1
|
Ueda D, Yamaga H, Murakami M, Totsuka Y, Shinada T, Sato T. Biosynthesis of Sesterterpenes, Head-to-Tail Triterpenes, and Sesquarterpenes inBacillus clausii: Identification of Multifunctional Enzymes and Analysis of Isoprenoid Metabolites. Chembiochem 2015; 16:1371-7. [DOI: 10.1002/cbic.201500138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Indexed: 11/08/2022]
|
2
|
Gupta D, Ip T, Summers ML, Basu C. 2-Methyl-3-buten-2-ol (MBO) synthase expression in Nostoc punctiforme leads to over production of phytols. Bioengineered 2015; 6:33-41. [PMID: 25424521 DOI: 10.4161/21655979.2014.979702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Phytol is a diterpene alcohol of medicinal importance and it also has potential to be used as biofuel. We found over production of phytol in Nostoc punctiforme by expressing a 2-Methyl-3-buten-2-ol (MBO) synthase gene. MBO synthase catalyzes the conversion of dimethylallyl pyrophosphate (DMAPP) into MBO, a volatile hemiterpene alcohol, in Pinus sabiniana. The result of enhanced phytol production in N. punctiforme, instead of MBO, could be explained by one of the 2 models: either the presence of a native prenyltransferase enzyme with a broad substrate specificity, or appropriation of a MBO synthase metabolic intermediate by a native geranyl diphosphate (GDP) synthase. In this work, an expression vector with an indigenous petE promoter for gene expression in the cyanobacterium N. punctiforme was constructed and MBO synthase gene expression was successfully shown using reverse transcriptase (RT)-PCR and SDS-PAGE. Gas chromatography--mass spectrophotometry (GC-MS) was performed to confirm phytol production from the transgenic N. punctiforme strains. We conclude that the expression of MBO synthase in N. punctiforme leads to overproduction of an economically important compound, phytol. This study provides insights about metabolic channeling of isoprenoids in cyanobacteria and also illustrates the challenges of bioengineering non-native hosts to produce economically important compounds.
Collapse
Affiliation(s)
- Dinesh Gupta
- a Department of Biology ; California State University , Northridge; Los Angeles , CA USA
| | | | | | | |
Collapse
|
3
|
Alcaíno J, Romero I, Niklitschek M, Sepúlveda D, Rojas MC, Baeza M, Cifuentes V. Functional characterization of the Xanthophyllomyces dendrorhous farnesyl pyrophosphate synthase and geranylgeranyl pyrophosphate synthase encoding genes that are involved in the synthesis of isoprenoid precursors. PLoS One 2014; 9:e96626. [PMID: 24796858 PMCID: PMC4010515 DOI: 10.1371/journal.pone.0096626] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/09/2014] [Indexed: 12/21/2022] Open
Abstract
The yeast Xanthophyllomyces dendrorhous synthesizes the carotenoid astaxanthin, which has applications in biotechnology because of its antioxidant and pigmentation properties. However, wild-type strains produce too low amounts of carotenoids to be industrially competitive. Considering this background, it is indispensable to understand how the synthesis of astaxanthin is controlled and regulated in this yeast. In this work, the steps leading to the synthesis of the carotenoid precursor geranylgeranyl pyrophosphate (GGPP, C20) in X. dendrorhous from isopentenyl pyrophosphate (IPP, C5) and dimethylallyl pyrophosphate (DMAPP, C5) was characterized. Two prenyl transferase encoding genes, FPS and crtE, were expressed in E. coli. The enzymatic assays using recombinant E. coli protein extracts demonstrated that FPS and crtE encode a farnesyl pyrophosphate (FPP, C15) synthase and a GGPP-synthase, respectively. X. dendrorhous FPP-synthase produces geranyl pyrophosphate (GPP, C10) from IPP and DMAPP and FPP from IPP and GPP, while the X. dendrorhous GGPP-synthase utilizes only FPP and IPP as substrates to produce GGPP. Additionally, the FPS and crtE genes were over-expressed in X. dendrorhous, resulting in an increase of the total carotenoid production. Because the parental strain is diploid, the deletion of one of the alleles of these genes did not affect the total carotenoid production, but the composition was significantly altered. These results suggest that the over-expression of these genes might provoke a higher carbon flux towards carotenogenesis, most likely involving an earlier formation of a carotenogenic enzyme complex. Conversely, the lower carbon flux towards carotenogenesis in the deletion mutants might delay or lead to a partial formation of a carotenogenic enzyme complex, which could explain the accumulation of astaxanthin carotenoid precursors in these mutants. In conclusion, the FPS and the crtE genes represent good candidates to manipulate to favor carotenoid biosynthesis in X. dendrorhous.
Collapse
Affiliation(s)
- Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ignacio Romero
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mauricio Niklitschek
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Dionisia Sepúlveda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - María Cecilia Rojas
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
In vitro and in vivo characterization of a novel insect decaprenyl diphosphate synthase: A two-major step catalytic mechanism is proposed. Biochem Biophys Res Commun 2013; 442:105-11. [DOI: 10.1016/j.bbrc.2013.11.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 11/05/2013] [Indexed: 11/20/2022]
|
5
|
Structures, mechanisms and inhibitors of undecaprenyl diphosphate synthase: A cis-prenyltransferase for bacterial peptidoglycan biosynthesis. Bioorg Chem 2012; 43:51-7. [DOI: 10.1016/j.bioorg.2011.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/13/2011] [Accepted: 09/15/2011] [Indexed: 12/20/2022]
|
6
|
Sasaki D, Fujihashi M, Okuyama N, Kobayashi Y, Noike M, Koyama T, Miki K. Crystal structure of heterodimeric hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 reveals that the small subunit is directly involved in the product chain length regulation. J Biol Chem 2010; 286:3729-40. [PMID: 21068379 DOI: 10.1074/jbc.m110.147991] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 (Ml-HexPPs) is a heterooligomeric type trans-prenyltransferase catalyzing consecutive head-to-tail condensations of three molecules of isopentenyl diphosphates (C(5)) on a farnesyl diphosphate (FPP; C(15)) to form an (all-E) hexaprenyl diphosphate (HexPP; C(30)). Ml-HexPPs is known to function as a heterodimer of two different subunits, small and large subunits called HexA and HexB, respectively. Compared with homooligomeric trans-prenyltransferases, the molecular mechanism of heterooligomeric trans-prenyltransferases is not yet clearly understood, particularly with respect to the role of the small subunits lacking the catalytic motifs conserved in most known trans-prenyltransferases. We have determined the crystal structure of Ml-HexPPs both in the substrate-free form and in complex with 7,11-dimethyl-2,6,10-dodecatrien-1-yl diphosphate ammonium salt (3-DesMe-FPP), an analog of FPP. The structure of HexB is composed of mostly antiparallel α-helices joined by connecting loops. Two aspartate-rich motifs (designated the first and second aspartate-rich motifs) and the other characteristic motifs in HexB are located around the diphosphate part of 3-DesMe-FPP. Despite the very low amino acid sequence identity and the distinct polypeptide chain lengths between HexA and HexB, the structure of HexA is quite similar to that of HexB. The aliphatic tail of 3-DesMe-FPP is accommodated in a large hydrophobic cleft starting from HexB and penetrating to the inside of HexA. These structural features suggest that HexB catalyzes the condensation reactions and that HexA is directly involved in the product chain length control in cooperation with HexB.
