1
|
Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A, Kolch W. Raf family kinases: old dogs have learned new tricks. Genes Cancer 2011; 2:232-60. [PMID: 21779496 PMCID: PMC3128629 DOI: 10.1177/1947601911407323] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
First identified in the early 1980s as retroviral oncogenes, the Raf proteins have been the objects of intense research. The discoveries 10 years later that the Raf family members (Raf-1, B-Raf, and A-Raf) are bona fide Ras effectors and upstream activators of the ubiquitous ERK pathway increased the interest in these proteins primarily because of the central role that this cascade plays in cancer development. The important role of Raf in cancer was corroborated in 2002 with the discovery of B-Raf genetic mutations in a large number of tumors. This led to intensified drug development efforts to target Raf signaling in cancer. This work yielded not only recent clinical successes but also surprising insights into the regulation of Raf proteins by homodimerization and heterodimerization. Surprising insights also came from the hunt for new Raf targets. Although MEK remains the only widely accepted Raf substrate, new kinase-independent roles for Raf proteins have emerged. These include the regulation of apoptosis by suppressing the activity of the proapoptotic kinases, ASK1 and MST2, and the regulation of cell motility and differentiation by controlling the activity of Rok-α. In this review, we discuss the regulation of Raf proteins and their role in cancer, with special focus on the interacting proteins that modulate Raf signaling. We also describe the new pathways controlled by Raf proteins and summarize the successes and failures in the development of efficient anticancer therapies targeting Raf. Finally, we also argue for the necessity of more systemic approaches to obtain a better understanding of how the Ras-Raf signaling network generates biological specificity.
Collapse
Affiliation(s)
- David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
2
|
Bonfiglio JJ, Maccarrone G, Rewerts C, Holsboer F, Arzt E, Turck CW, Silberstein S. Characterization of the B-Raf interactome in mouse hippocampal neuronal cells. J Proteomics 2010; 74:186-98. [PMID: 21055488 DOI: 10.1016/j.jprot.2010.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 10/18/2010] [Accepted: 10/20/2010] [Indexed: 01/13/2023]
Abstract
B-Raf links a variety of extracellular stimuli downstream of cell surface receptors, constituting a determining factor in the ability of neurons to activate ERK. A detailed study of the B-Raf interactome is necessary to clarify the intricacy of B-Raf-dependent signal transduction. We used a mouse hippocampal cell line (HT22) that expresses B-Raf at high levels, to identify B-Raf associated proteins under endogenous expression conditions, avoiding artificial interactions from overexpression studies. We used stringent procedures to co-immunoprecipitate proteins that specifically associate with endogenous B-Raf with the help of gel electrophoresis separation and off-line LC-MALDI-MS/MS proteomic analysis. Our stringent protein identification criteria allowed confident identification of B-Raf interacting proteins under non-stimulating conditions. The presence of previously reported B-Raf interactors among the list of proteins identified confirms the quality of proteomic data. We identified tubulin and actin as B-Raf interactors for the first time, among structural and accessory proteins of cell cytoskeleton, molecular chaperones (Hsc70, GRP78), and cellular components involved in aspects of mRNA metabolism and translation. Interactions were validated in HT22 cells and in the neuronal cell line Neuro-2a providing further evidence that the identified proteins are B-Raf interactors, which constitute a basis for understanding MAPK pathway regulation in neurons.
Collapse
Affiliation(s)
- Juan J Bonfiglio
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires, IFIBYNE-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
3
|
Lundquist JJ, Dudek SM. Differential activation of extracellular signal-regulated kinase 1 and a related complex in neuronal nuclei. BRAIN CELL BIOLOGY 2006; 35:267-81. [PMID: 18392730 PMCID: PMC3755592 DOI: 10.1007/s11068-008-9018-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 10/30/2007] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
Abstract
The extracellular signal-regulated kinases 1 and 2 (ERKs 1/2) are known to participate in regulating transcription in response to moderate depolarization, such as synaptic stimulation, but how the same active enzyme can differentially regulate distinct transcriptional programs induced with abnormal depolarization (high potassium) is unknown. We hypothesized that ERK1 or 2 accomplishes this differential nuclear response through close association with other proteins in stable complexes. In support of this hypothesis, we have found that immunoreactivity for an apparent high molecular weight complex containing phospho-ERK1 increased in response to synaptic stimulation, but decreased in response to high potassium; p-ERK immunoreactivity at 44/42 kDa increased in both cases. Evidence supporting the conclusion that the band of interest contained ERK1 in a complex, as opposed to it being an unrelated protein crossreacting with antibodies against p-ERK, is that ERK1 (p44 MAPK) and 14-3-3 protein were electroeluted from the 160-kDa band cut from a gel. We also found the nuclear complexes to be exceptionally durable, suggesting a role for the crosslinking enzyme, transglutaminase, in its stabilization. In addition, we found other components of the ERK pathway, including MEK, ERK2, p90RSK, and Elk-1, migrating at higher-than-expected weights in brain nuclei. These results describe a novel stable complex of ERK1 in neuronal nuclei that responds differentially to synaptic and depolarizing stimulation, and thus may be capable of mediating gene transcription in a way distinct from the monomeric protein.
Collapse
Affiliation(s)
- Joseph J Lundquist
- National Institute of Environmental Health Sciences, National Institutes of Health, MD F2-04, PO Box 12233, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
4
|
Kyriakis JM. The integration of signaling by multiprotein complexes containing Raf kinases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:1238-47. [PMID: 17276528 DOI: 10.1016/j.bbamcr.2006.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 10/27/2006] [Accepted: 11/01/2006] [Indexed: 12/18/2022]
Abstract
In vivo, eukaryotic cells are subjected simultaneously to a broad array of signals ranging from mitogens and inflammatory inputs to environmental stresses and developmental cues. The combinatorial nature of cellular signaling necessitates that a cell integrate its signal transduction pathways so as to implement rapidly and efficiently an appropriate suite of responses. Emerging evidence indicates that, over the course of evolution, cells have developed multiprotein signaling complexes, or "signalosomes" that mediate the coordinate regulation of different signaling pathways. Such molecular signal integration contrasts with the classical notion of signaling complexes assembled by scaffold proteins-entities that function to segregate specific pathways from one another. This review will focus on two signal integrating multiprotein complexes that involve Raf family kinases: the MLK3-B-Raf-Raf-1 complex and the Raf-1-Mst-2 complex.
Collapse
Affiliation(s)
- John M Kyriakis
- The Molecular Cardiology Research Institute, Tufts-New England Medical Center and the Department of Medicine, Tufts University School of Medicine, 750 Washington Street, Boston, MA 02111, USA.
| |
Collapse
|
5
|
Tetzlaff MT, LiVolsi V, Baloch ZW. Assessing the utility of a mutational assay for B-RAF as an adjunct to conventional fine needle aspiration of the thyroid gland. Adv Anat Pathol 2006; 13:228-37. [PMID: 16998316 DOI: 10.1097/01.pap.0000213044.23823.d3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Thyroid carcinoma is the most common endocrine malignancy; it is typified by a number of classical genomic insults, which tend to cluster with the discrete histologic subtypes. The most common of these is a mutation in B-RAF, which is present in approximately 44% (29% to 83%) of cases. In this review we have assessed the potential utility of a molecular test for somatically acquired mutations in B-RAF using thyroid malignancy as a model system according to 3 fundamental questions: would a test enhance our ability to distinguish benign from malignant, would a test unveil a risk factor not otherwise known, and would detecting a mutation enable a therapeutic option specific to those patients who carry the mutation?
Collapse
Affiliation(s)
- Michael T Tetzlaff
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, PA 19104-4283, USA
| | | | | |
Collapse
|
6
|
Yue J, Xiong W, Ferrell JE. B-Raf and C-Raf are required for Ras-stimulated p42 MAP kinase activation in Xenopus egg extracts. Oncogene 2006; 25:3307-15. [PMID: 16434971 DOI: 10.1038/sj.onc.1209354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During mitosis, a select pool of MEK1 and p42/p44 MAPK becomes activated at the kinetochores and spindle poles, without substantial activation of the bulk of the cytoplasmic p42/p44 MAPK. Recently, we set out to identify the MAP kinase kinase kinase (MAPKKK) responsible for this mitotic activation, using cyclin-treated Xenopus egg extracts as a model system, and presented evidence that Mos was the relevant MAPKKK . However, a second MAPKKK distinct from Mos was readily detectable as well. Here, we partially purify this second MAPKKK and identify it as B-Raf. No changes in the activity of B-Raf were detectable during progesterone-induced oocyte maturation, after egg fertilization, or during the early embryonic cell cycle, arguing against a role for B-Raf in the mitotic activation of MEK1 and p42 MAPK. Ras proteins can bring about activation of MEK1 and p42 MAPK in extracts, and Ras may contribute to signaling from the classical progesterone receptor during oocyte maturation and from receptor tyrosine kinases during early embryogenesis. We found that both B-Raf and C-Raf, but not Mos, are required for Ras-induced MEK1 and p42 MAPK activation. These data indicate that two upstream stimuli, active Ras and active Cdc2, utilize different MAPKKKs to activate MEK1 and p42 MAPK.
Collapse
Affiliation(s)
- J Yue
- Department of Molecular Pharmacology, Stanford University, CA 94305-5174, USA.
| | | | | |
Collapse
|
7
|
Dwivedi Y, Rizavi HS, Conley RR, Pandey GN. ERK MAP kinase signaling in post-mortem brain of suicide subjects: differential regulation of upstream Raf kinases Raf-1 and B-Raf. Mol Psychiatry 2006; 11:86-98. [PMID: 16172610 DOI: 10.1038/sj.mp.4001744] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Raf kinases Raf-1 and B-Raf are upstream activators of the extracellular signal-regulated kinase (ERK)-signaling pathway and therefore participates in many physiological functions in brain, including neuronal survival and synaptic plasticity. Previously, we observed that activation of ERK-1/2, the downstream component of ERK signaling, is significantly reduced in post-mortem brain of suicide victims. The present study was undertaken to further examine whether suicide brain is also associated with abnormalities in upstream molecules in ERK signaling. The study was performed in prefrontal cortex (PFC) and hippocampus obtained from 28 suicide victims and 21 normal controls. mRNA levels of Raf-1, B-Raf, and cyclophilin were measured by quantitative RT-PCR. Protein levels of Raf-1 and B-Raf were determined by Western blot, whereas their catalytic activities were determined by immunoprecipitation and enzymatic assays. It was observed that the catalytic activity of B-Raf was significantly reduced in PFC and hippocampus of suicide subjects. This decrease was associated with a decrease in its protein, but not mRNA, level. On the other hand, catalytic activity, and mRNA and protein levels, of Raf-1 were not altered in post-mortem brain of suicide subjects. The observed changes were not related to confounding variables; however, Raf-1 showed a negative correlation with age. Also, the changes in B-Raf were present in all suicide subjects, irrespective of psychiatric diagnosis. Our results of selective reduction in catalytic activity and expression of B-Raf but not Raf-1 suggest that B-Raf may be playing an important role in altered ERK signaling in brain of suicide subjects, and thus in the pathophysiology of suicide.
