1
|
Ladagu AD, Olopade FE, Chazot P, Oyagbemi AA, Ohiomokhare S, Folarin OR, Gilbert TT, Fuller M, Luong T, Adejare A, Olopade JO. Attenuation of Vanadium-Induced Neurotoxicity in Rat Hippocampal Slices (In Vitro) and Mice (In Vivo) by ZA-II-05, a Novel NMDA-Receptor Antagonist. Int J Mol Sci 2023; 24:16710. [PMID: 38069032 PMCID: PMC10706475 DOI: 10.3390/ijms242316710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/04/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Exposure to heavy metals, such as vanadium, poses an ongoing environmental and health threat, heightening the risk of neurodegenerative disorders. While several compounds have shown promise in mitigating vanadium toxicity, their efficacy is limited. Effective strategies involve targeting specific subunits of the NMDA receptor, a glutamate receptor linked to neurodegenerative conditions. The potential neuroprotective effects of ZA-II-05, an NMDA receptor antagonist, against vanadium-induced neurotoxicity were explored in this study. Organotypic rat hippocampal slices, and live mice, were used as models to comprehensively evaluate the compound's impact. Targeted in vivo fluorescence analyses of the hippocampal slices using propidium iodide as a marker for cell death was utilized. The in vivo study involved five dams, each with eight pups, which were randomly assigned to five experimental groups (n = 8 pups). After administering treatments intraperitoneally over six months, various brain regions were assessed for neuropathologies using different immunohistochemical markers. High fluorescence intensity was observed in the hippocampal slices treated with vanadium, signifying cell death. Vanadium-exposed mice exhibited demyelination, microgliosis, and neuronal cell loss. Significantly, treatment with ZA-II-05 resulted in reduced cellular death in the rat hippocampal slices and preserved cellular integrity and morphological architecture in different anatomical regions, suggesting its potential in countering vanadium-induced neurotoxicity.
Collapse
Affiliation(s)
- Amany Digal Ladagu
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (O.R.F.); (T.T.G.); (J.O.O.)
| | | | - Paul Chazot
- Department of Biosciences, Durham University, County Durham DH1 3LE, UK;
| | - Ademola A. Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan 200284, Nigeria;
| | - Samuel Ohiomokhare
- Department of Biosciences, Durham University, County Durham DH1 3LE, UK;
| | - Oluwabusayo Racheal Folarin
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (O.R.F.); (T.T.G.); (J.O.O.)
| | - Taidinda Tashara Gilbert
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (O.R.F.); (T.T.G.); (J.O.O.)
| | - Madison Fuller
- Department of Neuroscience, College of Arts and Sciences, Saint Joseph’s University, Philadelphia, PA 19131, USA; (M.F.); (T.L.)
| | - Toan Luong
- Department of Neuroscience, College of Arts and Sciences, Saint Joseph’s University, Philadelphia, PA 19131, USA; (M.F.); (T.L.)
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19131, USA;
| | - James O. Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (O.R.F.); (T.T.G.); (J.O.O.)
| |
Collapse
|
2
|
Zeng X, Niu Y, Qin G, Zhang D, Chen L. Dysfunction of inhibitory interneurons contributes to synaptic plasticity via GABABR-pNR2B signaling in a chronic migraine rat model. Front Mol Neurosci 2023; 16:1142072. [PMID: 37324588 PMCID: PMC10265202 DOI: 10.3389/fnmol.2023.1142072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/02/2023] [Indexed: 06/17/2023] Open
Abstract
Background According to our previous study, the loss of inhibitory interneuron function contributes to central sensitization in chronic migraine (CM). Synaptic plasticity is a vital basis for the occurrence of central sensitization. However, whether the decline in interneuron-mediated inhibition promotes central sensitization by regulating synaptic plasticity in CM remains unclear. Therefore, this study aims to explore the role of interneuron-mediated inhibition in the development of synaptic plasticity in CM. Methods A CM model was established in rats by repeated dural infusion of inflammatory soup (IS) for 7 days, and the function of inhibitory interneurons was then evaluated. After intraventricular injection of baclofen [a gamma-aminobutyric acid type B receptor (GABABR) agonist] or H89 [a protein kinase A (PKA) inhibitor), behavioral tests were performed. The changes in synaptic plasticity were investigated by determining the levels of the synapse-associated proteins postsynaptic density protein 95 (PSD95), synaptophysin (Syp) and synaptophysin-1(Syt-1)]; evaluating the synaptic ultrastructure by transmission electron microscopy (TEM); and determining the density of synaptic spines via Golgi-Cox staining. Central sensitization was evaluated by measuring calcitonin gene-related peptide (CGRP), brain-derived neurotrophic factor (BDNF), c-Fos and substance P (SP) levels. Finally, the PKA/Fyn kinase (Fyn)/tyrosine-phosphorylated NR2B (pNR2B) pathway and downstream calcium-calmodulin-dependent kinase II (CaMKII)/c-AMP-responsive element binding protein (pCREB) signaling were assessed. Results We observed dysfunction of inhibitory interneurons, and found that activation of GABABR ameliorated CM-induced hyperalgesia, repressed the CM-evoked elevation of synapse-associated protein levels and enhancement of synaptic transmission, alleviated the CM-triggered increases in the levels of central sensitization-related proteins, and inhibited CaMKII/pCREB signaling via the PKA/Fyn/pNR2B pathway. The inhibition of PKA suppressed the CM-induced activation of Fyn/pNR2B signaling. Conclusion These data reveal that the dysfunction of inhibitory interneurons contributes to central sensitization by regulating synaptic plasticity through the GABABR/PKA/Fyn/pNR2B pathway in the periaqueductal gray (PAG) of CM rats. Blockade of GABABR-pNR2B signaling might have a positive influence on the effects of CM therapy by modulating synaptic plasticity in central sensitization.
Collapse
Affiliation(s)
- Xiaoxu Zeng
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yingying Niu
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Zeng X, Mai J, Xie H, Yang L, Liu X. Activation of CB1R alleviates central sensitization by regulating HCN2-pNR2B signaling in a chronic migraine rat model. J Headache Pain 2023; 24:44. [PMID: 37085778 PMCID: PMC10120244 DOI: 10.1186/s10194-023-01580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Central sensitization has been widely accepted as an underlying pathophysiological mechanism of chronic migraine (CM), activation of cannabinoid type-1 receptor (CB1R) exerts antinociceptive effects by relieving central sensitization in many pain models. However, the role of CB1R in the central sensitization of CM is still unclear. METHODS A CM model was established by infusing inflammatory soup (IS) into the dura of male Wistar rats for 7 days, and hyperalgesia was assessed by the mechanical and thermal thresholds. In the periaqueductal gray (PAG), the mRNA and protein levels of CB1R and hyperpolarization-activated cyclic nucleotide-gated cation channel 2 (HCN2) were measured by qRT-PCR and western blotting. After intraventricular injection of Noladin ether (NE) (a CB1R agonist), ZD 7288 (an HCN2 blocker), and AM 251 (a CB1R antagonist), the expression of tyrosine phosphorylation of N-methyl-D-aspartate receptor subtype 2B (pNR2B), calcium-calmodulin-dependent kinase II (CaMKII), and phosphorylated cAMP-responsive element binding protein (pCREB) was detected, and central sensitization was evaluated by the expression of calcitonin gene-related peptide (CGRP), c-Fos, and substance P (SP). Synaptic-associated protein (postsynaptic density protein 95 (PSD95) and synaptophysin (Syp)) and synaptic ultrastructure were detected to explore synaptic plasticity in central sensitization. RESULTS We observed that the mRNA and protein levels of CB1R and HCN2 were both significantly increased in the PAG of CM rats. The application of NE or ZD 7288 ameliorated IS-induced hyperalgesia; repressed the pNR2B/CaMKII/pCREB pathway; reduced CGRP, c-Fos, SP, PSD95, and Syp expression; and inhibited synaptic transmission. Strikingly, the application of ZD 7288 relieved AM 251-evoked elevation of pNR2B, CGRP, and c-Fos expression. CONCLUSIONS These data reveal that activation of CB1R alleviates central sensitization by regulating HCN2-pNR2B signaling in CM rats. The activation of CB1R might have a positive influence on the prevention of CM by mitigating central sensitization.
Collapse
Affiliation(s)
- Xiaoxu Zeng
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Jia Mai
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Hongjian Xie
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Ling Yang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Xiaojuan Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China.
| |
Collapse
|
4
|
NMDA Receptor and Its Emerging Role in Cancer. Int J Mol Sci 2023; 24:ijms24032540. [PMID: 36768862 PMCID: PMC9917092 DOI: 10.3390/ijms24032540] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Glutamate is a key player in excitatory neurotransmission in the central nervous system (CNS). The N-methyl-D-aspartate receptor (NMDAR) is a glutamate-gated ion channel which presents several unique features and is involved in various physiological and pathological neuronal processes. Thanks to great efforts in neuroscience, its structure and the molecular mechanisms controlling its localization and functional regulation in neuronal cells are well known. The signaling mediated by NMDAR in neurons is very complex as it depends on its localization, composition, Ca2+ influx, and ion flow-independent conformational changes. Moreover, NMDA receptors are highly diffusive in the plasma membrane of neurons, where they form heterocomplexes with other membrane receptors and scaffold proteins which determine the receptor function and activation of downstream signaling. Interestingly, a recent paper demonstrates that NMDAR signaling is involved in epithelial cell competition, an evolutionary conserved cell fitness process influencing cancer initiation and progress. The idea that NMDAR signaling is limited to CNS has been challenged in the past two decades. A large body of evidence suggests that NMDAR is expressed in cancer cells outside the CNS and can respond to the autocrine/paracrine release of glutamate. In this review, we survey research on NMDAR signaling and regulation in neurons that can help illuminate its role in tumor biology. Finally, we will discuss existing data on the role of the glutamine/glutamate metabolism, the anticancer action of NMDAR antagonists in experimental models, NMDAR synaptic signaling in tumors, and clinical evidence in human cancer.