Collapse
Affiliation(s)
- Daisuke Sasaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Chang TH, Hsieh FL, Ko TP, Teng KH, Liang PH, Wang AHJ. Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals intersubunit regulation. THE PLANT CELL 2010; 22:454-67. [PMID: 20139160 PMCID: PMC2845413 DOI: 10.1105/tpc.109.071738] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Terpenes (isoprenoids), derived from isoprenyl pyrophosphates, are versatile natural compounds that act as metabolism mediators, plant volatiles, and ecological communicators. Divergent evolution of homomeric prenyltransferases (PTSs) has allowed PTSs to optimize their active-site pockets to achieve catalytic fidelity and diversity. Little is known about heteromeric PTSs, particularly the mechanisms regulating formation of specific products. Here, we report the crystal structure of the (LSU . SSU)(2)-type (LSU/SSU = large/small subunit) heterotetrameric geranyl pyrophosphate synthase (GPPS) from mint (Mentha piperita). The LSU and SSU of mint GPPS are responsible for catalysis and regulation, respectively, and this SSU lacks the essential catalytic amino acid residues found in LSU and other PTSs. Whereas no activity was detected for individually expressed LSU or SSU, the intact (LSU . SSU)(2) tetramer produced not only C(10)-GPP at the beginning of the reaction but also C(20)-GGPP (geranylgeranyl pyrophosphate) at longer reaction times. The activity for synthesizing C(10)-GPP and C(20)-GGPP, but not C(15)-farnesyl pyrophosphate, reflects a conserved active-site structure of the LSU and the closely related mustard (Sinapis alba) homodimeric GGPPS. Furthermore, using a genetic complementation system, we showed that no C(20)-GGPP is produced by the mint GPPS in vivo. Presumably through protein-protein interactions, the SSU remodels the active-site cavity of LSU for synthesizing C(10)-GPP, the precursor of volatile C(10)-monoterpenes.
Collapse
Affiliation(s)
- Tao-Hsin Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Lee JK, Her G, Kim SY, Seo JH. Cloning and Functional Expression of the dps Gene Encoding Decaprenyl Diphosphate Synthase from Agrobacterium tumefaciens. Biotechnol Prog 2008; 20:51-6. [PMID: 14763823 DOI: 10.1021/bp034213e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A newly isolated gene from Agrobacterium tumefaciens (A. tumefaciens), which encoded a decaprenyl diphosphate synthase, was cloned in Escherichia coli (E. coli), and its nucleotide sequence was determined. DNA sequence analysis revealed an open reading frame of 1077 bp capable of encoding a 358-amino-acid protein with a calculated isoelectric point of pH 5.16 and a molecular mass of 38 960 Da. The primary structure of the enzyme shared significant homology with prenyl diphosphate synthases from various sources. The deduced amino acid sequence included oligopeptide DDxxD aspartate-rich domains conserved in the majority of prenyl diphosphate synthases. High levels of the active enzyme were expressed in the soluble fraction and were readily purified to homogeneity by Ni-NTA chromatography. E. coli JM109 harboring the dps gene produced ubiquinone-10 in addition to endogenous ubiquinone-8, while E. coli JM109 harboring the dps gene mutated on the DDxxD domain lost the ability to produce ubiquinone-10, which suggests that the A. tumefaciens dps gene is functionally expressed in E. coli and that it encodes a decaprenyl diphosphate synthase.
Collapse
Affiliation(s)
- Jung-Kul Lee
- BioNgene Company, Ltd., 10-1, 1Ka, Myungryun-Dong, Jongro-Ku, Seoul, 110-521, Korea
| | | | | | | |
Collapse
|
10
|
Noike M, Katagiri T, Nakayama T, Koyama T, Nishino T, Hemmi H. The product chain length determination mechanism of type II geranylgeranyl diphosphate synthase requires subunit interaction. FEBS J 2008; 275:3921-33. [PMID: 18616462 DOI: 10.1111/j.1742-4658.2008.06538.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The product chain length determination mechanism of type II geranylgeranyl diphosphate synthase from the bacterium, Pantoea ananatis, was studied. In most types of short-chain (all-E) prenyl diphosphate synthases, bulky amino acids at the fourth and/or fifth positions upstream from the first aspartate-rich motif play a primary role in the product determination mechanism. However, type II geranylgeranyl diphosphate synthase lacks such bulky amino acids at these positions. The second position upstream from the G(Q/E) motif has recently been shown to participate in the mechanism of chain length determination in type III geranylgeranyl diphosphate synthase. Amino acid substitutions adjacent to the residues upstream from the first aspartate-rich motif and from the G(Q/E) motif did not affect the chain length of the final product. Two amino acid insertion in the first aspartate-rich motif, which is typically found in bacterial enzymes, is thought to be involved in the product determination mechanism. However, deletion mutation of the insertion had no effect on product chain length. Thus, based on the structures of homologous enzymes, a new line of mutants was constructed in which bulky amino acids in the alpha-helix located at the expected subunit interface were replaced with alanine. Two mutants gave products with longer chain lengths, suggesting that type II geranylgeranyl diphosphate synthase utilizes an unexpected mechanism of chain length determination, which requires subunit interaction in the homooligomeric enzyme. This possibility is strongly supported by the recently determined crystal structure of plant type II geranylgeranyl diphosphate synthase.
Collapse
Affiliation(s)
- Motoyoshi Noike
- Department of Biochemistry and Engineering, Graduate School of Engineering, Tohoku University, Miyagi, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Zhang M, Luo J, Ogiyama Y, Saiki R, Kawamukai M. Heteromer formation of a long-chain prenyl diphosphate synthase from fission yeast Dps1 and budding yeast Coq1*. FEBS J 2008; 275:3653-68. [DOI: 10.1111/j.1742-4658.2008.06510.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Liu X, Wu H, Ye J, Yuan Q, Zhang H. Cloning and characterization of the ddsA gene encoding decaprenyl diphosphate synthase from Rhodobacter capsulatus B10. Can J Microbiol 2007; 52:1141-7. [PMID: 17473883 DOI: 10.1139/w06-080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A decaprenyl diphosphate synthase gene (ddsA, GenBank accession No. DQ191802) was cloned from Rhodobacter capsulatus B10 by constructing and screening the genome library. An open reading frame of 1002 bp was revealed from sequence analysis. The deduced polypeptide consisted of 333 amino acids residues with an molecular mass of about 37 kDa. The DdsA protein contained the conserved amino acid sequence (DDXXD) of E-type polyprenyl diphosphate synthase and showed high similarity to others. In contrast, DdsA showed only 39% identity to a solanesyl diphosphate synthase cloned from R. capsulatus SB1003. DdsA was expressed successfully in Escherichia coli. Assaying the enzyme in vivo found it made E.coli synthesize UQ-10 in addition to the endogenous production UQ-8.