Collapse
Affiliation(s)
- Y Dwivedi
- Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
8
|
Beeram M, Patnaik A, Rowinsky EK. Raf: A Strategic Target for Therapeutic Development Against Cancer. J Clin Oncol 2005; 23:6771-90. [PMID: 16170185 DOI: 10.1200/jco.2005.08.036] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathway plays a critical role in transmitting proliferative signals generated by cell surface receptors and cytoplasmic signaling elements to the nucleus. Several important signaling elements of the MAPK pathway, particularly Ras and Raf, are encoded by oncogenes, and as such, their structures and functions can be modified, rendering them constitutively active. Because the MAPK pathway is dysregulated in a notable proportion of human malignancies, many of its aberrant and critical components represent strategic targets for therapeutic development against cancer. Raf, which is an essential serine/threonine kinase constituent of the MAPK pathway and a downstream effector of the central signal transduction mediator Ras, is activated in a wide range of human malignancies by aberrant signaling upstream of the protein (eg, growth factor receptors and mutant Ras) and activating mutations of the protein itself, both of which confer a proliferative advantage. Three isoforms of Raf have been identified, and therapeutics targeting Raf, including small-molecule inhibitors and antisense oligodeoxyribonucleotides (ASON), are undergoing clinical evaluation. The outcomes of these investigations may have far-reaching implications in the management of many types of human cancer. This review outlines the structure and diverse functions of Raf, the rationale for targeting Raf as a therapeutic strategy against cancer, and the present status of various therapeutic approaches including ASONs and small molecules, particularly sorafenib (BAY 43-9006).
Collapse
Affiliation(s)
- Muralidhar Beeram
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | |
Collapse
|
9
|
Qin Y, Zhu Y, Baumgart JP, Stornetta RL, Seidenman K, Mack V, van Aelst L, Zhu JJ. State-dependent Ras signaling and AMPA receptor trafficking. Genes Dev 2005; 19:2000-15. [PMID: 16107614 PMCID: PMC1199571 DOI: 10.1101/gad.342205] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Synaptic trafficking of AMPA-Rs, controlled by small GTPase Ras signaling, plays a key role in synaptic plasticity. However, how Ras signals synaptic AMPA-R trafficking is unknown. Here we show that low levels of Ras activity stimulate extracellular signal-regulated kinase kinase (MEK)-p42/44 MAPK (extracellular signal-regulated kinase [ERK]) signaling, whereas high levels of Ras activity stimulate additional Pi3 kinase (Pi3K)-protein kinase B (PKB) signaling, each accounting for approximately 50% of the potentiation during long-term potentiation (LTP). Spontaneous neural activity stimulates the Ras-MEK-ERK pathway that drives GluR2L into synapses. In the presence of neuromodulator agonists, neural activity also stimulates the Ras-Pi3K-PKB pathway that drives GluR1 into synapses. Neuromodulator release increases with increases of vigilance. Correspondingly, Ras-MEK-ERK activity in sleeping animals is sufficient to deliver GluR2L into synapses, while additional increased Ras-Pi3K-PKB activity in awake animals delivers GluR1 into synapses. Thus, state-dependent Ras signaling, which specifies downstream MEK-ERK and Pi3K-PKB pathways, differentially control GluR2L- and GluR1-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Yi Qin
- Department of Pharmacology and Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Brummer T, Naegele H, Reth M, Misawa Y. Identification of novel ERK-mediated feedback phosphorylation sites at the C-terminus of B-Raf. Oncogene 2004; 22:8823-34. [PMID: 14654779 DOI: 10.1038/sj.onc.1207185] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The extracellular signal-regulated kinase (ERK) pathway plays an important role during the development and activation of B lymphocytes. We have recently shown that B-Raf is a dominant ERK activator in B-cell antigen receptor signalling. We now show that B-Raf is hyperphosphorylated upon BCR engagement and undergoes a prominent electrophoretic mobility shift. This shift correlates with ERK activation and is prevented by the MEK inhibitor U0126. Syk-deficient DT40 B cells display neither dual ERK phosphorylation nor a mobility shift of B-Raf upon BCR engagement. The inducible expression of a constitutively active B-Raf in this mutant line restores dual ERK phosphorylation and the mobility shift of endogenous B-Raf, indicating that these two events are connected to each other. By site-directed mutagenesis studies, we demonstrate that the shift is due to an ERK2-mediated feedback phosphorylation of serine/threonine residues within an evolutionary conserved SPKTP motif at the C-terminus of B-Raf. Replacement of these residues by negatively charged amino acids causes a constitutive mobility shift and a reduction of PC12 cell differentiation. We discuss a model in which ERK-mediated phosphorylation of the SPKTP motif is involved in negative feedback regulation of B-Raf.
Collapse
Affiliation(s)
- Tilman Brummer
- Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck Institute for Immunobiology, Stuebeweg 51, Freiburg 79108, Germany
| | | | | | | |
Collapse
|
11
|
Lin SL, Johnson-Farley NN, Lubinsky DR, Cowen DS. Coupling of neuronal 5-HT7 receptors to activation of extracellular-regulated kinase through a protein kinase A-independent pathway that can utilize Epac. J Neurochem 2003; 87:1076-85. [PMID: 14622088 DOI: 10.1046/j.1471-4159.2003.02076.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The roles of 3',5'-cyclic adenosine monophosphate (cAMP) and protein kinase A in 5-hydroxytryptamine (5-HT)7 receptor-mediated activation of extracellular-regulated kinase (ERK) were studied in cultured hippocampal neurons and transfected PC12 cells. Activation of ERK by neuronal Gs-coupled receptors has been thought to proceed through a protein kinase A-dependent pathway. In fact we identified coupling of 5-HT7 receptors to activation of adenylyl cyclase and protein kinase A. However, no inhibition of agonist-stimulated ERK activation was found when cells were treated with H-89 and KT5720 at concentrations sufficient to completely inhibit activation of protein kinase A. However, activation of ERK was found to be sensitive to the adenylyl cyclase inhibitor 9-(tetrahydrofuryl)-adenine, suggesting a possible role for a cAMP-guanine nucleotide exchange factor (cAMP-GEF). Co-treatment of cells with 8-(4-chlorophenylthio)-2'-O-methyladenosine 3',5'-cyclic monophosphate, a direct activator of the cAMP-GEFs Epac1 and 2, reversed the inhibition of agonist-stimulated ERK activation induced by adenylyl cyclase inhibition. Additionally, over-expression of Epac1 enhanced 5-HT7 receptor-mediated activation of ERK. These results demonstrate that the activation of ERK mediated by neuronal Gs-coupled receptors can proceed through cAMP-dependent pathways that utilize cAMP-GEFs rather than protein kinase A.
Collapse
Affiliation(s)
- Stanley L Lin
- Department of Psychiatry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 125 Paterson Street, Piscataway, NJ 08901, USA
| | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Daniela Berg
- Institute for Human Genetics, Department of Medical Genetics, University of Tübingen, Calwerstrasse 7, 72076 Tübingen, Germany.
| | | | | |
Collapse
|
13
|
Gohlke H, Kiel C, Case DA. Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol 2003; 330:891-913. [PMID: 12850155 DOI: 10.1016/s0022-2836(03)00610-7] [Citation(s) in RCA: 982] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Absolute binding free energy calculations and free energy decompositions are presented for the protein-protein complexes H-Ras/C-Raf1 and H-Ras/RalGDS. Ras is a central switch in the regulation of cell proliferation and differentiation. In our study, we investigate the capability of the molecular mechanics (MM)-generalized Born surface area (GBSA) approach to estimate absolute binding free energies for the protein-protein complexes. Averaging gas-phase energies, solvation free energies, and entropic contributions over snapshots extracted from trajectories of the unbound proteins and the complexes, calculated binding free energies (Ras-Raf: -15.0(+/-6.3)kcal mol(-1); Ras-RalGDS: -19.5(+/-5.9)kcal mol(-1)) are in fair agreement with experimentally determined values (-9.6 kcal mol(-1); -8.4 kcal mol(-1)), if appropriate ionic strength is taken into account. Structural determinants of the binding affinity of Ras-Raf and Ras-RalGDS are identified by means of free energy decomposition. For the first time, computationally inexpensive generalized Born (GB) calculations are applied in this context to partition solvation free energies along with gas-phase energies between residues of both binding partners. For selected residues, in addition, entropic contributions are estimated by classical statistical mechanics. Comparison of the decomposition results with experimentally determined binding free energy differences for alanine mutants of interface residues yielded correlations with r(2)=0.55 and 0.46 for Ras-Raf and Ras-RalGDS, respectively. Extension of the decomposition reveals residues as far apart as 25A from the binding epitope that can contribute significantly to binding free energy. These "hotspots" are found to show large atomic fluctuations in the unbound proteins, indicating that they reside in structurally less stable regions. Furthermore, hotspot residues experience a significantly larger-than-average decrease in local fluctuations upon complex formation. Finally, by calculating a pair-wise decomposition of interactions, interaction pathways originating in the binding epitope of Raf are found that protrude through the protein structure towards the loop L1. This explains the finding of a conformational change in this region upon complex formation with Ras, and it may trigger a larger structural change in Raf, which is considered to be necessary for activation of the effector by Ras.
