1
|
Hara T, Saeki K, Jinnouchi H, Kazuno S, Miura Y, Yokomizo T. The c-terminal region of BLT2 restricts its localization to the lateral membrane in a LIN7C-dependent manner. FASEB J 2021; 35:e21364. [PMID: 33481310 DOI: 10.1096/fj.202002640r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 11/11/2022]
Abstract
Leukotriene B4 receptor type 2 (BLT2) is a G protein-coupled receptor (GPCR) mainly expressed in epithelial cells, where it enhances barrier function. A unique characteristic of BLT2 is its restricted localization to the lateral membrane. However, the molecular mechanism underlying the localization of BLT2 to the lateral membrane and the physiological roles of laterally localized BLT2 are unknown. BLT1 is the most homologous GPCR to BLT2 and localizes to both the apical and lateral membranes. In this study, we generated chimeric receptors of BLT2 and BLT1 as well as deletion mutants of BLT2 to determine the region(s) of BLT2 responsible for its localization. Chimeric receptors containing the C-terminal domain of BLT2 localized only to the lateral membrane, and the C-terminal deletion mutant of BLT2 accumulated at the Golgi apparatus. Furthermore, the middle and C-terminal regions of BLT2 were important for maintaining epithelial barrier function. Proteomics analysis using the chimeric BLT-ascorbate peroxidase 2 biotinylation method showed that some proteins involved in intracellular protein transport, cell-cell junctions, and actin filament binding were located very close to the C-terminal domain of BLT2. Knockdown of lin-7 homolog C (LIN7C), a membrane trafficking protein, led to accumulation of BLT2 in the Golgi apparatus, resulting in diminished epithelial barrier function. These results suggest that the C-terminal region of BLT2 plays an important role in the transport of BLT2 from the Golgi apparatus to the plasma membrane in a LIN7C-dependent manner.
Collapse
Affiliation(s)
- Takuya Hara
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan.,Fuji Research Laboratories, Kowa Co., Ltd, Shizuoka, Japan
| | - Kazuko Saeki
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiromi Jinnouchi
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshiki Miura
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Carvajal-Gonzalez JM, Gravotta D, Mattera R, Diaz F, Perez Bay A, Roman AC, Schreiner RP, Thuenauer R, Bonifacino JS, Rodriguez-Boulan E. Basolateral sorting of the coxsackie and adenovirus receptor through interaction of a canonical YXXPhi motif with the clathrin adaptors AP-1A and AP-1B. Proc Natl Acad Sci U S A 2012; 109:3820-5. [PMID: 22343291 PMCID: PMC3309744 DOI: 10.1073/pnas.1117949109] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The coxsackie and adenovirus receptor (CAR) plays key roles in epithelial barrier function at the tight junction, a localization guided in part by a tyrosine-based basolateral sorting signal, (318)YNQV(321). Sorting motifs of this type are known to route surface receptors into clathrin-mediated endocytosis through interaction with the medium subunit (μ2) of the clathrin adaptor AP-2, but how they guide new and recycling membrane proteins basolaterally is unknown. Here, we show that YNQV functions as a canonical YxxΦ motif, with both Y318 and V321 required for the correct basolateral localization and biosynthetic sorting of CAR, and for interaction with a highly conserved pocket in the medium subunits (μ1A and μ1B) of the clathrin adaptors AP-1A and AP-1B. Knock-down experiments demonstrate that AP-1A plays a role in the biosynthetic sorting of CAR, complementary to the role of AP-1B in basolateral recycling of this receptor. Our study illustrates how two clathrin adaptors direct basolateral trafficking of a plasma membrane protein through interaction with a canonical YxxΦ motif.
Collapse
Affiliation(s)
- Jose Maria Carvajal-Gonzalez
- Department of Ophthalmology, Department of Cell and Developmental Biology, Department of Physiology and Biophysics, Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, NY 10065
| | - Diego Gravotta
- Department of Ophthalmology, Department of Cell and Developmental Biology, Department of Physiology and Biophysics, Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, NY 10065
| | - Rafael Mattera
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Fernando Diaz
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Andres Perez Bay
- Department of Ophthalmology, Department of Cell and Developmental Biology, Department of Physiology and Biophysics, Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, NY 10065
| | - Angel C. Roman
- Instituto Cajal–Consejo Superior de Investigaciones Cientificas, 28002 Madrid, Spain; and
| | - Ryan P. Schreiner
- Department of Ophthalmology, Department of Cell and Developmental Biology, Department of Physiology and Biophysics, Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, NY 10065
| | | | - Juan S. Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Enrique Rodriguez-Boulan
- Department of Ophthalmology, Department of Cell and Developmental Biology, Department of Physiology and Biophysics, Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
3
|
Gephart JD, Singh B, Higginbotham JN, Franklin JL, Gonzalez A, Fölsch H, Coffey RJ. Identification of a novel mono-leucine basolateral sorting motif within the cytoplasmic domain of amphiregulin. Traffic 2011; 12:1793-804. [PMID: 21917092 DOI: 10.1111/j.1600-0854.2011.01282.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Epithelial cells establish apical and basolateral (BL) membranes with distinct protein and lipid compositions. To achieve this spatial asymmetry, the cell utilizes a variety of mechanisms for differential sorting, delivery and retention of cell surface proteins. The EGF receptor (EGFR) and its ligand, amphiregulin (AREG), are transmembrane proteins delivered to the BL membrane in polarized epithelial cells. Herein, we show that the cytoplasmic domain of AREG (ACD) contains dominant BL sorting information; replacement of the cytoplasmic domain of apically targeted nerve growth factor receptor with the ACD redirects the chimera to the BL surface. Using sequential truncations and site-directed mutagenesis of the ACD, we identify a novel BL sorting motif consisting of a single leucine C-terminal to an acidic cluster (EEXXXL). In adaptor protein (AP)-1B-deficient cells, newly synthesized AREG is initially delivered to the BL surface as in AP-1B-expressing cells. However, in these AP-1B-deficient cells, recycling of AREG back to the BL surface is compromised, leading to its appearance at the apical surface. These results show that recycling, but not delivery, of AREG to the BL surface is AP-1B dependent.
Collapse
Affiliation(s)
- Jonathan D Gephart
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Kobialka S, Beuret N, Ben-Tekaya H, Spiess M. Glycosaminoglycan Chains Affect Exocytic and Endocytic Protein Traffic. Traffic 2009; 10:1845-55. [DOI: 10.1111/j.1600-0854.2009.00987.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Chmelar RS, Nathanson NM. Identification of a novel apical sorting motif and mechanism of targeting of the M2 muscarinic acetylcholine receptor. J Biol Chem 2006; 281:35381-96. [PMID: 16968700 DOI: 10.1074/jbc.m605954200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Previous studies have shown that the M2 receptor is localized at steady state to the apical domain in Madin-Darby canine kidney (MDCK) epithelial cells. In this study, we identify the molecular determinants governing the localization and the route of apical delivery of the M2 receptor. First, by confocal analysis of a transiently transfected glycosylation mutant in which the three putative glycosylation sites were mutated, we determined that N-glycans are not necessary for the apical targeting of the M2 receptor. Next, using a chimeric receptor strategy, we found that two independent sequences within the M2 third intracellular loop can confer apical targeting to the basolaterally targeted M4 receptor, Val270-Lys280 and Lys280-Ser350. Experiments using Triton X-100 extraction followed by OptiPrep density gradient centrifugation and cholera toxin beta-subunit-induced patching demonstrate that apical targeting is not because of association with lipid rafts. 35S-Metabolic labeling experiments with domain-specific surface biotinylation as well as immunocytochemical analysis of the time course of surface appearance of newly transfected confluent MDCK cells expressing FLAG-M2-GFP demonstrate that the M2 receptor achieves its apical localization after first appearing on the basolateral domain. Domain-specific application of tannic acid of newly transfected cells indicates that initial basolateral plasma membrane expression is required for subsequent apical localization. This is the first demonstration that a G-protein-coupled receptor achieves its apical localization in MDCK cells via transcytosis.