Collapse
|
5
|
Pan L, Li T, Wang R, Deng W, Pu H, Deng M. Roles of Phosphorylation of N-Methyl-D-Aspartate Receptor in Chronic Pain. Cell Mol Neurobiol 2023; 43:155-175. [PMID: 35032275 DOI: 10.1007/s10571-022-01188-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/03/2022] [Indexed: 01/07/2023]
Abstract
Phosphorylation of N-methyl-D-aspartate receptor (NMDAR) is widely regarded as a vital modification of synaptic function. Various protein kinases are responsible for direct phosphorylation of NMDAR, such as cyclic adenosine monophosphate-dependent protein kinase A, protein kinase C, Ca2+/calmodulin-dependent protein kinase II, Src family protein tyrosine kinases, cyclin-dependent kinase 5, and casein kinase II. The detailed function of these kinases on distinct subunits of NMDAR has been reported previously and contributes to phosphorylation at sites predominately within the C-terminal of NMDAR. Phosphorylation underlies both structural and functional changes observed in chronic pain, and studies have demonstrated that inhibitors of kinases are significantly effective in alleviating pain behavior in different chronic pain models. In addition, the exploration of drugs that aim to disrupt the interaction between kinases and NMDAR is promising in clinical research. Based on research regarding the modulation of NMDAR in chronic pain models, this review provides an overview of the phosphorylation of NMDAR-related mechanisms underlying chronic pain to elucidate molecular and pharmacologic references for chronic pain management.
Collapse
Affiliation(s)
- Liangyu Pan
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Tiansheng Li
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Rui Wang
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Weiheng Deng
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, Hunan, China.
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China. .,Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
6
|
Westlund KN, Lu Y, Zhang L, Pappas TC, Zhang WR, Taglialatela G, McIlwrath SL, McNearney TA. Tyrosine Kinase Inhibitors Reduce NMDA NR1 Subunit Expression, Nuclear Translocation, and Behavioral Pain Measures in Experimental Arthritis. Front Physiol 2020; 11:440. [PMID: 32536874 PMCID: PMC7267073 DOI: 10.3389/fphys.2020.00440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/08/2020] [Indexed: 11/17/2022] Open
Abstract
In the lumbar spinal cord dorsal horn, release of afferent nerve glutamate activates the neurons that relay information about injury pain. Here, we examined the effects of protein tyrosine kinase (PTK) inhibition on NMDA receptor NR1 subunit protein expression and subcellular localization in an acute experimental arthritis model. PTK inhibitors genistein and lavendustin A reduced cellular histological translocation of NMDA NR1 in the spinal cord occurring after the inflammatory insult and the nociceptive behavioral responses to heat. The PTK inhibitors were administered into lumbar spinal cord by microdialysis, and secondary heat hyperalgesia was determined using the Hargreaves test. NMDA NR1 cellular protein expression and nuclear translocation were determined by immunocytochemical localization with light and electron microscopy, as well as with Western blot analysis utilizing both C- and N-terminal antibodies. Genistein and lavendustin A (but not inactive lavendustin B or diadzein) effectively reduced (i) pain related behavior, (ii) NMDA NR1 subunit expression increases in spinal cord, and (iii) the shift of NR1 from a cell membrane to a nuclear localization. Genistein pre-treatment reduced these events that occur in vivo within 4 h after inflammatory insult to the knee joint with kaolin and carrageenan (k/c). Cycloheximide reduced glutamate activated upregulation of NR1 content confirming synthesis of new protein in response to the inflammatory insult. In addition to this in vivo data, genistein or staurosporin inhibited upregulation of NMDA NR1 protein and nuclear translocation in vitro after treatment of human neuroblastoma clonal cell cultures (SH-SY5Y) with glutamate or NMDA (4 h). These studies provide evidence that inflammatory activation of peripheral nerves initiates increase in NMDA NR1 in the spinal cord coincident with development of pain related behaviors through glutamate non-receptor, PTK dependent cascades.
Collapse
Affiliation(s)
- Karin N Westlund
- Research Division, New Mexico VA Health Care System, Albuquerque, NM, United States.,Anesthesiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ying Lu
- Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Liping Zhang
- Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Todd C Pappas
- Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Wen-Ru Zhang
- Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Giulio Taglialatela
- Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Neurology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Sabrina L McIlwrath
- Research Division, New Mexico VA Health Care System, Albuquerque, NM, United States
| | - Terry A McNearney
- Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
7
|
Suina K, Tsuchihashi K, Yamasaki J, Kamenori S, Shintani S, Hirata Y, Okazaki S, Sampetrean O, Baba E, Akashi K, Mitsuishi Y, Takahashi F, Takahashi K, Saya H, Nagano O. Epidermal growth factor receptor promotes glioma progression by regulating xCT and GluN2B-containing N-methyl-d-aspartate-sensitive glutamate receptor signaling. Cancer Sci 2018; 109:3874-3882. [PMID: 30298963 PMCID: PMC6272110 DOI: 10.1111/cas.13826] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 02/05/2023] Open
Abstract
Autocrine and paracrine factors, including glutamate and epidermal growth factor (EGF), are potent inducers of brain tumor cell invasion, a pathological hallmark of malignant gliomas. System xc(-) consists of xCT and CD98hc subunits and functions as a plasma membrane antiporter for the uptake of extracellular cystine in exchange for intracellular glutamate. We previously showed that the EGF receptor (EGFR) interacts with xCT and thereby promotes the activity of system xc(-) in a kinase-independent manner, resulting in enhanced glutamate release in glioma cells. However, the molecular mechanism underlying EGFR-mediated glioma progression in a glutamate-rich microenvironment has remained unclear. Here we show that the GluN2B subunit of the N-methyl-d-aspartate-sensitive glutamate receptor (NMDAR) is a substrate of EGFR in glioma cells. In response to EGF stimulation, EGFR phosphorylated the COOH-terminal domain of GluN2B and thereby enhanced glutamate-NMDAR signaling and consequent cell migration in EGFR-overexpressing glioma cells. Treatment with the NMDAR inhibitor MK-801 or the system xc(-) inhibitor sulfasalazine suppressed EGF-elicited glioma cell migration. The administration of sulfasalazine and MK-801 also synergistically suppressed the growth of subcutaneous tumors formed by EGFR-overexpressing glioma cells. Furthermore, shRNA-mediated knockdown of xCT and GluN2B cooperatively prolonged the survival of mice injected intracerebrally with such glioma cells. Our findings thus establish a central role for EGFR in the signaling crosstalk between xCT and GluN2B-containing NMDAR in glioma cells.
Collapse
Affiliation(s)
- Kentaro Suina
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan.,Division of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Kenji Tsuchihashi
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan.,Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Higashi-ku, Fukuoka, Japan
| | - Juntaro Yamasaki
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Shohei Kamenori
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Subaru Shintani
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Yuki Hirata
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Shogo Okazaki
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Oltea Sampetrean
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Eishi Baba
- Department of Comprehensive Clinical Oncology, Faculty of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Higashi-ku, Fukuoka, Japan
| | - Yoichiro Mitsuishi
- Division of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Fumiyuki Takahashi
- Division of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Kazuhisa Takahashi
- Division of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Osamu Nagano
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
8
|
Abstract
Stroke, also known as “cerebrovascular accident”, is an acute cerebrovascular disease that is caused by a sudden rupture of blood vessels in the brain or obstruction of the blood supply by blockage of blood vessels, thus including hemorrhagic and ischemic strokes. The incidence of ischemic stroke is higher than that of hemorrhagic stroke, and accounts for 80% of the total number of strokes. However, the mortality rate of hemorrhagic stroke is relatively high. Internal carotid artery and vertebral artery occlusion and stenosis can cause ischemic stroke, and especially males over 40 years of age are at a high risk of morbidity. According to the survey, stroke in urban and rural areas has become the first cause of death in China. It is also the leading cause of disability in Chinese adults. In a word, stroke is characterized by high morbidity, high mortality and high disability rates. Studies have shown that many noble gases have the neuroprotective effects. For example, xenon has been extensively studied in various animal models of neurological injury including stroke, hypoxic-ischemic encephalopathy. Compared to xenon, Argon, as a noble gas, is abundant, cheap and widely applicable, and has been also demonstrated to be neuroprotective in many research studies. In a variety of models, ranging from oxygen-glucose deprivation in cell culture to complex models of mid-cerebral artery occlusion, subarachnoid hemorrhage or retinal ischemia-reperfusion injury in animals. Argon administration after individual injury demonstrated favorable effects, particularly increased cell survival and even improved neuronal function. Therefore the neuroprotective effects of argon may be of possible clinical use for opening a potential therapeutic window in stroke. It is important to illuminate the mechanisms of argon in nerve function and to explore the best use of this gas in stroke treatment.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhu-Wei Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jin-Quan Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
9
|
Reduced expression of Na +/Ca 2+ exchangers is associated with cognitive deficits seen in Alzheimer's disease model mice. Neuropharmacology 2017; 131:291-303. [PMID: 29274751 DOI: 10.1016/j.neuropharm.2017.12.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/08/2017] [Accepted: 12/20/2017] [Indexed: 11/21/2022]
Abstract
Na+/Ca2+ exchangers (NCXs) are expressed primarily in the plasma membrane of most cell types, where they mediate electrogenic exchange of one Ca2+ for three Na+ ions, depending on Ca2+ and Na+ electrochemical gradients across the membrane. Three mammalian NCX isoforms (NCX1, NCX2, and NCX3) are each encoded by a distinct gene. Here, we report that NCX2 and NCX3 protein and mRNA levels are relatively reduced in hippocampal CA1 of APP23 and APP-KI mice. Likewise, NCX2+/- or NCX3+/- mice exhibited impaired hippocampal LTP and memory-related behaviors. Moreover, relative to controls, calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation significantly decreased in NCX2+/- mouse hippocampus but increased in hippocampus of NCX3+/- mice. NCX2 or NCX3 heterozygotes displayed impaired maintenance of hippocampal LTP, a phenotype that in NCX2+/- mice was correlated with elevated calcineurin activity and rescued by treatment with the calcineurin (CaN) inhibitor FK506. Likewise, FK506 treatment significantly restored impaired hippocampal LTP in APP-KI mice. Moreover, Ca2+ clearance after depolarization following high frequency stimulation was slightly delayed in hippocampal CA1 regions of NCX2+/- mice. Electron microscopy revealed relatively decreased synaptic density in CA1 of NCX2+/- mice, while the number of spines with perforated synapses in CA1 significantly increased in NCX3+/- mice. We conclude that memory impairment seen in NCX2+/- and NCX3+/- mice reflect dysregulated hippocampal CaMKII activity, which alters dendritic spine morphology, findings with implications for memory deficits seen in Alzheimer's disease model mice.
