1
|
Montigny C, Huang DL, Beswick V, Barbot T, Jaxel C, le Maire M, Zheng JS, Jamin N. Sarcolipin alters SERCA1a interdomain communication by impairing binding of both calcium and ATP. Sci Rep 2021; 11:1641. [PMID: 33452371 PMCID: PMC7810697 DOI: 10.1038/s41598-021-81061-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/31/2020] [Indexed: 01/08/2023] Open
Abstract
Sarcolipin (SLN), a single-spanning membrane protein, is a regulator of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA1a). Chemically synthesized SLN, palmitoylated or not (pSLN or SLN), and recombinant wild-type rabbit SERCA1a expressed in S. cerevisiae design experimental conditions that provide a deeper understanding of the functional role of SLN on the regulation of SERCA1a. Our data show that chemically synthesized SLN interacts with recombinant SERCA1a, with calcium-deprived E2 state as well as with calcium-bound E1 state. This interaction hampers the binding of calcium in agreement with published data. Unexpectedly, SLN has also an allosteric effect on SERCA1a transport activity by impairing the binding of ATP. Our results reveal that SLN significantly slows down the E2 to Ca2.E1 transition of SERCA1a while it affects neither phosphorylation nor dephosphorylation. Comparison with chemically synthesized SLN deprived of acylation demonstrates that palmitoylation is not necessary for either inhibition or association with SERCA1a. However, it has a small but statistically significant effect on SERCA1a phosphorylation when various ratios of SLN-SERCA1a or pSLN-SERCA1a are tested.
Collapse
Affiliation(s)
- Cédric Montigny
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
| | - Dong Liang Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Veronica Beswick
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
- Department of Physics, Evry-Val-d'Essonne University, 91025, Evry, France
| | - Thomas Barbot
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Christine Jaxel
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Marc le Maire
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Ji-Shen Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| | - Nadège Jamin
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Mechanism of the E2 to E1 transition in Ca 2+ pump revealed by crystal structures of gating residue mutants. Proc Natl Acad Sci U S A 2018; 115:12722-12727. [PMID: 30482857 DOI: 10.1073/pnas.1815472115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ca2+-ATPase of sarcoplasmic reticulum (SERCA1a) pumps two Ca2+ per ATP hydrolyzed from the cytoplasm and two or three protons in the opposite direction. In the E2 state, after transferring Ca2+ into the lumen of sarcoplasmic reticulum, all of the acidic residues that coordinate Ca2+ are thought to be protonated, including the gating residue Glu309. Therefore a Glu309Gln substitution is not expected to significantly perturb the structure. Here we report crystal structures of the Glu309Gln and Glu309Ala mutants of SERCA1a under E2 conditions. The Glu309Gln mutant exhibits, unexpectedly, large structural rearrangements in both the cytoplasmic and transmembrane domains, apparently uncoupling them. However, the structure definitely represents E2 and, together with the help of quantum chemical calculations, allows us to postulate a mechanism for the E2 → E1 transition triggered by deprotonation of Glu309.
Collapse
|
3
|
Danko S, Yamasaki K, Daiho T, Suzuki H. Membrane Perturbation of ADP-insensitive Phosphoenzyme of Ca 2+-ATPase Modifies Gathering of Transmembrane Helix M2 with Cytoplasmic Domains and Luminal Gating. Sci Rep 2017; 7:41172. [PMID: 28117348 PMCID: PMC5259720 DOI: 10.1038/srep41172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/16/2016] [Indexed: 11/25/2022] Open
Abstract
Ca2+ transport by sarcoplasmic reticulum Ca2+-ATPase involves ATP-dependent phosphorylation of a catalytic aspartic acid residue. The key process, luminal Ca2+ release occurs upon phosphoenzyme isomerization, abbreviated as E1PCa2 (reactive to ADP regenerating ATP and with two occluded Ca2+ at transport sites) → E2P (insensitive to ADP and after Ca2+ release). The isomerization involves gathering of cytoplasmic actuator and phosphorylation domains with second transmembrane helix (M2), and is epitomized by protection of a Leu119-proteinase K (prtK) cleavage site on M2. Ca2+ binding to the luminal transport sites of E2P, producing E2PCa2 before Ca2+-release exposes the prtK-site. Here we explore E2P structure to further elucidate luminal gating mechanism and effect of membrane perturbation. We find that ground state E2P becomes cleavable at Leu119 in a non-solubilizing concentration of detergent C12E8 at pH 7.4, indicating a shift towards a more E2PCa2-like state. Cleavage is accelerated by Mg2+ binding to luminal transport sites and blocked by their protonation at pH 6.0. Results indicate that possible disruption of phospholipid-protein interactions strongly favors an E2P species with looser head domain interactions at M2 and responsive to specific ligand binding at the transport sites, likely an early flexible intermediate in the development towards ground state E2P.
