organelles responsible for the maintenance of cellular homeostasis and have also been found to be associated with inflammation. They are necessary to induce and maintain innate and adaptive immune cell responses, acting as signalling platforms and mediators in effector responses. These organelles are also known to play a pivotal role in cation homeostasis as well, which regulates the inflammatory responses through the modulation of these cation channels. In particular, this review focuses on mitochondrial Ca2+ and K+ fluxes in the regulation of inflammatory response. Nevertheless, this review aims to understand the interplay of these inflammation inducers and pathophysiological conditions. In detail, we discuss some examples of chronic inflammation such as lung, bowel, and metabolic inflammatory diseases caused by a persistent activation of the innate immune response due to a dysregulation of mitochondrial cation homeostasis.
Collapse
Affiliation(s)
| | | | - Gaia Gherardi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (P.P.); (F.S.)
| |
Collapse
|
3
|
Ashok D, Papanicolaou K, Sidor A, Wang M, Solhjoo S, Liu T, O'Rourke B. Mitochondrial membrane potential instability on reperfusion after ischemia does not depend on mitochondrial Ca 2+ uptake. J Biol Chem 2023; 299:104708. [PMID: 37061004 PMCID: PMC10206190 DOI: 10.1016/j.jbc.2023.104708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2023] [Accepted: 04/09/2023] [Indexed: 04/17/2023] Open
Abstract
Physiologic Ca2+ entry via the Mitochondrial Calcium Uniporter (MCU) participates in energetic adaption to workload but may also contribute to cell death during ischemia/reperfusion (I/R) injury. The MCU has been identified as the primary mode of Ca2+ import into mitochondria. Several groups have tested the hypothesis that Ca2+ import via MCU is detrimental during I/R injury using genetically-engineered mouse models, yet the results from these studies are inconclusive. Furthermore, mitochondria exhibit unstable or oscillatory membrane potentials (ΔΨm) when subjected to stress, such as during I/R, but it is unclear if the primary trigger is an excess influx of mitochondrial Ca2+ (mCa2+), reactive oxygen species (ROS) accumulation, or other factors. Here, we critically examine whether MCU-mediated mitochondrial Ca2+ uptake during I/R is involved in ΔΨm instability, or sustained mitochondrial depolarization, during reperfusion by acutely knocking out MCU in neonatal mouse ventricular myocyte (NMVM) monolayers subjected to simulated I/R. Unexpectedly, we find that MCU knockout does not significantly alter mCa2+ import during I/R, nor does it affect ΔΨm recovery during reperfusion. In contrast, blocking the mitochondrial sodium-calcium exchanger (mNCE) suppressed the mCa2+ increase during Ischemia but did not affect ΔΨm recovery or the frequency of ΔΨm oscillations during reperfusion, indicating that mitochondrial ΔΨm instability on reperfusion is not triggered by mCa2+. Interestingly, inhibition of mitochondrial electron transport or supplementation with antioxidants stabilized I/R-induced ΔΨm oscillations. The findings are consistent with mCa2+ overload being mediated by reverse-mode mNCE activity and supporting ROS-induced ROS release as the primary trigger of ΔΨm instability during reperfusion injury.
Collapse
Affiliation(s)
- Deepthi Ashok
- Johns Hopkins University, Division of Cardiology, Department of Medicine, Baltimore, Maryland, USA
| | - Kyriakos Papanicolaou
- Johns Hopkins University, Division of Cardiology, Department of Medicine, Baltimore, Maryland, USA
| | - Agnieszka Sidor
- Johns Hopkins University, Division of Cardiology, Department of Medicine, Baltimore, Maryland, USA
| | - Michelle Wang
- Johns Hopkins University, Division of Cardiology, Department of Medicine, Baltimore, Maryland, USA
| | - Soroosh Solhjoo
- Johns Hopkins University, Division of Cardiology, Department of Medicine, Baltimore, Maryland, USA
| | - Ting Liu
- Johns Hopkins University, Division of Cardiology, Department of Medicine, Baltimore, Maryland, USA
| | - Brian O'Rourke
- Johns Hopkins University, Division of Cardiology, Department of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
4
|
Schultz TI, Raucci FJ, Salloum FN. Cardiovascular Disease in Duchenne Muscular Dystrophy. JACC Basic Transl Sci 2022; 7:608-625. [PMID: 35818510 PMCID: PMC9270569 DOI: 10.1016/j.jacbts.2021.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/11/2022]
Abstract
Cardiomyopathy is the leading cause of death in patients with DMD. DMD has no cure, and there is no current consensus for treatment of DMD cardiomyopathy. This review discusses therapeutic strategies to potentially reduce or prevent cardiac dysfunction in DMD patients. Additional studies are needed to firmly establish optimal treatment modalities for DMD cardiomyopathy.
Duchenne muscular dystrophy (DMD) is a devastating disease affecting approximately 1 in every 3,500 male births worldwide. Multiple mutations in the dystrophin gene have been implicated as underlying causes of DMD. However, there remains no cure for patients with DMD, and cardiomyopathy has become the most common cause of death in the affected population. Extensive research is under way investigating molecular mechanisms that highlight potential therapeutic targets for the development of pharmacotherapy for DMD cardiomyopathy. In this paper, the authors perform a literature review reporting on recent ongoing efforts to identify novel therapeutic strategies to reduce, prevent, or reverse progression of cardiac dysfunction in DMD.
Collapse
|
5
|
Matuz-Mares D, González-Andrade M, Araiza-Villanueva MG, Vilchis-Landeros MM, Vázquez-Meza H. Mitochondrial Calcium: Effects of Its Imbalance in Disease. Antioxidants (Basel) 2022; 11:antiox11050801. [PMID: 35624667 PMCID: PMC9138001 DOI: 10.3390/antiox11050801] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Calcium is used in many cellular processes and is maintained within the cell as free calcium at low concentrations (approximately 100 nM), compared with extracellular (millimolar) concentrations, to avoid adverse effects such as phosphate precipitation. For this reason, cells have adapted buffering strategies by compartmentalizing calcium into mitochondria and the endoplasmic reticulum (ER). In mitochondria, the calcium concentration is in the millimolar range, as it is in the ER. Mitochondria actively contribute to buffering cellular calcium, but if matrix calcium increases beyond physiological demands, it can promote the opening of the mitochondrial permeability transition pore (mPTP) and, consequently, trigger apoptotic or necrotic cell death. The pathophysiological implications of mPTP opening in ischemia-reperfusion, liver, muscle, and lysosomal storage diseases, as well as those affecting the central nervous system, for example, Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS) have been reported. In this review, we present an updated overview of the main cellular mechanisms of mitochondrial calcium regulation. We specially focus on neurodegenerative diseases related to imbalances in calcium homeostasis and summarize some proposed therapies studied to attenuate these diseases.
Collapse
Affiliation(s)
- Deyamira Matuz-Mares
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (M.G.-A.); (M.M.V.-L.)
| | - Martin González-Andrade
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (M.G.-A.); (M.M.V.-L.)
| | | | - María Magdalena Vilchis-Landeros
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (M.G.-A.); (M.M.V.-L.)
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (M.G.-A.); (M.M.V.-L.)
- Correspondence: ; Tel.: +52-55-5623-2168
| |
Collapse
|
6
|
Garbincius JF, Elrod JW. Mitochondrial calcium exchange in physiology and disease. Physiol Rev 2022; 102:893-992. [PMID: 34698550 PMCID: PMC8816638 DOI: 10.1152/physrev.00041.2020] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/16/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
The uptake of calcium into and extrusion of calcium from the mitochondrial matrix is a fundamental biological process that has critical effects on cellular metabolism, signaling, and survival. Disruption of mitochondrial calcium (mCa2+) cycling is implicated in numerous acquired diseases such as heart failure, stroke, neurodegeneration, diabetes, and cancer and is genetically linked to several inherited neuromuscular disorders. Understanding the mechanisms responsible for mCa2+ exchange therefore holds great promise for the treatment of these diseases. The past decade has seen the genetic identification of many of the key proteins that mediate mitochondrial calcium uptake and efflux. Here, we present an overview of the phenomenon of mCa2+ transport and a comprehensive examination of the molecular machinery that mediates calcium flux across the inner mitochondrial membrane: the mitochondrial uniporter complex (consisting of MCU, EMRE, MICU1, MICU2, MICU3, MCUB, and MCUR1), NCLX, LETM1, the mitochondrial ryanodine receptor, and the mitochondrial permeability transition pore. We then consider the physiological implications of mCa2+ flux and evaluate how alterations in mCa2+ homeostasis contribute to human disease. This review concludes by highlighting opportunities and challenges for therapeutic intervention in pathologies characterized by aberrant mCa2+ handling and by summarizing critical unanswered questions regarding the biology of mCa2+ flux.
Collapse
Affiliation(s)
- Joanne F Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Serrat R, Oliveira-Pinto A, Marsicano G, Pouvreau S. Imaging mitochondrial calcium dynamics in the central nervous system. J Neurosci Methods 2022; 373:109560. [PMID: 35320763 DOI: 10.1016/j.jneumeth.2022.109560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/28/2022]
Abstract
Mitochondrial calcium handling is a particularly active research area in the neuroscience field, as it plays key roles in the regulation of several functions of the central nervous system, such as synaptic transmission and plasticity, astrocyte calcium signaling, neuronal activity… In the last few decades, a panel of techniques have been developed to measure mitochondrial calcium dynamics, relying mostly on photonic microscopy, and including synthetic sensors, hybrid sensors and genetically encoded calcium sensors. The goal of this review is to endow the reader with a deep knowledge of the historical and latest tools to monitor mitochondrial calcium events in the brain, as well as a comprehensive overview of the current state of the art in brain mitochondrial calcium signaling. We will discuss the main calcium probes used in the field, their mitochondrial targeting strategies, their key properties and major drawbacks. In addition, we will detail the main roles of mitochondrial calcium handling in neuronal tissues through an extended report of the recent studies using mitochondrial targeted calcium sensors in neuronal and astroglial cells, in vitro and in vivo.