Collapse
Affiliation(s)
- Xinyi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | | | | | | | | |
Collapse
|
13
|
Ament K, Van Schie CC, Bouwmeester HJ, Haring MA, Schuurink RC. Induction of a leaf specific geranylgeranyl pyrophosphate synthase and emission of (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in tomato are dependent on both jasmonic acid and salicylic acid signaling pathways. PLANTA 2006; 224:1197-208. [PMID: 16786318 DOI: 10.1007/s00425-006-0301-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 04/11/2006] [Indexed: 05/10/2023]
Abstract
Two cDNAs encoding geranylgeranyl pyrophosphate (GGPP) synthases from tomato (Lycopersicon esculentum) have been cloned and functionally expressed in Escherichia coli. LeGGPS1 was predominantly expressed in leaf tissue and LeGGPS2 in ripening fruit and flower tissue. LeGGPS1 expression was induced in leaves by spider mite (Tetranychus urticae)-feeding and mechanical wounding in wild type tomato but not in the jasmonic acid (JA)-response mutant def-1 and the salicylic acid (SA)-deficient transgenic NahG line. Furthermore, LeGGPS1 expression could be induced in leaves of wild type tomato plants by JA- or methyl salicylate (MeSA)-treatment. In contrast, expression of LeGGPS2 was not induced in leaves by spider mite-feeding, wounding, JA- or MeSA-treatment. We show that emission of the GGPP-derived volatile terpenoid (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT) correlates with expression of LeGGPS1. An exception was MeSA-treatment, which resulted in induction of LeGGPS1 but not in emission of TMTT. We show that there is an additional layer of regulation, because geranyllinalool synthase, catalyzing the first dedicated step in TMTT biosynthesis, was induced by JA but not by MeSA.
Collapse
Affiliation(s)
- Kai Ament
- Swammerdam Institute for Life Sciences, Department of Plant Physiology, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
14
|
Takahashi S, Nishino T, Koyama T. Isolation and expression of Paracoccus denitrificans decaprenyl diphosphate synthase gene for production of ubiquinone-10 in Escherichia coli. Biochem Eng J 2003. [DOI: 10.1016/s1369-703x(03)00035-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Hirooka K, Bamba T, Fukusaki EI, Kobayashi A. Cloning and kinetic characterization of Arabidopsis thaliana solanesyl diphosphate synthase. Biochem J 2003; 370:679-86. [PMID: 12437513 PMCID: PMC1223189 DOI: 10.1042/bj20021311] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2002] [Revised: 11/12/2002] [Accepted: 11/19/2002] [Indexed: 11/17/2022]
Abstract
trans -Long-chain prenyl diphosphate synthases catalyse the sequential condensation of isopentenyl diphosphate (C(5)) units with allylic diphosphate to produce the C(30)-C(50) prenyl diphosphates, which are precursors of the side chains of prenylquinones. Based on the relationship between product specificity and the region around the first aspartate-rich motif in trans -prenyl diphosphate synthases characterized so far, we have isolated the cDNA for a member of trans -long-chain prenyl diphosphate synthases from Arabidopsis thaliana. The cDNA was heterologously expressed in Escherichia coli, and the recombinant His(6)-tagged protein was purified and characterized. Product analysis revealed that the cDNA encodes solanesyl diphosphate (C(45)) synthase (At-SPS). At-SPS utilized farnesyl diphosphate (FPP; C(15)) and geranylgeranyl diphosphate (GGPP; C(20)), but did not accept either the C(5) or the C(10) allylic diphosphate as a primer substrate. The Michaelis constants for FPP and GGPP were 5.73 microM and 1.61 microM respectively. We also performed an analysis of the side chains of prenylquinones extracted from the A. thaliana plant, and showed that its major prenylquinones, i.e. plastoquinone and ubiquinone, contain the C(45) prenyl moiety. This suggests that At-SPS might be devoted to the biosynthesis of either or both of the prenylquinone side chains. This is the first established trans -long-chain prenyl diphosphate synthase from a multicellular organism.
Collapse
Affiliation(s)
- Kazutake Hirooka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita Yamadaoka 2-1, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
16
|
Liang PH, Ko TP, Wang AHJ. Structure, mechanism and function of prenyltransferases. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3339-54. [PMID: 12135472 DOI: 10.1046/j.1432-1033.2002.03014.x] [Citation(s) in RCA: 319] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this review, we summarize recent progress in studying three main classes of prenyltransferases: (a) isoprenyl pyrophosphate synthases (IPPSs), which catalyze chain elongation of allylic pyrophosphate substrates via consecutive condensation reactions with isopentenyl pyrophosphate (IPP) to generate linear polymers with defined chain lengths; (b) protein prenyltransferases, which catalyze the transfer of an isoprenyl pyrophosphate (e.g. farnesyl pyrophosphate) to a protein or a peptide; (c) prenyltransferases, which catalyze the cyclization of isoprenyl pyrophosphates. The prenyltransferase products are widely distributed in nature and serve a variety of important biological functions. The catalytic mechanism deduced from the 3D structure and other biochemical studies of these prenyltransferases as well as how the protein functions are related to their reaction mechanism and structure are discussed. In the IPPS reaction, we focus on the mechanism that controls product chain length and the reaction kinetics of IPP condensation in the cis-type and trans-type enzymes. For protein prenyltransferases, the structures of Ras farnesyltransferase and Rab geranylgeranyltransferase are used to elucidate the reaction mechanism of this group of enzymes. For the enzymes involved in cyclic terpene biosynthesis, the structures and mechanisms of squalene cyclase, 5-epi-aristolochene synthase, pentalenene synthase, and trichodiene synthase are summarized.
Collapse
Affiliation(s)
- Po-Huang Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| | | | | |
Collapse
|
17
|
Nagaki M, Kimura K, Kimura H, Maki Y, Goto E, Nishino T, Koyama T. Artificial substrates of medium-chain elongating enzymes, hexaprenyl- and heptaprenyl diphosphate synthases. Bioorg Med Chem Lett 2001; 11:2157-9. [PMID: 11514159 DOI: 10.1016/s0960-894x(01)00391-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We examined the reactivity of 3-alkyl group homologues of farnesyl diphosphate or isopentenyl diphosphate for medium-chain prenyl diphosphate synthases, hexaprenyl diphosphate- or heptaprenyl diphosphate synthase. But-3-enyl diphosphate, which lacks the methyl group at the 3-position of isopentenyl diphosphate, condensed only once with farnesyl diphosphate to give E-norgeranylgeranyl diphosphate by the action of either enzyme. However, norfarnesyl diphosphate was never accepted as an allylic substrate at all. 3-Ethylbut-3-enyl diphosphate also reacted with farnesyl diphosphate giving a mixture of (all-E)-3-ethyl-7,11,15-trimethylhexadeca-2,6,10,14-tetraenyl- and (all-E)-3,7-diethyl-11,15,19-trimethylicosa-2,6,10,14,18-pentaenyl diphosphates by hexaprenyl diphosphate synthase. On the other hand, heptaprenyl diphosphate synthase reaction of 3-ethylbut-3-enyl diphosphate with farnesyl diphosphate gave only (all-E)-3-ethyl-7,11,15-trimethylhexadeca-2,6,10,14-tetraenyl diphosphate.
Collapse
Affiliation(s)
- M Nagaki
- Department of Materials Science and Technology, Faculty of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, 036-8561, Aomori, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Bouvier F, Suire C, d'Harlingue A, Backhaus RA, Camara B. Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 24:241-52. [PMID: 11069698 DOI: 10.1046/j.1365-313x.2000.00875.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The nature of isoprenoids synthesized in plants is primarily determined by the specificity of prenyltransferases. Several of these enzymes have been characterized at the molecular level. The compartmentation and molecular regulation of geranyl diphosphate (GPP), the carbon skeleton that is the backbone of myriad monoterpene constituents involved in plant defence, allelopathic interactions and pollination, is poorly understood. We describe here the cloning and functional expression of a GPP synthase (GPPS) from Arabidopsis thaliana. Immunohistological analyses of diverse non-secretory and secretory plant tissues reveal that GPPS and its congeners, monoterpene synthase, deoxy-xylulose phosphate synthase and geranylgeranyl diphosphate synthase, are equally compartmentalized and distributed in non-green plastids as well in chloroplasts of photosynthetic cells. This argues that monoterpene synthesis is not solely restricted to specialized secretory structures but can also occur in photosynthetic parenchyma. These data provide new information as to how monoterpene biosynthesis is compartmentalized and induced de novo in response to biotic and abiotic stress in diverse plants.