Collapse
Affiliation(s)
- Renée S Chmelar
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195-7750, USA
| | | |
Collapse
|
6
|
Delacour D, Cramm-Behrens CI, Drobecq H, Le Bivic A, Naim HY, Jacob R. Requirement for Galectin-3 in Apical Protein Sorting. Curr Biol 2006; 16:408-14. [PMID: 16488876 DOI: 10.1016/j.cub.2005.12.046] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 12/05/2005] [Accepted: 12/28/2005] [Indexed: 01/22/2023]
Abstract
The central aspect of epithelial cells is their polarized structure, characterized by two distinct domains of the plasma membrane, the apical and the basolateral membrane. Apical protein sorting requires various signals and different intracellular routes to the cell surface. The first apical targeting motif identified is the membrane anchoring of a polypeptide by glycosyl-phosphatidyl-inositol (GPI). A second group of apical signals involves N- and O-glycans, which are exposed to the luminal side of the sorting organelle. Sucrase-isomaltase (SI) and lactase-phlorizin hydrolase (LPH), which use separate transport platforms for trafficking, are two model proteins for the study of apical protein sorting. In contrast to LPH, SI associates with sphingolipid/cholesterol-enriched membrane microdomains or "lipid rafts". After exit form the trans-Golgi network (TGN), the two proteins travel in distinct vesicle populations, SAVs (SI-associated vesicles) and LAVs (LPH-associated vesicles) . Here, we report the identification of the lectin galectin-3 delivering non-raft-dependent glycoproteins in the lumen of LAVs in a carbohydrate-dependent manner. Depletion of galectin-3 from MDCK cells results in missorting of non-raft-dependent apical membrane proteins to the basolateral cell pole. This suggests a direct role of galectin-3 in apical sorting as a sorting receptor.
Collapse
Affiliation(s)
- Delphine Delacour
- Department of Cell Biology and Cell Pathology, University of Marburg, D-35033 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Doumanov JA, Daubrawa M, Unden H, Graeve L. Identification of a basolateral sorting signal within the cytoplasmic domain of the interleukin-6 signal transducer gp130. Cell Signal 2005; 18:1140-6. [PMID: 16274960 DOI: 10.1016/j.cellsig.2005.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 09/09/2005] [Indexed: 01/30/2023]
Abstract
Interleukin-6-type cytokine receptors are expressed in polarized cells such as hepatocytes and intestinal cells. For the interleukin-6-receptor gp80 and its signal transducer gp130, a preferential basolateral localization was demonstrated in Madin-Darby canine kidney (MDCK) cells and two basolateral sorting signals were identified within the cytoplasmic domain of gp80. The cytoplasmic tail of gp130 is responsible for signaling via the Janus kinase/signal transducer and activator of transcription pathway. In addition, it mediates the internalization of the receptor complex which is dependent on a di-leucine motif. Truncated gp130 lacking the cytoplasmic domain is sorted apically in MDCK cells. For identification of the basolateral sorting signal(s) of gp130, a series of deletion mutants in the cytoplasmic domain of gp130 have been generated and stably expressed in MDCK cells. Biotinylation analyses of these mutants show that a ten amino acids sequence between amino acids 782 and 792 which contains the di-leucine internalization motif is also essential for a basolateral sorting. Accordingly, we detect apical delivery of a gp130 mutant in which the di-leucine motif has been exchanged by two alanines (gp130LL/AA). These findings indicate that the di-leucine motif which directs the internalization of the IL-6 receptor complex also mediates the basolateral sorting of the signal transducer gp130.
Collapse
Affiliation(s)
- Jordan A Doumanov
- Institut für Biologische Chemie und Ernährungswissenschaft, Universität Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | | | | | | |
Collapse
|
8
|
Schuck S, Simons K. Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J Cell Sci 2004; 117:5955-64. [PMID: 15564373 DOI: 10.1242/jcs.01596] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polarized cells establish and maintain functionally distinct surface domains by an elaborate sorting process, which ensures accurate delivery of biosynthetic cargo to different parts of the plasma membrane. This is particularly evident in polarized epithelial cells, which have been used as a model system for studies of sorting mechanisms. The clustering of lipid rafts through the oligomerization of raft components could be utilized for segregating apical from basolateral cargo and for the generation of intracellular transport carriers. Besides functioning in polarized sorting in differentiated cells, raft clustering might also play an important role in the biogenesis of apical membrane domains during development.
Collapse
Affiliation(s)
- Sebastian Schuck
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | | |
Collapse
|
9
|
Dempsey PJ, Meise KS, Coffey RJ. Basolateral sorting of transforming growth factor-alpha precursor in polarized epithelial cells: characterization of cytoplasmic domain determinants. Exp Cell Res 2003; 285:159-74. [PMID: 12706112 DOI: 10.1016/s0014-4827(03)00035-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In polarized Madin-Darby canine kidney (MDCK) cells, newly synthesized transforming growth factor-alpha precursor (proTGFalpha) is directly sorted to the basolateral cell surface where it is sequentially cleaved and released into the basolateral conditioned medium (Dempsey, P.J., Coffey, R.J., J. Biol. Chem. 269 (1994) 16878-16889). In the present study, the role of the proTGFalpha cytoplasmic domain in basolateral sorting has been investigated using deletional and site-directed mutagenesis, as well as chimeric analyses of different TGFalpha constructs stably expressed in MDCK cells. The loss of polarized secretion of a proTGFalpha secretory mutant (TGFsec88) indicated that the proTGFalpha transmembrane and/or cytoplasmic domains contain essential basolateral sorting information. Using reporter chimeras with two apically sorted membrane proteins, p75 neurotrophin growth factor receptor and placental alkaline phosphatase, we show that the proTGFalpha cytoplasmic domain contains dominant basolateral sorting information. Analysis of proTGFalpha cytoplasmic domain truncation and internal deletion mutants, together with site-directed mutagenesis studies within the full-length proTGFalpha cytoplasmic domain, revealed redundant basolateral sorting motifs. Importantly, the C-terminal type I PDZ-binding motif was not required for basolateral sorting as determined by the integrity of basolateral sorting in deletion mutants lacking this motif. ProTGFalpha basolateral sorting may have important consequences for ligand presentation and spatial compartmentalization of epidermal growth factor receptor signaling networks in polarized epithelial cells.
Collapse
Affiliation(s)
- Peter J Dempsey
- Department of Medicine, Vanderbilt University School of Medicine and Veterans Affairs Medical Center, Nashville, TN 37232-2279, USA
| | | | | |
Collapse
|
10
|
Lipardi C, Ruggiano G, Perrone L, Paladino S, Monlauzeur L, Nitsch L, Le Bivic A, Zurzolo C. Differential recognition of a tyrosine-dependent signal in the basolateral and endocytic pathways of thyroid epithelial cells. Endocrinology 2002; 143:1291-301. [PMID: 11897685 DOI: 10.1210/endo.143.4.8734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Trafficking of receptors is of crucial importance for the physiology of most exocrine and endocrine organs. It is not known yet if the same mechanisms are used for sorting in the exocytic and endocytic pathways in the different epithelial tissues. In this work, we have used a deletion mutant of the human neurotrophin receptor p75(hNTR) that is normally localized on the apical membrane when expressed in Madin-Darby canine kidney cells. This internal 57-amino acid deletion of the cytoplasmic tail leads to a relocation of the protein from the apical to the basolateral membrane and to rapid and efficient endocytosis. These events are mediated by a signal localized within 9 amino acids of the mutated cytoplasmic tail that is strictly dependent on a tyrosine residue (Tyr-308). We have analyzed the basolateral sorting efficiency and endocytic capacity of this signal in Fischer rat thyroid (FRT) cells, in which basolateral and endocytic determinants have not yet been identified. We found that this targeting signal can mediate efficient transport to the basolateral membrane also in FRT cells with similar tyrosine dependence as in MDCK cells. In contrast to MDCK cells, this Tyr-based signal was not able to mediate coated pits localization and endocytosis in FRT cells. These data represent the first characterization of basolateral/endocytic signals in thyroid epithelial cells. Furthermore, our results indicate that requirements for tyrosine-dependent basolateral sorting signals are conserved among cell lines from different tissues but that the recognition of the colinear endocytic signal is tissue specific.