Collapse
Affiliation(s)
- Holger Gohlke
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
14
|
Mercer KE, Pritchard CA. Raf proteins and cancer: B-Raf is identified as a mutational target. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1653:25-40. [PMID: 12781369 DOI: 10.1016/s0304-419x(03)00016-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A recent report has shown that activating mutations in the BRAF gene are present in a large percentage of human malignant melanomas and in a proportion of colon cancers. The vast majority of these mutations represent a single nucleotide change of T-A at nucleotide 1796 resulting in a valine to glutamic acid change at residue 599 within the activation segment of B-Raf. This exciting new discovery is the first time that a direct association between any RAF gene and human cancer has been reported. Raf proteins are also indirectly associated with cancer as effectors of activated Ras proteins, oncogenic forms of which are present in approximately one-third of all human cancers. BRAF and RAS mutations are rarely both present in the same cancers but the cancer types with BRAF mutations are similar to those with RAS mutations. This has been taken as evidence that the inappropriate regulation of the downstream ERKs (the p42/p44 MAP kinases) is a major contributing factor in the development of these cancers. Recent studies in mice with targeted mutations of the raf genes have confirmed that B-Raf is a far stronger activator of ERKs than its better studied Raf-1 homologue, even in cell types in which the protein is barely expressed. The explanation for this lies in a number of key differences in the regulation of B-Raf and Raf-1 activity. Constitutive phosphorylation of serine 445 of B-Raf leads to this protein having a higher basal kinase activity than Raf-1. Phosphorylation of threonine 598 and serine 601 within the activation loop of B-Raf at the plasma membrane also regulates its activity. The V599E mutation is thought to mimic these phosphorylations, resulting in a protein with high activity, leading to constitutive ERK activation. B-Raf now provides a critical new target to which drugs for treating malignant melanoma can be developed and, with this in mind, it is now important to gain clear insight into the biochemical properties of this relatively little characterised protein.
Collapse
Affiliation(s)
- Kathryn E Mercer
- Department of Biochemistry, University of Leicester, University Road, LE1 7RH, Leicester, UK
| | | |
Collapse
|
15
|
Pawelczyk T, Sakowicz M, Podgorska M, Szczepanska-Konkel M. Insulin induces expression of adenosine kinase gene in rat lymphocytes by signaling through the mitogen-activated protein kinase pathway. Exp Cell Res 2003; 286:152-63. [PMID: 12729803 DOI: 10.1016/s0014-4827(03)00090-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The activity of adenosine kinase (AK) was significantly impaired in splenocytes isolated from diabetic rats. Administration of insulin to diabetic animals restored AK activity, protein, and mRNA levels in diabetic splenocytes. Experiments performed on cultured rat lymphocytes demonstrated that insulin did not change the stability of AK mRNA. Insulin induced AK gene expression in a dose- and time-dependent manner. Maximal increases in AK mRNA (3.9-fold) and activity level (3.7-fold) were observed at the fourth and fifth hours of cell incubation with 10 nM insulin, respectively. The insulin effect on AK expression was not influenced by dibutyryl cAMP (dcAMP). On the other hand dcAMP weakly increased (1.7-fold) basal expression of AK. Exposure of rat lymphocytes to wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3K), or rapamycin, an inhibitor of mTOR, did not affect the ability of insulin to stimulate expression of AK. Prior treatment of the cells with 10 microM PD98059, an inhibitor of mitogen-activated protein kinase (MAPK) kinase (MEK) completely blocked insulin-stimulated expression of AK gene. Insulin produced a significant transient increase in the tyrosine phosphorylation of ERK1/2, and PD98059 inhibited this phosphorylation. Furthermore exposure of cells to insulin has resulted in transient phosphorylation of Elk-1 on Ser-383 and sustained elevation of c-Jun and c-Fos protein. The maximal phosphorylation of Elk-1 was observed at 15 min, and was blocked by PD98059. We concluded that insulin stimulates AK gene expression through a series of events occurring sequentially. This includes activation of the MAPK cascade and subsequent phosphorylation of Elk-1 followed by increased expression of c-fos and c-jun genes.
Collapse
Affiliation(s)
- Tadeusz Pawelczyk
- Department of Molecular Medicine, Medical University of Gdansk, ul. Debinki 7, paw. 29, 80-211 Gdansk, Poland.
| | | | | | | |
Collapse
|
16
|
Emkey R, Kahn CR. Molecular Aspects of Insulin Signaling. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Abstract
The mechanism of Ras-induced Raf-1 activation is not fully understood. Previously, we identified a 400-kDa protein complex as a Ras-dependent Raf-1 activator. In this study, we identified B-Raf as a component of this complex. B-Raf was concentrated during the purification of the activator. Immunodepletion of B-Raf abolished the effect of the activator on Raf-1. Furthermore, B-Raf and Ras-activated Raf-1 co-operatively, when co-transfected into human embryonic kidney 293 cells. On the other hand, Ras-dependent extracellular signal-regulated kinase/mitogen-activated protein kinase kinase stimulator (a complex of B-Raf and 14-3-3) failed to activate Raf-1 in our cell-free system. These results suggest that B-Raf is an essential component of the Ras-dependent Raf-1 activator.
Collapse
Affiliation(s)
- S Mizutani
- Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, 226-8501, Yokohama, Japan
| | | | | | | |
Collapse
|
18
|
Scheffzek K, Grünewald P, Wohlgemuth S, Kabsch W, Tu H, Wigler M, Wittinghofer A, Herrmann C. The Ras-Byr2RBD complex: structural basis for Ras effector recognition in yeast. Structure 2001; 9:1043-50. [PMID: 11709168 DOI: 10.1016/s0969-2126(01)00674-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The small GTP binding protein Ras has important roles in cellular growth and differentiation. Mutant Ras is permanently active and contributes to cancer development. In its activated form, Ras interacts with effector proteins, frequently initiating a kinase cascade. In the lower eukaryotic Schizosaccharomyces pombe, Byr2 kinase represents a Ras target that in terms of signal-transduction hierarchy can be considered a homolog of mammalian Raf-kinase. The activation mechanism of protein kinases by Ras is not understood, and there is no detailed structural information about Ras binding domains (RBDs) in nonmammalian organisms. RESULTS The crystal structure of the Ras-Byr2RBD complex at 3 A resolution shows a complex architecture similar to that observed in mammalian homologous systems, with an interprotein beta sheet stabilized by predominantly polar interactions between the interacting components. The C-terminal half of the Ras switch I region contains most of the contact anchors, while on the Byr2 side, a number of residues from topologically distinct regions are involved in complex stabilization. A C-terminal helical segment, which is not present in the known mammalian homologous systems and which is part of the auto-inhibitory region, has an additional binding site outside the switch I region. CONCLUSIONS The structure of the Ras-Byr2 complex confirms the Ras binding module as a communication element mediating Ras-effector interactions; the Ras-Byr2 complex is also conserved in a lower eukaryotic system like yeast, which is in contrast to other small GTPase families. The extra helical segment might be involved in kinase activation.
Collapse
Affiliation(s)
- K Scheffzek
- Max-Planck-Institut für molekulare Physiologie, Abt. Strukturelle Biologie, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
van Hemert MJ, Steensma HY, van Heusden GP. 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. Bioessays 2001; 23:936-46. [PMID: 11598960 DOI: 10.1002/bies.1134] [Citation(s) in RCA: 418] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The 14-3-3 proteins constitute a family of conserved proteins present in all eukaryotic organisms so far investigated. These proteins have attracted interest because they are involved in important cellular processes such as signal transduction, cell-cycle control, apoptosis, stress response and malignant transformation and because at least 100 different binding partners for the 14-3-3 proteins have been reported. Although the exact function of 14-3-3 proteins is still unknown, they are known to (1) act as adaptor molecules stimulating protein-protein interactions, (2) regulate the subcellular localisation of proteins and (3) activate or inhibit enzymes. In this review, we discuss the role of the 14-3-3 proteins in three cellular processes: cell cycle control, signal transduction and apoptosis. These processes are regulated by the 14-3-3 proteins at multiple steps. The 14-3-3 proteins have an overall inhibitory effect on cell cycle progression and apoptosis, whereas in signal transduction they may act as stimulatory or inhibitory factors. This article contains supplementary material which may be viewed at the BioEssays website at http://www.interscience.wiley.com/jpages/0265-9247/Suppmat/23/v23_10.936.
Collapse
Affiliation(s)
- M J van Hemert
- Section Yeast Genetics, Institute of Molecular Plant Sciences, Leiden University, The Netherlands
| | | | | |
Collapse
|
20
|
Mikula M, Schreiber M, Husak Z, Kucerova L, Rüth J, Wieser R, Zatloukal K, Beug H, Wagner EF, Baccarini M. Embryonic lethality and fetal liver apoptosis in mice lacking the c-raf-1 gene. EMBO J 2001; 20:1952-62. [PMID: 11296228 PMCID: PMC125416 DOI: 10.1093/emboj/20.8.1952] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Raf kinases play a key role in relaying signals elicited by mitogens or oncogenes. Here, we report that c-raf-1(-/-) embryos are growth retarded and die at midgestation with anomalies in the placenta and in the fetal liver. Although hepatoblast proliferation does not appear to be impaired, c-raf-1(-/-) fetal livers are hypocellular and contain numerous apoptotic cells. Similarly, the poor proliferation of Raf-1(-/-) fibroblasts and hematopoietic cells cultivated in vitro is due to an increase in the apoptotic index of these cultures rather than to a cell cycle defect. Furthermore, Raf-1- deficient fibroblasts are more sensitive than wild- type cells to specific apoptotic stimuli, such as actinomycin D or Fas activation, but not to tumor necrosis factor-alpha. MEK/ERK activation is normal in Raf-1-deficient cells and embryos, and is probably mediated by B-RAF. These results indicate that the essential function of Raf-1 is to counteract apoptosis rather than to promote proliferation, and that effectors distinct from the MEK/ERK cascade must mediate the anti-apoptotic function of Raf-1.