Collapse
|
10
|
Tyrosine Phosphorylation of NR2B Contributes to Chronic Migraines via Increased Expression of CGRP in Rats. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7203458. [PMID: 28393079 PMCID: PMC5368391 DOI: 10.1155/2017/7203458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/14/2016] [Accepted: 02/08/2017] [Indexed: 11/23/2022]
Abstract
Tyrosine phosphorylation of NR2B (NR2B-pTyr), a subunit of the N-methyl-D-aspartate (NMDA) receptor, has been reported to develop central sensitization and persistent pain in the spine, but its effect in chronic migraines has not been examined. We hypothesized that tyrosine phosphorylation of NR2B contributes to chronic migraines (CM) through calcitonin gene-related peptide (CGRP) in rats. Ninety-four male Sprague-Dawley rats were subjected to seven inflammatory soup (IS) injections. In a subset of animals, the time course and location of NR2B tyrosine phosphorylation were detected by western blot and immunofluorescence double staining. Another set of animals were given either genistein, vehicle, or genistein and recombinant CGRP. The mechanical threshold was measured, the expressions of NR2B-pTyr, NR2B, and CGRP were quantified using western blot, and nitric oxide (NO) was measured with the nitric acid reductase method. NR2B-pTyr expression, in neurons, peaked at 24 hours after CM. Genistein improved the mechanical threshold and reduced migraine attacks 24 and 72 hours after CM. Tyrosine phosphorylation of NR2B decreased the mechanical threshold and increased migraine attacks via upregulated CGRP expression in the rat model of CM. Thus, tyrosine phosphorylation of NR2B may be a potential therapeutic target for treatment of CM.
Collapse
|
11
|
Chang L, Zhang Y, Liu J, Song Y, Lv A, Li Y, Zhou W, Yan Z, Almeida OFX, Wu Y. Differential Regulation of N-Methyl-D-Aspartate Receptor Subunits is an Early Event in the Actions of Soluble Amyloid-β(1-40) Oligomers on Hippocampal Neurons. J Alzheimers Dis 2016; 51:197-212. [PMID: 26836185 DOI: 10.3233/jad-150942] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Synaptic dysfunction during early stages of Alzheimer's disease (AD) is triggered by soluble amyloid-β (Aβ) oligomers that interact with NMDA receptors (NMDARs). We previously showed that Aβ induces synaptic protein loss through NMDARs, albeit through undefined mechanisms. Accordingly, we here examined the contribution of individual NMDAR subunits to synaptotoxicity and demonstrate that Aβ exerts differential effects on the levels and distribution of GluN2A and GluN2B subunits of NMDAR in dendrites. Treatment of cultured hippocampal neurons with Aβ1-40 (10 μM, 1 h) induced a significant increase of dendritic and synaptic GluN2B puncta densities with parallel decreases in the puncta densities of denritic and synaptic pTyr1472-GluN2B. Conversely, Aβ significantly decreased dendritic and synaptic GluN2A and dendritic pTyr1325-GluN2A puncta densities and increased synaptic pTyr1325-GluN2A puncta densities. Unexpectedly, Aβ treatment resulted in a significant reduction of GluN2B and pTyr1472-GluN2B protein levels but did not influence GluN2A and pTyr1325-GluN2A levels. These results show that Aβ exerts complex and distinct regulatory effects on the trafficking and phosphorylation of GluN2A and GluN2B, as well as on their localization within synaptic and non-synaptic sites. Increased understanding of these early events in Aβ-induced synaptic dysfunction is likely to be important for the development of timely preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Lirong Chang
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yali Zhang
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Jinping Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Yizhi Song
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Angchu Lv
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yan Li
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Wei Zhou
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Zhen Yan
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | | | - Yan Wu
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Qiao X, Zhou JJ, Li DP, Pan HL. Src Kinases Regulate Glutamatergic Input to Hypothalamic Presympathetic Neurons and Sympathetic Outflow in Hypertension. Hypertension 2016; 69:154-162. [PMID: 27802416 DOI: 10.1161/hypertensionaha.116.07947] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/16/2016] [Accepted: 10/11/2016] [Indexed: 11/16/2022]
Abstract
The elevated sympathetic outflow associated with hypertension is maintained by increased N-methyl-d-aspartate receptor (NMDAR) activity in the paraventricular nucleus (PVN) of the hypothalamus. Synaptic NMDAR activity is tightly regulated by protein kinases, including the Src family of tyrosine kinases. We determined whether Src kinases play a role in increased NMDAR activity of PVN neurons projecting to the rostral ventrolateral medulla and in elevated sympathetic vasomotor tone in spontaneously hypertensive rats (SHRs). The Src protein level in the PVN was significantly greater in SHRs than in normotensive Wistar-Kyoto (WKY) rats and was not significantly altered by lowering blood pressure with celiac ganglionectomy in SHRs. Inhibition of Src kinase activity with 4-amino-5-(4-chlorophenyl)-7-(dimethylethyl)pyrazolo[3,4-d]pyrimidine (PP2) completely normalized the higher amplitudes of evoked NMDAR-mediated excitatory postsynaptic currents and puff NMDA-elicited currents of rostral ventrolateral medulla-projecting PVN neurons in SHRs. PP2 treatment also attenuated the higher frequency of NMDAR-mediated miniature excitatory postsynaptic currents of these neurons in SHRs. However, PP2 had no effect on NMDAR-excitatory postsynaptic currents or miniature excitatory postsynaptic currents of rostral ventrolateral medulla-projecting PVN neurons in WKY rats. NMDAR activity increased by an Src-activating peptide was blocked by PP2 but not by inhibition of casein kinase 2. In addition, microinjection of PP2 into the PVN not only decreased lumbar sympathetic nerve discharges and blood pressure but also eliminated the inhibitory effect of the NMDAR antagonist on sympathetic nerve activity and blood pressure in SHRs. Collectively, our findings suggest that increased Src kinase activity potentiates presynaptic and postsynaptic NMDAR activity in the PVN and sympathetic vasomotor tone in hypertension.
Collapse
Affiliation(s)
- Xin Qiao
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine (X.Q., H.-L.P.), and Department of Critical Care (J.-J.Z., D.-P.L.), The University of Texas MD Anderson Cancer Center, Houston
| | - Jing-Jing Zhou
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine (X.Q., H.-L.P.), and Department of Critical Care (J.-J.Z., D.-P.L.), The University of Texas MD Anderson Cancer Center, Houston
| | - De-Pei Li
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine (X.Q., H.-L.P.), and Department of Critical Care (J.-J.Z., D.-P.L.), The University of Texas MD Anderson Cancer Center, Houston
| | - Hui-Lin Pan
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine (X.Q., H.-L.P.), and Department of Critical Care (J.-J.Z., D.-P.L.), The University of Texas MD Anderson Cancer Center, Houston.
| |
Collapse
|
13
|
McGinty JF, Zelek-Molik A, Sun WL. Cocaine self-administration causes signaling deficits in corticostriatal circuitry that are reversed by BDNF in early withdrawal. Brain Res 2014; 1628:82-7. [PMID: 25268928 DOI: 10.1016/j.brainres.2014.09.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/16/2014] [Accepted: 09/20/2014] [Indexed: 01/05/2023]
Abstract
Cocaine self-administration disturbs intracellular signaling in prefrontal cortical neurons that regulate neurotransmission in the nucleus accumbens. The deficits in dorsomedial prefrontal cortex (dmPFC) signaling change over time, resulting in different neuroadaptations during early withdrawal from cocaine self-administration than after one or more weeks of abstinence. Within the first few hours of withdrawal, there is a marked decrease in tyrosine phosphorylation of critical intracellular and membrane-bound proteins in the dmPFC that include ERK/MAP kinase and the NMDA receptor subunits, GluN1 and GluN2B. These changes are accompanied by a marked increase in STEP tyrosine phosphatase activation. Simultaneously, ERK and PKA-dependent synapsin phosphorylation in presynaptic terminals of the nucleus accumbens is increased that may have a destabilizing impact on glutamatergic transmission. Infusion of brain-derived neurotrophic factor (BDNF) into the dmPFC immediately following a final session of cocaine self-administration blocks the cocaine-induced changes in phosphorylation and attenuates relapse to cocaine seeking for as long as three weeks. The intra-dmPFC BDNF infusion also prevents cocaine-induced deficits in prefronto-accumbens glutamatergic transmission that are implicated in cocaine seeking. Thus, intervention with BDNF in the dmPFC during early withdrawal has local and distal effects in target areas that are critical to mediating cocaine-induced neuroadaptations that lead to cocaine seeking.