Collapse
Affiliation(s)
- Concetta Lipardi
- Centro di Endocrinologia ed Oncologia Sperimentale del Centro Nazionale delle Ricerche-Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Mora R, Rodriguez-Boulan E, Palese P, García-Sastre A. Apical budding of a recombinant influenza A virus expressing a hemagglutinin protein with a basolateral localization signal. J Virol 2002; 76:3544-53. [PMID: 11884578 PMCID: PMC136015 DOI: 10.1128/jvi.76.7.3544-3553.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2001] [Accepted: 12/26/2001] [Indexed: 12/15/2022] Open
Abstract
Influenza virions bud preferentially from the apical plasma membrane of infected epithelial cells, by enveloping viral nucleocapsids located in the cytosol with its viral integral membrane proteins, i.e., hemagglutinin (HA), neuraminidase (NA), and M2 proteins, located at the plasma membrane. Because individually expressed HA, NA, and M2 proteins are targeted to the apical surface of the cell, guided by apical sorting signals in their transmembrane or cytoplasmic domains, it has been proposed that the polarized budding of influenza virions depends on the interaction of nucleocapsids and matrix proteins with the cytoplasmic domains of HA, NA, and/or M2 proteins. Since HA is the major protein component of the viral envelope, its polarized surface delivery may be a major force that drives polarized viral budding. We investigated this hypothesis by infecting MDCK cells with a transfectant influenza virus carrying a mutant form of HA (C560Y) with a basolateral sorting signal in its cytoplasmic domain. C560Y HA was expressed nonpolarly on the surface of infected MDCK cells. Interestingly, viral budding remained apical in C560Y virus-infected cells, and so did the location of NP and M1 proteins at late times of infection. These results are consistent with a model in which apical viral budding is a shared function of various viral components rather than a role of the major viral envelope glycoprotein HA.
Collapse
Affiliation(s)
- Rosalia Mora
- Dyson Vision Research Institute, Departments of Ophthalmology and Cell Biology, Joan and Sanford Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
12
|
Breuza L, Garcia M, Delgrossi MH, Le Bivic A. Role of the membrane-proximal O-glycosylation site in sorting of the human receptor for neurotrophins to the apical membrane of MDCK cells. Exp Cell Res 2002; 273:178-86. [PMID: 11822873 DOI: 10.1006/excr.2001.5442] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have analyzed the respective roles of the stalk and/or the O-glycosylation sites in apical sorting by producing partially deleted mutants in this region of the human receptor for neurotrophins (P75(NTR)). The mere presence of O-glycosylations was not sufficient for efficient delivery to the apical surface since changing the stalk domain of P75(NTR) for the heavily O-glycosylated stalk from human decay-accelerating factor led to random distribution of the chimera. The presence of O-glycosylations, however, was a prerequisite for exit from the ER and protection from intracellular cleavage since a P75(NTR) containing the non O-glycosylated stalk of the human placental alkaline phosphatase was not transported to the cell surface but was cleaved and secreted from the basolateral side. Deletion of the membrane-proximal part of the stalk showed a more dramatic reversal of polarity of P75(NTR) than the deletion of the distal part. Furthermore, moving the first putative O-glycosylation site (T216) two amino acids away from the membrane resulted in a loss of apical polarity of P75(NTR), suggesting that an important clue for apical sorting resides in this part of the stalk. This loss of apical polarity paralleled a loss of association of P75(NTR) mutants with Lubrol rafts. These data indicate that the position of O-glycans in the proximal part of the stalk domain of P75(NTR) is crucial for apical sorting and may regulate association with apical rafts.
Collapse
Affiliation(s)
- Lionel Breuza
- Laboratoire de Génétique et Physiologie du Développement, UMR 6545, IBDM, Faculté des Sciences de Luminy, Université de la Méditerranée, Marseille, France
| | | | | | | |
Collapse
|
13
|
Bello V, Goding JW, Greengrass V, Sali A, Dubljevic V, Lenoir C, Trugnan G, Maurice M. Characterization of a di-leucine-based signal in the cytoplasmic tail of the nucleotide-pyrophosphatase NPP1 that mediates basolateral targeting but not endocytosis. Mol Biol Cell 2001; 12:3004-15. [PMID: 11598187 PMCID: PMC60151 DOI: 10.1091/mbc.12.10.3004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Enzymes of the nucleotide pyrophosphatase/phosphodiesterase (NPPase) family are expressed at opposite surfaces in polarized epithelial cells. We investigated the targeting signal of NPP1, which is exclusively expressed at the basolateral surface. Full-length NPP1 and different constructs and mutants were transfected into the polarized MDCK cell line. Expression of the proteins was analyzed by confocal microscopy and surface biotinylation. The basolateral signal of NPP1 was identified as a di-leucine motif located in the cytoplasmic tail. Mutation of either or both leucines largely redirected NPP1 to the apical surface. Furthermore, addition of the conserved sequence AAASLLAP redirected the apical nucleotide pyrophosphatase/phosphodiesterase NPP3 to the basolateral surface. Full-length NPP1 was not significantly internalized. However, when the cytoplasmic tail was deleted upstream the di-leucine motif or when the six upstream flanking amino acids were deleted, the protein was mainly found intracellularly. Endocytosis experiments indicated that these mutants were endocytosed from the basolateral surface. These results identify the basolateral signal of NPP1 as a short sequence including a di-leucine motif that is dominant over apical determinants and point to the importance of surrounding amino acids in determining whether the signal will function as a basolateral signal only or as an endocytotic signal as well.
Collapse
Affiliation(s)
- V Bello
- U538 INSERM, CHU St-Antoine, 75571 Paris Cedex 12, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Cohen CJ, Gaetz J, Ohman T, Bergelson JM. Multiple regions within the coxsackievirus and adenovirus receptor cytoplasmic domain are required for basolateral sorting. J Biol Chem 2001; 276:25392-8. [PMID: 11316797 DOI: 10.1074/jbc.m009531200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The coxsackievirus and adenovirus receptor (CAR) mediates attachment and infection by coxsackie B viruses and many adenoviruses. In human airway epithelia, as well as in transfected Madin-Darby canine kidney cells, CAR is expressed exclusively on the basolateral surface. Variants of CAR that lack the cytoplasmic domain or are attached to the cell membrane by a glycosylphosphatidylinositol anchor are expressed on both the apical and basolateral surfaces. We have examined the localization of CAR variants with progressive truncations of the cytoplasmic domain, as well as with mutations that ablate a potential PDZ (PSD95/dlg/ZO-1) interaction motif and a putative tyrosine-based sorting signal. In addition, we have examined the targeting of two murine CAR isoforms, with different C-terminal sequences. The results suggest that multiple regions within the CAR cytoplasmic domain contain information that is necessary for basolateral targeting.