Collapse
Affiliation(s)
| | - Martin Schreiber
- Department of Cell- and Microbiology, Institute of Microbiology and Genetics and
Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna and Department of Pathology, University of Graz, A-8036 Graz, Austria Present address: Department of Obstetrics and Gynecology, University of Vienna, Währinger Gürtel 18–20, A-1090 Vienna, Austria Present address: Department of Medical Biology, University of Vienna, Währinger Straße 10, A-1090 Vienna, Austria Corresponding author e-mail:
| | | | | | | | - Rotraud Wieser
- Department of Cell- and Microbiology, Institute of Microbiology and Genetics and
Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna and Department of Pathology, University of Graz, A-8036 Graz, Austria Present address: Department of Obstetrics and Gynecology, University of Vienna, Währinger Gürtel 18–20, A-1090 Vienna, Austria Present address: Department of Medical Biology, University of Vienna, Währinger Straße 10, A-1090 Vienna, Austria Corresponding author e-mail:
| | - Kurt Zatloukal
- Department of Cell- and Microbiology, Institute of Microbiology and Genetics and
Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna and Department of Pathology, University of Graz, A-8036 Graz, Austria Present address: Department of Obstetrics and Gynecology, University of Vienna, Währinger Gürtel 18–20, A-1090 Vienna, Austria Present address: Department of Medical Biology, University of Vienna, Währinger Straße 10, A-1090 Vienna, Austria Corresponding author e-mail:
| | - Hartmut Beug
- Department of Cell- and Microbiology, Institute of Microbiology and Genetics and
Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna and Department of Pathology, University of Graz, A-8036 Graz, Austria Present address: Department of Obstetrics and Gynecology, University of Vienna, Währinger Gürtel 18–20, A-1090 Vienna, Austria Present address: Department of Medical Biology, University of Vienna, Währinger Straße 10, A-1090 Vienna, Austria Corresponding author e-mail:
| | - Erwin F. Wagner
- Department of Cell- and Microbiology, Institute of Microbiology and Genetics and
Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna and Department of Pathology, University of Graz, A-8036 Graz, Austria Present address: Department of Obstetrics and Gynecology, University of Vienna, Währinger Gürtel 18–20, A-1090 Vienna, Austria Present address: Department of Medical Biology, University of Vienna, Währinger Straße 10, A-1090 Vienna, Austria Corresponding author e-mail:
| | - Manuela Baccarini
- Department of Cell- and Microbiology, Institute of Microbiology and Genetics and
Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna and Department of Pathology, University of Graz, A-8036 Graz, Austria Present address: Department of Obstetrics and Gynecology, University of Vienna, Währinger Gürtel 18–20, A-1090 Vienna, Austria Present address: Department of Medical Biology, University of Vienna, Währinger Straße 10, A-1090 Vienna, Austria Corresponding author e-mail:
| |
Collapse
|
21
|
Megidish T, Hamaguchi A, Iwabuchi K, Hakomori S. Assays of sphingosine-dependent kinase for 14-3-3 protein. Methods Enzymol 2001; 312:381-7. [PMID: 11070886 DOI: 10.1016/s0076-6879(00)12923-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- T Megidish
- Pacific Northwest Research Institute, Seattle, Washington 98122-4327, USA
| | | | | | | |
Collapse
|
22
|
Morrison DL, Yee A, Paddon HB, Vilimek D, Aebersold R, Pelech SL. Regulation of the meiosis-inhibited protein kinase, a p38(MAPK) isoform, during meiosis and following fertilization of seastar oocytes. J Biol Chem 2000; 275:34236-44. [PMID: 10906138 DOI: 10.1074/jbc.m004656200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A p38(MAPK) homolog Mipk (meiosis-inhibited protein kinase) was cloned from seastar oocytes. This 40-kDa protein shares approximately 65% amino acid identity with mammalian p38-alpha isoforms. Mipk was one of the major tyrosine-phosphorylated proteins in immature oocytes arrested at the G(2)/M transition of meiosis I. The tyrosine phosphorylation of Mipk was increased in response to anisomycin, heat, and osmotic shock of oocytes. During 1-methyladenine-induced oocyte maturation, Mipk underwent tyrosine dephosphorylation and remained dephosphorylated in mature oocytes and during the early mitotic cell divisions until approximately 12 h after fertilization. At the time of differentiation and acquisition of G phases in the developing embryos, Mipk was rephosphorylated on tyrosine. In oocytes that were microinjected with Mipk antisense oligonucleotides and subsequently were allowed to mature and become fertilized, differentiation was blocked. Because MipK antisense oligonucleotides and a dominant-negative (K62R)Mipk when microinjected into immature oocytes failed to induce germinal vesicle breakdown, inhibition of Mipk function was not sufficient by itself to cause oocyte maturation. These findings point to a putative role for Mipk in cell cycle control as a G-phase-promoting factor.
Collapse
Affiliation(s)
- D L Morrison
- Department of Medicine, Koerner Pavilion, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
23
|
York RD, Molliver DC, Grewal SS, Stenberg PE, McCleskey EW, Stork PJ. Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1. Mol Cell Biol 2000; 20:8069-83. [PMID: 11027277 PMCID: PMC86417 DOI: 10.1128/mcb.20.21.8069-8083.2000] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurotrophins promote multiple actions on neuronal cells including cell survival and differentiation. The best-studied neurotrophin, nerve growth factor (NGF), is a major survival factor in sympathetic and sensory neurons and promotes differentiation in a well-studied model system, PC12 cells. To mediate these actions, NGF binds to the TrkA receptor to trigger intracellular signaling cascades. Two kinases whose activities mediate these processes include the mitogen-activated protein (MAP) kinase (or extracellular signal-regulated kinase [ERK]) and phosphoinositide 3-kinase (PI3-K). To examine potential interactions between the ERK and PI3-K pathways, we studied the requirement of PI3-K for NGF activation of the ERK signaling cascade in dorsal root ganglion cells and PC12 cells. We show that PI3-K is required for TrkA internalization and participates in NGF signaling to ERKs via distinct actions on the small G proteins Ras and Rap1. In PC12 cells, NGF activates Ras and Rap1 to elicit the rapid and sustained activation of ERKs respectively. We show here that Rap1 activation requires both TrkA internalization and PI3-K, whereas Ras activation requires neither TrkA internalization nor PI3-K. Both inhibitors of PI3-K and inhibitors of endocytosis prevent GTP loading of Rap1 and block sustained ERK activation by NGF. PI3-K and endocytosis may also regulate ERK signaling at a second site downstream of Ras, since both rapid ERK activation and the Ras-dependent activation of the MAP kinase kinase kinase B-Raf are blocked by inhibition of either PI3-K or endocytosis. The results of this study suggest that PI3-K may be required for the signals initiated by TrkA internalization and demonstrate that specific endocytic events may distinguish ERK signaling via Rap1 and Ras.
Collapse
Affiliation(s)
- R D York
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | | | | | |
Collapse
|
24
|
Qiu W, Zhuang S, von Lintig FC, Boss GR, Pilz RB. Cell type-specific regulation of B-Raf kinase by cAMP and 14-3-3 proteins. J Biol Chem 2000; 275:31921-9. [PMID: 10931830 DOI: 10.1074/jbc.m003327200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic AMP can either activate or inhibit the mitogen-activated protein kinase (MAPK) pathway in different cell types; MAPK activation has been observed in B-Raf-expressing cells and has been attributed to Rap1 activation with subsequent B-Raf activation, whereas MAPK inhibition has been observed in cells lacking B-Raf and has been attributed to cAMP-dependent protein kinase (protein kinase A)-mediated phosphorylation and inhibition of Raf-1 kinase. We found that cAMP stimulated MAPK activity in CHO-K1 and PC12 cells but inhibited MAPK activity in C6 and NB2A cells. In all four cell types, cAMP activated Rap1, and the 95- and 68-kDa isoforms of B-Raf were expressed. cAMP activation or inhibition of MAPK correlated with activation or inhibition of endogenous and transfected B-Raf kinase. Although all cell types expressed similar amounts of 14-3-3 proteins, approximately 5-fold less 14-3-3 was associated with B-Raf in cells in which cAMP was inhibitory than in cells in which cAMP was stimulatory. We found that the cell type-specific inhibition of B-Raf could be completely prevented by overexpression of 14-3-3 isoforms, whereas expression of a dominant negative 14-3-3 mutant resulted in partial loss of B-Raf activity. Our data suggest that 14-3-3 bound to B-Raf protects the enzyme from protein kinase A-mediated inhibition; the amount of 14-3-3 associated with B-Raf may explain the tissue-specific effects of cAMP on B-Raf kinase activity.
Collapse
Affiliation(s)
- W Qiu
- Department of Medicine and Cancer Center, University of California, San Diego, La Jolla, California 92093-0652, USA
| | | | | | | | | |
Collapse
|
25
|
Takihara Y, Matsuda Y, Irie K, Matsumoto K, Hara J. 14-3-3 protein family members have a regulatory role in retinoic acid-mediated induction of cytokeratins in F9 cells. Exp Cell Res 2000; 260:96-104. [PMID: 11010814 DOI: 10.1006/excr.2000.4991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have found that the expression of five 14-3-3 protein isoforms is induced during the retinoic acid (RA)-mediated differentiation of mouse embryonal carcinoma F9 cells. The induced expression of the 14-3-3 proteins is presumed to have a role in enhancing the mitogen-activated protein kinase (MAPK) activity during RA-mediated F9 cell differentiation, because using genetically engineered budding yeast we showed that these isoforms enhanced the signaling in the MAPK cascade mainly through the interaction with Raf-1. Then we assessed the role of increased MAPK activity in F9 cell differentiation by interfering with signaling in the MAPK cascade in F9 cells. The exogenous expression of dominant-negative MEK1 efficiently abrogated RA-mediated induction of the cytokeratins EndoA and EndoC in the F9 cells. These results suggest that the 14-3-3 proteins play a role in the efficient induction of the cytokeratins during F9 cell differentiation through their signal enhancing activity in the MAPK cascade.
Collapse
Affiliation(s)
- Y Takihara
- Department of Medical Genetics and Molecular Cell Biology, Department of Developmental Medicine, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, USA.
| | | | | | | | | |
Collapse
|
26
|
Kawano Y, Okamoto I, Murakami D, Itoh H, Yoshida M, Ueda S, Saya H. Ras oncoprotein induces CD44 cleavage through phosphoinositide 3-OH kinase and the rho family of small G proteins. J Biol Chem 2000; 275:29628-35. [PMID: 10896935 DOI: 10.1074/jbc.m002440200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD44 is a cell surface adhesion molecule for several extracellular matrix components. We previously showed that CD44 expressed in cancer cells is proteolytically cleaved at the ectodomain through membrane-anchored metalloproteases and that CD44 cleavage plays a critical role in cancer cell migration. Therefore, cellular signals that promote the migration and metastatic activity of cancer cells may regulate the CD44 ectodomain cleavage. Here, we demonstrate that the expression of the dominant active mutant of Ha-Ras (Ha-Ras(Val-12)) induces redistribution of CD44 to the newly generated membrane ruffling area and CD44 ectodomain cleavage. The migration assay revealed that the CD44 cleavage contributes to the Ha-Ras(Val-12)-induced migration of NIH3T3 cells on hyaluronate substrate. Treatment with LY294002, an inhibitor for phosphoinositide 3-OH kinase (PI3K), significantly inhibits Ha-Ras(Val-12)-induced CD44 cleavage, whereas that with PD98059, an inhibitor for MEK, does not. The active mutant p110 subunit of PI3K has also been shown to enhance the CD44 cleavage, suggesting that PI3K mediates the Ras-induced CD44 cleavage. Moreover, the expression of dominant negative mutants of Cdc42 and Rac1 inhibits the Ha-Ras(Val-12)-induced CD44 cleavage. These results suggest that Ras > PI3K > Cdc42/Rac1 pathway plays an important role in CD44 cleavage and may provide a novel molecular basis to explain how the activated Ras facilitates cancer cell migration.