Collapse
Affiliation(s)
- Jacqueline F McGinty
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Agnieska Zelek-Molik
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Wei-Lun Sun
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
14
|
Abstract
Cerebral ischemia, a pathological condition in which brain tissue experiences a shortage of cerebral blood flow, is associated with cerebrovascular disease, brain trauma, epilepsy, and cardiac arrest. A reduction in blood flow leaves the brain tissue unsupplied with oxygen and glucose, thus leading to cell death in the ischemic core as well as subsequent peripheral injury in the penumbra. Neurons in the penumbra, where reperfusion occurs, are functionally inactive but still viable. Many biochemical changes, which may lead to neuronal cell death, thereby induce dysfunction of the central nervous system. However, the mechanisms responsible for ischemic stroke-induced cell damage remain to be determined. Protein phosphorylation has been implicated in the regulation of diverse cellular responses in the brain. Initially, tyrosine phosphorylation was considered to be involved in the regulation of cell growth and development. In addition, a variety of synaptic and cellular functions mediated by tyrosine phosphorylation in the brain were found to be associated with relatively high levels of protein tyrosine kinase activity. However, the involvement of this protein tyrosine kinase activity in ischemic cell death is still not fully understood. This review summarizes recent advances dealing with the possible implications of protein tyrosine phosphorylation in the ischemic brain.
Collapse
Affiliation(s)
- Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy & Life Sciences, Japan
| |
Collapse
|
15
|
Moriguchi S, Nishi M, Sasaki Y, Takeshima H, Fukunaga K. Aberrant behavioral sensitization by methamphetamine in junctophilin-deficient mice. Mol Neurobiol 2014; 51:533-42. [PMID: 24848513 DOI: 10.1007/s12035-014-8737-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/14/2014] [Indexed: 10/25/2022]
Abstract
Junctophilins (JPs) expressed in the endoplasmic/sarcoplasmic reticulum (ER/SR) interact with the plasma membrane, thereby constructing junctional membrane complexes (JMC). We here reported that double-knockout mice lacking both JP3 and JP4 (JP-DKO mice) exhibit aberrant synaptic plasticity in the corticostriatal circuits and irregular methamphetamine (METH)-induced behavioral sensitization when METH (1.0 mg/kg) was administrated six consecutive days and assessed the striatal glutamatergic population spike (PS) by stimulation of cortical white matter. When we assessed the striatal PS by stimulation of cortical white matter, the long-term depression (LTD) was observed in JP-DKO mouse striatum similar to that in control (JP-double hetero mice (JP-DHE mice)). Importantly, LTD converted to long-term potentiation (LTP) following chronic METH treatment concomitant with behavioral sensitization in JP-DHE mice. LTD in JP-DKO mice, however failed to convert to LTP with lacks of behavioral sensitization. LTP impairment in JP-DKO mice was restored by pretreatment with FK506, calcineurin (CaN) inhibitor, but not with apamin, SK channel inhibitor. In immunoblotting analyses, calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation was significantly increased following METH treatment in the striatum of JP-DHE mice. However, CaMKII autophosphorylation did not changed by METH treatment in the striatum of JP-DKO mouse. The increased CaMKII autophosphorylation was closely associated with elevated CaN activity in JP-DKO mice. The lack of increased CaMKII activity in JP-DKO mice was correlated with the impaired METH-induced behavioral sensitization. Thus, elevated CaN and aberrant CaMKII activities in the striatum of JP-DKO mice likely accounts for lack of METH-induced behavioral sensitization.
Collapse
Affiliation(s)
- Shigeki Moriguchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan,
| | | | | | | | | |
Collapse
|
16
|
Myocardial infarction induces cognitive impairment by increasing the production of hydrogen peroxide in adult rat hippocampus. Neurosci Lett 2014; 560:112-6. [DOI: 10.1016/j.neulet.2013.12.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 12/09/2013] [Accepted: 12/16/2013] [Indexed: 11/20/2022]
|
17
|
Roles of subunit phosphorylation in regulating glutamate receptor function. Eur J Pharmacol 2013; 728:183-7. [PMID: 24291102 DOI: 10.1016/j.ejphar.2013.11.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 10/10/2013] [Accepted: 11/15/2013] [Indexed: 12/21/2022]
Abstract
Protein phosphorylation is an important mechanism for regulating ionotropic glutamate receptors (iGluRs). Early studies have established that major iGluR subtypes, including α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors and N-methyl-d-aspartate (NMDA) receptors, are subject to phosphorylation. Multiple serine, threonine, and tyrosine residues predominantly within the C-terminal regions of AMPA receptor and NMDA receptor subunits have been identified as sensitive phosphorylation sites. These distinct sites undergo either constitutive phosphorylation or activity-dependent phosphorylation induced by changing cellular and synaptic inputs. An increasing number of synapse-enriched protein kinases have been found to phosphorylate iGluRs The common kinases include protein kinase A, protein kinase C, Ca(2+)/calmodulin-dependent protein kinase II, Src/Fyn non-receptor tyrosine kinases, and cyclin dependent kinase-5. Regulated phosphorylation plays a well-documented role in modulating the biochemical, biophysical, and functional properties of the receptor. In the future, identifying the precise mechanisms how phosphorylation regulates iGluR activities and finding the link between iGluR phosphorylation and the pathogenesis of various brain diseases, including psychiatric and neurodegenerative diseases, chronic pain, stroke, Alzheimer's disease and substance addiction, will be hot topics and could contribute to the development of novel pharmacotherapies, by targeting the defined phosphorylation process, for suppressing iGluR-related disorders.
Collapse
|
18
|
Vicente-Sánchez A, Sánchez-Blázquez P, Rodríguez-Muñoz M, Garzón J. HINT1 protein cooperates with cannabinoid 1 receptor to negatively regulate glutamate NMDA receptor activity. Mol Brain 2013; 6:42. [PMID: 24093505 PMCID: PMC3851374 DOI: 10.1186/1756-6606-6-42] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 09/19/2013] [Indexed: 01/02/2023] Open
Abstract
Background G protein-coupled receptors (GPCRs) are the targets of a large number of drugs currently in therapeutic use. Likewise, the glutamate ionotropic N-methyl-D-aspartate receptor (NMDAR) has been implicated in certain neurological disorders, such as neurodegeration, neuropathic pain and mood disorders, as well as psychosis and schizophrenia. Thus, there is now an important need to characterize the interactions between GPCRs and NMDARs. Indeed, these interactions can produce distinct effects, and whereas the activation of Mu-opioid receptor (MOR) increases the calcium fluxes associated to NMDARs, that of type 1 cannabinoid receptor (CNR1) antagonizes their permeation. Notably, a series of proteins interact with these receptors affecting their responses and interactions, and then emerge as novel therapeutic targets for the aforementioned pathologies. Results We found that in the presence of GPCRs, the HINT1 protein influences the activity of NMDARs, whereby NMDAR activation was enhanced in CNR1+/+/HINT1-/- cortical neurons and the cannabinoid agonist WIN55,212-2 provided these cells with no protection against a NMDA insult. NMDAR activity was normalized in these cells by the lentiviral expression of HINT1, which also restored the neuroprotection mediated by cannabinoids. NMDAR activity was also enhanced in CNR1-/-/HINT1+/+ neurons, although this activity was dampened by the expression of GPCRs like the MOR, CNR1 or serotonin 1A (5HT1AR). Conclusions The HINT1 protein plays an essential role in the GPCR-NMDAR connection. In the absence of receptor activation, GPCRs collaborate with HINT1 proteins to negatively control NMDAR activity. When activated, most GPCRs release the control of HINT1 and NMDAR responsiveness is enhanced. However, cannabinoids that act through CNR1 maintain the negative control of HINT1 on NMDAR function and their protection against glutamate excitotoxic insult persists.
Collapse
|
19
|
Abstract
In the developing brain, dendrite branches and dendritic spines form and turn over dynamically. By contrast, most dendrite arbors and dendritic spines in the adult brain are stable for months, years and possibly even decades. Emerging evidence reveals that dendritic spine and dendrite arbor stability have crucial roles in the correct functioning of the adult brain and that loss of stability is associated with psychiatric disorders and neurodegenerative diseases. Recent findings have provided insights into the molecular mechanisms that underlie long-term dendrite stabilization, how these mechanisms differ from those used to mediate structural plasticity and how they are disrupted in disease.
Collapse
|
20
|
Takagi N, Besshoh S, Marunouchi T, Takeo S, Tanonaka K. Metabotropic glutamate receptor 5 activation enhances tyrosine phosphorylation of the N-methyl-D-aspartate (NMDA) receptor and NMDA-induced cell death in hippocampal cultured neurons. Biol Pharm Bull 2013. [PMID: 23207774 DOI: 10.1248/bpb.b12-00691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activation of group I metabotropic glutamate receptors (mGluRs), which are coupled with Gq-protein, initiates a variety physiological responses in different types of cells. While Gq-protein-coupled receptors can upregulate N-methyl-D-aspartate (NMDA) receptor function, group I mGluR-mediated regulations of NMDA receptor function are not fully understood. To determine biochemical roles of group I mGluRs in the regulation of the NMDA receptor, we have investigated changes in tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B induced by a selective mGluR5 agonist, (RS)-chloro-5-hydroxyphenylglycine (CHPG) in hippocampal neuronal cultures. Activation of mGluR5 by CHPG increased active-forms of Src. CHPG also enhanced tyrosine phosphorylation of NR2A and NR2B in hippocampal neuronal cultures. In addition, NMDA-induced cell death was enhanced by CHPG-induced mGluR5 stimulation at the concentration, which increased tyrosine phosphorylation of Src and NR2A/2B but did not induce cell death. This effect was inhibited by selective mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP). The results suggest that in hippocampal neurons, mGluR5 may regulate NMDA receptor activity, involving tyrosine phosphorylation of NR2A and NR2B and may be involved in NMDA receptor-mediated cell injury.