Collapse
Affiliation(s)
- Roman Serrat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Alexandre Oliveira-Pinto
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Giovanni Marsicano
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Sandrine Pouvreau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France.
| |
Collapse
|
8
|
Takeuchi A, Matsuoka S. Physiological and Pathophysiological Roles of Mitochondrial Na +-Ca 2+ Exchanger, NCLX, in Hearts. Biomolecules 2021; 11:biom11121876. [PMID: 34944520 PMCID: PMC8699148 DOI: 10.3390/biom11121876] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
It has been over 10 years since SLC24A6/SLC8B1, coding the Na+/Ca2+/Li+ exchanger (NCLX), was identified as the gene responsible for mitochondrial Na+-Ca2+ exchange, a major Ca2+ efflux system in cardiac mitochondria. This molecular identification enabled us to determine structure–function relationships, as well as physiological/pathophysiological contributions, and our understandings have dramatically increased. In this review, we provide an overview of the recent achievements in relation to NCLX, focusing especially on its heart-specific characteristics, biophysical properties, and spatial distribution in cardiomyocytes, as well as in cardiac mitochondria. In addition, we discuss the roles of NCLX in cardiac functions under physiological and pathophysiological conditions—the generation of rhythmicity, the energy metabolism, the production of reactive oxygen species, and the opening of mitochondrial permeability transition pores.
Collapse
Affiliation(s)
- Ayako Takeuchi
- Department of Integrative and Systems Physiology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan;
- Life Science Innovation Center, University of Fukui, Fukui 910-1193, Japan
- Correspondence: ; Tel.: +81-776-61-8311
| | - Satoshi Matsuoka
- Department of Integrative and Systems Physiology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan;
- Life Science Innovation Center, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
9
|
Paß T, Wiesner RJ, Pla-Martín D. Selective Neuron Vulnerability in Common and Rare Diseases-Mitochondria in the Focus. Front Mol Biosci 2021; 8:676187. [PMID: 34295920 PMCID: PMC8290884 DOI: 10.3389/fmolb.2021.676187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is a central feature of neurodegeneration within the central and peripheral nervous system, highlighting a strong dependence on proper mitochondrial function of neurons with especially high energy consumptions. The fitness of mitochondria critically depends on preservation of distinct processes, including the maintenance of their own genome, mitochondrial dynamics, quality control, and Ca2+ handling. These processes appear to be differently affected in common neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, as well as in rare neurological disorders, including Huntington’s disease, Amyotrophic Lateral Sclerosis and peripheral neuropathies. Strikingly, particular neuron populations of different morphology and function perish in these diseases, suggesting that cell-type specific factors contribute to the vulnerability to distinct mitochondrial defects. Here we review the disruption of mitochondrial processes in common as well as in rare neurological disorders and its impact on selective neurodegeneration. Understanding discrepancies and commonalities regarding mitochondrial dysfunction as well as individual neuronal demands will help to design new targets and to make use of already established treatments in order to improve treatment of these diseases.
Collapse
Affiliation(s)
- Thomas Paß
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Pla-Martín
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Gherardi G, De Mario A, Mammucari C. The mitochondrial calcium homeostasis orchestra plays its symphony: Skeletal muscle is the guest of honor. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:209-259. [PMID: 34253296 DOI: 10.1016/bs.ircmb.2021.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Skeletal muscle mitochondria are placed in close proximity of the sarcoplasmic reticulum (SR), the main intracellular Ca2+ store. During muscle activity, excitation of sarcolemma and of T-tubule triggers the release of Ca2+ from the SR initiating myofiber contraction. The rise in cytosolic Ca2+ determines the opening of the mitochondrial calcium uniporter (MCU), the highly selective channel of the inner mitochondrial membrane (IMM), causing a robust increase in mitochondrial Ca2+ uptake. The Ca2+-dependent activation of TCA cycle enzymes increases the synthesis of ATP required for SERCA activity. Thus, Ca2+ is transported back into the SR and cytosolic [Ca2+] returns to resting levels eventually leading to muscle relaxation. In recent years, thanks to the molecular identification of MCU complex components, the role of mitochondrial Ca2+ uptake in the pathophysiology of skeletal muscle has been uncovered. In this chapter, we will introduce the reader to a general overview of mitochondrial Ca2+ accumulation. We will tackle the key molecular players and the cellular and pathophysiological consequences of mitochondrial Ca2+ dyshomeostasis. In the second part of the chapter, we will discuss novel findings on the physiological role of mitochondrial Ca2+ uptake in skeletal muscle. Finally, we will examine the involvement of mitochondrial Ca2+ signaling in muscle diseases.
Collapse
Affiliation(s)
- Gaia Gherardi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Agnese De Mario
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | |
Collapse
|
11
|
Assali EA, Sekler I. Sprinkling salt on mitochondria: The metabolic and pathophysiological roles of mitochondrial Na + signaling mediated by NCLX. Cell Calcium 2021; 97:102416. [PMID: 34062329 DOI: 10.1016/j.ceca.2021.102416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/25/2022]
Abstract
NCLX, the mitochondrial Na+/Ca2+ transporter is a key player in Ca2+ signaling. However, its role in Na+ signaling is poorly understood. In this review we focus on Na+ signaling by NCLX, and discuss recent physiological and pathophysiological roles attributed to the Na+ influx into mitochondria.
Collapse
Affiliation(s)
- Essam A Assali
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel.
| |
Collapse
|
12
|
Abstract
Mitochondria are responsible for ATP production but are also known as regulators of cell death, and mitochondrial matrix Ca2+ is a key modulator of both ATP production and cell death. Although mitochondrial Ca2+ uptake and efflux have been studied for over 50 years, it is only in the past decade that the proteins responsible for mitochondrial Ca2+ uptake and efflux have been identified. The identification of the mitochondrial Ca2+ uniporter (MCU) led to an explosion of studies identifying regulators of the MCU. The levels of these regulators vary in a tissue- and disease-specific manner, providing new insight into how mitochondrial Ca2+ is regulated. This review focuses on the proteins responsible for mitochondrial transport and what we have learned from mouse studies with genetic alterations in these proteins.
Collapse
Affiliation(s)
- Elizabeth Murphy
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Charles Steenbergen
- Department of Pathology, Johns Hopkins Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
13
|
Britti E, Delaspre F, Sanz-Alcázar A, Medina-Carbonero M, Llovera M, Purroy R, Mincheva-Tasheva S, Tamarit J, Ros J. Calcitriol increases frataxin levels and restores mitochondrial function in cell models of Friedreich Ataxia. Biochem J 2021; 478:1-20. [PMID: 33305808 DOI: 10.1042/bcj20200331] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2023]
Abstract
Friedreich ataxia (FA) is a neurodegenerative disease caused by the deficiency of frataxin, a mitochondrial protein. In primary cultures of dorsal root ganglia neurons, we showed that frataxin depletion resulted in decreased levels of the mitochondrial calcium exchanger NCLX, neurite degeneration and apoptotic cell death. Here, we describe that frataxin-deficient dorsal root ganglia neurons display low levels of ferredoxin 1 (FDX1), a mitochondrial Fe/S cluster-containing protein that interacts with frataxin and, interestingly, is essential for the synthesis of calcitriol, the active form of vitamin D. We provide data that calcitriol supplementation, used at nanomolar concentrations, is able to reverse the molecular and cellular markers altered in DRG neurons. Calcitriol is able to recover both FDX1 and NCLX levels and restores mitochondrial membrane potential indicating an overall mitochondrial function improvement. Accordingly, reduction in apoptotic markers and neurite degeneration was observed and, as a result, cell survival was also recovered. All these beneficial effects would be explained by the finding that calcitriol is able to increase the mature frataxin levels in both, frataxin-deficient DRG neurons and cardiomyocytes; remarkably, this increase also occurs in lymphoblastoid cell lines derived from FA patients. In conclusion, these results provide molecular bases to consider calcitriol for an easy and affordable therapeutic approach for FA patients.
Collapse
Affiliation(s)
- Elena Britti
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| | - Fabien Delaspre
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| | - A Sanz-Alcázar
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| | - Marta Medina-Carbonero
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| | - Marta Llovera
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| | - Rosa Purroy
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| | - Stefka Mincheva-Tasheva
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| | - Jordi Tamarit
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| | - Joaquim Ros
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| |
Collapse
|
14
|
Kim E, Lee DM, Seo MJ, Lee HJ, Choi KS. Intracellular Ca 2 + Imbalance Critically Contributes to Paraptosis. Front Cell Dev Biol 2021; 8:607844. [PMID: 33585447 PMCID: PMC7873879 DOI: 10.3389/fcell.2020.607844] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/07/2020] [Indexed: 01/04/2023] Open
Abstract
Paraptosis is a type of programmed cell death that is characterized by dilation of the endoplasmic reticulum (ER) and/or mitochondria. Since paraptosis is morphologically and biochemically different from apoptosis, understanding its regulatory mechanisms may provide a novel therapeutic strategy in malignant cancer cells that have proven resistant to conventional pro-apoptotic treatments. Relatively little is known about the molecular basis of paraptosis, but perturbations of cellular proteostasis and ion homeostasis appear to critically contribute to the process. Ca2+ transport has been shown to be important in the paraptosis induced by several natural products, metal complexes, and co-treatment with proteasome inhibitors and certain Ca2+-modulating agents. In particular, the Ca2+-mediated communication between the ER and mitochondria plays a crucial role in paraptosis. Mitochondrial Ca2+ overload from the intracellular Ca2+-flux system located at the ER–mitochondrial axis can induce mitochondrial dilation during paraptosis, while the accumulation of misfolded proteins within the ER lumen is believed to exert an osmotic force and draw water from the cytoplasm to distend the ER lumen. In this process, Ca2+ release from the ER also critically contributes to aggravating ER stress and ER dilation. This review focuses on the role of Ca2+ transport in paraptosis by summarizing the recent findings related to the actions of Ca2+-modulating paraptosis-inducing agents and discussing the potential cancer therapeutic strategies that may effectively induce paraptosis via Ca2+ signaling.