Collapse
Affiliation(s)
- Y Kawano
- Department of Tumor Genetics and Biology, Kumamoto University School of Medicine, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Fisher DL, Mandart E, Dorée M. Hsp90 is required for c-Mos activation and biphasic MAP kinase activation in Xenopus oocytes. EMBO J 2000; 19:1516-24. [PMID: 10747020 PMCID: PMC310221 DOI: 10.1093/emboj/19.7.1516] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During Xenopus oocyte maturation, the Mos protein kinase is synthesized and activates the MAP kinase cascade. In this report, we demonstrate that the synthesis and activation of Mos are two separable processes. We find that Hsp90 function is required for activation and phosphorylation of Mos and full activation of the MAP kinase cascade. Once Mos is activated, Hsp90 function is no longer required. We show that Mos interacts with both Hsp90 and Hsp70, and that there is an inverse relationship between association of Mos with these two chaperones. We propose that Mos protein kinase is activated by a novel mechanism involving sequential association with Hsp70 and Hsp90 as well as phosphorylation. We also present evidence for a two-phase activation of MAP kinase in Xenopus oocytes.
Collapse
Affiliation(s)
- D L Fisher
- CNRS-CRBM, 1919 Route de Mende, 34293 Montpellier, Cedex 05, France
| | | | | |
Collapse
|
28
|
MacNicol MC, Muslin AJ, MacNicol AM. Disruption of the 14-3-3 binding site within the B-Raf kinase domain uncouples catalytic activity from PC12 cell differentiation. J Biol Chem 2000; 275:3803-9. [PMID: 10660530 DOI: 10.1074/jbc.275.6.3803] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A number of Raf-associated proteins have recently been identified, including members of the 14-3-3 family of phosphoserine-binding proteins. Although both positive and negative regulatory functions have been ascribed for 14-3-3 interactions with Raf-1, the mechanisms by which 14-3-3 binding modulates Raf activity have not been fully established. We report that mutational disruption of 14-3-3 binding to the B-Raf catalytic domain inhibits B-Raf biological activity. Expression of the isolated B-Raf catalytic domain (B-Rafcat) induces PC12 cell differentiation in the absence of nerve growth factor. By contrast, the B-Rafcat 14-3-3 binding mutant, B-Rafcat S728A, was severely compromised for the induction of PC12 cell differentiation. Interestingly, the B-Rafcat 14-3-3 binding mutant retained significant in vitro catalytic activity. In Xenopus oocytes, the analogous full-length B-Raf 14-3-3 binding mutant blocked progesterone-stimulated maturation and the activation of endogenous mitogen-activated protein kinase kinase and mitogen-activated protein kinase. Similarly, the full-length B-Raf 14-3-3 binding mutant inhibited nerve growth factor-stimulated PC12 cell differentiation. We conclude that 14-3-3 interaction with the catalytic domain is not required for kinase activity per se but is essential to couple B-Raf catalytic activity to downstream effector activation.
Collapse
Affiliation(s)
- M C MacNicol
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
29
|
Shima F, Okada T, Kido M, Sen H, Tanaka Y, Tamada M, Hu CD, Yamawaki-Kataoka Y, Kariya K, Kataoka T. Association of yeast adenylyl cyclase with cyclase-associated protein CAP forms a second Ras-binding site which mediates its Ras-dependent activation. Mol Cell Biol 2000; 20:26-33. [PMID: 10594005 PMCID: PMC85033 DOI: 10.1128/mcb.20.1.26-33.2000] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranslational modification, in particular farnesylation, of Ras is crucial for activation of Saccharomyces cerevisiae adenylyl cyclase (CYR1). Based on the previous observation that association of CYR1 with cyclase-associated protein (CAP) is essential for its activation by posttranslationally modified Ras, we postulated that the associated CAP might contribute to the formation of a Ras-binding site of CYR1, which mediates CYR1 activation, other than the primary Ras-binding site, the leucine-rich repeat domain. Here, we observed a posttranslational modification-dependent association of Ras with a complex between CAP and CYR1 C-terminal region. When CAP mutants defective in Ras signaling but retaining the CYR1-binding activity were isolated by screening of a pool of randomly mutagenized CAP, CYR1 complexed with two of the obtained three mutants failed to be activated efficiently by modified Ras and exhibited a severely impaired ability to bind Ras, providing a genetic evidence for the importance of the physical association with Ras at the second Ras-binding site. On the other hand, CYR1, complexed with the other CAP mutant, failed to be activated by Ras but exhibited a greatly enhanced binding to Ras. Conversely, a Ras mutant E31K, which exhibits a greatly enhanced binding to the CYR1-CAP complex, failed to activate CYR1 efficiently. Thus, the strength of interaction at the second Ras-binding site appears to be a critical determinant of CYR1 regulation by Ras: too-weak and too-strong interactions are both detrimental to CYR1 activation. These results, taken together with those obtained with mammalian Raf, suggest the importance of the second Ras-binding site in effector regulation.
Collapse
Affiliation(s)
- F Shima
- Department of Physiology II, Kobe University School of Medicine, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Abstract
The family of Raf-protein kinases consisting of A-Raf, B-Raf, and c-Raf-1 is involved in cellular processes which regulate proliferation, differentiation, and apoptosis. Cell-culture experiments and the knockout of individual Raf genes suggested that the three Raf isoforms have overlapping and unique regulatory functions. However, it is not known how these isotype-specific functions of Raf kinases occur in the cell. Published data suggest that Raf proteins might differ in the regulation of their activation as well as in their ability to connect to downstream signaling pathways. Since Raf is part of a multiprotein complex and protein-protein interactions are important for Raf signaling, we propose that isotype-specific functions can be achieved by isotype-restricted protein binding. Recently we were able to identify candidates for such Raf-isoform-specific interaction partners.
Collapse
Affiliation(s)
- C Hagemann
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), Versbacher Strasse 5, Würzburg, D-97078, Germany
| | | |
Collapse
|
32
|
Suzuki T, Mitake S, Murata S. Presence of up-stream and downstream components of a mitogen-activated protein kinase pathway in the PSD of the rat forebrain. Brain Res 1999; 840:36-44. [PMID: 10517950 DOI: 10.1016/s0006-8993(99)01762-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We previously reported the presence of Erk2 type mitogen-activated protein kinase (MAPK) and enrichment of its substrates in the post-synaptic density (PSD) fraction, and suggested a role for MAPK in the synaptic transmission and its modulation [Suzuki, T., Okumura-Noji, K., Nishida, E., ERK2-type mitogen-activated protein kinase (MAPK) and its substrates in post-synaptic density fractions from the rat brain, Neurosci. Res., 22 (1995) 277-285.]. In this paper, synaptic localization of the upstream and downstream components of a MAPK cascade was examined. We found that RSK1, Sos1, N-Shc 66 kDa, N-Shc 52 kDa, and Grb2 were present in the PSD fraction, and cPLA(2) was present in the synaptic plasma membrane fraction. RSK2, Sos2, and N-Shc 46 kDa were not present in the PSD fraction. Post-synaptic localization of RSK1 and Sos1 was confirmed by immunohistochemical examination at the electron microscopic level: the two immunoreactivities were localized in the PSDs, both in the spines and dendrites. These results suggest that all the MAPK cascade components examined were associated with PSD or the synaptic plasma membrane, suggesting the role(s) of the MAPK cascade for synaptic transmission and its regulation at post-synaptic sites.
Collapse
Affiliation(s)
- T Suzuki
- Department of Neuroplasticity, Research Center on Aging and Adaptation, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan.
| | | | | |
Collapse
|
33
|
Okada T, Hu CD, Jin TG, Kariya K, Yamawaki-Kataoka Y, Kataoka T. The strength of interaction at the Raf cysteine-rich domain is a critical determinant of response of Raf to Ras family small GTPases. Mol Cell Biol 1999; 19:6057-64. [PMID: 10454553 PMCID: PMC84512 DOI: 10.1128/mcb.19.9.6057] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To be fully activated at the plasma membrane, Raf-1 must establish two distinct modes of interactions with Ras, one through its Ras-binding domain and the other through its cysteine-rich domain (CRD). The Ras homologue Rap1A is incapable of activating Raf-1 and even antagonizes Ras-dependent activation of Raf-1. We proposed previously that this property of Rap1A may be attributable to its greatly enhanced interaction with Raf-1 CRD compared to Ras. On the other hand, B-Raf, another Raf family member, is activatable by both Ras and Rap1A. When interactions with Ras and Rap1A were measured, B-Raf CRD did not exhibit the enhanced interaction with Rap1A, suggesting that the strength of interaction at CRDs may account for the differential action of Rap1A on Raf-1 and B-Raf. The importance of the interaction at the CRD is further supported by a domain-shuffling experiment between Raf-1 and B-Raf, which clearly indicated that the nature of CRD determines the specificity of response to Rap1A: Raf-1, whose CRD is replaced by B-Raf CRD, became activatable by Rap1A, whereas B-Raf, whose CRD is replaced by Raf-1 CRD, lost its response to Rap1A. Finally, a B-Raf CRD mutant whose interaction with Rap1A is selectively enhanced was isolated and found to possess the double mutation K252E/M278T. B-Raf carrying this mutation was not activated by Rap1A but retained its response to Ras. These results indicate that the strength of interaction with Ras and Rap1A at its CRD may be a critical determinant of regulation of the Raf kinase activity by the Ras family small GTPases.
Collapse
Affiliation(s)
- T Okada
- Department of Physiology II, Kobe University School of Medicine, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Morice C, Nothias F, König S, Vernier P, Baccarini M, Vincent JD, Barnier JV. Raf-1 and B-Raf proteins have similar regional distributions but differential subcellular localization in adult rat brain. Eur J Neurosci 1999; 11:1995-2006. [PMID: 10336669 DOI: 10.1046/j.1460-9568.1999.00609.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Raf kinases play an important and specific role in the activation of extracellular signal-regulated kinases (ERK) cascade. Beside its role in the control of proliferation and differentiation, the ERK cascade has also been implicated in neuron-specific functions. In order to gain clues on the function of Raf kinases in the adult central nervous system (CNS), we performed a comparative analysis of the distribution and subcellular localization of the different Raf kinases in rat brain with antibodies specific for the different Raf kinases. We show that B-Raf and Raf-1 proteins are present in most brain areas, whereas A-Raf is not detected. Interestingly, the two Raf proteins have an approximately similar pattern of distribution with a rostro-caudal decreasing gradient of expression. These two kinases are colocalized in neurons but they are differentially located in subcellular compartments. Raf-1 is localized mainly in the cytosolic fraction around the nucleus, whereas B-Raf is widely distributed in the cell bodies and in the neuritic processes. In addition, we demonstrated that numerous B-Raf isoforms are present in the brain. These isoforms have a differential pattern of distribution, some of them being ubiquitously expressed whereas others are localized to specific brain areas. These isoforms also have a clear differential subcellular localization, specially in Triton-insoluble fractions, but also in synaptosomal, membrane and cytosolic compartments. Altogether these results suggest that each Raf protein could have a distinct signalling regulatory function in the brain with regard to its subcellular localization.