Collapse
Affiliation(s)
- Norio Takagi
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432–1 Horinouchi, Hachioji, Tokyo 192–0392, Japan.
| | | | | | | | | |
Collapse
|
21
|
Tyrosine phosphorylation regulates the endocytosis and surface expression of GluN3A-containing NMDA receptors. J Neurosci 2013; 33:4151-64. [PMID: 23447623 DOI: 10.1523/jneurosci.2721-12.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Selective control of receptor trafficking provides a mechanism for remodeling the receptor composition of excitatory synapses, and thus supports synaptic transmission, plasticity, and development. GluN3A (formerly NR3A) is a nonconventional member of the NMDA receptor (NMDAR) subunit family, which endows NMDAR channels with low calcium permeability and reduced magnesium sensitivity compared with NMDARs comprising only GluN1 and GluN2 subunits. Because of these special properties, GluN3A subunits act as a molecular brake to limit the plasticity and maturation of excitatory synapses, pointing toward GluN3A removal as a critical step in the development of neuronal circuitry. However, the molecular signals mediating GluN3A endocytic removal remain unclear. Here we define a novel endocytic motif (YWL), which is located within the cytoplasmic C-terminal tail of GluN3A and mediates its binding to the clathrin adaptor AP2. Alanine mutations within the GluN3A endocytic motif inhibited clathrin-dependent internalization and led to accumulation of GluN3A-containing NMDARs at the cell surface, whereas mimicking phosphorylation of the tyrosine residue promoted internalization and reduced cell-surface expression as shown by immunocytochemical and electrophysiological approaches in recombinant systems and rat neurons in primary culture. We further demonstrate that the tyrosine residue is phosphorylated by Src family kinases, and that Src-activation limits surface GluN3A expression in neurons. Together, our results identify a new molecular signal for GluN3A internalization that couples the functional surface expression of GluN3A-containing receptors to the phosphorylation state of GluN3A subunits, and provides a molecular framework for the regulation of NMDAR subunit composition with implications for synaptic plasticity and neurodevelopment.
Collapse
|
22
|
Synaptic non-GluN2B-containing NMDA receptors regulate tyrosine phosphorylation of GluN2B 1472 tyrosine site in rat brain slices. Neurosci Bull 2013; 29:614-20. [PMID: 23585298 DOI: 10.1007/s12264-013-1337-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 10/23/2012] [Indexed: 10/27/2022] Open
Abstract
Activation of N-methyl-D-aspartate receptors (NMDARs) mediates changes in the phosphorylation status of the glutamate receptors themselves. Previous studies have indicated that during synaptic activity, tyrosine kinases (Src and Fyn) or phosphatases (PTPα and STEP) are involved in regulating the phosphorylation of NMDARs. In this study, we used immunoblotting to investigate the role of an NMDAR subpopulation on the phosphorylation level of the GluN2B subunit at the Y1336 and Y1472 sites in rat brain slices after NMDA treatment. We found that NMDA stimulation dramatically decreased the phosphorylation level of GluN2B at Y1472 in a dose- and time-dependent manner, but not at Y1336. Extrasynaptic NMDAR activation did not reduce the phosphorylation of GluN2B at Y1472. In addition, ifenprodil, a selective antagonist of GluN2B-containing NMDARs, did not abolish the decreased phosphorylation of GluN2B at Y1472 triggered by NMDA. These results suggest that the activation of synaptic GluN2A-containing NMDARs is required for the decreased phosphorylation of GluN2B at Y1472 that is induced by NMDA treatment in rat brain slices.
Collapse
|
23
|
Xu L, Pan Y, Zhu Q, Gong S, Tao J, Xu GY, Jiang X. Arcuate Src activation-induced phosphorylation of NR2B NMDA subunit contributes to inflammatory pain in rats. J Neurophysiol 2012; 108:3024-33. [DOI: 10.1152/jn.01047.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The tyrosine kinases of Src family play an important role in the central sensitization following peripheral inflammation. However, whether the Src family in the arcuate nucleus (ARC) of mediobasal hypothalamus is involved in central sensitization remains unknown. The aim of this study was to investigate the role and mechanisms of tyrosine kinases of Src family in N-methyl-d-aspartate (NMDA) receptor activity in the ARC following peripheral inflammation. Peripheral inflammation was induced by unilateral injection of complete Freund's adjuvant (CFA) into rat hindpaw. The neuronal activities of the ARC were recorded using electrophysiological field recording from the in vitro mediobasal hypothalamic slices from control and CFA rats. Expression of total and phosphorylated Src and NR2B subunit protein was analyzed by Western blot and immuoprecipitation. Our results showed that CFA injection resulted in an increase in mechanical and thermal sensitivity, which was partially blocked by neonatal monosodium glutamate treatment. CFA injection also enhanced spontaneous firings of ARC neurons, which were reversed by the NMDA receptor NR2B subunit specific antagonist Ro25–6981 and by PP2, an Src family tyrosine kinase inhibitor. In addition, peripheral inflammation enhanced Src phosphorylation and NMDA receptor NR2B subunit phosphorylation without alteration of total NR2B subunit expression in the ARC. Peripheral inflammation also increased the association of NR2B protein with p-Src protein in the ARC. Administration of PP2 blocked the upregulation of NR2B phosphorylation induced by CFA injection. Taken together, our present results suggest that the arcuate Src activation-induced tyrosine phosphorylation of NR2B NMDA subunit may contribute to inflammatory pain.
Collapse
Affiliation(s)
- Longsheng Xu
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Neurobiology, Medical College of Soochow University, Suzhou, China
- First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Yanyan Pan
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Qi Zhu
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Shan Gong
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Jin Tao
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Guang-Yin Xu
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Neurobiology, Medical College of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China; and
| | - Xinghong Jiang
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Neurobiology, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
24
|
Takagi N, Besshoh S, Marunouchi T, Takeo S, Tanonaka K. Effects of metabotropic glutamate mGlu5 receptor antagonist on tyrosine phosphorylation of NMDA receptor subunits and cell death in the hippocampus after brain ischemia in rats. Neurosci Lett 2012; 530:91-6. [PMID: 23022504 DOI: 10.1016/j.neulet.2012.09.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/08/2012] [Accepted: 09/18/2012] [Indexed: 10/27/2022]
Abstract
Tyrosine phosphorylation of the N-methyl-D-aspartate (NMDA) receptor appears to be associated with the regulation of the receptor's ion channel. This study focused on the effect of a metabotropic glutamate mGlu5 receptor antagonist on tyrosine phosphorylation of NMDA receptor subunits and cell death in the hippocampal CA1 region after transient global ischemia and sought to explore their mechanisms. Pretreatment with the mGlu5 receptor antagonist reduced cell death in the hippocampal CA1 region on day 3 after the transient ischemia. Transient ischemia increased the tyrosine phosphorylation of NMDA receptor subunits, which are a major target of Src family tyrosine kinases. Therefore, we investigated the effect of the antagonist on tyrosine phosphorylation of the NMDA receptor subunits after transient ischemia. Tyrosine phosphorylation of the NR2A subunit, but not that of the NR2B one, was inhibited by the mGlu5 receptor antagonist. The administration of the antagonist also attenuated the increase in the amount of active form of Src after the reperfusion. We further demonstrated that the administration of a Src-family kinase inhibitor prevented cell death in the hippocampal CA1 region and attenuated the increase in the tyrosine phosphorylation of the NMDA receptor subunits after the reperfusion. These findings suggest that mGlu5 receptor in the hippocampal CA1 region after transient ischemia is involved in the activation of Src and subsequent tyrosine phosphorylation of NMDA receptor subunits, which actions may contribute to alterations of properties of the NMDA receptor and may be related to pathogenic events leading to neuronal cell death.
Collapse
Affiliation(s)
- Norio Takagi
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | | | | | | | | |
Collapse
|
25
|
Beske PH, Jackson DA. NADPH oxidase mediates the oxygen-glucose deprivation/reperfusion-induced increase in the tyrosine phosphorylation of the N-methyl-D-aspartate receptor NR2A subunit in retinoic acid differentiated SH-SY5Y Cells. J Mol Signal 2012; 7:15. [PMID: 22958338 PMCID: PMC3489596 DOI: 10.1186/1750-2187-7-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/04/2012] [Indexed: 12/23/2022] Open
Abstract
Background Evidence exists that oxidative stress promotes the tyrosine phosphorylation of N-methyl-D-aspartate receptor (NMDAR) subunits during post-ischemic reperfusion of brain tissue. Increased tyrosine phosphorylation of NMDAR NR2A subunits has been reported to potentiate receptor function and exacerbate NMDAR-induced excitotoxicity. Though the effect of ischemia on tyrosine phosphorylation of NMDAR subunits has been well documented, the oxidative stress signaling cascades mediating the enhanced tyrosine phosphorylation of NR2A subunits remain unclear. Results We report that the reactive oxygen species (ROS) generator NADPH oxidase mediates an oxidative stress-signaling cascade involved in the increased tyrosine phosphorylation of the NR2A subunit in post-ischemic differentiated SH-SY5Y neuroblastoma cells. Inhibition of NADPH oxidase attenuated the increased tyrosine phosphorylation of the NMDAR NR2A subunit, while inhibition of ROS production from mitochondrial or xanthine oxidase sources failed to dampen the post-ischemic increase in tyrosine phosphorylation of the NR2A subunit. Additionally, inhibition of NADPH oxidase blunted the interaction of activated Src Family Kinases (SFKs) with PSD-95 induced by ischemia/reperfusion. Lastly, inhibition of NADPH oxidase also markedly reduced cell death in post-ischemic SH-SY5Y cells stimulated by NMDA. Conclusions These data indicate that NADPH oxidase has a key role in facilitating NMDAR NR2A tyrosine phosphorylation via SFK activation during post-ischemic reperfusion.