Collapse
Affiliation(s)
- C J Cohen
- Division of Immunologic and Infectious Diseases, The Children's Hospital of Philadelphia, Philadelphia, PA 19104-4318, USA.
| | | | | | | |
Collapse
|
15
|
Jaulin-Bastard F, Saito H, Le Bivic A, Ollendorff V, Marchetto S, Birnbaum D, Borg JP. The ERBB2/HER2 receptor differentially interacts with ERBIN and PICK1 PSD-95/DLG/ZO-1 domain proteins. J Biol Chem 2001; 276:15256-63. [PMID: 11278603 DOI: 10.1074/jbc.m010032200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Identification of protein complexes associated with the ERBB2/HER2 receptor may help unravel the mechanisms of its activation and regulation in normal and pathological situations. Interactions between ERBB2/HER2 and Src homology 2 or phosphotyrosine binding domain signaling proteins have been extensively studied. We have identified ERBIN and PICK1 as new binding partners for ERBB2/HER2 that associate with its carboxyl-terminal sequence through a PDZ (PSD-95/DLG/ZO-1) domain. This peptide sequence acts as a dominant retention or targeting basolateral signal for receptors in epithelial cells. ERBIN belongs to the newly described LAP (LRR and PDZ) protein family, whose function is crucial in non vertebrates for epithelial homeostasis. Whereas ERBIN appears to locate ERBB2/HER2 to the basolateral epithelium, PICK1 is thought to be involved in the clustering of receptors. We show here that ERBIN and PICK1 bind to ERBB2/HER2 with different mechanisms, and we propose that these interactions are regulated in cells. Since ERBIN and PICK1 tend to oligomerize, further complexity of protein networks may participate in ERBB2/HER2 functions and specificity.
Collapse
Affiliation(s)
- F Jaulin-Bastard
- U119 INSERM, Molecular Oncology, Institut Paoli-Calmettes, 27 boulevard Leï Roure, 13009 Marseille, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Gouyer V, Leteurtre E, Delmotte P, Steelant WF, Krzewinski-Recchi MA, Zanetta JP, Lesuffleur T, Trugnan G, Delannoy P, Huet G. Differential effect of GalNAc(α)-O-bn on intracellular trafficking in enterocytic HT-29 and Caco-2 cells: correlation with the glycosyltransferase expression pattern. J Cell Sci 2001; 114:1455-71. [PMID: 11282022 DOI: 10.1242/jcs.114.8.1455] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous work has shown that long-term treatment of mucus-secreting HT-29 cells with 1-benzyl-2-acetamido-2-deoxy-(α)-D-galactopyranoside (GalNAc(α)-O-bn), a competitive inhibitor of O-glycosylation, induced several phenotypic changes, in particular a blockade in the secretion of mucins, which are extensively O-glycosylated glycoproteins. Here, we have analyzed the effects of GalNAc(α)-O-bn upon the intracellular trafficking of basolateral and apical membrane glycoproteins at the cellular and biochemical levels in two types of cells, HT-29 G(-) and Caco-2, differentiated into an enterocyte-like phenotype. In HT-29 G(-) cells, but not in Caco-2 cells, DPP-IV and CD44 failed to be targeted to the apical or basolateral membrane, respectively, and accumulated inside intracytoplasmic vesicles together with GalNAc(α)-O-bn metabolites. We observed a strong inhibition of (α)2,3-sialylation of glycoproteins in HT-29 G(-) cells correlated to the high expression of (α)2,3-sialyltransferases ST3Gal I and ST3Gal IV. In these cells, DPP-IV and CD44 lost the sialic acid residue substituting the O-linked core 1 structure Gal(β)1-3GalNAc (T-antigen). In contrast, sialylation was not modified in Caco-2 cells, but a decrease of (α)1,2-fucosylation was observed, in correlation with the high expression of (α)1,2-fucosyltransferases Fuc-TI and Fuc-TII. In conclusion, in HT-29 G(-) cells, GalNAc(α)-O-bn induces a specific cellular phenotype, which is morphologically characterized by the formation of numerous intracellular vesicles, in which are accumulated defectively sialylated O-glycosylproteins originally targeted to basolateral or apical membranes, and GalNAc(α)-O-bn metabolites.
Collapse
Affiliation(s)
- V Gouyer
- Unité INSERM 377, place de Verdun, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nadler LS, Kumar G, Nathanson NM. Identification of a basolateral sorting signal for the M3 muscarinic acetylcholine receptor in Madin-Darby canine kidney cells. J Biol Chem 2001; 276:10539-47. [PMID: 11136723 DOI: 10.1074/jbc.m007190200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) can be differentially localized in polarized cells. To identify potential sorting signals that mediate mAChR targeting, we examined the sorting of mAChRs in Madin-Darby canine kidney cells, a widely used model system. Expression of FLAG-tagged mAChRs in polarized Madin-Darby canine kidney cells demonstrated that the M(2) subtype is sorted apically, whereas M(3) is targeted basolaterally. Expression of M(2)/M(3) receptor chimeras revealed that a 21-residue sequence, Ser(271)-Ser(291), from the M(3) third intracellular loop contains a basolateral sorting signal. Substitution of sequences containing the M(3) sorting signal into the homologous regions of M(2) was sufficient to confer basolateral localization to this apical receptor. Sequences containing the M(3) sorting signal also conferred basolateral targeting to M(2) when added to either the third intracellular loop or the C-terminal cytoplasmic tail. Furthermore, addition of a sequence containing the M(3) basolateral sorting signal to the cytoplasmic tail of the interleukin-2 receptor alpha-chain caused significant basolateral targeting of this heterologous apical protein. The results indicate that the M(3) basolateral sorting signal is dominant over apical signals in M(2) and acts in a position-independent manner. The M(3) sorting signal represents a novel basolateral targeting motif for G protein-coupled receptors.
Collapse
Affiliation(s)
- L S Nadler
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195-7750, USA
| | | | | |
Collapse
|
18
|
Martens AS, Bode JG, Heinrich PC, Graeve L. The cytoplasmic domain of the interleukin-6 receptor gp80 mediates its basolateral sorting in polarized madin-darby canine kidney cells. J Cell Sci 2000; 113 ( Pt 20):3593-602. [PMID: 11017875 DOI: 10.1242/jcs.113.20.3593] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The IL-6 receptor complex is expressed in different polarized epithelial cells such as liver hepatocytes and intestinal cells. It consists of two subunits: gp80, which binds the ligand, and gp130, which is responsible for signal transduction. In stably transfected Madin-Darby canine kidney (MDCK) cells we have studied the localization of the human IL-6 receptor subunits and found that gp80 and gp130 are predominantly expressed at the basolateral membrane. Analysis of MDCK cells expressing truncated forms of gp80 or gp130 showed that loss of the cytoplasmic domains results in apical delivery. Expression of deletion mutants of gp80 in MDCK cells led to the identification of two discontinous motifs responsible for basolateral sorting: a membrane-proximal tyrosine-based motif (YSLG) and a more membrane-distal dileucine-type motif (LI). Activation of signal transducer and activator of transcription-3 (STAT-3) only occurred via basolaterally located gp80, suggesting that endogenous gp130 is also constrained to the basolateral plasma membrane. Our identification of a basolateral sorting signal within the cytoplasmic region of gp80 for the first time attributes a function to this domain.