Collapse
Affiliation(s)
- Stefania Danko
- Asahikawa Medical University, Department of Biochemistry, Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
| | - Kazuo Yamasaki
- Asahikawa Medical University, Department of Biochemistry, Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
| | - Takashi Daiho
- Asahikawa Medical University, Department of Biochemistry, Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
| | - Hiroshi Suzuki
- Asahikawa Medical University, Department of Biochemistry, Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
| |
Collapse
|
4
|
Daiho T, Yamasaki K, Danko S, Suzuki H. Glycine 105 as Pivot for a Critical Knee-like Joint between Cytoplasmic and Transmembrane Segments of the Second Transmembrane Helix in Ca2+-ATPase. J Biol Chem 2016; 291:24688-24701. [PMID: 27733680 DOI: 10.1074/jbc.m116.759704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/11/2016] [Indexed: 11/06/2022] Open
Abstract
The cytoplasmic actuator domain of the sarco(endo)plasmic reticulum Ca2+-ATPase undergoes large rotational movements that influence the distant transmembrane transport sites, and a long second transmembrane helix (M2) connected with this domain plays critical roles in transmitting motions between the cytoplasmic catalytic domains and transport sites. Here we explore possible structural roles of Gly105 between the cytoplasmic (M2c) and transmembrane (M2m) segments of M2 by introducing mutations that limit/increase conformational freedom. Alanine substitution G105A markedly retards isomerization of the phosphoenzyme intermediate (E1PCa2 → E2PCa2 → E2P + 2Ca2+), and disrupts Ca2+ occlusion in E1PCa2 and E2PCa2 at the transport sites uncoupling ATP hydrolysis and Ca2+ transport. In contrast, this substitution accelerates the ATPase activation (E2 → E1Ca2). Introducing a glycine by substituting another residue on M2 in the G105A mutant (i.e. "G-shift substitution") identifies the glycine positions required for proper Ca2+ handling and kinetics in each step. All wild-type kinetic properties, including coupled transport, are fully restored in the G-shift substitution at position 112 (G105A/A112G) located on the same side of the M2c helix as Gly105 facing M4/phosphorylation domain. Results demonstrate that Gly105 functions as a flexible knee-like joint during the Ca2+ transport cycle, so that cytoplasmic domain motions can bend and strain M2 in the correct direction or straighten the helix for proper gating and coupling of Ca2+ transport and ATP hydrolysis.
Collapse
Affiliation(s)
- Takashi Daiho
- From the Department of Biochemistry, Asahikawa Medical University, Midorigaoka-Higashi, Asahikawa 078-8510, Japan.
| | - Kazuo Yamasaki
- From the Department of Biochemistry, Asahikawa Medical University, Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Stefania Danko
- From the Department of Biochemistry, Asahikawa Medical University, Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Hiroshi Suzuki
- From the Department of Biochemistry, Asahikawa Medical University, Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| |
Collapse
|
5
|
Montigny C, Decottignies P, Le Maréchal P, Capy P, Bublitz M, Olesen C, Møller JV, Nissen P, le Maire M. S-palmitoylation and s-oleoylation of rabbit and pig sarcolipin. J Biol Chem 2014; 289:33850-61. [PMID: 25301946 DOI: 10.1074/jbc.m114.590307] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sarcolipin (SLN) is a regulatory peptide present in sarcoplasmic reticulum (SR) from skeletal muscle of animals. We find that native rabbit SLN is modified by a fatty acid anchor on Cys-9 with a palmitic acid in about 60% and, surprisingly, an oleic acid in the remaining 40%. SLN used for co-crystallization with SERCA1a (Winther, A. M., Bublitz, M., Karlsen, J. L., Moller, J. V., Hansen, J. B., Nissen, P., and Buch-Pedersen, M. J. (2013) Nature 495, 265-2691; Ref. 1) is also palmitoylated/oleoylated, but is not visible in crystal structures, probably due to disorder. Treatment with 1 m hydroxylamine for 1 h removes the fatty acids from a majority of the SLN pool. This treatment did not modify the SERCA1a affinity for Ca(2+) but increased the Ca(2+)-dependent ATPase activity of SR membranes indicating that the S-acylation of SLN or of other proteins is required for this effect on SERCA1a. Pig SLN is also fully palmitoylated/oleoylated on its Cys-9 residue, but in a reverse ratio of about 40/60. An alignment of 67 SLN sequences from the protein databases shows that 19 of them contain a cysteine and the rest a phenylalanine at position 9. Based on a cladogram, we postulate that the mutation from phenylalanine to cysteine in some species is the result of an evolutionary convergence. We suggest that, besides phosphorylation, S-acylation/deacylation also regulates SLN activity.