Collapse
Affiliation(s)
- Phillip H Beske
- From the Department of Biomedical and Pharmaceutical Sciences and the Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT, 59812, USA.
| | | |
Collapse
|
26
|
Zhou HY, Chen SR, Pan HL. Targeting N-methyl-D-aspartate receptors for treatment of neuropathic pain. Expert Rev Clin Pharmacol 2012; 4:379-88. [PMID: 21686074 DOI: 10.1586/ecp.11.17] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuropathic pain remains a major clinical problem and a therapeutic challenge because existing analgesics are often ineffective and can cause serious side effects. Increased N-methyl-d-aspartate receptor (NMDAR) activity contributes to central sensitization in certain types of neuropathic pain. NMDAR antagonists can reduce hyperalgesia and allodynia in animal models of neuropathic pain induced by nerve injury and diabetic neuropathy. Clinically used NMDAR antagonists, such as ketamine and dextromethorphan, are generally effective in patients with neuropathic pain, such as complex regional pain syndrome and painful diabetic neuropathy. However, patients with postherpetic neuralgia respond poorly to NMDAR antagonists. Recent studies on identifying NMDAR-interacting proteins and molecular mechanisms of increased NMDAR activity in neuropathic pain could facilitate the development of new drugs to attenuate abnormal NMDAR activity with minimal impairment of the physiological function of NMDARs. Combining NMDAR antagonists with other analgesics could also lead to better management of neuropathic pain without causing serious side effects.
Collapse
Affiliation(s)
- Hong-Yi Zhou
- Department of Anesthesiology and Perioperative Medicine, Unit 110, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | |
Collapse
|
27
|
Hossain MI, Kamaruddin MA, Cheng HC. Aberrant regulation and function of Src family tyrosine kinases: Their potential contributions to glutamate-induced neurotoxicity. Clin Exp Pharmacol Physiol 2012; 39:684-91. [DOI: 10.1111/j.1440-1681.2011.05621.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Collingridge GL, Volianskis A, Bannister N, France G, Hanna L, Mercier M, Tidball P, Fang G, Irvine MW, Costa BM, Monaghan DT, Bortolotto ZA, Molnár E, Lodge D, Jane DE. The NMDA receptor as a target for cognitive enhancement. Neuropharmacology 2012; 64:13-26. [PMID: 22796429 DOI: 10.1016/j.neuropharm.2012.06.051] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/22/2012] [Accepted: 06/24/2012] [Indexed: 12/31/2022]
Abstract
NMDA receptors (NMDARs) play an important role in neural plasticity including long-term potentiation and long-term depression, which are likely to explain their importance for learning and memory. Cognitive decline is a major problem facing an ageing human population, so much so that its reversal has become an important goal for scientific research and pharmaceutical development. Enhancement of NMDAR function is a core strategy toward this goal. In this review we indicate some of the major ways of potentiating NMDAR function by both direct and indirect modulation. There is good evidence that both positive and negative modulation can enhance function suggesting that a subtle approach correcting imbalances in particular clinical situations will be required. Excessive activation and the resultant deleterious effects will need to be carefully avoided. Finally we describe some novel positive allosteric modulators of NMDARs, with some subunit selectivity, and show initial evidence of their ability to affect NMDAR mediated events. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Graham L Collingridge
- MRC Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol BS1 3NY, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sun F, Sun JD, Han N, Li CJ, Yuan YH, Zhang DM, Chen NH. Polygalasaponin F induces long-term potentiation in adult rat hippocampus via NMDA receptor activation. Acta Pharmacol Sin 2012; 33:431-7. [PMID: 22286914 DOI: 10.1038/aps.2011.199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AIM To investigate the effect and underlying mechanisms of polygalasaponin F (PGSF), a triterpenoid saponin isolated from Polygala japonica, on long-term potentiation (LTP) in hippocampus dentate gyrus (DG) of anesthetized rats. METHODS Population spike (PS) of hippocampal DG was recorded in anesthetized male Wistar rats. PGSF, the NMDAR inhibitor MK801 and the CaMKII inhibitor KN93 were intracerebroventricularly administered. Western blotting analysis was used to examine the phosphorylation expressions of NMDA receptor subunit 2B (NR2B), Ca(2+)/calmodulin-dependent kinase II (CaMKII), extracellular signal-regulated kinase (ERK), and cAMP response element-binding protein (CREB). RESULTS Intracerebroventricular administration of PGSF (1 and 10 μmol/L) produced long-lasting increase of PS amplitude in hippocampal DG in a dose-dependent manner. Pre-injection of MK801 (100 μmol/L) or KN93 (100 μmol/L) completely blocked PGSF-induced LTP. Furthermore, the phosphorylation of NR2B, CaMKII, ERK, and CREB in hippocampus was significantly increased 5-60 min after LTP induction. The up-regulation of p-CaMKII expression could be completely abolished by pre-injection of MK801. The up-regulation of p-ERK and p-CREB expressions could be partially blocked by pre-injection of KN93. CONCLUSION PGSF could induce LTP in hippocampal DG in anesthetized rats via NMDAR activation mediated by CaMKII, ERK and CREB signaling pathway.
Collapse
|
30
|
Role of calcineurin in the VTA in rats behaviorally sensitized to methamphetamine. Psychopharmacology (Berl) 2012; 220:117-28. [PMID: 21901318 DOI: 10.1007/s00213-011-2461-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 08/17/2011] [Indexed: 10/17/2022]
Abstract
RATIONALE Chronic psychostimulant administration increases locomotor activity, which is referred to as locomotor sensitization. Calcineurin has been suggested to participate in psychostimulant-induced sensitization, but the underlying neurobiological mechanism is poorly understood. OBJECTIVES This study was designed to examine whether calcineurin activity and its substrates participate in methamphetamine (METH)-induced locomotor sensitization in rats. MATERIALS AND METHODS Two weeks daily METH (1 mg/kg, i.p.) was administrated to rats to induce locomotor sensitization, activity of calcineurin and its substrates Synapsin and glycogen synthase kinase-3β (GSK-3β) were detected. The initiation and expression of locomotor sensitization were tested by inhibition of calcineurin activity systematically or locally in the ventral tegmental area (VTA). RESULTS Expression of the calcineurin A subunit (catalytic subunit) increased in the VTA but not prefrontal cortex, nucleus accumbens, or hippocampus in rats sensitized to METH. The calcineurin inhibitor cyclosporine A, systemically administered or microinfused into the VTA, suppressed the initiation but not expression of METH-induced locomotor sensitization. Chronic METH exposure upregulated the expression of the calcineurin A subunit in the VTA, which was negatively associated with downregulation of the phosphorylation of Synapsin and GSK-3β. Moreover, the related molecular changes were blocked by systemically administered cyclosporine A or microinjections into the VTA. CONCLUSIONS These data elucidate the critical role of calcineurin in the neurobiological mechanism underlying METH-induced locomotor sensitization, suggesting that calcineurin might participate in the initiation of METH-induced locomotor sensitization by negatively regulating the activity of Synapsin and GSK-3β in the VTA.
Collapse
|
31
|
Bigford GE, Chaudhry NS, Keane RW, Holohean AM. 5-Hydroxytryptamine 5HT2C receptors form a protein complex with N-methyl-D-aspartate GluN2A subunits and activate phosphorylation of Src protein to modulate motoneuronal depolarization. J Biol Chem 2012; 287:11049-59. [PMID: 22291020 DOI: 10.1074/jbc.m111.277806] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
N-Methyl-D-aspartate (NMDA)-gated ion channels are known to play a critical role in motoneuron depolarization, but the molecular mechanisms modulating NMDA activation in the spinal cord are not well understood. This study demonstrates that activated 5HT2C receptors enhance NMDA depolarizations recorded electrophysiologically from motoneurons. Pharmacological studies indicate involvement of Src tyrosine kinase mediates 5HT2C facilitation of NMDA. RT-PCR analysis revealed edited forms of 5HT2C were present in mammalian spinal cord, indicating the availability of G-protein-independent isoforms. Spinal cord neurons treated with the 5HT2C agonist MK 212 showed increased Src(Tyr-416) phosphorylation in a dose-dependent manner thus verifying that Src is activated after treatment. In addition, 5HT2C antagonists and tyrosine kinase inhibitors blocked 5HT2C-mediated Src(Tyr-416) phosphorylation and also enhanced NMDA-induced motoneuron depolarization. Co-immunoprecipitation of synaptosomal fractions showed that GluN2A, 5HT2C receptors, and Src tyrosine kinase form protein associations in synaptosomes. Moreover, immunohistochemical analysis demonstrated GluN2A and 5HT2C receptors co-localize on the processes of spinal neurons. These findings reveal that a distinct multiprotein complex links 5-hydroxytryptamine-activated intracellular signaling events with NMDA-mediated functional activity.
Collapse
Affiliation(s)
- Gregory E Bigford
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida 33101, USA
| | | | | | | |
Collapse
|
32
|
Xu J, Kurup P, Nairn AC, Lombroso PJ. Striatal-enriched protein tyrosine phosphatase in Alzheimer's disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 64:303-25. [PMID: 22840751 PMCID: PMC3740556 DOI: 10.1016/b978-0-12-394816-8.00009-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the elderly, affecting millions of people worldwide and representing a substantial economic burden. AD is a progressive disease associated with memory loss and impaired cognitive function. The neuropathology is characterized by cortical accumulation of amyloid plaques and neurofibrillary tangles (NFTs). Amyloid plaques are small, aggregated peptides called beta amyloid (Aβ) and NFTs are aggregates of hyperphosphorylated Tau protein. Because Aβ disrupts multiple intracellular signaling pathways, resulting in some of the clinical symptoms of AD, understanding the underlying molecular mechanisms has implications for the diagnosis and treatment of AD. Recent studies have demonstrated that Aβ regulates striatal-enriched protein tyrosine phosphatase (STEP) (PTPN5). Aβ accumulation is associated with increases in STEP levels and activity that in turn disrupts glutamate receptor trafficking to and from the neuronal membrane. These findings indicate that modulating STEP levels or inhibiting its activity may have beneficial effects for patients with AD, making it an important target for drug discovery. This article reviews the biology of STEP and its role in AD as well as the potential clinical applications.