Collapse
Affiliation(s)
- Eunhee Kim
- Department of Biological Sciences, Ulsan National Institute Science and Technology, Ulsan, South Korea
| | - Dong Min Lee
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea
| | - Min Ji Seo
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea
| | - Hong Jae Lee
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea
| | - Kyeong Sook Choi
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
15
|
Katoshevski T, Ben-Kasus Nissim T, Sekler I. Recent studies on NCLX in health and diseases. Cell Calcium 2021; 94:102345. [PMID: 33508514 DOI: 10.1016/j.ceca.2020.102345] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022]
Abstract
The mitochondria is a major hub for cellular Ca 2+ signaling. The identification of MCU, the mitochondrial Ca 2+ influx mediator, and the mitochondrial Ca 2+ extruder NCLX, were major breakthroughs in this field. Their identification provided novel molecular tools and animal models to interrogate their physiological function and mode of regulation. Here we will focus on the mitochondrial Na + / Ca 2+ exchanger NCLX that plays a dual role in mitochondrial Na + and Ca 2+ signaling. We will discuss recent advances in NCLX mods of regulation by kinases and mitochondrial ΔΨ. We will also focus on the heterogeneity of its expression in distinct mitochondrial populations and the pathophysiological implication of its excessive degradation. We will describe the ongoing debate on the stoichiometry of Na + to Ca 2+ transport, mediated by NCLX, and its physiological implication. We will focus on the major effects of mitochondrial Na + signaling by NCLX on mitochondrial metabolism in health; and finally, we will discuss the role NCLX plays in a wide range of health disorders, from heart failure and cancer to Parkinson and Alzheimer disease, making it a prime candidate for therapeutic targeting.
Collapse
Affiliation(s)
- Tomer Katoshevski
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Tsipi Ben-Kasus Nissim
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
16
|
Islam MM, Takeuchi A, Matsuoka S. Membrane current evoked by mitochondrial Na +-Ca 2+ exchange in mouse heart. J Physiol Sci 2020; 70:24. [PMID: 32354321 PMCID: PMC10717124 DOI: 10.1186/s12576-020-00752-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/24/2020] [Indexed: 01/19/2023]
Abstract
The electrogenicity of mitochondrial Na+-Ca2+ exchange (NCXm) had been controversial and no membrane current through it had been reported. We succeeded for the first time in recording NCXm-mediated currents using mitoplasts derived from mouse ventricle. Under conditions that K+, Cl-, and Ca2+ uniporter currents were inhibited, extra-mitochondrial Na+ induced inward currents with 1 μM Ca2+ in the pipette. The half-maximum concentration of Na+ was 35.6 mM. The inward current was diminished without Ca2+ in the pipette, and was augmented with 10 μM Ca2+. The Na+-induced inward currents were largely inhibited by CGP-37157, an NCXm blocker. However, the reverse mode of NCXm, which should be detected as an outward current, was hardly induced by extra-mitochondrial application of Ca2+ with Na+ in the pipette. It was concluded that NCXm is electrogenic. This property may be advantageous for facilitating Ca2+ extrusion from mitochondria, which has large negative membrane potential.
Collapse
Affiliation(s)
- Mohammed M Islam
- Department of Integrative and Systems Physiology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Ayako Takeuchi
- Department of Integrative and Systems Physiology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
- Life Science Innovation Center, University of Fukui, Fukui, 910-1193, Japan
| | - Satoshi Matsuoka
- Department of Integrative and Systems Physiology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
- Life Science Innovation Center, University of Fukui, Fukui, 910-1193, Japan.
| |
Collapse
|
17
|
Gökerküçük EB, Tramier M, Bertolin G. Imaging Mitochondrial Functions: from Fluorescent Dyes to Genetically-Encoded Sensors. Genes (Basel) 2020; 11:E125. [PMID: 31979408 PMCID: PMC7073610 DOI: 10.3390/genes11020125] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are multifunctional organelles that are crucial to cell homeostasis. They constitute the major site of energy production for the cell, they are key players in signalling pathways using secondary messengers such as calcium, and they are involved in cell death and redox balance paradigms. Mitochondria quickly adapt their dynamics and biogenesis rates to meet the varying energy demands of the cells, both in normal and in pathological conditions. Therefore, understanding simultaneous changes in mitochondrial functions is crucial in developing mitochondria-based therapy options for complex pathological conditions such as cancer, neurological disorders, and metabolic syndromes. To this end, fluorescence microscopy coupled to live imaging represents a promising strategy to track these changes in real time. In this review, we will first describe the commonly available tools to follow three key mitochondrial functions using fluorescence microscopy: Calcium signalling, mitochondrial dynamics, and mitophagy. Then, we will focus on how the development of genetically-encoded fluorescent sensors became a milestone for the understanding of these mitochondrial functions. In particular, we will show how these tools allowed researchers to address several biochemical activities in living cells, and with high spatiotemporal resolution. With the ultimate goal of tracking multiple mitochondrial functions simultaneously, we will conclude by presenting future perspectives for the development of novel genetically-encoded fluorescent biosensors.
Collapse
Affiliation(s)
| | | | - Giulia Bertolin
- Univ Rennes, CNRS, IGDR [Institut de génétique et développement de Rennes] UMR 6290, F-35000 Rennes, France
| |
Collapse
|
18
|
Pathophysiology of Calcium Mediated Ventricular Arrhythmias and Novel Therapeutic Options with Focus on Gene Therapy. Int J Mol Sci 2019; 20:ijms20215304. [PMID: 31653119 PMCID: PMC6862059 DOI: 10.3390/ijms20215304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022] Open
Abstract
Cardiac arrhythmias constitute a major health problem with a huge impact on mortality rates and health care costs. Despite ongoing research efforts, the understanding of the molecular mechanisms and processes responsible for arrhythmogenesis remains incomplete. Given the crucial role of Ca2+-handling in action potential generation and cardiac contraction, Ca2+ channels and Ca2+ handling proteins represent promising targets for suppression of ventricular arrhythmias. Accordingly, we report the different roles of Ca2+-handling in the development of congenital as well as acquired ventricular arrhythmia syndromes. We highlight the therapeutic potential of gene therapy as a novel and innovative approach for future arrhythmia therapy. Furthermore, we discuss various promising cellular and mitochondrial targets for therapeutic gene transfer currently under investigation.
Collapse
|
19
|
Cyclosporin A Increases Mitochondrial Buffering of Calcium: An Additional Mechanism in Delaying Mitochondrial Permeability Transition Pore Opening. Cells 2019; 8:cells8091052. [PMID: 31500337 PMCID: PMC6770067 DOI: 10.3390/cells8091052] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of mitochondrial free Ca2+ is critically important for cellular homeostasis. An increase in mitochondrial matrix free Ca2+ concentration ([Ca2+]m) predisposes mitochondria to opening of the permeability transition pore (mPTP). Opening of the pore can be delayed by cyclosporin A (CsA), possibly by inhibiting cyclophilin D (Cyp D), a key regulator of mPTP. Here, we report on a novel mechanism by which CsA delays mPTP opening by enhanced sequestration of matrix free Ca2+. Cardiac-isolated mitochondria were challenged with repetitive CaCl2 boluses under Na+-free buffer conditions with and without CsA. CsA significantly delayed mPTP opening primarily by promoting matrix Ca2+ sequestration, leading to sustained basal [Ca2+]m levels for an extended period. The preservation of basal [Ca2+]m during the CaCl2 pulse challenge was associated with normalized NADH, matrix pH (pHm), and mitochondrial membrane potential (ΔΨm). Notably, we found that in PO43− (Pi)-free buffer condition, the CsA-mediated buffering of [Ca2+]m was abrogated, and mitochondrial bioenergetics variables were concurrently compromised. In the presence of CsA, addition of Pi just before pore opening in the Pi-depleted condition reinstated the Ca2+ buffering system and rescued mitochondria from mPTP opening. This study shows that CsA promotes Pi-dependent mitochondrial Ca2+ sequestration to delay mPTP opening and, concomitantly, maintains mitochondrial function.
Collapse
|
20
|
Kang C, Badr MA, Kyrychenko V, Eskelinen EL, Shirokova N. Deficit in PINK1/PARKIN-mediated mitochondrial autophagy at late stages of dystrophic cardiomyopathy. Cardiovasc Res 2019; 114:90-102. [PMID: 29036556 DOI: 10.1093/cvr/cvx201] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/04/2017] [Indexed: 01/09/2023] Open
Abstract
Aims Duchenne muscular dystrophy (DMD) is an inherited devastating muscle disease with severe and often lethal cardiac complications. Emerging evidence suggests that the evolution of the pathology in DMD is accompanied by the accumulation of mitochondria with defective structure and function. Here, we investigate whether defects in the housekeeping autophagic pathway contribute to mitochondrial and metabolic dysfunctions in dystrophic cardiomyopathy. Methods and results We employed various biochemical and imaging techniques to assess mitochondrial structure and function as well as to evaluate autophagy, and specific mitochondrial autophagy (mitophagy), in hearts of mdx mice, an animal model of DMD. Our results indicate substantial structural damage of mitochondria and a significant decrease in ATP production in hearts of mdx animals, which developed cardiomyopathy. In these hearts, we also detected enhanced autophagy but paradoxically, mitophagy appeared to be suppressed. In addition, we found decreased levels of several proteins involved in the PINK1/PARKIN mitophagy pathway as well as an insignificant amount of PARKIN protein phosphorylation at the S65 residue upon induction of mitophagy. Conclusions Our results suggest faulty mitophagy in dystrophic hearts due to defects in the PINK1/PARKIN pathway.