Collapse
Affiliation(s)
- F Bouvier
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique and Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | | | | | | |
Collapse
|
19
|
Hirooka K, Ohnuma S, Koike-Takeshita A, Koyama T, Nishino T. Mechanism of product chain length determination for heptaprenyl diphosphate synthase from Bacillus stearothermophilus. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4520-8. [PMID: 10880976 DOI: 10.1046/j.1432-1327.2000.01502.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A member of the medium-chain prenyl diphosphate synthases, Bacillus stearothermophilus heptaprenyl diphosphate synthase, catalyzes the consecutive condensation of isopentenyl diphosphate with allylic diphosphate to produce (all-E)-C35 prenyl diphosphate as the ultimate product. We previously showed that the product specificity of short-chain prenyl diphosphate synthases is regulated by the structure around the first aspartate-rich motif (FARM). The FARM is also conserved in a subunit of heptaprenyl diphosphate synthase, component II', which suggests that the structure around the FARM of component II' regulates the elongation. To determine whether component II' regulates the product chain length by a mode similar to that of the short-chain prenyl diphosphate synthases, we replaced a bulky amino acid at the eighth position before the FARM of component II', isoleucine 76, by glycine and analyzed the product specificity. The mutated enzyme, I76G, can catalyze condensations of isopentenyl diphosphate beyond the native chain length of C35. Moreover, two mutated enzymes of A79Y and S80F, which have a single replacement to the aromatic residue at the fourth or the fifth position before the FARM, mainly yielded a C20 product. These results strongly suggest that a common mechanism controls the product chain length of both short-chain and medium-chain prenyl diphosphate synthases and that, in wild-type heptaprenyl diphosphate synthase, the prenyl chain can grow on the surface of the small residues at positions 79 and 80, and the elongation is precisely blocked at the length of C35 by isoleucine 76.
Collapse
Affiliation(s)
- K Hirooka
- Department of Biochemistry and Engineering, Tohoku University, Aoba-ku, Sendai, Japan
| | | | | | | | | |
Collapse
|
20
|
Oh SK, Han KH, Ryu SB, Kang H. Molecular cloning, expression, and functional analysis of a cis-prenyltransferase from Arabidopsis thaliana. Implications in rubber biosynthesis. J Biol Chem 2000; 275:18482-8. [PMID: 10764783 DOI: 10.1074/jbc.m002000200] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
cis-Prenyltransferase catalyzes the sequential condensation of isopentenyl diphosphate with allylic diphosphate to synthesize polyprenyl diphosphates that play vital roles in cellular activity. Despite potential significance of cis-prenyltransferase in plant growth and development, no gene of the enzyme has been cloned from higher plants. Using sequence information of the conserved region of cis-prenyltransferase cloned recently from Escherichia coli, Micrococcus luteus, and yeast, we have isolated and characterized the first plant cis-prenyltransferase from Arabidopsis thaliana. Sequence analysis revealed that the protein is highly homologous in several conserved regions to cis-prenyltransferases from M. luteus, E. coli, and yeast. In vitro analyses using the recombinant protein overexpressed in E. coli revealed that the enzyme catalyzed the formation of polyprenyl diphosphates ranging in carbon number from 100 to 130 with a predominance of C(120). The enzyme exhibited a higher affinity for farnesyl diphosphate than for geranylgeranyl diphosphate, with the K(m) values being 0.13 and 3.62 micrometer, respectively, but a lower affinity for isopentenyl diphosphate, with a K(m) value of 23 micrometer. In vitro rubber biosynthesis analysis indicated that the Arabidopsis cis-prenyltransferase itself could not catalyze the formation of higher molecular weight polyprenyl diphosphates similar to natural rubber. A reverse transcriptase-polymerase chain reaction analysis showed that the gene was expressed at low levels in Arabidopsis plant, in which expression of the cis-prenyltransferase in leaf and root was higher than that in stem, flower, and silique. These results indicate the tissue-specific expression of cis-prenyltransferase and suggest a potential role and significance of the enzyme in the polyisoprenoid biosynthesis in plants.
Collapse
Affiliation(s)
- S K Oh
- Kumho Life and Environmental Science Laboratory, 1 Oryong-Dong, Puk-Gu, Kwangju, 500-712, Korea
| | | | | | | |
Collapse
|
21
|
Koyama T, Gotoh Y, Nishino T. Intersubunit location of the active site of farnesyl diphosphate synthase: reconstruction of active enzymes by hybrid-type heteromeric dimers of site-directed mutants. Biochemistry 2000; 39:463-9. [PMID: 10631008 DOI: 10.1021/bi991621b] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Farnesyl diphosphate synthase is a homodimer of subunits having typically two aspartate-rich motifs with two sets of substrate binding sites for an allylic diphosphate and isopentenyl diphosphate per molecule of a homodimeric enzyme. To determine whether each subunit contains an independent active site or whether the active sites are created by intersubunit interaction, we constructed several expression plasmids that overproduce hybrid-type heterodimers of Bacillus stearothermophilus FPP synthases constituting different types of mutated monomers, which exhibit little catalytic activity as homodimers, by combining two tandem fps genes for the manipulated monomer subunit with a highly efficient promoter trc within an overexpression pTrc99A plasmid. A heterodimer of a combination of subunits of the wild type and of R98E, a mutant subunit which exhibits little enzymatic activity as a dimer form (R98E)(2), exhibited 78% of the activity of the wild-type homodimer enzyme, (WT)(2). Moreover, when a hybrid-type heterodimeric dimer of FPP synthase mutant subunits (R98E/F220A) was prepared, the FPP synthase activity was 18- and 390-fold of that of each of the almost inactive mutants as a dimeric enzymes, (R98E)(2) and (F220A)(2) [Koyama, T., et al. (1995) Biochem. Biophys. Res. Commun. 212, 681-686], respectively. These results suggest that the subunits of the FPP synthase interact with each other to form a shared active site in the homodimer structure rather than an independent active site in each subunit.
Collapse
Affiliation(s)
- T Koyama
- Institute for Chemical Reaction Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.
| | | | | |
Collapse
|
22
|
Wang K, Ohnuma S. Chain-length determination mechanism of isoprenyl diphosphate synthases and implications for molecular evolution. Trends Biochem Sci 1999; 24:445-51. [PMID: 10542413 DOI: 10.1016/s0968-0004(99)01464-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the synthesis of isoprenoids, isoprenyl diphosphate synthases catalyze the consecutive condensation of isopentenyl diphosphate with allylic diphosphates to produce a variety of prenyl diphosphates with well-defined chain lengths. Site-directed mutagenesis in conjunction with X-ray crystallographic studies have identified specific amino acid residues responsible for chain-length determination. Simple combinations of these residues within a characteristic motif are not only sufficient to confer product specificities to all isoprenyl diphosphate synthases but represent structural features that reflect the enzyme family's evolutionary course.