Collapse
Affiliation(s)
- Jian Xu
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | |
Collapse
|
33
|
Groveman BR, Feng S, Fang XQ, Pflueger M, Lin SX, Bienkiewicz EA, Yu X. The regulation of N-methyl-D-aspartate receptors by Src kinase. FEBS J 2011; 279:20-8. [PMID: 22060915 DOI: 10.1111/j.1742-4658.2011.08413.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Src family kinases (SFKs) play critical roles in the regulation of many cellular functions by growth factors, G-protein-coupled receptors and ligand-gated ion channels. Recent data have shown that SFKs serve as a convergent point of multiple signaling pathways regulating N-methyl-d-aspartate (NMDA) receptors in the central nervous system. Multiple SFK molecules, such as Src and Fyn, closely associate with their substrate, NMDA receptors, via indirect and direct binding mechanisms. The NMDA receptor is associated with an SFK signaling complex consisting of SFKs; the SFK-activating phosphatase, protein tyrosine phosphatase α; and the SFK-inactivating kinase, C-terminal Src kinase. Early studies have demonstrated that intramolecular interactions with the SH2 or SH3 domain lock SFKs in a closed conformation. Disruption of the interdomain interactions can induce the activation of SFKs with multiple signaling pathways involved in regulation of this process. The enzyme activity of SFKs appears 'graded', exhibiting different levels coinciding with activation states. It has also been proposed that the SH2 and SH3 domains may stimulate catalytic activity of protein tyrosine kinases, such as Abl. Recently, it has been found that the enzyme activity of neuronal Src protein is associated with its stability, and that the SH2 and SH3 domain interactions may act not only to constrain the activation of neuronal Src, but also to regulate the enzyme activity of active neuronal Src. Collectively, these findings demonstrate novel mechanisms underlying the regulation of SFKs.
Collapse
Affiliation(s)
- Bradley R Groveman
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Snyder MA, Cooke BM, Woolley CS. Estradiol potentiation of NR2B-dependent EPSCs is not due to changes in NR2B protein expression or phosphorylation. Hippocampus 2011; 21:398-408. [PMID: 20082293 DOI: 10.1002/hipo.20756] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The hormone, 17β-estradiol (E2), influences the structure and function of synapses in the CA1 region of the hippocampus. E2 increases the density of dendritic spines and excitatory synapses on CA1 pyramidal cells, increases CA1 cells' sensitivity to excitatory synaptic input mediated by the NMDA receptor (NMDAR), enhances NMDAR-dependent long-term potentiation, and improves hippocampus-dependent working memory. Smith and McMahon (2006 J Neurosci 26:8517-8522) reported that the larger NMDAR-mediated excitatory postsynaptic currents (EPSCs) recorded after E2 treatment are due primarily to an increased contribution of NR2B-containing NMDARs. We used a combination of electrophysiology, Western blot, and immunofluorescence to investigate two potential mechanisms by which E2 could enhance NR2B-dependent EPSCs: An increase in NMDAR subunit protein levels and/or a change(s) in NR2B phosphorylation. Our studies confirmed the E2-induced increase in NR2B-dependent EPSC amplitude, but we found no evidence that E2 affects protein levels for the NR1, NR2A, or NR2B subunit of the NMDAR, nor that E2 affects phosphorylation of NR2B. Our findings suggest that the effects of E2 on NMDAR-dependent synaptic physiology in the hippocampus likely result from recruitment of NR2B-containing NMDARs to synapses rather than from increased expression of NMDARs or changes in their phosphorylation state.
Collapse
Affiliation(s)
- Melissa A Snyder
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, USA
| | | | | |
Collapse
|
35
|
Deng Q, Terunuma M, Fellin T, Moss SJ, Haydon PG. Astrocytic activation of A1 receptors regulates the surface expression of NMDA receptors through a Src kinase dependent pathway. Glia 2011; 59:1084-93. [PMID: 21544869 DOI: 10.1002/glia.21181] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/29/2011] [Indexed: 11/06/2022]
Abstract
Chemical transmitters released from astrocytes, termed gliotransmitters, modulate synaptic transmission and neuronal function. Using astrocyte-specific inducible transgenicmice (dnSNARE mice), we have demonstrated that inhibiting gliotransmission leads to reduced activation of adenosine A1 receptors (A1R) and impaired sleep homeostasis (Halassa et al. (2009) Neuron 61:213-219); Pascual et al. (2005) Science 310:113-116). Additionally, synaptic N-methyl-D-aspartate receptor (NMDAR) currents are reduced in these astrocyte-specific transgenic animals (Fellin et al. (2009) Proc Natl Acad Sci USA 106:15037-15042). Because of the importance of adenosine and NMDA receptors to sleep processes we asked whether there is a causal linkage between changes in A1R activation and synaptic NMDA receptors. We show that astrocytic dnSNARE expression leads to reduced tyrosine phosphorylation of Srckinase and NR2 subunits concomitant with the decreased surface expression of the NR2 subunits. To test the role of A1R signaling in mediating these actions, we show that incubation of wildtype (WT) slices with an A1R antagonist reduces tyrosine phosphorylation of Src kinase and NR2B, decreases the surface expression of the NR2B subunits and leads to smaller NMDA component of miniature EPSCs. In dnSNARE mice we could rescue WT phenotype by incubation in an A1R agonist:activation of A1 receptor led to increased tyrosine phosphorylation of Src kinase and NR2B subunits as well as increased the surface expression of the NR2B subunit and increased NMDA component of the synaptic mEPSC. These results provide the first demonstration that astrocytes can affect neuronal excitability on a long time scale by regulating the surface expression of NMDA receptors through the activation of specific intracellular signaling pathways.
Collapse
Affiliation(s)
- Qiudong Deng
- Department of Neuroscience, Tufts University, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
36
|
Yang C, Chen Y, Tang L, Wang ZJ. Haloperidol disrupts opioid-antinociceptive tolerance and physical dependence. J Pharmacol Exp Ther 2011; 338:164-72. [PMID: 21436292 DOI: 10.1124/jpet.110.175539] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies from our laboratory and others have implicated a critical role of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in opioid tolerance and dependence. Translational research targeting the CaMKII pathway is challenging, if not impossible, because of a lack of selective inhibitors. We discovered in a preliminary study that haloperidol, a butyrophenone antipsychotic drug, inhibited CaMKII, which led us to hypothesize that haloperidol can attenuate opioid tolerance and dependence by inhibiting CaMKII. The hypothesis was tested in two rodent models of opioid tolerance and dependence. Pretreatment with haloperidol (0.2-1.0 mg/kg i.p.) prevented the development of morphine tolerance and dependence in a dose-dependent manner. Short-term treatment with haloperidol (0.06-0.60 mg/kg i.p.) dose-dependently reversed the established morphine-antinociceptive tolerance and physical dependence. Correlating with behavioral effects, pretreatment or short-term treatment with haloperidol dose-dependently inhibited morphine-induced up-regulation of supraspinal and spinal CaMKIIα activity. Moreover, haloperidol given orally was also effective in attenuating morphine-induced CaMKIIα activity, antinociceptive tolerance, and physical dependence. Taken together, these data suggest that haloperidol attenuates opioid tolerance and dependence by suppressing CaMKII activity. Because haloperidol is a clinically used drug that can be taken orally, we propose that the drug may be of use in attenuating opioid tolerance and dependence.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Biopharmaceutical Sciences and Cancer Center, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
37
|
Mao LM, Guo ML, Jin DZ, Fibuch EE, Choe ES, Wang JQ. Post-translational modification biology of glutamate receptors and drug addiction. Front Neuroanat 2011; 5:19. [PMID: 21441996 PMCID: PMC3062099 DOI: 10.3389/fnana.2011.00019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/03/2011] [Indexed: 01/26/2023] Open
Abstract
Post-translational covalent modifications of glutamate receptors remain a hot topic. Early studies have established that this family of receptors, including almost all ionotropic and metabotropic glutamate receptor subtypes, undergoes active phosphorylation at serine, threonine, or tyrosine residues in their intracellular domains. Recent evidence identifies several glutamate receptor subtypes to be direct substrates for palmitoylation at cysteine residues. Other modifications such as ubiquitination and sumoylation at lysine residues also occur to certain glutamate receptors. These modifications are dynamic and reversible in nature and are regulatable by changing synaptic inputs. The regulated modifications significantly impact the receptor in many ways, including interrelated changes in biochemistry (synthesis, subunit assembling, and protein–protein interactions), subcellular redistribution (trafficking, endocytosis, synaptic delivery, and clustering), and physiology, usually associated with changes in synaptic plasticity. Glutamate receptors are enriched in the striatum and cooperate closely with dopamine to regulate striatal signaling. Emerging evidence shows that modification processes of striatal glutamate receptors are sensitive to addictive drugs, such as psychostimulants (cocaine and amphetamine). Altered modifications are believed to be directly linked to enduring receptor/synaptic plasticity and drug-seeking. This review summarizes several major types of modifications of glutamate receptors and analyzes the role of these modifications in striatal signaling and in the pathogenesis of psychostimulant addiction.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City Kansas City, MO, USA
| | | | | | | | | | | |
Collapse
|
38
|
The NMDA receptor NR1 subunit is critically involved in the regulation of NMDA receptor activity by C-terminal Src kinase (Csk). Neurochem Res 2010; 36:319-26. [PMID: 21113815 DOI: 10.1007/s11064-010-0330-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 11/15/2010] [Indexed: 01/25/2023]
Abstract
Previous studies have shown that Csk plays critical roles in the regulation of neural development, differentiation and glutamate-mediated synaptic plasticity. It has been found that Csk associates with the NR2A and 2B subunits of N-methyl-D-aspartate receptors (NMDARs) in a Src activity-dependent manner and serves as an intrinsic mechanism to provide a "brake" on the induction of long-term synaptic potentiation (LTP) mediated by NMDARs. In contrast to the NR2A and 2B subunits, no apparent tyrosine phosphorylation is found in the NR1 subunit of NMDARs. Here, we report that Csk can also associate with the NR1 subunit in a Src activity-dependent manner. The truncation of the NR1 subunit C-tail which contains only one tyrosine (Y837) significantly reduced the Csk association with the NR1-1a/NR2A receptor complex. Furthermore, we found that either the truncation of NR2A C-tail at aa 857 or the mutation of Y837 in the NR1-1a subunit to phenylalanine blocked the inhibition of NR1-1a/NR2A receptors induced by intracellular application of Csk. Thus, both the NR1 and NR2 subunits are required for the regulation of NMDAR activity by Csk.