Collapse
Affiliation(s)
- Chifei Kang
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Myriam A Badr
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Viktoriia Kyrychenko
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Eeva-Liisa Eskelinen
- Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Natalia Shirokova
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
21
|
Cao JL, Adaniya SM, Cypress MW, Suzuki Y, Kusakari Y, Jhun BS, O-Uchi J. Role of mitochondrial Ca 2+ homeostasis in cardiac muscles. Arch Biochem Biophys 2019; 663:276-287. [PMID: 30684463 PMCID: PMC6469710 DOI: 10.1016/j.abb.2019.01.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022]
Abstract
Recent discoveries of the molecular identity of mitochondrial Ca2+ influx/efflux mechanisms have placed mitochondrial Ca2+ transport at center stage in views of cellular regulation in various cell-types/tissues. Indeed, mitochondria in cardiac muscles also possess the molecular components for efficient uptake and extraction of Ca2+. Over the last several years, multiple groups have taken advantage of newly available molecular information about these proteins and applied genetic tools to delineate the precise mechanisms for mitochondrial Ca2+ handling in cardiomyocytes and its contribution to excitation-contraction/metabolism coupling in the heart. Though mitochondrial Ca2+ has been proposed as one of the most crucial secondary messengers in controlling a cardiomyocyte's life and death, the detailed mechanisms of how mitochondrial Ca2+ regulates physiological mitochondrial and cellular functions in cardiac muscles, and how disorders of this mechanism lead to cardiac diseases remain unclear. In this review, we summarize the current controversies and discrepancies regarding cardiac mitochondrial Ca2+ signaling that remain in the field to provide a platform for future discussions and experiments to help close this gap.
Collapse
Affiliation(s)
- Jessica L Cao
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, USA; Department of Medicine, Division of Cardiology, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Stephanie M Adaniya
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, USA; Department of Medicine, Division of Cardiology, The Warren Alpert Medical School of Brown University, Providence, RI, USA; Lillehei Heart Institute, Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Michael W Cypress
- Lillehei Heart Institute, Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Yuta Suzuki
- Lillehei Heart Institute, Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Yoichiro Kusakari
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Bong Sook Jhun
- Lillehei Heart Institute, Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Jin O-Uchi
- Lillehei Heart Institute, Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
22
|
De la Fuente S, Sheu SS. SR-mitochondria communication in adult cardiomyocytes: A close relationship where the Ca 2+ has a lot to say. Arch Biochem Biophys 2019; 663:259-268. [PMID: 30685253 PMCID: PMC6377816 DOI: 10.1016/j.abb.2019.01.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/14/2019] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
Abstract
In adult cardiomyocytes, T-tubules, junctional sarcoplasmic reticulum (jSR), and mitochondria juxtapose each other and form a unique and highly repetitive functional structure along the cell. The close apposition between jSR and mitochondria creates high Ca2+ microdomains at the contact sites, increasing the efficiency of the excitation-contraction-bioenergetics coupling, where the Ca2+ transfer from SR to mitochondria plays a critical role. The SR-mitochondria contacts are established through protein tethers, with mitofusin 2 the most studied SR-mitochondrial "bridge", albeit controversial. Mitochondrial Ca2+ uptake is further optimized with the mitochondrial Ca2+ uniporter preferentially localized in the jSR-mitochondria contact sites and the mitochondrial Na+/Ca2+ exchanger localized away from these sites. Despite all these unique features facilitating the privileged transport of Ca2+ from SR to mitochondria in adult cardiomyocytes, the question remains whether mitochondrial Ca2+ concentrations oscillate in synchronicity with cytosolic Ca2+ transients during heartbeats. Proper Ca2+ transfer controls not only the process of mitochondrial bioenergetics, but also of mitochondria-mediated cell death, autophagy/mitophagy, mitochondrial fusion/fission dynamics, reactive oxygen species generation, and redox signaling, among others. Our review focuses specifically on Ca2+ signaling between SR and mitochondria in adult cardiomyocytes. We discuss the physiological and pathological implications of this SR-mitochondrial Ca2+ signaling, research gaps, and future trends.
Collapse
Affiliation(s)
- Sergio De la Fuente
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
23
|
Giorgi C, Marchi S, Pinton P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol 2018; 19:713-730. [PMID: 30143745 DOI: 10.1038/s41580-018-0052-8] [Citation(s) in RCA: 505] [Impact Index Per Article: 84.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium ions (Ca2+) are some of the most versatile signalling molecules, and they have many physiological functions, prominently including muscle contraction, neuronal excitability, cell migration and cell growth. By sequestering and releasing Ca2+, mitochondria serve as important regulators of cellular Ca2+. Mitochondrial Ca2+ also has other important functions, such as regulation of mitochondrial metabolism, ATP production and cell death. In recent years, identification of the molecular machinery regulating mitochondrial Ca2+ accumulation and efflux has expanded the number of (patho)physiological conditions that rely on mitochondrial Ca2+ homeostasis. Thus, expanding the understanding of the mechanisms of mitochondrial Ca2+ regulation and function in different cell types is an important task in biomedical research, which offers the possibility of targeting mitochondrial Ca2+ machinery for the treatment of several disorders.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy. .,Maria Cecilia Hospital, GVM Care and Research, Cotignola, Ravenna, Italy.
| |
Collapse
|
24
|
Targeting mitochondrial calcium transport in myocardial infarction. Hellenic J Cardiol 2018; 59:223-225. [PMID: 29940221 DOI: 10.1016/j.hjc.2018.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 01/27/2023] Open
|
25
|
Mechano-sensitivity of mitochondrial function in mouse cardiac myocytes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:315-322. [PMID: 28668597 DOI: 10.1016/j.pbiomolbio.2017.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
Abstract
Mitochondria are an important source of reactive oxygen species (ROS). Although it has been reported that myocardial stretch increases cellular ROS production by activating nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), referred to as X-ROS signalling, the involvement of mitochondria in X-ROS is not clear. Mitochondria are organelles that generate adenosine triphosphate (ATP) for cellular energy needs, which are mechanical-load-dependent. Therefore, it would not be surprising if these organelles had mechano-sensitive functions associated with stretch-induced ROS production. In the present study, we investigated the relation between X-ROS and mitochondrial stretch-sensitive responses in isolated mouse cardiac myocytes. The cells were subjected to 10% axial stretch using computer-controlled, piezo-manipulated carbon fibres attached to both cell ends. Cellular ROS production and mitochondrial membrane potential (Δψm) were assessed optically by confocal microscopy. The axial stretch increased ROS production and hyperpolarised Δψm. Treatment with a mitochondrial metabolic uncoupler, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), at 0.5 μM did not suppress stretch-induced ROS production, whereas treatment with a respiratory Complex III inhibitor, antimycin A (5 μM), blunted the response. Although NOX inhibition by apocynin abrogated the stretch-induced ROS production, it did not suppress stretch-induced hyperpolarisation of Δψm. These results suggest that stretch causes activation of the respiratory chain to hyperpolarise Δψm, followed by NOX activation, which increases ROS production.
Collapse
|
26
|
Ben-Kasus Nissim T, Zhang X, Elazar A, Roy S, Stolwijk JA, Zhou Y, Motiani RK, Gueguinou M, Hempel N, Hershfinkel M, Gill DL, Trebak M, Sekler I. Mitochondria control store-operated Ca 2+ entry through Na + and redox signals. EMBO J 2017; 36:797-815. [PMID: 28219928 DOI: 10.15252/embj.201592481] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 12/25/2016] [Accepted: 01/05/2017] [Indexed: 02/05/2023] Open
Abstract
Mitochondria exert important control over plasma membrane (PM) Orai1 channels mediating store-operated Ca2+ entry (SOCE). Although the sensing of endoplasmic reticulum (ER) Ca2+ stores by STIM proteins and coupling to Orai1 channels is well understood, how mitochondria communicate with Orai1 channels to regulate SOCE activation remains elusive. Here, we reveal that SOCE is accompanied by a rise in cytosolic Na+ that is critical in activating the mitochondrial Na+/Ca2+ exchanger (NCLX) causing enhanced mitochondrial Na+ uptake and Ca2+ efflux. Omission of extracellular Na+ prevents the cytosolic Na+ rise, inhibits NCLX activity, and impairs SOCE and Orai1 channel current. We show further that SOCE activates a mitochondrial redox transient which is dependent on NCLX and is required for preventing Orai1 inactivation through oxidation of a critical cysteine (Cys195) in the third transmembrane helix of Orai1. We show that mitochondrial targeting of catalase is sufficient to rescue redox transients, SOCE, and Orai1 currents in NCLX-deficient cells. Our findings identify a hitherto unknown NCLX-mediated pathway that coordinates Na+ and Ca2+ signals to effect mitochondrial redox control over SOCE.
Collapse
Affiliation(s)
- Tsipi Ben-Kasus Nissim
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Assaf Elazar
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Soumitra Roy
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Judith A Stolwijk
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yandong Zhou
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Rajender K Motiani
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Maxime Gueguinou
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Nadine Hempel
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Michal Hershfinkel
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Donald L Gill
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Israel Sekler
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
27
|
Gottlieb RA, Bernstein D. Mitochondrial remodeling: Rearranging, recycling, and reprogramming. Cell Calcium 2016; 60:88-101. [PMID: 27130902 PMCID: PMC4996709 DOI: 10.1016/j.ceca.2016.04.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/15/2016] [Accepted: 04/17/2016] [Indexed: 12/26/2022]
Abstract
Mitochondria are highly dynamic and responsive organelles that respond to environmental cues with fission and fusion. They undergo mitophagy and biogenesis, and are subject to extensive post-translational modifications. Calcium plays an important role in regulating mitochondrial functions. Mitochondria play a central role in metabolism of glucose, fatty acids, and amino acids, and generate ATP with effects on redox poise, oxidative stress, pH, and other metabolites including acetyl-CoA and NAD(+) which in turn have effects on chromatin remodeling. The complex interplay of mitochondria, cytosolic factors, and the nucleus ensure a well-coordinated response to environmental stresses.