Collapse
Affiliation(s)
- Cédric Montigny
- From the Laboratoire des Protéines Membranaires, UMR 8221, Commissariat à l'Energie Atomique (CEA), Université Paris-Sud and Centre National de la Recherche Scientifique (CNRS), F91191, Gif-sur-Yvette, France
| | - Paulette Decottignies
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, CNRS UMR 8619, Université Paris-Sud, F91400, Orsay, France
| | - Pierre Le Maréchal
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, CNRS UMR 8619, Université Paris-Sud, F91400, Orsay, France
| | - Pierre Capy
- Laboratoire Evolution, Génomes et Spéciation, CNRS UPR 9034, Centre de Recherche de Gif and Université Paris-Sud, F91190, Gif-sur-Yvette, France
| | - Maike Bublitz
- Centre for Membrane Pumps in Cells and Disease, PUMPKIN, Danish National Research Foundation, Department of Molecular Biology and Genetics, and
| | - Claus Olesen
- Centre for Membrane Pumps in Cells and Disease, PUMPKIN, Danish National Research Foundation, Department of Molecular Biology and Genetics, and Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark
| | - Jesper Vuust Møller
- Centre for Membrane Pumps in Cells and Disease, PUMPKIN, Danish National Research Foundation, Department of Molecular Biology and Genetics, and
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease, PUMPKIN, Danish National Research Foundation, Department of Molecular Biology and Genetics, and
| | - Marc le Maire
- From the Laboratoire des Protéines Membranaires, UMR 8221, Commissariat à l'Energie Atomique (CEA), Université Paris-Sud and Centre National de la Recherche Scientifique (CNRS), F91191, Gif-sur-Yvette, France,
| |
Collapse
|
6
|
David-Bosne S, Florent I, Lund-Winther AM, Hansen JB, Buch-Pedersen M, Machillot P, le Maire M, Jaxel C. Antimalarial screening via large-scale purification of Plasmodium falciparum Ca2+-ATPase 6 and in vitro studies. FEBS J 2013; 280:5419-29. [PMID: 23497141 DOI: 10.1111/febs.12244] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/18/2013] [Accepted: 03/11/2013] [Indexed: 02/04/2023]
Abstract
The most severe form of human malaria is caused by the parasite Plasmodium falciparum. Despite the current need, there is no effective vaccine and parasites are becoming resistant to most of the antimalarials available. Therefore, there is an urgent need to discover new drugs from targets that have not yet suffered from drug pressure with the aim of overcoming the problem of new emerging resistance. Membrane transporters, such as P. falciparum Ca(2+)-ATPase 6 (PfATP6), the P. falciparum sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA), have been proposed as potentially good antimalarial targets. The present investigation focuses on: (a) the large-scale purification of PfATP6 for maintenance of its enzymatic activity; (b) screening for PfATP6 inhibitors from a compound library; and (c) the selection of the best inhibitors for further tests on P. falciparum growth in vitro. We managed to heterologously express in yeast and purify an active form of PfATP6 as previously described, although in larger amounts. In addition to some classical SERCA inhibitors, a chemical library of 1680 molecules was screened. From these, we selected a pool of the 20 most potent inhibitors of PfATP6, presenting half maximal inhibitory concentration values in the range 1-9 μm. From these, eight were chosen for evaluation of their effect on P. falciparum growth in vitro, and the best compound presented a half maximal inhibitory concentration of ~ 2 μm. We verified the absence of an inhibitory effect of most of the compounds on mammalian SERCA1a, representing a potential advantage in terms of human toxicity. The present study describes a multidisciplinary approach allowing the selection of promising PfATP6-specific inhibitors with good antimalarial activity.
Collapse
|
7
|
Cornelius F, Mahmmoud YA, Toyoshima C. Metal fluoride complexes of Na,K-ATPase: characterization of fluoride-stabilized phosphoenzyme analogues and their interaction with cardiotonic steroids. J Biol Chem 2011; 286:29882-92. [PMID: 21708939 DOI: 10.1074/jbc.m111.259663] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na,K-ATPase belongs to the P-type ATPase family of primary active cation pumps. Metal fluorides like magnesium-, beryllium-, and aluminum fluoride act as phosphate analogues and inhibit P-type ATPases by interacting with the phosphorylation site, stabilizing conformations that are analogous to specific phosphoenzyme intermediates. Cardiotonic steroids like ouabain used in the treatment of congestive heart failure and arrhythmias specifically inhibit the Na,K-ATPase, and the detailed structure of the highly conserved binding site has recently been described by the crystal structure of the shark Na,K-ATPase in a state analogous to E2·2K(+)·P(i) with ouabain bound with apparently low affinity (1). In the present work inhibition, and subsequent reactivation by high Na(+), after treatment of shark Na,K-ATPase with various metal fluorides are characterized. Half-maximal inhibition of Na,K-ATPase activity by metal fluorides is in the micromolar range. The binding of cardiotonic steroids to the metal fluoride-stabilized enzyme forms was investigated using the fluorescent ouabain derivative 9-anthroyl ouabain and compared with binding to phosphorylated enzyme. The fastest binding was to the Be-fluoride stabilized enzyme suggesting a preformed ouabain binding cavity, in accord with results for Ca-ATPase where Be-fluoride stabilizes the E2-P ground state with an open luminal ion access pathway, which in Na,K-ATPase could be a passage for ouabain. The Be-fluoride stabilized enzyme conformation closely resembles the E2-P ground state according to proteinase K cleavage. Ouabain, but not its aglycone ouabagenin, prevented reactivation of this metal fluoride form by high Na(+) demonstrating the pivotal role of the sugar moiety in closing the extracellular cation pathway.