Collapse
|
39
|
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010; 62:405-96. [PMID: 20716669 PMCID: PMC2964903 DOI: 10.1124/pr.109.002451] [Citation(s) in RCA: 2646] [Impact Index Per Article: 176.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Collapse
Affiliation(s)
- Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
The Effect of In Utero Cigarette Smoke Exposure on Development of Respiratory Control: A Review. PEDIATRIC ALLERGY IMMUNOLOGY AND PULMONOLOGY 2010. [DOI: 10.1089/ped.2010.0036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Sinai L, Duffy S, Roder JC. Src inhibition reduces NR2B surface expression and synaptic plasticity in the amygdala. Learn Mem 2010; 17:364-71. [DOI: 10.1101/lm.1765710] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Hu JL, Liu G, Li YC, Gao WJ, Huang YQ. Dopamine D1 receptor-mediated NMDA receptor insertion depends on Fyn but not Src kinase pathway in prefrontal cortical neurons. Mol Brain 2010; 3:20. [PMID: 20569495 PMCID: PMC2902469 DOI: 10.1186/1756-6606-3-20] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 06/22/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interactions between dopamine and glutamate in the prefrontal cortex are essential for cognitive functions such as working memory. Modulation of N-methyl-D-aspartic acid (NMDA) receptor functions by dopamine D1 receptor is believed to play a critical role in these functions. The aim of the work reported here is to explore the signaling pathway underlying D1 receptor-mediated trafficking of NMDA receptors in cultured rat prefrontal cortical neurons. RESULTS Activation of D1 receptor by selective agonist SKF-81297 significantly increased the expression of NR2B subunits. This effect was completely blocked by small interfering RNA knockdown of Fyn, but not Src. Under control conditions, neither Fyn nor Src knockdown exhibited significant effect on basal NR2B expression. D1 stimulation significantly enhanced NR2B insertion into plasma membrane in cultured PFC neurons, a process obstructed by Fyn, but not Src, knockdown. CONCLUSIONS Dopamine D1 receptor-mediated increase of NMDA receptors is thus Fyn kinase dependent. Targeting this signaling pathway may be useful in treating drug addiction and schizophrenia.
Collapse
Affiliation(s)
- Jian-Li Hu
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | | | | | | | | |
Collapse
|
43
|
Jung W, Kim H, Shin M, Park D, Kim K. The effect of ganglioside GQ1b on the NMDA receptor signaling pathway in H19-7 cells and rat hippocampus. Neuroscience 2010; 165:159-67. [DOI: 10.1016/j.neuroscience.2009.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 09/09/2009] [Accepted: 10/05/2009] [Indexed: 01/19/2023]
|
44
|
Reelin and apoE actions on signal transduction, synaptic function and memory formation. ACTA ACUST UNITED AC 2009; 4:259-70. [DOI: 10.1017/s1740925x09990184] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Low-density-lipoprotein receptors (LDLRs) are an evolutionarily ancient surface protein family with the ability to activate a diversity of extracellular signals across the cellular membrane in the adult central nervous system (CNS). Their intimate roles in modulating synaptic plasticity and their necessity in hippocampal-dependent learning and memory have only recently come to light. Two known LDLR ligands, specifically apolipoprotein E (apoE) and reelin, have been the most widely investigated in this regard. Most of our understanding of synaptic plasticity comes from investigation of both pre- and postsynaptic alterations. Therefore, it is interesting to note that neurons and glia that do not contribute to the synaptic junction in question can secrete signaling molecules that affect synaptic plasticity. Notably, reelin and apoE have been shown to modulate hippocampal long-term potentiation in general, and affect NMDA receptor and AMPA receptor regulation specifically. Furthermore, these receptors and signaling molecules have significant roles in neuronal degenerative diseases such as Alzheimer's disease. The recent production of recombinant proteins, knockout and transgenic mice for receptors and ligands and the development of human ApoE targeted replacement mice have significantly expanded our understanding of the roles LDLRs and their ligands have in certain disease states and the accompanying initiation of specific signaling pathways. This review describes the role LDLRs, apoE and reelin have in the regulation of hippocampal synaptic plasticity.
Collapse
|
45
|
Tyrosine phosphorylation of the 2B subunit of the NMDA receptor is necessary for taste memory formation. J Neurosci 2009; 29:9219-26. [PMID: 19625512 DOI: 10.1523/jneurosci.5667-08.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We aimed to test whether tyrosine phosphorylation of the NMDA receptor (NMDAR) in the insular cortex is necessary for novel taste learning. We found that in rats, novel taste learning leads to elevated phosphorylation of tyrosine 1472 of the NR2B subunit of the NMDAR and increases the interaction of phosphorylated NR2B with the major postsynaptic scaffold protein PSD-95. Injection of the tyrosine kinase inhibitor genistein directly into the insular cortex of rats before novel taste exposure prevented the increase in NR2B tyrosine phosphorylation and behaviorally attenuated taste-memory formation. Functionally, tyrosine phosphorylation of NR2B after learning was found to determine the synaptic distribution of the NMDAR, since microinjection of genistein to the insular cortex altered the distribution pattern of NMDAR caused by novel taste learning.
Collapse
|
46
|
Goebel-Goody S, Davies K, Alvestad Linger R, Freund R, Browning M. Phospho-regulation of synaptic and extrasynaptic N-methyl-d-aspartate receptors in adult hippocampal slices. Neuroscience 2009; 158:1446-59. [DOI: 10.1016/j.neuroscience.2008.11.006] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Revised: 11/04/2008] [Accepted: 11/05/2008] [Indexed: 11/25/2022]
|
47
|
Lin C, Tao P, Jong Y, Chen W, Yang C, Huang L, Chao C, Yang S. Prenatal morphine alters the synaptic complex of postsynaptic density 95 with N-methyl-d-aspartate receptor subunit in hippocampal CA1 subregion of rat offspring leading to long-term cognitive deficits. Neuroscience 2009; 158:1326-37. [DOI: 10.1016/j.neuroscience.2008.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Revised: 11/02/2008] [Accepted: 11/04/2008] [Indexed: 11/28/2022]
|
48
|
Levenson JM, Qiu S, Weeber EJ. The role of reelin in adult synaptic function and the genetic and epigenetic regulation of the reelin gene. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:422-31. [DOI: 10.1016/j.bbagrm.2008.01.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 01/01/2008] [Accepted: 01/03/2008] [Indexed: 01/09/2023]
|
49
|
Gao C, Wolf ME. Dopamine receptors regulate NMDA receptor surface expression in prefrontal cortex neurons. J Neurochem 2008; 106:2489-501. [PMID: 18673451 DOI: 10.1111/j.1471-4159.2008.05597.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Interactions between dopamine (DA) and glutamate systems in the prefrontal cortex (PFC) are important in addiction and other psychiatric disorders. Here, we examined DA receptor regulation of NMDA receptor surface expression in postnatal rat PFC neuronal cultures. Immunocytochemical analysis demonstrated that surface expression (synaptic and non-synaptic) of NR1 and NR2B on PFC pyramidal neurons was increased by the D1 receptor agonist SKF 81297 (1 microM, 5 min). Activation of protein kinase A (PKA) did not alter NR1 distribution, indicating that PKA does not mediate the effect of D1 receptor stimulation. However, the tyrosine kinase inhibitor genistein (50 microM, 30 min) completely blocked the effect of SKF 81297 on NR1 and NR2B surface expression. Protein cross-linking studies confirmed that SKF 81297 (1 microM, 5 min) increased NR1 and NR2B surface expression, and further showed that NR2A surface expression was not affected. Genistein blocked the effect of SKF 81297 on NR1 and NR2B. Surface-expressed immunoreactivity detected with a phospho-specific antibody to tyrosine 1472 of NR2B also increased after D1 agonist treatment. Our results show that tyrosine phosphorylation plays an important role in the trafficking of NR2B-containing NMDA receptors in PFC neurons and the regulation of their trafficking by DA receptors.
Collapse
Affiliation(s)
- Can Gao
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064-3095, USA
| | | |
Collapse
|
50
|
Post-synaptic density-93 mediates tyrosine-phosphorylation of the N-methyl-D-aspartate receptors. Neuroscience 2008; 153:700-8. [PMID: 18423999 DOI: 10.1016/j.neuroscience.2008.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 02/04/2008] [Accepted: 03/02/2008] [Indexed: 11/21/2022]
Abstract
Src family protein kinases (SFKs) -mediated tyrosine-phosphorylation regulates N-methyl-D-aspartate (NMDA) receptor synaptic function. Some members of the membrane-associated guanylate kinase (MAGUK) family of proteins bind to both SFKs and NMDA receptors, but it is unclear whether the MAGUK family of proteins is required for SFKs-mediated tyrosine-phosphorylation of the NMDA receptors. Here, we showed by co-immunoprecipitation that post-synaptic density (PSD) -93, a member of the MAGUK family of proteins, interacts with the NMDA receptor subunits NR2A and NR2B as well as with Fyn, a member of the SFKs, in mouse cerebral cortex. Using a biochemical fractionation approach to isolate subcellular compartments revealed that the expression of Fyn, but not of other members of the SFKs (Lyn, Src, and Yes), was significantly decreased in synaptosomal membrane fractions derived from the cerebral cortex of PSD-93 knockout mice. Interestingly, we found that PSD-93 disruption causes reduction of tyrosine-phosphorylated NR2A and NR2B in the same fraction. Moreover, PSD-93 deletion markedly blocked the SFKs-mediated increase in tyrosine-phosphorylated NR2A and NR2B through the protein kinase C pathway after induction with 4-phorbol 12-myristate 13-acetate in cultured cortical neurons. Our findings indicate that PSD-93 appears to mediate tyrosine-phosphorylation of the NMDA receptors and synaptic localization of Fyn.
Collapse
|