Collapse
Affiliation(s)
- K Wang
- University of California San Francisco, School of Medicine, S 245, Box 0454, San Francisco, CA 94143, USA
| | | |
Collapse
|
23
|
Ohnuma S, Hirooka K, Tsuruoka N, Yano M, Ohto C, Nakane H, Nishino T. A pathway where polyprenyl diphosphate elongates in prenyltransferase. Insight into a common mechanism of chain length determination of prenyltransferases. J Biol Chem 1998; 273:26705-13. [PMID: 9756913 DOI: 10.1074/jbc.273.41.26705] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prenyltransferases catalyze the consecutive condensations of isopentenyl diphosphate to produce linear polyprenyl diphosphates. Each enzyme forms the final product with a specific chain length. The product specificity of an enzyme is thought to be determined by the structure around the unknown path through which the product elongates in the enzyme. To explore the path, we introduced a few mutations at the 5th, the 8th, and/or the 11th positions before the first aspartate-rich motif of geranylgeranyl-diphosphate synthase or farnesyl-diphosphate synthase. The side chains of these amino acids are situated on the same side of an alpha-helix. In geranylgeranyl-diphosphate synthase, a single mutated enzyme (F77S) mainly produces a C25 product (Ohnuma, S.-I., Hirooka, K., Hemmi, H., Ishida, C., Ohto, C., and Nishino, T. (1996) J. Biol. Chem. 271, 18831-18837). A double mutated enzyme (L74G and F77G) mainly produces a C35 compound with significant amounts of C30 and C40. A triple mutated enzyme (I71G, L74G, and F77G) mainly produces a C40 compound with C35 and C45. Mutated farnesyl-diphosphate synthases also show similar patterns. These findings indicate that the elongating product passages on a surface of the side chains of the mutated amino acids, the original bulky amino acids had blocked the elongation, and the path is conserved in prenyltransferases. Moreover, the fact that some double and triple mutated enzymes can also form small amounts of products longer than C50 indicates that the paths in these mutated enzymes can partially access the outer surface of the enzymes.
Collapse
Affiliation(s)
- S Ohnuma
- Department of Biochemistry and Engineering, Tohoku University, Aoba Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Leatherbarrow AJH, Yazdi MA, Curson JP, Moir A. The gerC locus of Bacillus subtilis, required for menaquinone biosynthesis, is concerned only indirectly with spore germination. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 8):2125-2130. [PMID: 9720033 DOI: 10.1099/00221287-144-8-2125] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gerC region of Bacillus subtilis comprises a tricistronic operon, encoding enzymes that catalyse the late stages of menaquinone biosynthesis. The gerC58 mutation is responsible for a severe growth defect; unsuppressed mutant cells grow as very short rods, which sometimes septate aberrantly. Cultures grow only to a low cell density, rapidly lose viability, and never sporulate. Unlinked suppressor mutations can restore near-normal growth. Several independent suppressed isolates were examined; all grew to normal cell length, but they showed, to varying extents, a residual defect in the placement of the cell division septum. The germination properties of the suppressed derivatives varied from normal to significantly slow in germination in all germinants; therefore, the combination of the gerC mutation and different suppressor alleles resulted in spores with very different germination properties. This suggests that any relationship between the gerC gene products and spore germination is indirect. The gerCC58 mutation maps in a gene encoding the catalytic subunit of the heptaprenyldiphosphate synthase, which is responsible for formation of the isoprenoid side chain of menaquinone-7, and it is proposed that the gerCA, gerCB and gerCC genes be renamed hepA, menG and hepB, respectively.
Collapse
Affiliation(s)
- A J Howard Leatherbarrow
- Krebs Institute for Biomolecular Research, Dept of Molecular Biology and Biotechnology, University of SheffieldSheffield S10 2TNUK
| | - Mohammed A Yazdi
- Krebs Institute for Biomolecular Research, Dept of Molecular Biology and Biotechnology, University of SheffieldSheffield S10 2TNUK
| | - Janet P Curson
- Krebs Institute for Biomolecular Research, Dept of Molecular Biology and Biotechnology, University of SheffieldSheffield S10 2TNUK
| | - Anne Moir
- Krebs Institute for Biomolecular Research, Dept of Molecular Biology and Biotechnology, University of SheffieldSheffield S10 2TNUK
| |
Collapse
|
25
|
Affiliation(s)
- Kyozo Ogura
- Institute for Chemical Reaction Science, Tohoku University, Katahira 2-1-1, Sendai 980-8577 Japan
| | | |
Collapse
|
26
|
Shimizu N, Koyama T, Ogura K. Molecular cloning, expression, and characterization of the genes encoding the two essential protein components of Micrococcus luteus B-P 26 hexaprenyl diphosphate synthase. J Bacteriol 1998; 180:1578-81. [PMID: 9515931 PMCID: PMC107062 DOI: 10.1128/jb.180.6.1578-1581.1998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The structural genes encoding the two essential components A and B of hexaprenyl diphosphate synthase, which produce the precursor of the prenyl side chain of menaquinone-6, were cloned from Micrococcus luteus B-P 26.
Collapse
Affiliation(s)
- N Shimizu
- Institute for Chemical Reaction Science, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
27
|
Abstract
Isoprenyl diphosphate synthases catalyze addition of allylic diphosphate primers to the isoprene unit in isopentenyl diphosphate to produce polyisoprenoid diphosphates with well defined chain lengths. Phylogenetic correlations suggest that the synthases which catalyze formation of isoprenoid diphosphates with (E) double bonds have evolved from a common ancestor. X-ray crystallographic studies of farnesyl diphosphate synthase in conjunction with site-directed mutagenesis have provided important new information about the residues involved in binding and catalysis and the source of chain length selectivity for the enzymes that catalyze chain elongation.
Collapse
Affiliation(s)
- B A Kellogg
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
28
|
Okada K, Kamiya Y, Zhu X, Suzuki K, Tanaka K, Nakagawa T, Matsuda H, Kawamukai M. Cloning of the sdsA gene encoding solanesyl diphosphate synthase from Rhodobacter capsulatus and its functional expression in Escherichia coli and Saccharomyces cerevisiae. J Bacteriol 1997; 179:5992-8. [PMID: 9324242 PMCID: PMC179498 DOI: 10.1128/jb.179.19.5992-5998.1997] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Different organisms produce different species of isoprenoid quinones, each with its own distinctive length. These differences in length are commonly exploited in microbial classification. The side chain length of quinone is determined by the nature of the polyprenyl diphosphate synthase that catalyzes the reaction. To determine if the side chain length of ubiquinone (UQ) has any distinct role to play in the metabolism of the cells in which it is found, we cloned the solanesyl diphosphate synthase gene (sdsA) from Rhodobacter capsulatus SB1003 and expressed it in Escherichia coli and Saccharomyces cerevisiae. Sequence analysis revealed that the sdsA gene encodes a 325-amino-acid protein which has similarity (27 to 40%) with other prenyl diphosphate synthases. Expression of the sdsA gene complemented a defect in the octaprenyl diphosphate synthase gene of E. coli and the nonrespiratory phenotype resulting from a defect in the hexaprenyl diphosphate synthase gene of S. cerevisiae. Both E. coli and S. cerevisiae expressing the sdsA gene mainly produced solanesyl diphosphate, which resulted in the synthesis of UQ-9 without any noticeable effect on the growth of the cells. Thus, it appears that UQ-9 can replace the function of UQ-8 in E. coli and UQ-6 in S. cerevisiae. Taken together with previous results, the results described here imply that the side chain length of UQ is not a critical factor for the survival of microorganisms.