Collapse
Affiliation(s)
| | - Daniel Bernstein
- Department of Pediatrics (Cardiology) and the Cardiovascular Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
28
|
Lee JH, Ha JM, Leem CH. A Novel Nicotinamide Adenine Dinucleotide Correction Method for Mitochondrial Ca(2+) Measurement with FURA-2-FF in Single Permeabilized Ventricular Myocytes of Rat. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:373-82. [PMID: 26170742 PMCID: PMC4499650 DOI: 10.4196/kjpp.2015.19.4.373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 01/24/2023]
Abstract
Fura-2 analogs are ratiometric fluoroprobes that are widely used for the quantitative measurement of [Ca(2+)]. However, the dye usage is intrinsically limited, as the dyes require ultraviolet (UV) excitation, which can also generate great interference, mainly from nicotinamide adenine dinucleotide (NADH) autofluorescence. Specifically, this limitation causes serious problems for the quantitative measurement of mitochondrial [Ca(2+)], as no available ratiometric dyes are excited in the visible range. Thus, NADH interference cannot be avoided during quantitative measurement of [Ca(2+)] because the majority of NADH is located in the mitochondria. The emission intensity ratio of two different excitation wavelengths must be constant when the fluorescent dye concentration is the same. In accordance with this principle, we developed a novel online method that corrected NADH and Fura-2-FF interference. We simultaneously measured multiple parameters, including NADH, [Ca(2+)], and pH/mitochondrial membrane potential; Fura-2-FF for mitochondrial [Ca(2+)] and TMRE for Ψm or carboxy-SNARF-1 for pH were used. With this novel method, we found that the resting mitochondrial [Ca(2+)] concentration was 1.03 µM. This 1 µM cytosolic Ca(2+) could theoretically increase to more than 100 mM in mitochondria. However, the mitochondrial [Ca(2+)] increase was limited to ~30 µM in the presence of 1 µM cytosolic Ca(2+). Our method solved the problem of NADH signal contamination during the use of Fura-2 analogs, and therefore the method may be useful when NADH interference is expected.
Collapse
Affiliation(s)
- Jeong Hoon Lee
- Department of Physiology, University of Ulsan College of Medicine/Asan Medical Center, Seoul 138-736, Korea
| | - Jeong Mi Ha
- Department of Physiology, University of Ulsan College of Medicine/Asan Medical Center, Seoul 138-736, Korea
| | - Chae Hun Leem
- Department of Physiology, University of Ulsan College of Medicine/Asan Medical Center, Seoul 138-736, Korea
| |
Collapse
|
29
|
Calderón JC, Bolaños P, Caputo C. The excitation-contraction coupling mechanism in skeletal muscle. Biophys Rev 2014; 6:133-160. [PMID: 28509964 PMCID: PMC5425715 DOI: 10.1007/s12551-013-0135-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/06/2013] [Indexed: 12/27/2022] Open
Abstract
First coined by Alexander Sandow in 1952, the term excitation-contraction coupling (ECC) describes the rapid communication between electrical events occurring in the plasma membrane of skeletal muscle fibres and Ca2+ release from the SR, which leads to contraction. The sequence of events in twitch skeletal muscle involves: (1) initiation and propagation of an action potential along the plasma membrane, (2) spread of the potential throughout the transverse tubule system (T-tubule system), (3) dihydropyridine receptors (DHPR)-mediated detection of changes in membrane potential, (4) allosteric interaction between DHPR and sarcoplasmic reticulum (SR) ryanodine receptors (RyR), (5) release of Ca2+ from the SR and transient increase of Ca2+ concentration in the myoplasm, (6) activation of the myoplasmic Ca2+ buffering system and the contractile apparatus, followed by (7) Ca2+ disappearance from the myoplasm mediated mainly by its reuptake by the SR through the SR Ca2+ adenosine triphosphatase (SERCA), and under several conditions movement to the mitochondria and extrusion by the Na+/Ca2+ exchanger (NCX). In this text, we review the basics of ECC in skeletal muscle and the techniques used to study it. Moreover, we highlight some recent advances and point out gaps in knowledge on particular issues related to ECC such as (1) DHPR-RyR molecular interaction, (2) differences regarding fibre types, (3) its alteration during muscle fatigue, (4) the role of mitochondria and store-operated Ca2+ entry in the general ECC sequence, (5) contractile potentiators, and (6) Ca2+ sparks.
Collapse
Affiliation(s)
- Juan C Calderón
- Physiology and Biochemistry Research Group-Physis, Department of Physiology and Biochemistry, Faculty of Medicine, University of Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela.
- Departamento de Fisiología y Bioquímica, Grupo de Investigación en Fisiología y Bioquímica-Physis, Facultad de Medicina, Universidad de Antioquia, Calle 70 No 52-21, Medellín, Colombia.
| | - Pura Bolaños
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Carlo Caputo
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| |
Collapse
|
30
|
Sharma V, O'Halloran DM. Recent structural and functional insights into the family of sodium calcium exchangers. Genesis 2013; 52:93-109. [PMID: 24376088 DOI: 10.1002/dvg.22735] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/04/2013] [Accepted: 12/08/2013] [Indexed: 01/08/2023]
Abstract
Maintenance of calcium homeostasis is necessary for the development and survival of all animals. Calcium ions modulate excitability and bind effectors capable of initiating many processes such as muscular contraction and neurotransmission. However, excessive amounts of calcium in the cytosol or within intracellular calcium stores can trigger apoptotic pathways in cells that have been implicated in cardiac and neuronal pathologies. Accordingly, it is critical for cells to rapidly and effectively regulate calcium levels. The Na(+) /Ca(2+) exchangers (NCX), Na(+) /Ca(2+) /K(+) exchangers (NCKX), and Ca(2+) /Cation exchangers (CCX) are the three classes of sodium calcium antiporters found in animals. These exchanger proteins utilize an electrochemical gradient to extrude calcium. Although they have been studied for decades, much is still unknown about these proteins. In this review, we examine current knowledge about the structure, function, and physiology and also discuss their implication in various developmental disorders. Finally, we highlight recent data characterizing the family of sodium calcium exchangers in the model system, Caenorhabditis elegans, and propose that C. elegans may be an ideal model to complement other systems and help fill gaps in our knowledge of sodium calcium exchange biology.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Biological Sciences, The George Washington University, Washington, DC; Institute for Neuroscience, The George Washington University, Washington, DC
| | | |
Collapse
|
31
|
Coppini R, Ferrantini C, Mazzoni L, Sartiani L, Olivotto I, Poggesi C, Cerbai E, Mugelli A. Regulation of intracellular Na(+) in health and disease: pathophysiological mechanisms and implications for treatment. Glob Cardiol Sci Pract 2013; 2013:222-42. [PMID: 24689024 PMCID: PMC3963757 DOI: 10.5339/gcsp.2013.30] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/01/2013] [Indexed: 12/19/2022] Open
Abstract
Transmembrane sodium (Na+) fluxes and intracellular sodium homeostasis are central players in the physiology of the cardiac myocyte, since they are crucial for both cell excitability and for the regulation of the intracellular calcium concentration. Furthermore, Na+ fluxes across the membrane of mitochondria affect the concentration of protons and calcium in the matrix, regulating mitochondrial function. In this review we first analyze the main molecular determinants of sodium fluxes across the sarcolemma and the mitochondrial membrane and describe their role in the physiology of the healthy myocyte. In particular we focus on the interplay between intracellular Ca2+ and Na+. A large part of the review is dedicated to discuss the changes of Na+ fluxes and intracellular Na+ concentration([Na+]i) occurring in cardiac disease; we specifically focus on heart failure and hypertrophic cardiomyopathy, where increased intracellular [Na+]i is an established determinant of myocardial dysfunction. We review experimental evidence attributing the increase of [Na+]i to either decreased Na+ efflux (e.g. via the Na+/K+ pump) or increased Na+ influx into the myocyte (e.g. via Na+ channels). In particular, we focus on the role of the “late sodium current” (INaL), a sustained component of the fast Na+ current of cardiac myocytes, which is abnormally enhanced in cardiac diseases and contributes to both electrical and contractile dysfunction. We analyze the pathophysiological role of INaL enhancement in heart failure and hypertrophic cardiomyopathy and the consequences of its pharmacological modulation, highlighting the clinical implications. The central role of Na+ fluxes and intracellular Na+ physiology and pathophysiology of cardiac myocytes has been highlighted by a large number of recent works. The possibility of modulating Na+ inward fluxes and [Na+]i with specific INaL inhibitors, such as ranolazine, has made Na+a novel suitable target for cardiac therapy, potentially capable of addressing arrhythmogenesis and diastolic dysfunction in severe conditions such as heart failure and hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Raffaele Coppini
- Department NeuroFarBa, Division of Pharmacology, University of Florence, Italy
| | - Cecilia Ferrantini
- Department of Clinical and Experimental Medicine, division of Physiology, University of Florence, Italy
| | - Luca Mazzoni
- Department NeuroFarBa, Division of Pharmacology, University of Florence, Italy
| | - Laura Sartiani
- Department NeuroFarBa, Division of Pharmacology, University of Florence, Italy
| | - Iacopo Olivotto
- Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy
| | - Corrado Poggesi
- Department of Clinical and Experimental Medicine, division of Physiology, University of Florence, Italy
| | - Elisabetta Cerbai
- Department NeuroFarBa, Division of Pharmacology, University of Florence, Italy
| | - Alessandro Mugelli
- Department NeuroFarBa, Division of Pharmacology, University of Florence, Italy
| |
Collapse
|
32
|
Scorzeto M, Giacomello M, Toniolo L, Canato M, Blaauw B, Paolini C, Protasi F, Reggiani C, Stienen GJM. Mitochondrial Ca2+-handling in fast skeletal muscle fibers from wild type and calsequestrin-null mice. PLoS One 2013; 8:e74919. [PMID: 24098358 PMCID: PMC3789688 DOI: 10.1371/journal.pone.0074919] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/07/2013] [Indexed: 11/19/2022] Open
Abstract
Mitochondrial calcium handling and its relation with calcium released from sarcoplasmic reticulum (SR) in muscle tissue are subject of lively debate. In this study we aimed to clarify how the SR determines mitochondrial calcium handling using dCASQ-null mice which lack both isoforms of the major Ca2+-binding protein inside SR, calsequestrin. Mitochondrial free Ca2+-concentration ([Ca2+]mito) was determined by means of a genetically targeted ratiometric FRET-based probe. Electron microscopy revealed a highly significant increase in intermyofibrillar mitochondria (+55%) and augmented coupling (+12%) between Ca2+ release units of the SR and mitochondria in dCASQ-null vs. WT fibers. Significant differences in the baseline [Ca2+]mito were observed between quiescent WT and dCASQ-null fibers, but not in the resting cytosolic Ca2+ concentration. The rise in [Ca2+]mito during electrical stimulation occurred in 20−30 ms, while the decline during and after stimulation was governed by 4 rate constants of approximately 40, 1.6, 0.2 and 0.03 s−1. Accordingly, frequency-dependent increase in [Ca2+]mito occurred during sustained contractions. In dCASQ-null fibers the increases in [Ca2+]mito were less pronounced than in WT fibers and even lower when extracellular calcium was removed. The amplitude and duration of [Ca2+]mito transients were increased by inhibition of mitochondrial Na+/Ca2+ exchanger (mNCX). These results provide direct evidence for fast Ca2+ accumulation inside the mitochondria, involvement of the mNCX in mitochondrial Ca2+-handling and a dependence of mitochondrial Ca2+-handling on intracellular (SR) and external Ca2+ stores in fast skeletal muscle fibers. dCASQ-null mice represent a model for malignant hyperthermia. The differences in structure and in mitochondrial function observed relative to WT may represent compensatory mechanisms for the disease-related reduction of calcium storage capacity of the SR and/or SR Ca2+-leakage.