Collapse
|
8
|
Abstract
The sarcoplasmic (SERCA 1a) Ca2+-ATPase is a membrane protein abundantly present in skeletal muscles where it functions as an indispensable component of the excitation-contraction coupling, being at the expense of ATP hydrolysis involved in Ca2+/H+ exchange with a high thermodynamic efficiency across the sarcoplasmic reticulum membrane. The transporter serves as a prototype of a whole family of cation transporters, the P-type ATPases, which in addition to Ca2+ transporting proteins count Na+, K+-ATPase and H+, K+-, proton- and heavy metal transporting ATPases as prominent members. The ability in recent years to produce and analyze at atomic (2·3-3 Å) resolution 3D-crystals of Ca2+-transport intermediates of SERCA 1a has meant a breakthrough in our understanding of the structural aspects of the transport mechanism. We describe here the detailed construction of the ATPase in terms of one membraneous and three cytosolic domains held together by a central core that mediates coupling between Ca2+-transport and ATP hydrolysis. During turnover, the pump is present in two different conformational states, E1 and E2, with a preference for the binding of Ca2+ and H+, respectively. We discuss how phosphorylated and non-phosphorylated forms of these conformational states with cytosolic, occluded or luminally exposed cation-binding sites are able to convert the chemical energy derived from ATP hydrolysis into an electrochemical gradient of Ca2+ across the sarcoplasmic reticulum membrane. In conjunction with these basic reactions which serve as a structural framework for the transport function of other P-type ATPases as well, we also review the role of the lipid phase and the regulatory and thermodynamic aspects of the transport mechanism.
Collapse
|
9
|
Cardi D, Pozza A, Arnou B, Marchal E, Clausen JD, Andersen JP, Krishna S, Møller JV, le Maire M, Jaxel C. Purified E255L mutant SERCA1a and purified PfATP6 are sensitive to SERCA-type inhibitors but insensitive to artemisinins. J Biol Chem 2010; 285:26406-16. [PMID: 20530490 PMCID: PMC2924071 DOI: 10.1074/jbc.m109.090340] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antimalarial drugs artemisinins have been described as inhibiting Ca(2+)-ATPase activity of PfATP6 (Plasmodium falciparum ATP6) after expression in Xenopus oocytes. Mutation of an amino acid residue in mammalian SERCA1 (Glu(255)) to the equivalent one predicted in PfATP6 (Leu) was reported to induce sensitivity to artemisinin in the oocyte system. However, in the present experiments, we found that artemisinin did not inhibit mammalian SERCA1a E255L either when expressed in COS cells or after purification of the mutant expressed in Saccharomyces cerevisiae. Moreover, we found that PfATP6 after expression and purification from S. cerevisiae was insensitive to artemisinin and significantly less sensitive to thapsigargin and 2,5-di(tert-butyl)-1,4-benzohydroquinone than rabbit SERCA1 but retained higher sensitivity to cyclopiazonic acid, another type of SERCA1 inhibitor. Although mammalian SERCA and purified PfATP6 appear to have different pharmacological profiles, their insensitivity to artemisinins suggests that the mechanism of action of this class of drugs on the calcium metabolism in the intact cell is complex and cannot be ascribed to direct inhibition of PfATP6. Furthermore, the successful purification of PfATP6 affords the opportunity to develop new antimalarials by screening for inhibitors against PfATP6.
Collapse
Affiliation(s)
- Delphine Cardi
- Commissariat à l'Energie Atomique, Institut de Biologie et de Technologies de Saclay, SB2SM, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Daiho T, Danko S, Yamasaki K, Suzuki H. Stable structural analog of Ca2+-ATPase ADP-insensitive phosphoenzyme with occluded Ca2+ formed by elongation of A-domain/M1'-linker and beryllium fluoride binding. J Biol Chem 2010; 285:24538-47. [PMID: 20529842 DOI: 10.1074/jbc.m110.144535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have developed a stable analog for the ADP-insensitive phosphoenzyme intermediate with two occluded Ca(2+) at the transport sites (E2PCa(2)) of sarcoplasmic reticulum Ca(2+)-ATPase. This is normally a transient intermediate state during phosphoenzyme isomerization from the ADP-sensitive to ADP-insensitive form and Ca(2+) deocclusion/release to the lumen; E1PCa(2) --> E2PCa(2) --> E2P + 2Ca(2+). Stabilization was achieved by elongation of the Glu(40)-Ser(48) loop linking the Actuator domain and M1 (1st transmembrane helix) with four glycine insertions at Gly(46)/Lys(47) and by binding of beryllium fluoride (BeF(x)) to the phosphorylation site of the Ca(2+)-bound ATPase (E1Ca(2)). The complex E2Ca(2)xBeF(3)(-) was also produced by lumenal Ca(2+) binding to E2xBeF(3)(-) (E2P ground state analog) of the elongated linker mutant. The complex was stable for at least 1 week at 25 degrees C. Only BeF(x), but not AlF(x) or MgF(x), produced the E2PCa(2) structural analog. Complex formation required binding of Mg(2+), Mn(2+), or Ca(2+) at the catalytic Mg(2+) site. Results reveal that the phosphorylation product E1PCa(2) and the E2P ground state (but not the transition states) become competent to produce the E2PCa(2) transient state during forward and reverse phosphoenzyme isomerization. Thus, isomerization and lumenal Ca(2+) release processes are strictly coupled with the formation of the acylphosphate covalent bond at the catalytic site. Results also demonstrate the critical structural roles of the Glu(40)-Ser(48) linker and of Mg(2+) at the catalytic site in these processes.