Collapse
Affiliation(s)
- A S Martens
- Institute of Biochemistry, Universitätsklinikum der Rheinisch-Westfälischen Technischen Hochschule, Pauwelsstrasse 30, Germany.
| | | | | | | |
Collapse
|
19
|
Monlauzeur L, Breuza L, Le Bivic A. Different functional recognition of basolateral signals in Caco-2 and MDCK cells. Exp Cell Res 2000; 258:195-203. [PMID: 10912801 DOI: 10.1006/excr.2000.4920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Using the basolateral mutant PS of the normally apical neurotrophin receptor p75 (p75NTR) we have identified two cytoplasmic determinants responsible for this reversed localization in the human intestinal cell line, Caco2. These signals are based on two consecutive leucines (322-323) and a tyrosine (Y308). Truncation of the cytoplasmic tail removing the two leucines or their replacement by alanines led to a nonpolarized expression of the resulting mutants in Caco2 cells. To our surprise, the same mutations had no effect on the basolateral localization of the mutant PS in MDCK cells. In MDCK cells, the basolateral localization was entirely dependent on a cytoplasmic tyrosine Y308, while in Caco-2 cells this tyrosine signal was functional as a basolateral signal only when the cytoplasmic domain of PS was truncated shortly after it. These data indicate for the first time that there is a differential recognition of basolateral signals between MDCK and Caco-2 cells.
Collapse
Affiliation(s)
- L Monlauzeur
- Laboratoire de Génétique et Physiologie du Développement, UMR 6545, IBDM, Faculté des Sciences de Luminy, Université de la Méditerranée, Marseille, France
| | | | | |
Collapse
|
20
|
Renold A, Cescato R, Beuret N, Vogel LK, Wahlberg JM, Brown JL, Fiedler K, Spiess M. Basolateral sorting signals differ in their ability to redirect apical proteins to the basolateral cell surface. J Biol Chem 2000; 275:9290-5. [PMID: 10734069 DOI: 10.1074/jbc.275.13.9290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polarized sorting of membrane proteins in epithelial cells is mediated by cytoplasmic basolateral signals or by apical signals in the transmembrane or exoplasmic domains. Basolateral signals were generally found to be dominant over apical determinants. We have generated chimeric proteins with the cytoplasmic domain of either the asialoglycoprotein receptor H1 or the transferrin receptor, two basolateral proteins, fused to the transmembrane and exoplasmic segments of aminopeptidase N, an apical protein, and analyzed them in Madin-Darby canine kidney cells. Whereas both cytoplasmic sequences induced endocytosis of the chimeras, only that of the transferrin receptor mediated basolateral expression in steady state. The H1 fusion protein, although still largely sorted to the basolateral side in biosynthetic surface transport, was subsequently resorted to the apical cell surface. We tested whether the difference in sorting between trimeric wild-type H1 and the dimeric aminopeptidase chimera was caused by the number of sorting signals presented in the oligomers. Consistent with this hypothesis, the H1 signal was fully functional in a tetrameric fusion protein with the transmembrane and exoplasmic domains of influenza neuraminidase. The results suggest that basolateral signals per se need not be dominant over apical determinants for steady-state polarity and emphasize an important contribution of the valence of signals in polarized sorting.
Collapse
Affiliation(s)
- A Renold
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lipardi C, Nitsch L, Zurzolo C. Detergent-insoluble GPI-anchored proteins are apically sorted in fischer rat thyroid cells, but interference with cholesterol or sphingolipids differentially affects detergent insolubility and apical sorting. Mol Biol Cell 2000; 11:531-42. [PMID: 10679012 PMCID: PMC14791 DOI: 10.1091/mbc.11.2.531] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In contrast to Madin-Darby canine kidney cells, Fischer rat thyroid cells deliver the majority of endogenous glycosylphosphatidyl inositol (GPI)-anchored proteins to the basolateral surface. However, we report here that the GPI proteins Placental Alkaline Phosphatase (PLAP) and Neurotrophin Receptor-Placental Alkaline Phosphatase (NTR-PLAP) are apically localized in transfected Fischer rat thyroid cells. In agreement with the "raft hypothesis," which postulates the incorporation of GPI proteins into glycosphingolipids and cholesterol-enriched rafts, we found that both of these proteins were insoluble in Triton X-100 and floated into the lighter fractions of sucrose density gradients. However, disruption of lipid rafts by removal of cholesterol did not cause surface missorting of PLAP and NTR-PLAP, and the altered surface sorting of these proteins after Fumonisin B1 treatment did not correlate with reduced levels in Triton X-100 -insoluble fractions. Furthermore, in contrast to the GPI-anchored forms of both of these proteins, the secretory and transmembrane forms (in the absence of a basolateral cytoplasmic signal) were sorted to the apical surface without association with lipid microdomains. Together, these data demonstrate that the GPI anchor is required to mediate raft association but is not sufficient to determine apical sorting. They also suggest that signals present in the ectodomain of the proteins play a major role and that lipid rafts may facilitate the recognition of these signals in the trans-Golgi network, even though they are not required for apical sorting.
Collapse
Affiliation(s)
- C Lipardi
- Centro di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche-Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli "Federico II," 80131 Napoli, Italy
| | | | | |
Collapse
|
22
|
El Nemer W, Colin Y, Bauvy C, Codogno P, Fraser RH, Cartron JP, Le Van Kim CL. Isoforms of the Lutheran/basal cell adhesion molecule glycoprotein are differentially delivered in polarized epithelial cells. Mapping of the basolateral sorting signal to a cytoplasmic di-leucine motif. J Biol Chem 1999; 274:31903-8. [PMID: 10542217 DOI: 10.1074/jbc.274.45.31903] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lu and Lu(v13) are two glycoprotein (gp) isoforms that belong to the immunoglobulin superfamily and carry both the Lutheran (Lu) blood group antigens and the basal cell adhesion molecule epithelial cancer antigen. Lu (85 kDa) and Lu(v13) (78 kDa) gps, which differ only in the length of their cytoplasmic domain, are adhesion molecules that bind laminin. In nonerythroid tissues, the Lu/basal cell adhesion molecule antigens are predominantly expressed in the endothelium of blood vessel walls and in the basement membrane region of normal epithelial cells, whereas they exhibit a nonpolarized expression in some epithelial cancers. Here, we analyzed the polarization of Lu and Lu(v13) gps in epithelial cells by confocal microscopy and domain-selective biotinylation assays. Differentiated human colon carcinoma Caco-2 cells exhibited a polarized expression of endogenous Lu antigens associated with a predominant expression of the Lu isoform at the basolateral domain of the plasma membrane and a very low expression of the Lu(v13) isoform at both the apical and basolateral domains. Analysis of transfected Madin-Darby canine kidney cells revealed a basolateral expression of Lu gp and a nonpolarized expression of Lu(v13) gp. Delivery of Lu(v13) to both apical and basolateral surfaces showed similar kinetics, indicating that this isoform is directly transported to each surface domain. A dileucine motif at position 608-609, specific to the Lu isoform, was characterized as a dominant basolateral sorting signal that prevents Lu gp from taking the apical delivery pathway.
Collapse
Affiliation(s)
- W El Nemer
- INSERM U76, Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, 75015 Paris, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Choice CV, Poy MN, Formisano P, Najjar SM. Comparison of the intracellular trafficking of two alternatively spliced isoforms of pp120, a substrate of the insulin receptor tyrosine kinase. J Cell Biochem 1999; 76:133-42. [PMID: 10581007 DOI: 10.1002/(sici)1097-4644(20000101)76:1<133::aid-jcb13>3.0.co;2-b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
pp120, a substrate of the insulin receptor tyrosine kinase, is a plasma membrane glycoprotein in the hepatocyte. It is expressed as two spliced isoforms differing by the presence (full length) or absence (truncated) of most of the intracellular domain including all phosphorylation sites. Because the two isoforms differ by their ability to regulate receptor-mediated insulin endocytosis and degradation, we aimed to investigate the cellular basis for this functional difference by comparing their intracellular trafficking. During its intracellular assembly, pp120 is transported from the trans-Golgi network to the sinusoidal domain of the plasma membrane before its final transcytosis to the bile canalicular domain. Because both isoforms are expressed in hepatocytes, we examined their intracellular trafficking in NIH 3T3 fibroblasts individually transfected with each isoform. Pulse-chase experiments demonstrated that most of the newly synthesized full-length isoform reached complete maturation at about 60 min of chase. By contrast, only about 40% of the newly synthesized truncated isoform underwent complete maturation, even at more prolonged chase. Moreover, a significant portion of the truncated isoform appeared to be targeted to lysosomes. Abolishing basal phosphorylation on Ser(503) by cAMP-dependent serine kinase by mutating this residue to alanine was correlated with incomplete maturation of full length pp120 in NIH 3T3 cells and hepatocytes. This finding suggests that the intracellular domain of pp120 contains information that regulates its vectorial sorting from the trans-Golgi network to the plasma membrane.