Collapse
Affiliation(s)
- Michele Scorzeto
- Department of Biomedical Sciences and Interuniversity Institute of Myology (IIM), University of Padova, Padua, Italy
| | | | - Luana Toniolo
- Department of Biomedical Sciences and Interuniversity Institute of Myology (IIM), University of Padova, Padua, Italy
| | - Marta Canato
- Department of Biomedical Sciences and Interuniversity Institute of Myology (IIM), University of Padova, Padua, Italy
| | - Bert Blaauw
- Department of Biomedical Sciences and Interuniversity Institute of Myology (IIM), University of Padova, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Cecilia Paolini
- Department of Neuroscience and Imaging (DNI) and Center for Research on Ageing (CeSI), and Interuniversity Institute of Myology (IIM), University G. d' Annunzio, Chieti, Italy
| | - Feliciano Protasi
- Department of Neuroscience and Imaging (DNI) and Center for Research on Ageing (CeSI), and Interuniversity Institute of Myology (IIM), University G. d' Annunzio, Chieti, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences and Interuniversity Institute of Myology (IIM), University of Padova, Padua, Italy
| | - Ger J. M. Stienen
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
- Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
33
|
Redpath CJ, Bou Khalil M, Drozdzal G, Radisic M, McBride HM. Mitochondrial hyperfusion during oxidative stress is coupled to a dysregulation in calcium handling within a C2C12 cell model. PLoS One 2013; 8:e69165. [PMID: 23861961 PMCID: PMC3704522 DOI: 10.1371/journal.pone.0069165] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 06/11/2013] [Indexed: 01/04/2023] Open
Abstract
Atrial Fibrillation is the most common sustained cardiac arrhythmia worldwide harming millions of people every year. Atrial Fibrillation (AF) abruptly induces rapid conduction between atrial myocytes which is associated with oxidative stress and abnormal calcium handling. Unfortunately this new equilibrium promotes perpetuation of the arrhythmia. Recently, in addition to being the major source of oxidative stress within cells, mitochondria have been observed to fuse, forming mitochondrial networks and attach to intracellular calcium stores in response to cellular stress. We sought to identify a potential role for rapid stimulation, oxidative stress and mitochondrial hyperfusion in acute changes to myocyte calcium handling. In addition we hoped to link altered calcium handling to increased sarcoplasmic reticulum (SR)-mitochondrial contacts, the so-called mitochondrial associated membrane (MAM). We selected the C2C12 murine myotube model as it has previously been successfully used to investigate mitochondrial dynamics and has a myofibrillar system similar to atrial myocytes. We observed that rapid stimulation of C2C12 cells resulted in mitochondrial hyperfusion and increased mitochondrial colocalisation with calcium stores. Inhibition of mitochondrial fission by transfection of mutant DRP1K38E resulted in similar effects on mitochondrial fusion, SR colocalisation and altered calcium handling. Interestingly the effects of 'forced fusion' were reversed by co-incubation with the reducing agent N-Acetyl cysteine (NAC). Subsequently we demonstrated that oxidative stress resulted in similar reversible increases in mitochondrial fusion, SR-colocalisation and altered calcium handling. Finally, we believe we have identified that myocyte calcium handling is reliant on baseline levels of reactive oxygen species as co-incubation with NAC both reversed and retarded myocyte response to caffeine induced calcium release and re-uptake. Based on these results we conclude that the coordinate regulation of mitochondrial fusion and MAM contacts may form a point source for stress-induced arrhythmogenesis. We believe that the MAM merits further investigation as a therapeutic target in AF-induced remodelling.
Collapse
Affiliation(s)
- Calum J Redpath
- Cellular Electrophysiology Laboratory, University of Ottawa Heart Institute, University of Ottawa, Ottawa, ON, Canada.
| | | | | | | | | |
Collapse
|
34
|
Boyman L, Williams GSB, Khananshvili D, Sekler I, Lederer WJ. NCLX: the mitochondrial sodium calcium exchanger. J Mol Cell Cardiol 2013; 59:205-13. [PMID: 23538132 PMCID: PMC3951392 DOI: 10.1016/j.yjmcc.2013.03.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/15/2013] [Indexed: 11/18/2022]
Abstract
The free Ca(2+) concentration within the mitochondrial matrix ([Ca(2+)]m) regulates the rate of ATP production and other [Ca(2+)]m sensitive processes. It is set by the balance between total Ca(2+) influx (through the mitochondrial Ca(2+) uniporter (MCU) and any other influx pathways) and the total Ca(2+) efflux (by the mitochondrial Na(+)/Ca(2+) exchanger and any other efflux pathways). Here we review and analyze the experimental evidence reported over the past 40years which suggest that in the heart and many other mammalian tissues a putative Na(+)/Ca(2+) exchanger is the major pathway for Ca(2+) efflux from the mitochondrial matrix. We discuss those reports with respect to a recent discovery that the protein product of the human FLJ22233 gene mediates such Na(+)/Ca(2+) exchange across the mitochondrial inner membrane. Among its many functional similarities to other Na(+)/Ca(2+) exchanger proteins is a unique feature: it efficiently mediates Li(+)/Ca(2+) exchange (as well as Na(+)/Ca(2+) exchange) and was therefore named NCLX. The discovery of NCLX provides both the identity of a novel protein and new molecular means of studying various unresolved quantitative aspects of mitochondrial Ca(2+) movement out of the matrix. Quantitative and qualitative features of NCLX are discussed as is the controversy regarding the stoichiometry of the NCLX Na(+)/Ca(2+) exchange, the electrogenicity of NCLX, the [Na(+)]i dependency of NCLX and the magnitude of NCLX Ca(2+) efflux. Metabolic features attributable to NCLX and the physiological implication of the Ca(2+) efflux rate via NCLX during systole and diastole are also briefly discussed.
Collapse
Affiliation(s)
- Liron Boyman
- Center for Biomedical Engineering and Technology and Dept. Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - George S. B. Williams
- Center for Biomedical Engineering and Technology and Dept. Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- School of Systems Biology, College of Science, George Mason University, Manassas, VA 20110
| | - Daniel Khananshvili
- Sackler School of Medicine, Department of Physiology and Pharmacology, Tel-Aviv University, Ramat-Aviv 69978, Israel
| | - Israel Sekler
- Goldman Medical School, Dept. Biology & Neurobiology, Ben Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - W. J. Lederer
- Center for Biomedical Engineering and Technology and Dept. Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
35
|
Bay J, Kohlhaas M, Maack C. Intracellular Na⁺ and cardiac metabolism. J Mol Cell Cardiol 2013; 61:20-7. [PMID: 23727097 DOI: 10.1016/j.yjmcc.2013.05.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/08/2013] [Accepted: 05/20/2013] [Indexed: 12/13/2022]
Abstract
In heart failure, alterations of excitation-contraction underlie contractile dysfunction. One important defect is an elevation of the intracellular Na(+) concentration in cardiac myocytes ([Na(+)]i), which has an important impact on cytosolic and mitochondrial Ca(2+) homeostasis. While elevated [Na(+)]i is thought to compensate for decreased Ca(2+) load of the sarcoplasmic reticulum (SR), it yet negatively affects energy supply-and-demand matching and can even induce mitochondrial oxidative stress. Here, we review the mechanisms underlying these pathophysiological changes. The chain of events may constitute a vicious cycle of ion dysregulation, oxidative stress and energetic deficit, resembling characteristic cellular deficits that are considered key hallmarks of the failing heart. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
Collapse
Affiliation(s)
- Johannes Bay
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg, Germany
| | | | | |
Collapse
|
36
|
Despa S, Bers DM. Na⁺ transport in the normal and failing heart - remember the balance. J Mol Cell Cardiol 2013; 61:2-10. [PMID: 23608603 DOI: 10.1016/j.yjmcc.2013.04.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/22/2013] [Accepted: 04/11/2013] [Indexed: 12/12/2022]
Abstract
In the heart, intracellular Na(+) concentration ([Na(+)]i) is a key modulator of Ca(2+) cycling, contractility and cardiac myocyte metabolism. Several Na(+) transporters are electrogenic, thus they both contribute to shaping the cardiac action potential and at the same time are affected by it. [Na(+)]i is controlled by the balance between Na(+) influx through various pathways, including the Na(+)/Ca(2+) exchanger and Na(+) channels, and Na(+) extrusion via the Na(+)/K(+)-ATPase. [Na(+)]i is elevated in HF due to a combination of increased entry through Na(+) channels and/or Na(+)/H(+) exchanger and reduced activity of the Na(+)/K(+)-ATPase. Here we review the major Na(+) transport pathways in cardiac myocytes and how they participate in regulating [Na(+)]i in normal and failing hearts. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes."