Collapse
Affiliation(s)
- C Morice
- Institut Alfred Fessard, UPR 2212 CNRS, Gif sur Yvette, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Matsubara K, Kishida S, Matsuura Y, Kitayama H, Noda M, Kikuchi A. Plasma membrane recruitment of RalGDS is critical for Ras-dependent Ral activation. Oncogene 1999; 18:1303-12. [PMID: 10022812 DOI: 10.1038/sj.onc.1202425] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In COS cells, Ral GDP dissociation stimulator (RalGDS)-induced Ral activation was stimulated by RasG12V or a Rap1/Ras chimera in which the N-terminal region of Rap1 was ligated to the C-terminal region of Ras but not by Rap1G12V or a Ras/Rap1 chimera in which the N-terminal region of Ras was ligated to the C-terminal region of Rap1, although RalGDS interacted with these small GTP-binding proteins. When RasG12V, Ral and the Rap1/Ras chimera were individually expressed in NIH3T3 cells, they localized to the plasma membrane. Rap1Q63E and the Ras/Rap1 chimera were detected in the perinuclear region. When RalGDS was expressed alone, it was abundant in the cytoplasm. When coexpressed with RasG12V or the Rap1/Ras chimera, RalGDS was detected at the plasma membrane, whereas when coexpressed with Rap1Q63E or the Ras/Rap1 chimera, RalGDS was observed in the perinuclear region. RalGDS which was targeted to the plasma membrane by the addition of Ras farnesylation site (RalGDS-CAAX) activated Ral in the absence of RasG12V. Although RalGDS did not stimulate the dissociation of GDP from Ral in the absence of the GTP-bound form of Ras in a reconstitution assay using the liposomes, RalGDS-CAAX could stimulate it without Ras. RasG12V activated Raf-1 when they were coexpressed in Sf9 cells, whereas RasG12V did not affect the RalGDS activity. These results indicate that Ras recruits RalGDS to the plasma membrane and that the translocated RalGDS induces the activation of Ral, but that Rap1 does not activate Ral due to distinct subcellular localization.
Collapse
Affiliation(s)
- K Matsubara
- Department of Biochemistry, Hiroshima University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 1999; 79:143-80. [PMID: 9922370 DOI: 10.1152/physrev.1999.79.1.143] [Citation(s) in RCA: 1963] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitogen-activated protein kinases (MAPK) are serine-threonine protein kinases that are activated by diverse stimuli ranging from cytokines, growth factors, neurotransmitters, hormones, cellular stress, and cell adherence. Mitogen-activated protein kinases are expressed in all eukaryotic cells. The basic assembly of MAPK pathways is a three-component module conserved from yeast to humans. The MAPK module includes three kinases that establish a sequential activation pathway comprising a MAPK kinase kinase (MKKK), MAPK kinase (MKK), and MAPK. Currently, there have been 14 MKKK, 7 MKK, and 12 MAPK identified in mammalian cells. The mammalian MAPK can be subdivided into five families: MAPKerk1/2, MAPKp38, MAPKjnk, MAPKerk3/4, and MAPKerk5. Each MAPK family has distinct biological functions. In Saccharomyces cerevisiae, there are five MAPK pathways involved in mating, cell wall remodelling, nutrient deprivation, and responses to stress stimuli such as osmolarity changes. Component members of the yeast pathways have conserved counterparts in mammalian cells. The number of different MKKK in MAPK modules allows for the diversity of inputs capable of activating MAPK pathways. In this review, we define all known MAPK module kinases from yeast to humans, what is known about their regulation, defined MAPK substrates, and the function of MAPK in cell physiology.
Collapse
Affiliation(s)
- C Widmann
- Program in Molecular Signal Transduction, Division of Basic Sciences, National Jewish Medical and Research Center, Denver, Colorado, USA
| | | | | | | |
Collapse
|
37
|
Walker F, Kato A, Gonez LJ, Hibbs ML, Pouliot N, Levitzki A, Burgess AW. Activation of the Ras/mitogen-activated protein kinase pathway by kinase-defective epidermal growth factor receptors results in cell survival but not proliferation. Mol Cell Biol 1998; 18:7192-204. [PMID: 9819406 PMCID: PMC109301 DOI: 10.1128/mcb.18.12.7192] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/1998] [Accepted: 08/24/1998] [Indexed: 11/20/2022] Open
Abstract
Signalling by the epidermal growth factor (EGF) receptor (EGFR) has been studied intensively, but for most cell types the analysis is complicated by the fact that EGFR not only homodimerizes but can also form heterodimers with other EGFR family members. Heterodimerization is a particular problem in the study of EGFR mutants, where the true phenotype of the mutants is confounded by the contribution of the heterodimer partner to signal transduction. We have made use of the murine hemopoietic cell line BaF/3, which does not express EGFR family members, to express wild-type (WT) EGFR, three kinase-defective EGFR mutants (V741G, Y740F, and K721R), or a C-terminally truncated EGFR (CT957) and have measured their responses to EGF. We found that under the appropriate conditions EGF can stimulate cell proliferation of BaF/3 cells expressing WT or CT957 EGFRs but not that of cells expressing the kinase-defective mutants. However, EGF promotes the survival of BaF/3 cells expressing either of the kinase-defective receptors (V741G and Y740F), indicating that these receptors can still transmit a survival signal. Analysis of the early signalling events by the WT, V741G, and Y740F mutant EGF receptors indicated that EGF stimulates comparable levels of Shc phosphorylation, Shc-GRB-2 association, and activation of Ras, B-Raf, and Erk-1. Blocking the mitogen-activated protein kinase (MAPK) signalling pathway with the specific inhibitor PD98059 abrogates completely the EGF-dependent survival of cells expressing the kinase-defective EGFR mutants but has no effect on the EGF-dependent proliferation mediated by WT and CT957 EGFRs. Similarly, the Src family kinase inhibitor PP1 abrogates EGF-dependent survival without affecting proliferation. However blocking phosphatidylinositol-3-kinase or JAK-2 kinase with specific inhibitors does arrest growth factor-dependent cell proliferation. Thus, EGFR-mediated mitogenic signalling in BaF/3 cells requires an intact EGFR tyrosine kinase activity and appears to depend on the activation of both the JAK-2 and PI-3 kinase pathways. Activation of the Src family of kinases or of the Ras/MAPK pathway can, however, be initiated by a kinase-impaired EGFR and is linked to survival.
Collapse
Affiliation(s)
- F Walker
- Cooperative Research Center for Cellular Growth Factors, Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia
| | | | | | | | | | | | | |
Collapse
|
38
|
Thorson JA, Yu LW, Hsu AL, Shih NY, Graves PR, Tanner JW, Allen PM, Piwnica-Worms H, Shaw AS. 14-3-3 proteins are required for maintenance of Raf-1 phosphorylation and kinase activity. Mol Cell Biol 1998; 18:5229-38. [PMID: 9710607 PMCID: PMC109108 DOI: 10.1128/mcb.18.9.5229] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/1998] [Accepted: 06/08/1998] [Indexed: 11/20/2022] Open
Abstract
By binding to serine-phosphorylated proteins, 14-3-3 proteins function as effectors of serine phosphorylation. The exact mechanism of their action is, however, still largely unknown. Here we demonstrate a requirement for 14-3-3 for Raf-1 kinase activity and phosphorylation. Expression of dominant negative forms of 14-3-3 resulted in the loss of a critical Raf-1 phosphorylation, while overexpression of 14-3-3 resulted in enhanced phosphorylation of this site. 14-3-3 levels, therefore, regulate the stoichiometry of Raf-1 phosphorylation and its potential activity in the cell. Phosphorylation of Raf-1, however, was insufficient by itself for kinase activity. Removal of 14-3-3 from phosphorylated Raf abrogated kinase activity, whereas addition of 14-3-3 restored it. This supports a paradigm in which the effects of phosphorylation on serine as well as tyrosine residues are mediated by inducible protein-protein interactions.
Collapse
Affiliation(s)
- J A Thorson
- Center for Immunology and Department of Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Taya S, Yamamoto T, Kano K, Kawano Y, Iwamatsu A, Tsuchiya T, Tanaka K, Kanai-Azuma M, Wood SA, Mattick JS, Kaibuchi K. The Ras target AF-6 is a substrate of the fam deubiquitinating enzyme. J Cell Biol 1998; 142:1053-62. [PMID: 9722616 PMCID: PMC2132865 DOI: 10.1083/jcb.142.4.1053] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Ras target AF-6 has been shown to serve as one of the peripheral components of cell-cell adhesions, and is thought to participate in cell-cell adhesion regulation downstream of Ras. We here purified an AF-6-interacting protein with a molecular mass of approximately 220 kD (p220) to investigate the function of AF-6 at cell-cell adhesions. The peptide sequences of p220 were identical to the amino acid sequences of mouse Fam. Fam is homologous to a deubiquitinating enzyme in Drosophila, the product of the fat facets gene. Recent genetic analyses indicate that the deubiquitinating activity of the fat facets product plays a critical role in controlling the cell fate. We found that Fam accumulated at the cell-cell contact sites of MDCKII cells, but not at free ends of plasma membranes. Fam was partially colocalized with AF-6 and interacted with AF-6 in vivo and in vitro. We also showed that AF-6 was ubiquitinated in intact cells, and that Fam prevented the ubiquitination of AF-6.