Collapse
Affiliation(s)
- C V Choice
- Department of Pharmacology and Therapeutics, Medical College of Ohio, Toledo, Ohio 43614, USA
| | | | | | | |
Collapse
|
24
|
Yeaman C, Grindstaff KK, Nelson WJ. New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol Rev 1999; 79:73-98. [PMID: 9922368 DOI: 10.1152/physrev.1999.79.1.73] [Citation(s) in RCA: 404] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Polarized epithelial cells form barriers that separate biological compartments and regulate homeostasis by controlling ion and solute transport between those compartments. Receptors, ion transporters and channels, signal transduction proteins, and cytoskeletal proteins are organized into functionally and structurally distinct domains of the cell surface, termed apical and basolateral, that face these different compartments. This review is about mechanisms involved in the establishment and maintenance of cell polarity. Previous reports and reviews have adopted a Golgi-centric view of how epithelial cell polarity is established, in which the sorting of apical and basolateral membrane proteins in the Golgi complex is a specialized process in polarized cells, and the generation of cell surface polarity is a direct consequence of this process. Here, we argue that events at the cell surface are fundamental to the generation of cell polarity. We propose that the establishment of structural asymmetry in the plasma membrane is the first, critical event, and subsequently, this asymmetry is reinforced and maintained by delivery of proteins that were constitutively sorted in the Golgi. We propose a hierarchy of stages for establishing cell polarity.
Collapse
Affiliation(s)
- C Yeaman
- Department of Molecular and Cellular Physiology, Beckman Center for Molecular and Genetic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | | | |
Collapse
|
25
|
Monlauzeur L, Breuza L, Le Bivic A. Putative O-glycosylation sites and a membrane anchor are necessary for apical delivery of the human neurotrophin receptor in Caco-2 cells. J Biol Chem 1998; 273:30263-70. [PMID: 9804786 DOI: 10.1074/jbc.273.46.30263] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have expressed the human neurotrophin receptor p75 (p75(NTR)) in the intestinal epithelial cell line Caco-2 as a model to study intracellular transport and subcellular sorting signals in intestinal cells. p75(NTR) was localized at the apical membrane of Caco-2 cells and reached this membrane mainly via an indirect pathway. Apical localization, intracellular routing, and basolateral to apical transcytosis were not affected by truncation of the cytoplasmic domain or replacement of the transmembrane domain by a glycosyl phosphatidylinositol anchor. Removal of membrane anchoring resulted in basolateral secretion of the ectodomain of p75(NTR) in Caco-2 cells but in apical secretion in Madin-Darby canine kidney (MDCK) cells. Substitution of potential O-glycosylation sites present in the stalk of p75(NTR) led to intracellular cleavage and secretion of the ectodomain into the basolateral medium both in Caco-2 and MDCK cells. These results suggest that the stalk of p75(NTR) carries an apical sorting information that is recognized efficiently by Caco-2 cells only when attached to the membrane. This apical sorting information is linked to the presence of predicted O-glycosylation sites in that region. These putative O-glycosylation sites also play a role in the regulation of p75(NTR) transport to the cell surface and in the prevention of rapid degradation by cleavage of the stalk domain.
Collapse
Affiliation(s)
- L Monlauzeur
- Laboratoire de Génétique et Physiologie du Développement, UMR6545, IBDM, Faculté des Sciences de Luminy, Case 907, Université de la Méditerranée, 13288 Marseille Cedex 09, France
| | | | | |
Collapse
|
26
|
Marmorstein AD, Gan YC, Bonilha VL, Finnemann SC, Csaky KG, Rodriguez-Boulan E. Apical polarity of N-CAM and EMMPRIN in retinal pigment epithelium resulting from suppression of basolateral signal recognition. J Cell Biol 1998; 142:697-710. [PMID: 9700159 PMCID: PMC2148181 DOI: 10.1083/jcb.142.3.697] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/1998] [Revised: 06/25/1998] [Indexed: 02/08/2023] Open
Abstract
Retinal pigment epithelial (RPE) cells apically polarize proteins that are basolateral in other epithelia. This reversal may be generated by the association of RPE with photoreceptors and the interphotoreceptor matrix, postnatal expansion of the RPE apical surface, and/or changes in RPE sorting machinery. We compared two proteins exhibiting reversed, apical polarities in RPE cells, neural cell adhesion molecule (N-CAM; 140-kD isoform) and extracellular matrix metalloproteinase inducer (EMMPRIN), with the cognate apical marker, p75-neurotrophin receptor (p75-NTR). N-CAM and p75-NTR were apically localized from birth to adulthood, contrasting with a basolateral to apical switch of EMMPRIN in developing postnatal rat RPE. Morphometric analysis demonstrated that this switch cannot be attributed to expansion of the apical surface of maturing RPE because the basolateral membrane expanded proportionally, maintaining a 3:1 apical/basolateral ratio. Kinetic analysis of polarized surface delivery in MDCK and RPE-J cells showed that EMMPRIN has a basolateral signal in its cytoplasmic tail recognized by both cell lines. In contrast, the basolateral signal of N-CAM is recognized by MDCK cells but not RPE-J cells. Deletion of N-CAM's basolateral signal did not prevent its apical localization in vivo. The data demonstrate that the apical polarity of EMMPRIN and N-CAM in mature RPE results from suppressed decoding of specific basolateral signals resulting in randomized delivery to the cell surface.
Collapse
Affiliation(s)
- A D Marmorstein
- Margaret M. Dyson Vision Research Institute, Department of Ophthalmology and Department of Cell Biology and Anatomy, Cornell University Medical College, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
27
|
Beau I, Groyer-Picard MT, Le Bivic A, Vannier B, Loosfelt H, Milgrom E, Misrahi M. The basolateral localization signal of the follicle-stimulating hormone receptor. J Biol Chem 1998; 273:18610-6. [PMID: 9660834 DOI: 10.1074/jbc.273.29.18610] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The follicle-stimulating hormone receptor (FSHR) is physiologically localized in the basolateral compartment of the membrane of Sertoli cells. This localization is also observed when the receptor is experimentally expressed in Madin-Darby canine kidney cells. We thus used in vitro mutagenesis and transfection into these polarized cells to delineate the basolateral localization signal of the receptor. The signal was localized in the C-terminal tail of the intracellular domain (amino acids 678-691) at a marked distance of the membrane. Mutation of individual amino acids highlighted the importance of Tyr684 and Leu689. The 14-amino acid sequence was grafted onto the p75 neurotrophin receptor and redirected this apical protein to the basolateral cell membrane compartment. Deletion of amino acids 677-695 did not modify the internalization of the FSHR, showing that the basolateral localization signal of the FSHR is not colinear with its internalization signal.