Collapse
Affiliation(s)
- K Okada
- Department of Applied Bioscience and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Benzoylphenoxy analogs of isoprenoid diphosphates as photoactivatable substrates for bacterial prenyltransferases. Bioorg Med Chem Lett 1997. [DOI: 10.1016/s0960-894x(97)00342-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Koike-Takeshita A, Koyama T, Ogura K. Identification of a novel gene cluster participating in menaquinone (vitamin K2) biosynthesis. Cloning and sequence determination of the 2-heptaprenyl-1,4-naphthoquinone methyltransferase gene of Bacillus stearothermophilus. J Biol Chem 1997; 272:12380-3. [PMID: 9139683 DOI: 10.1074/jbc.272.19.12380] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We recently described the isolation and sequence analysis of a DNA region containing the genes of Bacillus stearothermophilus heptaprenyl diphosphate synthase, which catalyzes the synthesis of the prenyl side chain of menaquinone-7 of this bacterium. Sequence analyses revealed the presence of three open reading frames (ORFs), designated as ORF-1, ORF-2, and ORF-3, and the structural genes of the heptaprenyl diphosphate synthase were proved to consist of ORF-1 (heps-1) and ORF-3 (heps-2) (Koike-Takeshita, A., Koyama, T., Obata, S., and Ogura, K. (1995) J. Biol. Chem. 270, 18396-18400). The predicted amino acid sequence of ORF-2 (234 amino acids) contains a methyltransferase consensus sequence and shows a 22% identity with UbiG of Escherichia coli, which catalyzes S-adenosyl-L-methionine-dependent methylation of 2-octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone. These pieces of information led us to identify the ORF-2 gene product. The cell-free homogenate of the transformant of E. coli with an expression vector of ORF-2 catalyzed the incorporation of S-adenosyl-L-methionine into menaquinone-8, indicating that ORF-2 encodes 2-heptaprenyl-1,4-naphthoquinone methyltransferase, which participates in the terminal step of the menaquinone biosynthesis. Thus it is concluded that the ORF-1, ORF-2, and ORF-3 genes, designated heps-1, menG, and heps-2, respectively, form another cluster involved in menaquinone biosynthesis in addition to the cluster of menB, menC, menD, and menE already identified in the Bacillus subtilis and E. coli chromosomes.
Collapse
Affiliation(s)
- A Koike-Takeshita
- Bio Research Laboratory, Toyota Motor Corporation, Toyota-cho 1, Toyota, Aichi 471-71, Japan
| | | | | |
Collapse
|
31
|
Alejo A, Yáñez RJ, Rodríguez JM, Viñuela E, Salas ML. African swine fever virus trans-prenyltransferase. J Biol Chem 1997; 272:9417-23. [PMID: 9083080 DOI: 10.1074/jbc.272.14.9417] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The present study describes the characterization of an African swine fever virus gene homologous to prenyltransferases. The gene, designated B318L, is located within the EcoRI B fragment in the central region of the virus genome, and encodes a polypeptide with a predicted molecular weight of 35,904. The protein is characterized by the presence of a putative hydrophobic transmembrane domain at the amino end. The gene is expressed at the late stage of virus infection, and transcription is initiated at positions -118, -119, -120, and -122 relative to the first nucleotide of the translation start codon. Protein B318L presents a colinear arrangement of the four highly conserved regions and the two aspartate-rich motifs characteristic of geranylgeranyl diphosphate synthases, farnesyl diphosphate synthases, and other prenyltransferases. Throughout these regions, the percentages of identity between protein B318L and various prenyltransferases range from 28.6 to 48.7%. The gene was cloned in vector pTrxFus without the amino-terminal hydrophobic region and expressed in Escherichia coli. The recombinant protein, purified essentially to homogeneity by affinity chromatography, catalyzes the sequential condensation of isopentenyl diphosphate with different allylic diphosphates, farnesyl diphosphate being the best allylic substrate of the reaction. All-trans-polyprenyl diphosphates containing 3-13 isoprene units are synthesized, which identifies the B318L protein as a trans-prenyltransferase.
Collapse
Affiliation(s)
- A Alejo
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
32
|
Ohnuma SI, Hirooka K, Ohto C, Nishino T. Conversion from archaeal geranylgeranyl diphosphate synthase to farnesyl diphosphate synthase. Two amino acids before the first aspartate-rich motif solely determine eukaryotic farnesyl diphosphate synthase activity. J Biol Chem 1997; 272:5192-8. [PMID: 9030588 DOI: 10.1074/jbc.272.8.5192] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Farnesyl diphosphate (FPP) and geranylgeranyl diphosphate (GGPP) are precursors for a variety of important natural products, such as sterols, carotenoids, and prenyl quinones. Although FPP synthase and GGPP synthase catalyze similar consecutive condensations of isopentenyl diphosphate with allylic diphosphates and have several homologous regions in their amino acid sequences, nothing is known about how these enzymes form the specific products. To locate the region that causes the difference of final products between GGPP synthase and FPP synthase, we constructed six mutated archaeal GGPP synthases whose regions around the first aspartate-rich motif were replaced with the corresponding regions of FPP synthases from human, rat, Arabidopsis thaliana, Saccharomyces cerevisiae, Escherichia coli, Bacillus stearothermophilus, and from some other related mutated enzymes. From the analysis of these mutated enzymes, we revealed that the region around the first aspartate-rich motif is essential for the product specificity of all FPP synthases and that the mechanism of the chain termination in eukaryotic FPP synthases (type I) is different from those of prokaryotic FPP synthases (type II). In FPP synthases of type I, two amino acids situated at the fourth and the fifth positions before the motif solely determine their product chain length, while the product specificity of the type II enzymes is determined by one aromatic amino acid at the fifth position before the motif, two amino acids inserted in the motif, and other modifications. These data indicate that FPP synthases have evolved from the progenitor corresponding to the archaeal GGPP synthase in two ways.
Collapse
Affiliation(s)
- S i Ohnuma
- Department of Biochemistry and Engineering, Tohoku University, Aoba Aramaki, Aoba-ku, Sendai 980-77, Japan.
| | | | | | | |
Collapse
|
33
|
Zhang YW, Koyama T, Ogura K. Two cistrons of the gerC operon of Bacillus subtilis encode the two subunits of heptaprenyl diphosphate synthase. J Bacteriol 1997; 179:1417-9. [PMID: 9023232 PMCID: PMC178846 DOI: 10.1128/jb.179.4.1417-1419.1997] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The two proteins (GerC1 and GerC3) encoded by the gerC locus of Bacillus subtilis, which has been shown to be involved in vegetative cell growth and spore germination, were identified as dissociable heterodimers of the heptaprenyl diphosphate synthase involved in the biosynthesis of the side chain of menaquinone-7.