Collapse
Affiliation(s)
- Sanda Despa
- Department of Pharmacology, University of California, Davis, CA, USA.
| | | |
Collapse
|
37
|
|
38
|
Dedkova EN, Blatter LA. Calcium signaling in cardiac mitochondria. J Mol Cell Cardiol 2013; 58:125-33. [PMID: 23306007 DOI: 10.1016/j.yjmcc.2012.12.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/01/2012] [Accepted: 12/28/2012] [Indexed: 01/02/2023]
Abstract
Mitochondrial Ca signaling contributes to the regulation of cellular energy metabolism, and mitochondria participate in cardiac excitation-contraction coupling (ECC) through their ability to store Ca, shape the cytosolic Ca signals and generate ATP required for contraction. The mitochondrial inner membrane is equipped with an elaborate system of channels and transporters for Ca uptake and extrusion that allows for the decoding of cytosolic Ca signals, and the storage of Ca in the mitochondrial matrix compartment. Controversy, however remains whether the fast cytosolic Ca transients underlying ECC in the beating heart are transmitted rapidly into the matrix compartment or slowly integrated by the mitochondrial Ca transport machinery. This review summarizes established and novel findings on cardiac mitochondrial Ca transport and buffering, and discusses the evidence either supporting or arguing against the idea that Ca can be taken up rapidly by mitochondria during ECC.
Collapse
Affiliation(s)
- Elena N Dedkova
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | |
Collapse
|
39
|
Mitochondria Na(+)-Ca (2+) exchange in cardiomyocytes and lymphocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:193-201. [PMID: 23224880 DOI: 10.1007/978-1-4614-4756-6_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondria Na(+)-Ca(2+) exchange (NCX(mit)) was first discovered by Carafoli et al. in 1974. Thereafter, the mechanisms and roles of NCX(mit) have been extensively studied. We review NCX(mit) in cardiomyocytes and lymphocytes by presenting our recent studies on it. Studies of NCX(mit) in rat ventricular cells demonstrated that NCX(mit) is voltage dependent and electrogenic. A targeted knockdown and knockout of NCLX in HL-1 cardiomyocytes and B lymphocytes, respectively, significantly reduced the NCX(mit) activity, indicating that NCLX is a major component of NCX(mit) in these cells. The store-operated Ca(2+) entry was greatly attenuated in NCLX knockout lymphocytes, suggesting that substantial amount of Ca(2+) enters into mitochondria and is released to cytosol via NCX(mit). NCX(mit) or NCLX has pivotal roles in Ca(2+) handling in mitochondria and cytoplasm.
Collapse
|
40
|
Blomeyer CA, Bazil JN, Stowe DF, Pradhan RK, Dash RK, Camara AKS. Dynamic buffering of mitochondrial Ca2+ during Ca2+ uptake and Na+-induced Ca2+ release. J Bioenerg Biomembr 2012; 45:189-202. [PMID: 23225099 DOI: 10.1007/s10863-012-9483-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/08/2012] [Indexed: 11/26/2022]
Abstract
In cardiac mitochondria, matrix free Ca(2+) ([Ca(2+)]m) is primarily regulated by Ca(2+) uptake and release via the Ca(2+) uniporter (CU) and Na(+)/Ca(2+) exchanger (NCE) as well as by Ca(2+) buffering. Although experimental and computational studies on the CU and NCE dynamics exist, it is not well understood how matrix Ca(2+) buffering affects these dynamics under various Ca(2+) uptake and release conditions, and whether this influences the stoichiometry of the NCE. To elucidate the role of matrix Ca(2+) buffering on the uptake and release of Ca(2+), we monitored Ca(2+) dynamics in isolated mitochondria by measuring both the extra-matrix free [Ca(2+)] ([Ca(2+)]e) and [Ca(2+)]m. A detailed protocol was developed and freshly isolated mitochondria from guinea pig hearts were exposed to five different [CaCl2] followed by ruthenium red and six different [NaCl]. By using the fluorescent probe indo-1, [Ca(2+)]e and [Ca(2+)]m were spectrofluorometrically quantified, and the stoichiometry of the NCE was determined. In addition, we measured NADH, membrane potential, matrix volume and matrix pH to monitor Ca(2+)-induced changes in mitochondrial bioenergetics. Our [Ca(2+)]e and [Ca(2+)]m measurements demonstrate that Ca(2+) uptake and release do not show reciprocal Ca(2+) dynamics in the extra-matrix and matrix compartments. This salient finding is likely caused by a dynamic Ca(2+) buffering system in the matrix compartment. The Na(+)- induced Ca(2+) release demonstrates an electrogenic exchange via the NCE by excluding an electroneutral exchange. Mitochondrial bioenergetics were only transiently affected by Ca(2+) uptake in the presence of large amounts of CaCl2, but not by Na(+)- induced Ca(2+) release.
Collapse
Affiliation(s)
- Christoph A Blomeyer
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
41
|
Palty R, Hershfinkel M, Sekler I. Molecular identity and functional properties of the mitochondrial Na+/Ca2+ exchanger. J Biol Chem 2012; 287:31650-7. [PMID: 22822063 DOI: 10.1074/jbc.r112.355867] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial membrane potential that powers the generation of ATP also facilitates mitochondrial Ca(2+) shuttling. This process is fundamental to a wide range of cellular activities, as it regulates ATP production, shapes cytosolic and endoplasmic recticulum Ca(2+) signaling, and determines cell fate. Mitochondrial Ca(2+) transport is mediated primarily by two major transporters: a Ca(2+) uniporter that mediates Ca(2+) uptake and a Na(+)/Ca(2+) exchanger that subsequently extrudes mitochondrial Ca(2+). In this minireview, we focus on the specific role of the mitochondrial Na(+)/Ca(2+) exchanger and describe its ion exchange mechanism, regulation by ions, and putative partner proteins. We discuss the recent molecular identification of the mitochondrial exchanger and how its activity is linked to physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Raz Palty
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA. palty35@berkeley
| | | | | |
Collapse
|
42
|
Pizzo P, Drago I, Filadi R, Pozzan T. Mitochondrial Ca²⁺ homeostasis: mechanism, role, and tissue specificities. Pflugers Arch 2012; 464:3-17. [PMID: 22706634 DOI: 10.1007/s00424-012-1122-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 05/29/2012] [Indexed: 12/18/2022]
Abstract
Mitochondria from every tissue are quite similar in their capability to accumulate Ca²⁺ in a process that depends on the electrical potential across the inner membrane; it is catalyzed by a gated channel (named mitochondrial Ca²⁺ uniporter), the molecular identity of which has only recently been unraveled. The release of accumulated Ca²⁺ in mitochondria from different tissues is, on the contrary, quite variable, both in terms of speed and mechanism: a Na⁺-dependent efflux in excitable cells (catalyzed by NCLX) and a H⁺/Ca²⁺ exchanger in other cells. The efficacy of mitochondrial Ca²⁺ uptake in living cells is strictly dependent on the topological arrangement of the organelles with respect to the source of Ca²⁺ flowing into the cytoplasm, i.e., plasma membrane or intracellular channels. In turn, the structural and functional relationships between mitochondria and other cellular membranes are dictated by the specific architecture of different cells. Mitochondria not only modulate the amplitude and the kinetics of local and bulk cytoplasmic Ca²⁺ changes but also depend on the Ca²⁺ signal for their own functionality, in particular for their capacity to produce ATP. In this review, we summarize the processes involved in mitochondrial Ca²⁺ handling and its integration in cell physiology, highlighting the main common characteristics as well as key differences, in different tissues.
Collapse
Affiliation(s)
- Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | | | | |
Collapse
|
43
|
Carafoli E. The interplay of mitochondria with calcium: an historical appraisal. Cell Calcium 2012; 52:1-8. [PMID: 22591641 DOI: 10.1016/j.ceca.2012.02.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 02/23/2012] [Indexed: 11/26/2022]
Abstract
Indirect findings in the 1950s had indicated that mitochondria could accumulate Ca(2+), but only in 1961 isolated mitochondria were directly shown to take it up in a process driven by the activity of the respiratory chain or by the hydrolysis of added ATP. The uptake of Ca(2+) could be accompanied by the simultaneous uptake of inorganic phosphate, leading to the precipitation of hydroxyapatite in the matrix and to the effective buffering of the free Ca(2+) concentration in it. The uptake of Ca(2+) occurred via an electrophoretic uniporter that has been molecularly identified only recently. Ca(2+) was then released through a Na(+)/Ca(2+) exchanger that has also been identified very recently (a H(+)/Ca(2+) antiporter has also been described in some mitochondrial types). In the matrix two TCA cycle dehydrogenases and pyruvate dehydrogenase phosphate phosphatase were found to be regulated by Ca(2+), providing a rationale for the Ca(2+) cycling process. The affinity of the uptake uniporter was found to be too low to efficiently regulate Ca(2+) in the low to mid nM concentration in the cytosol. However, a number of findings showed that energy linked transport of Ca(2+) did nevertheless occur in mitochondria in situ. The enigma was solved in the 1990s, when it was found that perimitochondrial Ca(2+) pools are created by the discharge of Ca(2+) from vicinal endoplasmic reticulum stores in which the concentration of Ca(2+) is high enough to satisfy the poor affinity of the uniporter. Thus, mitochondria have now regained a key role in the regulation of cytosolic Ca(2+) (not only of their own internal Ca(2+)).
Collapse
Affiliation(s)
- Ernesto Carafoli
- Venetian Institute of Molecular Medicine, University of Padova, Italy.
| |
Collapse
|
44
|
Palty R, Sekler I. The mitochondrial Na(+)/Ca(2+) exchanger. Cell Calcium 2012; 52:9-15. [PMID: 22430014 DOI: 10.1016/j.ceca.2012.02.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 01/20/2023]
Abstract
Powered by the steep mitochondrial membrane potential Ca(2+) permeates into the mitochondria via the Ca(2+) uniporter and is then extruded by a mitochondrial Na(+)/Ca(2+) exchanger. This mitochondrial Ca(2+) shuttling regulates the rate of ATP production and participates in cellular Ca(2+) signaling. Despite the fact that the exchanger was functionally identified 40 years ago its molecular identity remained a mystery. Early studies on isolated mitochondria and intact cells characterized the functional properties of a mitochondrial Na(+)/Ca(2+) exchanger, and showed that it possess unique functional fingerprints such as Li(+)/Ca(2+) exchange and that it is displaying selective sensitivity to inhibitors. Purification of mitochondria proteins combined with functional reconstitution led to the isolation of a polypeptide candidate of the exchanger but failed to molecularly identify it. A turning point in the search for the exchanger molecule came with the recent cloning of the last member of the Na(+)/Ca(2+) exchanger superfamily termed NCLX (Na(+)/Ca(2+)/Li(+) exchanger). NCLX is localized in the inner mitochondria membrane and its expression is linked to mitochondria Na(+)/Ca(2+) exchange matching the functional fingerprints of the putative mitochondrial Na(+)/Ca(2+) exchanger. Thus NCLX emerges as the long sought mitochondria Na(+)/Ca(2+) exchanger and provide a critical molecular handle to study mitochondrial Ca(2+) signaling and transport. Here we summarize some of the main topics related to the molecular properties of the Na(+)/Ca(2+) exchanger, beginning with the early days of its functional identification, its kinetic properties and regulation, and culminating in its molecular identification.