Collapse
Affiliation(s)
- I Beau
- INSERM Unité 135, Hormones Gènes et Reproduction, Institut Fédératif de Recherche 21, Hôpital Bicêtre, Assistance Publique Hopitaux de Paris, 94275 Le Kremlin Bicêtre, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Sorkin BC, Niederman R. Short chain carboxylic acids decrease human gingival keratinocyte proliferation and increase apoptosis and necrosis. J Clin Periodontol 1998; 25:311-5. [PMID: 9565282 DOI: 10.1111/j.1600-051x.1998.tb02446.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Epithelia are key barriers to infections. In periodontal disease, the gingival sulcular epithelium becomes ulcerated. In this report, we test the hypothesis that short-chain carboxylic acids (SCCA) inhibit keratinocyte proliferation, increase necrosis and apoptosis, and may thus promote ulceration. SCCA produced by bacteria are present at millimolar concentrations in the periodontal pockets of subjects with periodontal disease. SCCA concentrations are higher in subjects with severe disease than in those with mild disease, and are not detectable in healthy subjects. Cell proliferation is critical for maintenance of epithelial barrier function. All SCCA tested, when neutralized, decreased epithelial cell proliferation (as measured by 3H-thymidine incorporation) in a dose-dependent manner. We found that epithelial cell viability decreased with increasing SCCA concentrations, accounting at least partly for the decreased 3H-thymidine incorporation. For all conditions we tested, SCCA-induced apoptosis preceded and exceeded necrosis. While the molecular mechanism(s) for these effects remain to be determined, the results indicate that SCCA derived from caries- or periodontal disease-associated bacteria could alter gingival barrier function.
Collapse
Affiliation(s)
- B C Sorkin
- Department of Cytokine Biology, Forsyth Dental Center, Boston, MA 02115, USA
| | | |
Collapse
|
29
|
Bresciani R, Denzer K, Pohlmann R, von Figura K. The 46 kDa mannose-6-phosphate receptor contains a signal for basolateral sorting within the 19 juxtamembrane cytosolic residues. Biochem J 1997; 327 ( Pt 3):811-8. [PMID: 9581560 PMCID: PMC1218861 DOI: 10.1042/bj3270811] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cytosolic domain of the 46 kDa mannose-6-phosphate receptor (MPR 46) contains a signal that mediates sorting of the receptor and of a reporter protein to the basolateral surface domain of Madin-Darby canine kidney cells. Progressive truncation of the 67 cytosolic residues indicated that the 19 juxtamembrane residues are sufficient for basolateral sorting. Alanine/glycine-scanning mutagenesis identified Glu-11 and Ala-17 as the critical residues between residues 7 and 19. Glu-11 is also of critical importance for the one of the three internalization signals in the cytosolic tail of the receptor [Denzer, Weber, Hille-Rehfeld, von Figura and Pohlmann (1997) Biochem. J. 326, 497-505]. Although overlapping, the signals for basolateral sorting and internalization depend on different residues. The basolateral sorting signal of MPR 46 is distinct from tyrosine- or dileucine-based basolateral sorting signals and also lacks similarity to the few other basolateral signals that do not fall into these two classes.
Collapse
Affiliation(s)
- R Bresciani
- Biochemie II, Universität Göttingen, Gosslerstrasse 12D, D-37073 Göttingen, Federal Republic of Germany
| | | | | | | |
Collapse
|
30
|
Odorizzi G, Trowbridge IS. Structural requirements for basolateral sorting of the human transferrin receptor in the biosynthetic and endocytic pathways of Madin-Darby canine kidney cells. J Cell Biol 1997; 137:1255-64. [PMID: 9182660 PMCID: PMC2132535 DOI: 10.1083/jcb.137.6.1255] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/1996] [Revised: 04/15/1997] [Indexed: 02/04/2023] Open
Abstract
In polarized Madin-Darby canine kidney (MDCK) cells, the transferrin receptor (TR) is selectively delivered to the basolateral surface, where it internalizes transferrin via clathrin-coated pits and recycles back to the basolateral border. Mutant tailless receptors are sorted randomly in both the biosynthetic and endocytic pathways, indicating that the basolateral sorting of TR is dependent upon a signal located within the 61-amino acid cytoplasmic domain. To identify the basolateral sorting signal of TR, we have analyzed a series of mutant human TR expressed in MDCK cells. We find that residues 19-41 are sufficient for basolateral sorting from both the biosynthetic and endocytic pathways and that this is the only region of the TR cytoplasmic tail containing basolateral sorting information. The basolateral sorting signal is distinct from the YTRF internalization signal contained within this region and is not tyrosine based. Detailed functional analyses of the mutant TR indicate that residues 29-35 are the most important for basolateral sorting from the biosynthetic pathway. The structural requirements for basolateral sorting of internalized receptors from the endocytic pathway are not identical. The most striking difference is that alteration of G31DNS34 to YTRF impairs basolateral sorting of newly synthesized receptors from the biosynthetic pathway but not internalized receptors from the endocytic pathway. Also, mutations have been identified that selectively impair basolateral sorting of internalized TRs from the endocytic pathway without affecting basolateral sorting of newly synthesized receptors. These results imply that there are subtle differences in the recognition of the TR basolateral sorting signal by separate sorting machinery located within the biosynthetic and endocytic pathways.
Collapse
Affiliation(s)
- G Odorizzi
- Department of Cancer Biology, The Salk Institute for Biological Studies, San Diego, California 92186-5800, USA
| | | |
Collapse
|
31
|
Odorizzi G, Trowbridge IS. Structural requirements for major histocompatibility complex class II invariant chain trafficking in polarized Madin-Darby canine kidney cells. J Biol Chem 1997; 272:11757-62. [PMID: 9115230 DOI: 10.1074/jbc.272.18.11757] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The invariant chain (Ii) targets major histocompatibility complex class II molecules to an endocytic processing compartment where they encounter antigenic peptides. Analysis of Ii-transferrin receptor chimeras expressed in polarized Madin-Darby canine kidney (MDCK) cells shows that the Ii cytoplasmic tail contains a dihydrophobic basolateral sorting signal, Met16-Leu17, which is recognized in both the biosynthetic and endocytic pathways. Pro15-Met16-Leu17 has previously been identified as one of two dihydrophobic Ii internalization signals active in non-polarized cells. Pro15 is also required for endocytosis in MDCK cells but not for basolateral sorting, indicating that the internalization signal recognized at the plasma membrane is distinct from the sorting signal recognized by basolateral sorting machinery. Another dihydrophobic sequence, Leu7-Ile8, is required for rapid internalization of the chimeric receptors in MDCK cells but not for basolateral sorting, providing further evidence that the structural requirements for basolateral sorting and internalization differ. Deletion analysis suggests that basolateral sorting of newly synthesized Ii-TR chimeras is also mediated by the membrane-proximal region of the Ii cytoplasmic tail. However, this region does not promote polarized basolateral recycling, indicating that the structural requirements for polarized sorting in the biosynthetic and endocytic pathways are not identical.
Collapse
Affiliation(s)
- G Odorizzi
- Department of Cancer Biology, The Salk Institute for Biological Studies, San Diego, California 92186-5800, USA
| | | |
Collapse
|
32
|
Perego C, Bulbarelli A, Longhi R, Caimi M, Villa A, Caplan MJ, Pietrini G. Sorting of two polytopic proteins, the gamma-aminobutyric acid and betaine transporters, in polarized epithelial cells. J Biol Chem 1997; 272:6584-92. [PMID: 9045687 DOI: 10.1074/jbc.272.10.6584] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The gamma-aminobutyric acid transporter (GAT-1) isoform of the gamma-aminobutyric acid and the betaine (BGT) transporters exhibit distinct apical and basolateral distributions when introduced into Madin-Darby canine kidney cells (Pietrini, G., Suh, Y. J., Edelman, L., Rudnick, G., and Caplan, M. J. (1994) J. Biol. Chem. 269, 4668-4674). We have investigated the presence of sorting signals in their COOH-terminal cytosolic domains by expression in Madin-Darby canine kidney cells of mutated and chimeric transporters. Whereas truncated GAT-1 (DeltaC-GAT) maintained the original functional activity and apical localization, either the removal (DeltaC-myc BGT) or the substitution (BGS chimera) of the cytosolic tail of BGT generated proteins that accumulated in the endoplasmic reticulum. Moreover, we have found that the cytosolic tail of BGT redirected apical proteins, the polytopic GAT-1 (GBS chimera) and the monotopic human nerve growth factor receptor, to the basolateral surface. These results suggest the presence of basolateral sorting information in the cytosolic tail of BGT. We have further shown that information necessary for the exit of BGT from the endoplasmic reticulum and for the basolateral localization of the GBS chimera is contained in a short segment, rich in basic residues, within the cytosolic tail of BGT.