Collapse
Affiliation(s)
- Y W Zhang
- Institute for Chemical Reaction Science, Tohoku University, Aoba-ku, Sendai, Japan
| | | | | |
Collapse
|
34
|
Abstract
It is noteworthy that in spite of the similarity of the reactions catalyzed by these prenyltransferases, the modes of expression of catalytic function are surprisingly different, varying according to the chain length and stereochemistry of reaction products. These enzymes are summarized and classified into four groups, as shown in Figure 13. Short-chain prenyl diphosphates synthases such as FPP and GGPP synthases require no cofactor except divalent metal ions, Mg2+ or Mn2+, which are commonly required by all prenyl diphosphate synthases. Medium-chain prenyl diphosphate synthases, including the enzymes for the synthesis of all-E-HexPP and all-E-HepPP, are unusual because they each consist of two dissociable dissimilar protein components, neither of which has catalytic activity. The enzymes for the synthesis of long-chain all-E-prenyl diphosphates, including octaprenyl (C40), nonaprenyl-(C45), and decaprenyl (C50) diphosphates, require polyprenyl carrier proteins that remove polyprenyl products from the active sites of the enzymes to maintain efficient turnovers of catalysis. The enzymes responsible for Z-chain elongation include Z,E-nonaprenyl-(C45) and Z,E-undecaprenyl (C55) diphosphate synthases, which require a phospholipid. The classification of mammalian synthases seems to be fundamentally similar to that of bacterial synthases except that no medium-chain prenyl diphosphate synthases are included. The Z-prenyl diphosphate synthase in mammalian cells is dehydrodolichyl PP synthase, which catalyzes much longer chain elongations than do bacterial enzymes. Dehydrodolichyl PP synthase will be a major target of future studies in this field in view of its involvement in glycoprotein biosynthesis.
Collapse
Affiliation(s)
- K Ogura
- Institute for Chemical Reaction Science, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
35
|
Ohnuma SI, Narita K, Nakazawa T, Ishida C, Takeuchi Y, Ohto C, Nishino T. A role of the amino acid residue located on the fifth position before the first aspartate-rich motif of farnesyl diphosphate synthase on determination of the final product. J Biol Chem 1996; 271:30748-54. [PMID: 8940054 DOI: 10.1074/jbc.271.48.30748] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Farnesyl diphosphate (FPP) synthase catalyzes consecutive condensations of isopentenyl diphosphate with allylic substrates to give FPP, C-15 compound, as a final product and does not catalyze a condensation beyond FPP. Recently, it was observed that, in Bacillus stearothermophilus FPP synthase, a replacement of tyrosine with histidine at position 81, which is located on the fifth amino acid before the first aspartate-rich motif, caused the mutated FPP synthase to catalyze geranylgeranyl diphosphate (C-20) synthesis (Ohnuma, S.-i., Nakazawa, T., Hemmi, H., Hallberg, A.-M., Koyama, T., Ogura, K., and Nishino, T. (1996) J. Biol. Chem. 271, 10087-10095). Thus, we constructed 20 FPP synthases, each of which has a different amino acid at position 81, and analyzed them. All enzymes except for Y81P can catalyze the condensations of isopentenyl diphosphate. The final products and the product distributions are different from each other. Y81A, Y81G, and Y81S can produce hexaprenyl diphosphate (C-30) as their final product. The final product of Y81C, Y81H, Y81I, Y81L, Y81N, Y81T, and Y81V are geranylfarnesyl diphosphate (C-25), and Y81D, Y81E, Y81F, Y81K, Y81M, Y81Q, and Y81R cannot produce polyprenyl diphosphates more than geranylgeranyl diphosphate. Substitution of tryptophan does not affect the product specificity of FPP synthase. The average chain length of products is inversely proportional to the accessible surface area of substituted amino acid. However, no significant relation between the final chain length and the kinetic constants Km and Vmax are observed. These observations strongly indicate that the amino acid does not come into contact with the substrates but directly contacts the omega-terminal of an elongating allylic product. This interaction must prevent further condensation of isopentenyl diphosphate.
Collapse
Affiliation(s)
- S i Ohnuma
- Department of Biochemistry and Engineering, Tohoku University, Aoba Aramaki, Aoba-ku, Sendai 980-77 Japan.
| | | | | | | | | | | | | |
Collapse
|
36
|
Okada K, Suzuki K, Kamiya Y, Zhu X, Fujisaki S, Nishimura Y, Nishino T, Nakagawa T, Kawamukai M, Matsuda H. Polyprenyl diphosphate synthase essentially defines the length of the side chain of ubiquinone. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1302:217-23. [PMID: 8765142 DOI: 10.1016/0005-2760(96)00064-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ubiquinone, known as a component of the electron transfer system in many organisms, has a different length of the isoprenoid side chain depending on the species, e.g., Escherichia coli, Saccharomyces cerevisiae and humans have 8, 6, and 10 isoprene units in the side chain, respectively. No direct evidence has yet shown what factors define the length of the side chain of ubiquinone. Here we proved that the polyprenyl diphosphate that was available in cells determined the length of the side chain of ubiquinone. E. coli octaprenyl diphosphate synthase (IspB) was expressed with the mitochondrial import signal in S. cerevisiae. Such cells produced ubiquinone-8 in addition to the originally existing ubiquinone-6. When IspB was expressed in a S. cerevisiae COQ1 defective strain. IspB complemented the defect of the growth on the non-fermentable carbon source. Those cells had the activity of octaprenyl diphosphate synthase and produced only ubiquinone-8. These results opened the possibility of producing the type of ubiquinone that we need in S. cerevisiae simply by expressing the corresponding polyprenyl diphosphate synthase.
Collapse
Affiliation(s)
- K Okada
- Department of Applied Bioscience and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ohnuma S, Hirooka K, Hemmi H, Ishida C, Ohto C, Nishino T. Conversion of product specificity of archaebacterial geranylgeranyl-diphosphate synthase. Identification of essential amino acid residues for chain length determination of prenyltransferase reaction. J Biol Chem 1996; 271:18831-7. [PMID: 8702542 DOI: 10.1074/jbc.271.31.18831] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Prenyltransferases catalyze the consecutive condensation of isopentenyl diphosphate with allylic diphosphates to produce prenyl diphosphates whose chain lengths are absolutely determined by each enzyme. To investigate the mechanism of the consecutive reaction and the determination of the ultimate chain length, a random mutational approach was planned. A geranylgeranyl-diphosphate synthase gene from Sulfolobus acidocaldarius was randomly mutagenized by NaNO2 treatment to construct a library of mutated geranylgeranyl-diphosphate synthase genes on a yeast expression vector. The library was screened for suppression of a pet phenotype of yeast C296-LH3, which is deficient in hexaprenyl-diphosphate synthase. Five mutants that could grow on a YEPG plate, which contained only glycerol as an energy source instead of glucose, were selected from approximately 1,400 mutants. All selected mutated enzymes catalyzed the formation of polyprenyl diphosphates with prenyl chains longer than geranylgeranyl diphosphate. Especially mutants 1, 3, and 5 showed the strongest elongation activity to produce large amounts of geranylfarnesyl diphosphate with a concomitant amount of hexaprenyl diphosphate. Sequence analysis revealed that each mutant contained a few amino acid substitutions and that the mutation of Phe-77, which is located on the fifth amino acid upstream from the first aspartate-rich consensus motif, is the most effective for elongating the ultimate product. Amino acid alignment of known prenyltransferases around this position and our previous observations on farnesyl-diphosphate synthase (Ohnuma, S.-i., Nakazawa, T., Hemmi, H., Hallberg, A.-M., Koyama, T., Ogura, K., and Nishino, T.(1996) J. Biol. Chem. 271, 10087-10095) clearly indicate that the amino acid at the position of all prenyltransferases must regulate the chain elongation.