Collapse
Affiliation(s)
- S Taya
- Division of Signal Transduction, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Maru Y, Yamaguchi S, Takahashi T, Ueno H, Shibuya M. Virally activated Ras cooperates with integrin to induce tubulogenesis in sinusoidal endothelial cell lines. J Cell Physiol 1998; 176:223-34. [PMID: 9648910 DOI: 10.1002/(sici)1097-4652(199808)176:2<223::aid-jcp1>3.0.co;2-q] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Four cell lines, named nonparenchymal 11 (NP11), NP26, NP31, and NP32, were established from sinusoidal endothelial cells (SECs) of rat liver. They still retained expression of receptors for vascular endothelial growth factor (VEGF), Fit-1, and kinase domain-containing receptor (KDR). NP31 and NP32 turned out to be incapable of tubulogenesis in basement membrane matrix (Matrigel), which belongs to endothelial properties, as shown by SECs in primary culture. Expression of temperature-sensitive, virally activated Ras (ts-v-Ras) restored tubulogenic behaviors back to NP31 only at permissive temperature. Matrigel induced long-lasting tyrosine phosphorylation of Shc, with recruitment of Grb-2 and microtubule-associated protein kinase (MAPK) activation in both parental NP31 and NP31 transformed by ts-v-Ras, which was blocked by anti-beta1 integrin antibody. Tubulogenesis was inhibited by adenovirus-mediated expression of dominant-negative Ras in human umbilical vein endothelial cells (HUVECs). PD 098059, a selective inhibitor of MAPK kinase (MEK), nearly perfectly blocked tubulogenesis by ts-v-Ras-expressing NP31 cells at permissive temperature. Furthermore, the botulinum C3 toxin, an inhibitor for Rho, caused fragmentation of branching cords in networks formed by NP31 that expressed ts-v-Ras at permissive temperature. These data suggest that the integrin-mediated Ras signals may be necessary but are not sufficient for tubulogenesis and that an artificial expression of v-Ras might substitute for the second signal required in this system.
Collapse
MESH Headings
- ADP Ribose Transferases/pharmacology
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Animals
- Botulinum Toxins
- Cadherins/analysis
- Calcium-Calmodulin-Dependent Protein Kinases/analysis
- Cell Adhesion Molecules/analysis
- Cell Line, Transformed/chemistry
- Cell Line, Transformed/drug effects
- Cell Line, Transformed/physiology
- Collagen/pharmacology
- Cytoskeletal Proteins/analysis
- Desmoplakins
- Drug Combinations
- Endothelium/chemistry
- Endothelium/cytology
- Endothelium/enzymology
- Enzyme Inhibitors/pharmacology
- Extracellular Matrix/chemistry
- Extracellular Matrix/enzymology
- Flavonoids/pharmacology
- Gene Expression Regulation, Viral
- Humans
- Integrins/physiology
- Laminin/pharmacology
- Liver/blood supply
- Liver/cytology
- Liver/physiology
- Neovascularization, Physiologic/physiology
- Proteins/physiology
- Proteoglycans/pharmacology
- Rats
- Receptor Protein-Tyrosine Kinases/genetics
- Receptors, Growth Factor/genetics
- Receptors, Mitogen/genetics
- Receptors, Vascular Endothelial Growth Factor
- Retroviridae/genetics
- Shc Signaling Adaptor Proteins
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Trans-Activators
- Umbilical Veins/cytology
- alpha Catenin
- beta Catenin
- ras Proteins/genetics
- src Homology Domains/physiology
Collapse
Affiliation(s)
- Y Maru
- Department of Genetics, Institute of Medical Science, University of Tokyo, Japan.
| | | | | | | | | |
Collapse
|
41
|
Silvy M, Martin PM, Chajry N, Berthois Y. Differential dose-dependent effects of epidermal growth factor on gene expression in A431 cells: evidence for a signal transduction pathway that can bypass Raf-1 activation. Endocrinology 1998; 139:2382-91. [PMID: 9564849 DOI: 10.1210/endo.139.5.5981] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidermal growth factor (EGF), which plays an important role in normal and tumoral cell growth regulation, displays an ambivalent dose-dependent effect on the proliferation of epithelial cells overexpressing EGF receptor. However, the underlying molecular mechanisms remain obscure. In this study we have examined the regulation of amphiregulin (AR) gene expression by growth inhibitory (10(-9) M) and stimulatory (10(-12) M) EGF concentrations in A431 cells. The time course of AR messenger RNA (mRNA) accumulation was different with 10(-12) and 10(-9) M EGF; AR induction by 10(-9) M EGF peaked between 1 and 1.5 h, then decreased to the basal level within 2 h. Conversely, the induction by 10(-12) M EGF was slightly delayed, but persisted for 4 h. The involvement of tyrosine phosphorylation in AR induction by EGF was suggested by the ability of the tyrosine phosphatase inhibitor sodium orthovanadate to prolong AR expression induced by 10(-12) or 10(-9) M EGF. In the presence of the protein phosphatase 2A inhibitor, okadaic acid, 10(-9) M EGF induced a persistent accumulation of AR mRNA. On the contrary, okadaic acid abrogated the stimulation of AR mRNA level induced by a low EGF concentration, suggesting that both EGF concentrations activated distinct regulatory mechanisms. The signaling components involved in the differential activities of EGF in A431 cells were then examined. We previously reported a relationship between the ambivalent activity of EGF and the p42-mitogen-activated protein (MAP) kinase activity. Thus, 10(-12) M EGF induced a sustained MAP kinase activation, whereas 10(-9) M EGF led to a sharp, but transitory, activation. The MAP kinases are activated by MAP kinase kinases (MEK1 and MEK2). Whereas no significant effect of 10(-12) M EGF could be detected, 10(-9) M EGF was shown to activate MEK1 and, to a lesser extent, MEK2. Also, both MAP kinase activation and AR induction by 10(-9) M, but not by 10(-12) M, EGF were inhibited by the MEK1 inhibitor PD98059. Moreover, the involvement of c-Raf-1 in the signaling pathway induced by EGF was verified. A concentration of 10(-9) M EGF induced stimulation of c-Raf-1 kinase activity, whereas 10(-12) M EGF not only failed to activate c-Raf-1, but led to a moderate decrease in its kinase activity. These results demonstrate that in EGF receptor-overexpressing cells, EGF may differently affect gene expression and cell proliferation through distinct mechanisms of regulation.
Collapse
Affiliation(s)
- M Silvy
- Laboratoire Interactions Cellulaires Intratumorales, CJF INSERM 9311, IFR Jean Roche, Faculté de Médecine Secteur Nord, Marseille, France
| | | | | | | |
Collapse
|
42
|
Affiliation(s)
- T S Lewis
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder 80309, USA
| | | | | |
Collapse
|
43
|
Kosaki A, Yamada K, Suga J, Otaka A, Kuzuya H. 14-3-3beta protein associates with insulin receptor substrate 1 and decreases insulin-stimulated phosphatidylinositol 3'-kinase activity in 3T3L1 adipocytes. J Biol Chem 1998; 273:940-4. [PMID: 9422753 DOI: 10.1074/jbc.273.2.940] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The 14-3-3 protein family has been implicated in growth factor signaling. We investigated whether 14-3-3 protein is involved in insulin signaling in 3T3L1 adipocytes. A significant amount of insulin receptor substrate 1 (IRS-1) was immunodetected in the immunoprecipitate with anti-14-3-3beta antibody at the basal condition. 100 nM insulin increased the amount of IRS-1 in the immunoprecipitate 2.5-fold. The effect of insulin was abolished by 100 nM wortmannin. An in vitro binding study revealed that glutathione S-transferase-14-3-3beta fusion protein directly associates with recombinant IRS-1. Pretreatment of recombinant IRS-1 with alkaline phosphatase clearly decreased this association. Because the recombinant IRS-1 was not phosphorylated on its tyrosine residues, the results suggest that serine/threonine phosphorylation of IRS-1 is responsible for the association. When the cells are treated with insulin, phosphatidylinositol 3'-kinase (PI3K) is supposed to complex either 14-3-3beta-IRS-1 or IRS-1. The 14-3-3beta-IRS-1-PI3K and IRS-1-PI3K complexes were separately prepared by a sequential immunoprecipitation, first with anti-14-3-3beta and then with anti-IRS-1 antibodies. The specific activity of the PI3K in the former was approximately half of that in the latter, suggesting that 14-3-3beta protein bound to IRS-1 inhibits insulin-stimulated lipid kinase activity of PI3K in 3T3L1 adipocytes.
Collapse
Affiliation(s)
- A Kosaki
- Clinical Research Unit, Diabetes Center, Kyoto National Hospital, Fushimi-ku, Kyoto 612, Japan.
| | | | | | | | | |
Collapse
|
44
|
Yamamoto T, Harada N, Kano K, Taya S, Canaani E, Matsuura Y, Mizoguchi A, Ide C, Kaibuchi K. The Ras target AF-6 interacts with ZO-1 and serves as a peripheral component of tight junctions in epithelial cells. J Cell Biol 1997; 139:785-95. [PMID: 9348294 PMCID: PMC2141704 DOI: 10.1083/jcb.139.3.785] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The dynamic rearrangement of cell-cell junctions such as tight junctions and adherens junctions is a critical step in various cellular processes, including establishment of epithelial cell polarity and developmental patterning. Tight junctions are mediated by molecules such as occludin and its associated ZO-1 and ZO-2, and adherens junctions are mediated by adhesion molecules such as cadherin and its associated catenins. The transformation of epithelial cells by activated Ras results in the perturbation of cell-cell contacts. We previously identified the ALL-1 fusion partner from chromosome 6 (AF-6) as a Ras target. AF-6 has the PDZ domain, which is thought to localize AF-6 at the specialized sites of plasma membranes such as cell-cell contact sites. We investigated roles of Ras and AF-6 in the regulation of cell-cell contacts and found that AF-6 accumulated at the cell-cell contact sites of polarized MDCKII epithelial cells and had a distribution similar to that of ZO-1 but somewhat different from those of catenins. Immunoelectron microscopy revealed a close association between AF-6 and ZO-1 at the tight junctions of MDCKII cells. Native and recombinant AF-6 interacted with ZO-1 in vitro. ZO-1 interacted with the Ras-binding domain of AF-6, and this interaction was inhibited by activated Ras. AF-6 accumulated with ZO-1 at the cell-cell contact sites in cells lacking tight junctions such as Rat1 fibroblasts and PC12 rat pheochromocytoma cells. The overexpression of activated Ras in Rat1 cells resulted in the perturbation of cell-cell contacts, followed by a decrease of the accumulation of AF-6 and ZO-1 at the cell surface. These results indicate that AF-6 serves as one of the peripheral components of tight junctions in epithelial cells and cell-cell adhesions in nonepithelial cells, and that AF-6 may participate in the regulation of cell-cell contacts, including tight junctions, via direct interaction with ZO-1 downstream of Ras.