Collapse
Affiliation(s)
- C Perego
- Consiglio Nazionale delle Ricerche Cellular and Molecular Pharmacology Center, Department of Pharmacology, University of Milan, Milan 20129, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Yant S, Hirano A, Wong TC. Identification of a cytoplasmic Tyr-X-X-Leu motif essential for down regulation of the human cell receptor CD46 in persistent measles virus infection. J Virol 1997; 71:766-70. [PMID: 8985414 PMCID: PMC191115 DOI: 10.1128/jvi.71.1.766-770.1997] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To investigate the sequence requirements for measles virus (MV)-induced receptor down regulation, we transfected the human CD46 gene into simian cells persistently infected by the Biken strain of MV. Surface expression of CD46 is drastically reduced in these cells. Deletion analysis has shown that the juxtamembrane region of the CD46 cytoplasmic domain is essential for down regulation. Deleting a Tyr-Arg-Tyr-Leu sequence in this region or changing these residues to Ala prevents CD46 down regulation from the infected cell surface. Alanine-scanning mutagenesis has identified two amino acid residues, Tyr and Leu, forming a Tyr-X-X-Leu motif critical for CD46 down regulation. Mutations that prevent CD46 down regulation enhance syncytium formation. These results indicate that CD46 down regulation limits the cytopathic effects in a persistent MV infection and that CD46 down regulation requires a cytoplasmic Tyr-X-X-Leu sequence which resembles known motifs for membrane protein trafficking and receptor signalling.
Collapse
Affiliation(s)
- S Yant
- Department of Microbiology, University of Washington School of Medicine, Seattle 98195, USA
| | | | | |
Collapse
|
34
|
Abstract
Endocytosis in eukaryotic cells is characterized by the continuous and regulated formation of prolific numbers of membrane vesicles at the plasma membrane. These vesicles come in several different varieties, ranging from the actin-dependent formation of phagosomes involved in particle uptake, to smaller clathrin-coated vesicles responsible for the internalization of extracellular fluid and receptor-bound ligands. In general, each of these vesicle types results in the delivery of their contents to lysosomes for degradation. The membrane components of endocytic vesicles, on the other hand, are subject to a series of highly complex and iterative molecular sorting events resulting in their targeting to specific destinations. In recent years, much has been learned about the function of the endocytic pathway and the mechanisms responsible for the molecular sorting of proteins and lipids. This review attempts to integrate these new concepts with long-established views of endocytosis to present a more coherent picture of how the endocytic pathway is organized and how the intracellular transport of internalized membrane components is controlled. Of particular importance are emerging concepts concerning the protein-based signals responsible for molecular sorting and the cytosolic complexes responsible for the decoding of these signals.
Collapse
Affiliation(s)
- I Mellman
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8002, USA
| |
Collapse
|
35
|
Sheikh H, Isacke CM. A di-hydrophobic Leu-Val motif regulates the basolateral localization of CD44 in polarized Madin-Darby canine kidney epithelial cells. J Biol Chem 1996; 271:12185-90. [PMID: 8647812 DOI: 10.1074/jbc.271.21.12185] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Both in vivo and in vitro the distribution of the resident plasma membrane adhesion protein, CD44, is restricted to the basolateral domain of polarized epithelial cells, suggesting a role in interepithelial interactions. To determine how this localization might be regulated a range of CD44 cytoplasmic domain mutations were generated and a minimal 5 amino acid sequence, His330-Leu-Val-Asn-Lys334, was identified which when deleted results in expression of CD44 on the apical microvillal membrane. Further mutagenesis throughout this regions pinpointed a critical di-hydrophobic motif, Leu331/Val332. The ability of wild type but not mutant CD44 cytoplasmic domains to redirect an apically targeted protein, placental alkaline phosphatase, to the basolateral plasma membrane demonstrates that this sequence can function as a dominant localization signal. This His330-Lys334 sequence is spatially separate from other CD44 regulatory elements and as discussed here, a comparison with known basolateral sorting sequences identified in other transmembrane proteins suggests that a distinct mechanism operates to retain resident plasma membrane proteins in their correct plasma membrane subdomains.
Collapse
Affiliation(s)
- H Sheikh
- Department of Biology, Imperial College of Science, Technology and Medicine, London, United Kingdom.
| | | |
Collapse
|
36
|
Turner JR, Lencer WI, Carlson S, Madara JL. Carboxy-terminal vesicular stomatitis virus G protein-tagged intestinal Na+-dependent glucose cotransporter (SGLT1): maintenance of surface expression and global transport function with selective perturbation of transport kinetics and polarized expression. J Biol Chem 1996; 271:7738-44. [PMID: 8631815 DOI: 10.1074/jbc.271.13.7738] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Na+-dependent glucose transporter (SGLT1) mediates absorption of luminal glucose by the intestine. However, available intestinal cell lines that recapitulate a monolayer phenotype only express SGLT1 at low levels. Thus, to facilitate studies of the biology of SGLT1 function in epithelial monolayers, we engineered an epitope-tagged construct containing the YTDIEMNRLGK sequence (from the vesicular stomatitis virus G protein). The tag was placed at the carboxyl terminus since this is the least conserved portion of SGLT1. Transiently transfected COS-1 cells demonstrated surface expression of the immunoreactive protein and enhanced Na+-dependent glucose uptake that was phloridzin-sensitive (a specific competitive inhibitor of SGLT1). However, subsequent detailed analyses of epitope-tagged SGLT1 using stably transfected clones derived from the Caco-2 human intestinal epithelial cell line revealed substantial effects of the epitope on critical functions of SGLT1. When compared with native SGLT1 transfectants, the apparent Km for sugar transport was increased 23-fold (313 microM to 7.37 mM for native versus epitope-tagged SGLT1). In contrast, the apparent KNa for epitope-tagged SGLT1 was similar to that for native SGLT1. Permeabilization studies indicated that the C-terminal epitope tag was intracellular and thus could not directly disrupt extracellular ligand-binding sites. Immunolocalization and functional assays designed to detect polarized surface expression indicated that epitope tagging resulted in loss of apical targeting and enrichment of basolateral expression. Functional isolation of the small apical pool of epitope-tagged SGLT1 (by selective inhibition of basolateral epitope-tagged SGLT1) revealed that, despite the documented kinetic alterations in sugar transport, epitope-tagged SGLT1 could promote absorptive Na+ currents. These data show that 1) the C terminus of SGLT1 is intracellular; 2) disruption of protein structure by addition of a C-terminal tag leads to selective modifications of SGLT1 function; 3) the kinetics of sugar transport can be altered independently of influences on the Na+-binding site of SGLT1; and 4) the weak basolateral targeting sequence present within the epitope tag is dominant over endogenous SGLT1 apical targeting information and can direct polytopic membrane protein localization. The data also caution that subtle effects of foreign sequences must be considered when epitope tagging polytopic membrane proteins.
Collapse
Affiliation(s)
- J R Turner
- Division of Gastrointestinal Pathology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|