Collapse
Affiliation(s)
- S Ohnuma
- Department of Biochemistry and Engineering, Tohoku University, Aoba Aramaki, Aoba-ku, Sendai 980-77, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Koyama T, Tajima M, Sano H, Doi T, Koike-Takeshita A, Obata S, Nishino T, Ogura K. Identification of significant residues in the substrate binding site of Bacillus stearothermophilus farnesyl diphosphate synthase. Biochemistry 1996; 35:9533-8. [PMID: 8755734 DOI: 10.1021/bi960137v] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Farnesyl diphosphate synthases have been shown to possess seven highly conserved regions (I-VII) in their amino acid sequences [Koyama et al. (1993) J. Biochem. (Tokyo) 113, 355-363]. Site-directed mutants of farnesyl diphosphate synthase from Bacillus stearothermophilus were made to evaluate the roles of the conserved aspartic acids in region VI and lysines in regions I, V, and VI. The aspartate at position 224 was changed to alanine or glutamate (mutants designated as D224A and D224E, respectively); aspartates at positions 225 and 228 were changed to isoleucine and alanine (D225I, D228A); lysine at position 238 was changed to either alanine or arginine (K238A, K238R). The lysines at positions 47 and 183 were changed to isoleucine and alanine (K471, K183A), respectively. Kinetic analyses of the wild-type and mutant enzymes indicated that the mutagenesis of Asp-224 and Asp-225 resulted in a decrease of Kcat values of approximately 10(4)- to 10(5)-fold compared to the wild type. On the other hand, D228A showed a Kcat value approximately one-tenth of that of the wild type, and the k(m) value for isopentenyl diphosphate increased approximately 10-fold. Both K471 and K183A showed k(m) values for isopentenyl diphosphate 20-fold larger and kcat values 70-fold smaller than the wild type. These results suggest that the two conserved lysines in regions I and V contribute to the binding of isopentenyl diphosphate and that the first and the second aspartates in region VI are involved in catalytic function. Aspartate-228 is also important for the binding of isopentenyl diphosphate rather than for catalytic reaction.
Collapse
Affiliation(s)
- T Koyama
- Department of Biochemistry and Engineering, Faculty of Engineering, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ohnuma S, Nakazawa T, Hemmi H, Hallberg AM, Koyama T, Ogura K, Nishino T. Conversion from farnesyl diphosphate synthase to geranylgeranyl diphosphate synthase by random chemical mutagenesis. J Biol Chem 1996; 271:10087-95. [PMID: 8626566 DOI: 10.1074/jbc.271.17.10087] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Prenyltransferases catalyze the consecutive condensation of isopentenyl diphosphate (IPP) with allylic diphosphates to produce prenyl diphosphates whose chain lengths are absolutely determined by each enzyme. In order to investigate the mechanisms of the consecutive reaction and of the determination of ultimate chain length, a random mutational approach was planned. The farnesyl diphosphate (FPP) synthase gene of Bacillus stearothermophilus was subjected to random mutagenesis by NaNO2 treatment to construct libraries of mutated FPP synthase genes on a high-copy plasmid. From the libraries, the mutants that showed the activity of geranylgeranyl diphosphate (GGPP) synthase were selected by the red-white screening method (Ohnuma, S.-i., Suzuki, M., and Nishino, T. (1994) J. Biol. Chem. 268, 14792-14797), which utilized carotenoid synthetic genes, phytoene synthase, and phytoene desaturase, to visualize the formation of GGPP in vivo. Eleven red positive clones were identified from about 24,300 mutants, and four (mutant 1, 2, 3, and 4) of them were analyzed for the enzyme activities. Results of in vitro assays demonstrated that all these mutants produced (all-E)-GGPP although the amounts were different. Each mutant was found to contain a few amino acid substitutions: mutant 1, Y81H and L275S; mutant 2, L34V and R59Q; mutant 3, V157A and H182Y; mutant 4, Y81H, P239R, and A265T. Site-directed mutagenesis showed that Y81H, L34V, or V157A was essential for the expression of the activity of GGPP synthase. Especially, the replacement of tyrosine 81 by histidine is the most effective because the production ratios of GGPP to FPP in mutant 1 and 4 are the largest. Based on prediction of the secondary structure, it is revealed that the tyrosine 81 situates on a point 11 approximately 12 A apart from the first DDXXD motif, whose distance is similar to the length of hydrocarbon moiety of FPP. These data might suggest that the aromatic ring of tyrosine 81 blocks the chain elongation longer than FPP. Comparisons of kinetic parameters of the mutated and wild type enzymes revealed several phenomena that may relate with the change of the ultimate chain length. They are a decrease of the total reaction rate, increase of Kmfor dimethylallyl diphosphate, decrease of Vmax for dimethylallyl diphosphate, and allylic substrate dependence of Km for IPP.
Collapse
Affiliation(s)
- S Ohnuma
- Department of Biochemistry and Engineering, Tohoku University, Aoba Aramaki, Aoba-ku, Sendai 980-77 Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Cunillera N, Arró M, Delourme D, Karst F, Boronat A, Ferrer A. Arabidopsis thaliana contains two differentially expressed farnesyl-diphosphate synthase genes. J Biol Chem 1996; 271:7774-80. [PMID: 8631820 DOI: 10.1074/jbc.271.13.7774] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The enzyme farnesyl-diphosphate synthase (FPS; EC 2.5.1.1/EC 2.5.1.10) catalyzes the synthesis of farnesyl diphosphate (FPP) from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). This reaction is considered to be a rate-limiting step in isoprenoid biosynthesis. Southern blot analysis indicates that Arabidopsis thaliana contains at least 2 genes (FPS1 and FPS2) encoding FPS. The FPS1 and FPS2 genes have been cloned and characterized. The two genes have a very similar organization with regard to intron positions and exon sizes and share a high level of sequence similarity, not only in the coding region but also in the intronic sequences. Northern blot analysis showed that FPS1 and FPS2 have a different pattern of expression. FPS1 mRNA accumulates preferentially in roots and inflorescences, whereas FPS2 mRNA is predominantly expressed in inflorescences. The cDNA corresponding to the FPS1 gene was isolated by functional complementation of a mutant yeast strain defective in FPS activity (Delourme, D., Lacroute, F., and Karst, F. (1994) Plant Mol. Biol. 26, 1867-1873). By using a reverse transcription-polymerase chain reaction strategy we have cloned the cDNA corresponding to the FPS2 gene. Analysis of the FPS2 cDNA sequence revealed an open reading frame encoding a protein of 342 amino acid residues with a predicted molecular mass of 39,825 Da. FPS1 and FPS2 isoforms share an overall amino acid identity of 90.6%. Arabidopsis FPS2 was able to rescue the lethal phenotype of an ERG20-disrupted yeast strain. We demonstrate that FPS2 catalyzes the two successive condensations of IPP with both DMAPP and geranyl diphosphate leading to FPP. The significance of the occurrence of different FPS isoforms in plants is discussed in the context of the complex organization of the plant isoprenoid pathway.
Collapse
Affiliation(s)
- N Cunillera
- Unitat de Bioquímica, Facultat de Farmàcia, Universitat de Barcelona, Spain
| | | | | | | | | | | |
Collapse
|