Collapse
Affiliation(s)
- Takashi Daiho
- Department of Biochemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan.
| | | | | | | |
Collapse
|
11
|
Corvazier E, Bredoux R, Kovács T, Enouf J. Expression of sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) 3 proteins in two major conformational states in native human cell membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:587-99. [DOI: 10.1016/j.bbamem.2008.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 11/29/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
|
12
|
Winters DL, Autry JM, Svensson B, Thomas DD. Interdomain fluorescence resonance energy transfer in SERCA probed by cyan-fluorescent protein fused to the actuator domain. Biochemistry 2008; 47:4246-56. [PMID: 18338856 DOI: 10.1021/bi702089j] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have used a biosynthetically incorporated fluorescent probe to monitor domain movements involved in ion transport by the sarcoendoplasmic reticulum Ca-ATPase (SERCA) from rabbit fast-twitch skeletal muscle. X-ray crystal structures suggest that the nucleotide-binding (N) and actuator (A) domains of SERCA move apart by several nanometers upon Ca binding. To test this hypothesis, cDNA constructs were created to fuse cyan-fluorescent protein (CFP) to the N terminus of SERCA (A domain). This CFP-SERCA fluorescent fusion protein retained activity when expressed in Sf21 insect cells using the baculovirus system. Fluorescence resonance energy transfer (FRET) was used to monitor the A-N interdomain distance for CFP-SERCA selectively labeled with fluorescein isothiocyanate (FITC) at Lys 515 in the N domain. At low [Ca (2+)] (E2 biochemical state), the measured FRET efficiency between CFP (donor in A domain) and FITC (acceptor in N domain) was 0.34 +/- 0.03, indicating a mean distance of 61.6 +/- 2.0 A between probes on the two domains. An increase of [Ca (2+)] to 0.1 mM (E1-Ca biochemical state) decreased the FRET efficiency by 0.06 +/- 0.03, indicating an increase in the mean distance by 3.0 +/- 1.2 A. Quantitative molecular modeling of dual-labeled SERCA, including an accurate calculation of the orientation factor, shows that the FRET data observed in the absence of Ca is consistent with the E2 crystal structure, but the increase in distance (decrease in FRET) induced by Ca is much less than predicted by the E1 crystal structure. We conclude that the E1 crystal structure does not reflect the predominant structure of SERCA under physiological conditions in a functional membrane bilayer.
Collapse
Affiliation(s)
- Deborah L Winters
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
13
|
Montigny C, Picard M, Lenoir G, Gauron C, Toyoshima C, Champeil P. Inhibitors bound to Ca(2+)-free sarcoplasmic reticulum Ca(2+)-ATPase lock its transmembrane region but not necessarily its cytosolic region, revealing the flexibility of the loops connecting transmembrane and cytosolic domains. Biochemistry 2007; 46:15162-74. [PMID: 18052080 DOI: 10.1021/bi701855r] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ca2+-free crystals of sarcoplasmic reticulum Ca2+-ATPase have, up until now, been obtained in the presence of inhibitors such as thapsigargin (TG), bound to the transmembrane region of this protein. Here, we examined the consequences of such binding for the protein. We found that, after TG binding, an active site ligand such as beryllium fluoride can still bind to the ATPase and change the conformation or dynamics of the cytosolic domains (as revealed by the protection afforded against proteolysis), but it becomes unable to induce any change in the transmembrane domain (as revealed by the intrinsic fluorescence of the membranous tryptophan residues). TG also obliterates the Trp fluorescence changes normally induced by binding of MgATP or metal-free ATP, as well as those induced by binding of Mg2+ alone. In the nucleotide binding domain, the environment of Lys515 (as revealed by fluorescein isothiocyanate fluorescence after specific labeling of this residue) is significantly different in the ATPase complex with aluminum fluoride and in the ATPase complex with beryllium fluoride, and in the latter case it is modified by TG. All these facts document the flexibility of the loops connecting the transmembrane and cytosolic domains in the ATPase. In the absence of active site ligands, TG protects the ATPase from cleavage by proteinase K at Thr242-Glu243, suggesting TG-induced reduction in the mobility of these loops. 2,5-Di-tert-butyl-1,4-dihydroxybenzene or cyclopiazonic acid, inhibitors which also bind in or near the transmembrane region, also produce similar overall effects on Ca2+-free ATPase.