Collapse
Affiliation(s)
- T Yamamoto
- Division of Signal Transduction, Nara Institute of Science and Technology, Nara 630-01, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dudler T, Gelb MH. Replacement of the H-Ras farnesyl group by lipid analogues: implications for downstream processing and effector activation in Xenopus oocytes. Biochemistry 1997; 36:12434-41. [PMID: 9376347 DOI: 10.1021/bi971054x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ras proteins must undergo a series of posttranslational lipidation steps before they become biologically functional. While the fact that farnesylation is required for subsequent processing steps and indispensable for Ras function has been established, the significance of the isoprenoid structure per se in the context of fully processed Ras is unknown. Here, we describe a novel approach for studying the isoprenoid structure-function relationship in vivo by replacing the H-Ras farnesyl group with synthetic analogues and analyzing their biological functions following microinjection into Xenopus oocytes. We show that the H-Ras farnesyl group can be stripped of most of its isoprenoid features that distinguish it from a fatty acid without any apparent effect on its ability to induce oocyte maturation and activation of mitogen-activated protein kinase. In contrast, replacement by the less hydrophobic isoprenoid geranyl causes severely delayed oocyte activation. Analysis of posttranslational processing reveals a striking correlation between the kinetics of processing, membrane binding, and the onset of biological activity regardless of lipid structure and suggests that slow C-terminal proteolysis and/or methylation can become rate-limiting for H-Ras function. Thus, while our results suggest no stringent requirement for the H-Ras farnesyl structure for effector activation in Xenopus oocytes, they reveal an important role for the lipid present at the farnesylation site in promoting efficient proteolysis and/or methylation which allows rapid palmitoylation, membrane localization, and biological activity. Xenopus oocytes provide a useful in vivo system for the kinetic analysis of the function of the protein of interest present at the physiological dose, which is required for accurate determination of structure-function relationships.
Collapse
Affiliation(s)
- T Dudler
- Departments of Chemistry and Biochemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA
| | | |
Collapse
|
46
|
Geyer M, Herrmann C, Wohlgemuth S, Wittinghofer A, Kalbitzer HR. Structure of the Ras-binding domain of RalGEF and implications for Ras binding and signalling. NATURE STRUCTURAL BIOLOGY 1997; 4:694-9. [PMID: 9302994 DOI: 10.1038/nsb0997-694] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The solution structure of the Ras-binding domain (RBD) of Ral guanine-nucleotide exchange factor RalGEF was solved by NMR spectroscopy. The overall structure is similar to that of Raf-RBD, another effector of Ras, although the sequence identity is only 13%. 15N chemical shifts changes in the complex of RalGEF-RBD with Ras indicate an interaction similar to the intermolecular beta-sheet observed for the complex between Ras and Raf-RBD.
Collapse
|
47
|
Sugden PH, Clerk A. Regulation of the ERK subgroup of MAP kinase cascades through G protein-coupled receptors. Cell Signal 1997; 9:337-51. [PMID: 9376213 DOI: 10.1016/s0898-6568(96)00191-x] [Citation(s) in RCA: 250] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The extracellularly-responsive kinase (ERK) subfamily of mitogen-activated protein kinases (MAPKs) has been implicated in the regulation of cell growth and differentiation. Activation of ERKs involves a two-step protein kinase cascade lying upstream from ERK, in which the Raf family are the MAPK kinase kinases and the MEK1/MEK2 isoforms are the MAPK kinases. The linear sequence of Raf --> MEK --> ERK constitutes the ERK cascade. Although the ERK cascade is activated through growth factor-regulated receptor protein tyrosine kinases, they are also modulated through G protein-coupled receptors (GPCRs). All four G protein subfamilies (Gq/11 Gi/o, Gs and G12/13) influence the activation state of ERKs. In this review, we describe the ERK cascade and characteristics of its activation through GPCRs. We also discuss the identity of the intervening steps that may couple agonist binding at GPCRs to activation of the ERK cascade.
Collapse
Affiliation(s)
- P H Sugden
- National Heart and Lung Institute (Cardiac Medicine), Imperial College School of Medicine, London, United Kingdom
| | | |
Collapse
|
48
|
Perego L, Berruti G. Molecular cloning and tissue-specific expression of the mouse homologue of the rat brain 14-3-3 theta protein: characterization of its cellular and developmental pattern of expression in the male germ line. Mol Reprod Dev 1997; 47:370-9. [PMID: 9211421 DOI: 10.1002/(sici)1098-2795(199708)47:4<370::aid-mrd3>3.0.co;2-h] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The highly conserved 14-3-3 family of proteins, originally reported as brain-specific and then found in various somatic cells and oocytes, interacts with several important signal transduction kinases so that actually the 14-3-3 protein are considered as modulators of multiple signal transduction pathways. Here we show that a 14-3-3 protein is also expressed in the male germ cells, thus extending the protein cellular distribution to a cell line never reported to express 14-3-3 proteins. Screening of a mouse spermatogenic cells lambda gt11 cDNA library with affinity-purified polyclonal antibodies to the tyrosine kinase SP42 allowed the isolation of several positive clones. Sequencing of a positive cDNA clone revealed a 735-nucleotide open reading frame encoding a protein of 245 amino acids (27,778 Da). The predicted protein was found to be identical to the most recently discovered 14-3-3 isoform, the theta subtype from a rat brain. Here we demonstrate that 14-3-3 theta mRNA is highly expressed in testis and brain only. Western immunoblot analyses confirm the Northern blot data. Developmental Northern and Western blot analyses are consistent with an expression and translation of the 14-3-3 theta gene throughout spermatogenesis. However, analysis of RNA from purified populations of spermatogenic cells at different developmental stages and immunohistochemistry on adult testis sections reveal that within the testis the 14-3-3 theta gene products are most abundant in meiotic prophase spermatocytes, and, above all, in differentiating spermatids. Both testicular and epididymal spermatozoa are negative. The present study is the first report on the presence and molecular characterization of the 14-3-3 theta gene product in the male germ line. Our observations suggest that this specific member of the 14-3-3 protein family could play distinct modulatory roles in the complex development of the mammalian male germ cell lineage.
Collapse
Affiliation(s)
- L Perego
- Department of Biology, University of Milan, Italy
| | | |
Collapse
|
49
|
Deacon K, Blank JL. Characterization of the mitogen-activated protein kinase kinase 4 (MKK4)/c-Jun NH2-terminal kinase 1 and MKK3/p38 pathways regulated by MEK kinases 2 and 3. MEK kinase 3 activates MKK3 but does not cause activation of p38 kinase in vivo. J Biol Chem 1997; 272:14489-96. [PMID: 9162092 DOI: 10.1074/jbc.272.22.14489] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We previously reported the isolation of cDNAs encoding two mammalian mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) kinase kinases, designated MEKK2 and MEKK3 (Blank, J.L., Gerwins, P., Elliott, E.M., Sather, S. and Johnson, G.L. (1996) J. Biol. Chem. 271, 5361-5368). In the present study, cotransfection experiments were used to examine the regulation by MEKK2 and MEKK3 of the dual specificity MAP kinase kinases, MKK3 and MKK4. MKK3 specifically phosphorylates and activates p38, whereas MKK4 phosphorylates and activates both p38 and JNK. Coexpression of MEKK2 or MEKK3 with MKK4 in COS-7 cells resulted in activation of MKK4, as assessed by enhanced autophosphorylation and by its ability to phosphorylate and activate recombinant JNK1 or p38 in vitro. MKK3 autophosphorylation and activation of p38 was also observed following coexpression of MKK3 with MEKK3, but not with MEKK2. Consistent with these observations, immunoprecipitated MEKK2 directly activated recombinant MKK4 in vitro but failed to activate MKK3. The sites of activating phosphorylation in MKK3 and MKK4 were identified within kinase subdomains VII and VIII. Replacement of Ser189 or Thr193 in MKK3 with Ala abolished autophosphorylation and activation of MKK3 by MEKK3. Analogous mutations in MKK4 indicated that Ser221 and, to a lesser extent, Thr225 were necessary for MKK4 activation by MEKK2 and MEKK3. These data indicate that MKK3 is preferentially activated by MEKK3, whereas MKK4 is activated both by MEKK2 and MEKK3. Consistent with these observations, MEKK2 and MEKK3 also activated JNK1 in vivo. However, MEKK3 failed to activate p38 when coexpressed in either the absence or presence of MKK3, indicating that MEKK3 is not coupled to p38 activation in vivo. These observations suggest that regulation of p38 and JNK1 pathways by MEKK3 may involve distinct mechanisms to prevent p38 activation but to allow JNK1 activation.
Collapse
Affiliation(s)
- K Deacon
- Department of Cell Physiology and Pharmacology, University of Leicester School of Medicine, P.O. Box 138, Medical Sciences Building, University Road, Leicester LE1 9HN, United Kingdom
| | | |
Collapse
|
50
|
Imamura H, Tanaka K, Hihara T, Umikawa M, Kamei T, Takahashi K, Sasaki T, Takai Y. Bni1p and Bnr1p: downstream targets of the Rho family small G-proteins which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae. EMBO J 1997; 16:2745-55. [PMID: 9184220 PMCID: PMC1169884 DOI: 10.1093/emboj/16.10.2745] [Citation(s) in RCA: 253] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The RHO1 gene encodes a homologue of mammalian RhoA small G-protein in the yeast Saccharomyces cerevisiae. Rho1p is required for bud formation and is localized at a bud tip or a cytokinesis site. We have recently shown that Bni1p is a potential target of Rho1p. Bni1p shares the FH1 and FH2 domains with proteins involved in cytokinesis or establishment of cell polarity. In S. cerevisiae, there is an open reading frame (YIL159W) which encodes another protein having the FH1 and FH2 domains and we have named this gene BNR1 (BNI1 Related). Bnr1p interacts with another Rho family member, Rho4p, but not with Rho1p. Disruption of BNI1 or BNR1 does not show any deleterious effect on cell growth, but the bni1 bnr1 mutant shows a severe temperature-sensitive growth phenotype. Cells of the bni1 bnr1 mutant arrested at the restrictive temperature are deficient in bud emergence, exhibit a random distribution of cortical actin patches and often become multinucleate. These phenotypes are similar to those of the mutant of PFY1, which encodes profilin, an actin-binding protein. Moreover, yeast two-hybrid and biochemical studies demonstrate that Bni1p and Bnr1p interact directly with profilin at the FH1 domains. These results indicate that Bni1p and Bnr1p are potential targets of the Rho family members, interact with profilin and regulate the reorganization of actin cytoskeleton.
Collapse
Affiliation(s)
- H Imamura
- Department of Molecular Biology and Biochemistry, Osaka University Medical School, Suita, Japan
| | | | | | | | | | | | | | | |
Collapse
|