Collapse
Affiliation(s)
- Raz Palty
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
45
|
Hong Q, Qi K, Feng Z, Huang Z, Cui S, Wang L, Fu B, Ding R, Yang J, Chen X, Wu D. Hyperuricemia induces endothelial dysfunction via mitochondrial Na+/Ca2+ exchanger-mediated mitochondrial calcium overload. Cell Calcium 2012; 51:402-10. [PMID: 22361139 DOI: 10.1016/j.ceca.2012.01.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 12/20/2011] [Accepted: 01/09/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND Uric acid (UA) has proven to be a causal agent in endothelial dysfunction in which ROS production plays an important role. Calcium overload in mitochondria can promote the mitochondrial production of ROS. We hypothesize that calcium transduction in mitochondria contributes to UA-induced endothelial dysfunction. METHODS AND RESULTS We first demonstrated that high concentrations of UA cause endothelial dysfunction, marked by a reduction in eNOS protein expression and NO release in vitro. We further found that a high concentration of UA increased levels of [Ca2+]mito, total intracellular ROS, H2O2, and mitochondrial O2·-, and Δψmito but not the [Ca2+]cyt level. When the mitochondrial calcium channels NCXmito and MCU were blocked by CGP-37157 and Ru360, respectively, the UA-induced increases in the levels of [Ca2+]mito and total intracellular ROS were significantly reduced. Mitochondrial levels of O2·- and Δψmito were reduced by inhibition of NCXmito but not of MCU. Moreover, inhibition of NCXmito, but not of MCU, blocked the UA-induced reductions in eNOS protein expression and NO release. CONCLUSIONS The increased generation of mitochondrial O2·- induced by a high concentration of UA is triggered by mitochondrial calcium overload and ultimately leads to endothelial dysfunction. In this process, the activation of NCXmito is the major cause of the influx of calcium into mitochondria. Our results provide a new pathophysiological mechanism for UA-induced endothelial dysfunction and may offer a new therapeutic target for clinicians.
Collapse
Affiliation(s)
- Quan Hong
- Department of Nephrology, State Key Laboratory of Kidney Disease, Chinese PLA General Hospital, 2011DAV00088, Beijing 100853, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.
Collapse
Affiliation(s)
- J T Sylvester
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, The Johns Hopkins University School ofMedicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
47
|
Fülöp L, Szanda G, Enyedi B, Várnai P, Spät A. The effect of OPA1 on mitochondrial Ca²⁺ signaling. PLoS One 2011; 6:e25199. [PMID: 21980395 PMCID: PMC3182975 DOI: 10.1371/journal.pone.0025199] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/27/2011] [Indexed: 11/19/2022] Open
Abstract
The dynamin-related GTPase protein OPA1, localized in the intermembrane space and tethered to the inner membrane of mitochondria, participates in the fusion of these organelles. Its mutation is the most prevalent cause of Autosomal Dominant Optic Atrophy. OPA1 controls the diameter of the junctions between the boundary part of the inner membrane and the membrane of cristae and reduces the diffusibility of cytochrome c through these junctions. We postulated that if significant Ca²⁺ uptake into the matrix occurs from the lumen of the cristae, reduced expression of OPA1 would increase the access of Ca²⁺ to the transporters in the crista membrane and thus would enhance Ca²⁺ uptake. In intact H295R adrenocortical and HeLa cells cytosolic Ca²⁺ signals evoked with K⁺ and histamine, respectively, were transferred into the mitochondria. The rate and amplitude of mitochondrial [Ca²⁺] rise (followed with confocal laser scanning microscopy and FRET measurements with fluorescent wide-field microscopy) were increased after knockdown of OPA1, as compared with cells transfected with control RNA or mitofusin1 siRNA. Ca²⁺ uptake was enhanced despite reduced mitochondrial membrane potential. In permeabilized cells the rate of Ca²⁺ uptake by depolarized mitochondria was also increased in OPA1-silenced cells. The participation of Na⁺/Ca²⁺ and Ca²⁺/H⁺ antiporters in this transport process is indicated by pharmacological data. Altogether, our observations reveal the significance of OPA1 in the control of mitochondrial Ca²⁺ metabolism.
Collapse
Affiliation(s)
- László Fülöp
- Department of Physiology, Faculty of Medicine, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergö Szanda
- Department of Physiology, Faculty of Medicine, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balázs Enyedi
- Department of Physiology, Faculty of Medicine, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary
| | - András Spät
- Department of Physiology, Faculty of Medicine, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary
- Laboratory of Neurobiochemistry and Molecular Physiology, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
48
|
Pradhan RK, Beard DA, Dash RK. A biophysically based mathematical model for the kinetics of mitochondrial Na+-Ca2+ antiporter. Biophys J 2010; 98:218-30. [PMID: 20338843 DOI: 10.1016/j.bpj.2009.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 09/16/2009] [Accepted: 10/02/2009] [Indexed: 11/30/2022] Open
Abstract
Sodium-calcium antiporter is the primary efflux pathway for Ca(2+) in respiring mitochondria, and hence plays an important role in mitochondrial Ca(2+) homeostasis. Although experimental data on the kinetics of Na(+)-Ca(2+) antiporter are available, the structure and composition of its functional unit and kinetic mechanisms associated with the Na(+)-Ca(2+) exchange (including the stoichiometry) remains unclear. To gain a quantitative understanding of mitochondrial Ca(2+) homeostasis, a biophysical model of Na(+)-Ca(2+) antiporter is introduced that is thermodynamically balanced and satisfactorily describes a number of independent data sets under a variety of experimental conditions. The model is based on a multistate catalytic binding mechanism for carrier-mediated facilitated transport and Eyring's free energy barrier theory for interconversion and electrodiffusion. The model predicts the activating effect of membrane potential on the antiporter function for a 3Na(+):1Ca(2+) electrogenic exchange as well as the inhibitory effects of both high and low pH seen experimentally. The model is useful for further development of mechanistic integrated models of mitochondrial Ca(2+) handling and bioenergetics to understand the mechanisms by which Ca(2+) plays a role in mitochondrial signaling pathways and energy metabolism.
Collapse
Affiliation(s)
- Ranjan K Pradhan
- Biotechnology and Bioengineering Center and Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | |
Collapse
|
49
|
|
50
|
Carafoli E. The fateful encounter of mitochondria with calcium: how did it happen? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:595-606. [PMID: 20385096 DOI: 10.1016/j.bbabio.2010.03.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 01/09/2023]
Abstract
A number of findings in the 1950s had offered indirect indications that mitochondria could accumulate Ca2+. In 1961, the phenomenon was directly demonstrated using isolated mitochondria: the uptake process was driven by respiratory chain activity or by the hydrolysis of added ATP. It could be accompanied by the simultaneous uptake of inorganic phosphate, in which case precipitates of hydroxyapatite were formed in the matrix, buffering its free Ca2+ concentration. The properties of the uptake process were established in the 1960s and 1970s: the uptake of Ca2+ occurred electrophoretically on a carrier that has not yet been molecularly identified, and was released from mitochondria via a Na+/Ca2+ antiporter. A H+/Ca2+ release exchanger was also found to operate in some mitochondrial types. The permeability transition pore was later also found to mediate the efflux of Ca2+ from mitochondria. In the mitochondrial matrix two TCA cycle dehydrogenases and pyruvate dehydrogenase phosphate phosphatase were found to be regulated in the matrix by the cycling of Ca2+ across the inner membrane. In conditions of cytoplasmic Ca2+ overload mitochondria could store for a time large amounts of precipitated Ca2+-phosphate, thus permitting cells to survive situations of Ca2+ emergency. The uptake process was found to have very low affinity for Ca2+: since the bulk concentration of Ca2+ in the cytoplasm is in the low to mid-nM range, it became increasingly difficult to postulate a role of mitochondria in the regulation of cytoplsmic Ca2+. A number of findings had nevertheless shown that energy linked Ca2+ transport occurred efficiently in mitochondria of various tissues in situ. The paradox was only solved in the 1990s, when it was found that the concentration of Ca2+ in the cytoplasm is not uniform: perimitochondrial micropools are created by the agonist-promoted discharge of Ca2+ from vicinal stores in which the concentration of Ca2+ is high enough to activate the low affinity mitochondrial uniporter. Mitochondria thus regained center stage as important regulators of cytoplasmic Ca2+ (not only of their own internal Ca2+). Their Ca2+ uptake systems was found to react very rapidly to cytoplasmic Ca2+ demands, even in the 150-200 msec time scale of processes like the contraction and relaxation of heart. An important recent development in the area of mitochondrial Ca2+ transport is its involvement in the disease process. Ca2+ signaling defects are now gaining increasing importance in the pathogenesis of diseases, e.g., neurodegenerative diseases. Since mitochondria have now regained a central role in the regulation of cytoplasmic Ca2+, dysfunctions of their Ca2+ controlling systems have expectedly been found to be involved in the pathogenesis of numerous disease processes.
Collapse
Affiliation(s)
- Ernesto Carafoli
- Department of Biochemistry and Venetian Institute of Molecular Medicine, University of Padova, Italy.
| |
Collapse
|