Collapse
Affiliation(s)
- Cédric Montigny
- CNRS, URA 2096 (Protéines Membranaires Transductrices d'Energie), F-91191 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
14
|
Inesi G, Lewis D, Toyoshima C, Hirata A, de Meis L. Conformational fluctuations of the Ca2+-ATPase in the native membrane environment. Effects of pH, temperature, catalytic substrates, and thapsigargin. J Biol Chem 2007; 283:1189-96. [PMID: 17993458 DOI: 10.1074/jbc.m707189200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Digestion with proteinase K or trypsin yields complementary information on conformational transitions of the Ca(2+)-ATPase (SERCA) in the native membrane environment. Distinct digestion patterns are obtained with proteinase K, revealing interconversion of E1 and E2 or E1 approximately P and E2-P states. The pH dependence of digestion patterns shows that, in the presence of Mg(2+), conversion of E2 to E1 pattern occurs (even when Ca(2+) is absent) as H(+) dissociates from acidic residues. Mutational analysis demonstrates that the Glu(309) and Glu(771) acidic residues (empty Ca(2+)-binding sites I and II) are required for stabilization of E2. Glu(309) ionization is most important to yield E1. However, a further transition produced by Ca(2+) binding to E1 (i.e. E1.2Ca(2+)) is still needed for catalytic activation. Following ATP utilization, H(+)/Ca(2+) exchange is involved in the transition from the E1 approximately P.2Ca(2+) to the E2-P pattern, whereby alkaline pH will limit this conformational transition. Complementary experiments on digestion with trypsin exhibit high temperature dependence, indicating that, in the E1 and E2 ground states, the ATPase conformation undergoes strong fluctuations related to internal protein dynamics. The fluctuations are tightly constrained by ATP binding and phosphoenzyme formation, and this constraint must be overcome by thermal activation and substrate-free energy to allow enzyme turnover. In fact, a substantial portion of ATP free energy is utilized for conformational work related to the E1 approximately P.2Ca(2+) to E2-P transition, thereby disrupting high affinity binding and allowing luminal diffusion of Ca(2+). The E2 state and luminal path closure follow removal of conformational constraint by phosphate.
Collapse
Affiliation(s)
- Giuseppe Inesi
- California Pacific Medical Center Research Institute, San Francisco, California 94107, USA.
| | | | | | | | | |
Collapse
|
15
|
Daiho T, Yamasaki K, Danko S, Suzuki H. Critical role of Glu40-Ser48 loop linking actuator domain and first transmembrane helix of Ca2+-ATPase in Ca2+ deocclusion and release from ADP-insensitive phosphoenzyme. J Biol Chem 2007; 282:34429-47. [PMID: 17881350 DOI: 10.1074/jbc.m707665200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functional importance of the length of the A/M1 linker (Glu(40)-Ser(48)) connecting the actuator domain and the first transmembrane helix of sarcoplasmic reticulum Ca(2+)-ATPase was explored by its elongation with glycine insertion at Pro(42)/Ala(43) and Gly(46)/Lys(47). Two or more glycine insertions at each site completely abolished ATPase activity. The isomerization of phosphoenzyme (EP) intermediate from the ADP-sensitive form (E1P) to the ADP-insensitive form (E2P) was markedly accelerated, but the decay of EP was completely blocked in these mutants. The E2P accumulated was therefore demonstrated to be E2PCa(2) possessing two occluded Ca(2+) ions at the transport sites, and the Ca(2+) deocclusion and release into lumen were blocked in the mutants. By contrast, the hydrolysis of the Ca(2+)-free form of E2P produced from P(i) without Ca(2+) was as rapid in the mutants as in the wild type. Analysis of resistance against trypsin and proteinase K revealed that the structure of E2PCa(2) accumulated is an intermediate state between E1PCa(2) and the Ca(2+)-released E2P state. Namely in E2PCa(2), the actuator domain is already largely rotated from its position in E1PCa(2) and associated with the phosphorylation domain as in the Ca(2+)-released E2P state; however, in E2PCa(2), the hydrophobic interactions among these domains and Leu(119)/Tyr(122) on the top of second transmembrane helix are not yet formed properly. This is consistent with our previous finding that these interactions at Tyr(122) are critical for formation of the Ca(2+)-released E2P structure. Results showed that the EP isomerization/Ca(2+)-release process consists of the following two steps: E1PCa(2) --> E2PCa(2) --> E2P + 2Ca(2+); and the intermediate state E2PCa(2) was identified for the first time. Results further indicated that the A/M1 linker with its appropriately short length, probably because of the strain imposed in E2PCa(2), is critical for the correct positioning and interactions of the actuator and phosphorylation domains to cause structural changes for the Ca(2+) deocclusion and release.
Collapse
Affiliation(s)
- Takashi Daiho
- Department of Biochemistry, Asahikawa Medical College, Midorigaoka-higashi, Asahikawa, Japan.
| | | | | | | |
Collapse
|
16
|
Hatori Y, Majima E, Tsuda T, Toyoshima C. Domain organization and movements in heavy metal ion pumps: papain digestion of CopA, a Cu+-transporting ATPase. J Biol Chem 2007; 282:25213-21. [PMID: 17616523 DOI: 10.1074/jbc.m703520200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To study domain organization and movements in the reaction cycle of heavy metal ion pumps, CopA, a bacterial Cu+-ATPase from Thermotoga maritima was cloned, overexpressed, and purified, and then subjected to limited proteolysis using papain. Stable analogs of intermediate states were generated using AMPPCP as a nonhydrolyzable ATP analog and AlFx as a phosphate analog, following conditions established for Ca2+-ATPase (SERCA1). Characteristic digestion patterns obtained for different analog intermediates show that CopA undergoes domain rearrangements very similar to those of SERCA1. Digestion sites were identified on the loops connecting the A-domain and the transmembrane helices M2 and M3 as well as on that connecting the N-terminal metal binding domain (NMBD) and the first transmembrane helix, Ma. These digestion sites were protected in the E1P.ADP and E2P analogs, whereas the M2-A-domain loop was cleaved specifically in the absence of ions to be transported, just as in SERCA1. ATPase activity was lost when the link between the NMBD and the transmembrane domain was cleaved, indicating that the NMBD plays a critical role in ATP hydrolysis in T. maritima CopA. The change in susceptibility of the loop between the NMBD and Ma helix provides evidence that the NMBD is associated to the A-domain and recruited into domain rearrangements and that the Ma helix is the counterpart of the M1 helix in SERCA1 and Mb and Mc are uniquely inserted before M2.
Collapse
Affiliation(s)
- Yuta Hatori
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
17
|
Inesi G, Lewis D, Ma H, Prasad A, Toyoshima C. Concerted conformational effects of Ca2+ and ATP are required for activation of sequential reactions in the Ca2+ ATPase (SERCA) catalytic cycle. Biochemistry 2007; 45:13769-78. [PMID: 17105196 PMCID: PMC2525454 DOI: 10.1021/bi061255d] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We relate solution behavior to the crystal structure of the Ca2+ ATPase (SERCA). We find that nucleotide binding occurs with high affinity through interaction of the adenosine moiety with the N domain, even in the absence of Ca2+ and Mg2+, or to the closed conformation stabilized by thapsigargin (TG). Why then is Ca2+ crucial for ATP utilization? The influence of adenosine 5'-(beta,gamma-methylene) triphosphate (AMPPCP), Ca2+, and Mg2+ on proteolytic digestion patterns, interpreted in the light of known crystal structures, indicates that a Ca2+-dependent conformation of the ATPase headpiece is required for a further transition induced by nucleotide binding. This includes opening of the headpiece, which in turn allows inclination of the "A" domain and bending of the "P" domain. Thereby, the phosphate chain of bound ATP acquires an extended configuration allowing the gamma-phosphate to reach Asp351 to form a complex including Mg2+. We demonstrate by Asp351 mutation that this "productive" conformation of the substrate-enzyme complex is unstable because of electrostatic repulsion at the phosphorylation site. However, this conformation is subsequently stabilized by covalent engagement of the -phosphate yielding the phosphoenzyme intermediate. We also demonstrate that the ADP product remains bound with high affinity to the transition state complex but dissociates with lower affinity as the phosphoenzyme undergoes a further conformational change (i.e., E1-P to E2-P transition). Finally, we measured low-affinity ATP binding to stable phosphoenzyme analogues, demonstrating that the E1-P to E2-P transition and the enzyme turnover are accelerated by ATP binding to the phosphoenzyme in exchange for ADP.
Collapse
Affiliation(s)
- Giuseppe Inesi
- California Pacific Medical Center Research Institute, 475 Brannan Street, San Francisco, California 94107, USA.
| | | | | | | | | |
Collapse
|
18
|
Kubala M. ATP-binding to P-type ATPases as revealed by biochemical, spectroscopic, and crystallographic experiments. Proteins 2006; 64:1-12. [PMID: 16649212 DOI: 10.1002/prot.20969] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
P-type ATPases form a large family of cation translocating ATPases. Recent progress in crystallography yielded several high-resolution structures of Ca(2+)-ATPase from sarco(endo)plasmic reticulum (SERCA) in various conformations. They could elucidate the conformational changes of the enzyme, which are necessary for the translocation of cations, or the mechanism that explains how the nucleotide binding is coupled to the cation transport. However, crystals of proteins are usually obtained only under conditions that significantly differ from the physiological ones and with ligands that are incompatible with the enzyme function, and both of these factors can inevitably influence the enzyme structure. Biochemical (such as mutagenesis, cleavage, and labeling) or spectroscopic experiments can yield only limited structural information, but this information could be considered relevant, because measurement can be performed under physiological conditions and with true ligands. However, interpretation of some biochemical or spectroscopic data could be difficult without precise knowledge of the structure. Thus, only a combination of both these approaches can extract the relevant information and identify artifacts. Briefly, there is good agreement between crystallographic and other experimental data concerning the overall shape of the molecule and the movement of cytoplasmic domains. On the contrary, the E1-AMPPCP crystallographic structure is, in details, in severe conflict with numerous spectroscopic experiments and probably does not represent the physiological state. Notably, the E1-ADP-AlF(4) structure is almost identical to the E1-AMPPCP, again suggesting that the structure is primarily determined by the crystal-growth conditions. The physiological relevance of the E2 and E2-P structures is also questionable, because the crystals were prepared in the presence of thapsigargin, which is known to be a very efficient inhibitor of SERCA. Thus, probably only crystals of E1-2Ca conformation could reflect some physiological state. Combination of biochemical, spectroscopic, and crystallographic data revealed amino acids that are responsible for the interaction with the nucleotide. High sequence homology of the P-type ATPases in the cytoplasmic domains enables prediction of the ATP-interacting amino acids also for other P-type ATPases.
Collapse
Affiliation(s)
- Martin Kubala
- Department of Biophysics, Faculty of Sciences, Palacky University, Olomouc, Czech Republic.
| |
Collapse
|
19
|
Jidenko M, Lenoir G, Fuentes JM, le Maire M, Jaxel C. Expression in yeast and purification of a membrane protein, SERCA1a, using a biotinylated acceptor domain. Protein Expr Purif 2006; 48:32-42. [PMID: 16603381 DOI: 10.1016/j.pep.2006.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 02/24/2006] [Accepted: 03/01/2006] [Indexed: 11/19/2022]
Abstract
We have recently described the final steps leading to the crystallization of a mammalian membrane protein, the rabbit sarcoplasmic reticulum Ca2+-ATPase, after heterologous expression. Here, we detail the initial steps leading to this new purification method. A biotin acceptor domain was fused at the C-terminal part of Ca2+-ATPase and a thrombin site was inserted between both coding regions. The recombinant protein was expressed under the control of a galactose-inducible promoter in the yeast Saccharomyces cerevisiae. The biotinylation reaction of the protein was performed directly in vivo in yeast. After solubilization of the yeast light membrane fraction, the biotinylated protein was retained specifically using the strong biotin-avidin interaction. Finally, digestion by the protease thrombin allowed the separation of the Ca2+-ATPase from the biotinylated domain. At this step, Ca2+-ATPase is in a relatively purified form (about 40%). After a size-exclusion HPLC step, the purity of the protein is about 70%, and evaluation of the conformational changes during the catalytic cycle by monitoring the intrinsic fluorescence is demonstrated. The major advantage of this avidin procedure is the particularly good specific ATPase activity as compared with that of a purified His-tagged Ca2+-ATPase.
Collapse
Affiliation(s)
- Marie Jidenko
- Unité de Recherche Associée 2096 of the Centre National de la Recherche Scientifique and Service de Biophysique des Fonctions Membranaires, Département de Biologie Joliot Curie, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
20
|
Esmann M, Arora A, Maunsbach AB, Marsh D. Structural Characterization of Na,K-ATPase from Shark Rectal Glands by Extensive Trypsinization. Biochemistry 2005; 45:954-63. [PMID: 16411771 DOI: 10.1021/bi051573x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extensive trypsinization of Na,K-ATPase from the salt gland of Squalus acanthias removes about half of the extramembranous protein mass of the alpha-subunit, while leaving the beta-subunit intact. Sequence analysis and epitope recognition of the remaining alpha-peptides show that transmembrane segments M1/M2 and M3/M4 are present when trypsinization is performed in either NaCl or RbCl. The M5/M6 segment and the intact 19-kDa peptide (M7-M10) are detected in Rb-trypsinized membranes but not in Na-trypsinized membranes. The L7/L8 loop is associated with Na-trypsinized membranes, indicating the presence of an M7/M8 or M8/M9 fragment. Freeze-fracture electron microscopy of both Rb- and Na-trypsinized membranes reveals intramembranous particles that indicate a retained cluster of peptides, even in the absence of an intact 19-kDa fragment. The rotational diffusion of covalently spin-labeled trypsinized complexes is studied in the presence of poly(ethylene glycol) or glycerol by using saturation transfer electron spin resonance. Rotational correlation times in aqueous poly(ethylene glycol) are longer than in glycerol solutions of the same viscosity and increase nonlinearly with the viscosity of the suspending medium, indicating that poly(ethylene glycol) induces aggregation of the tryptic peptides (and beta-subunit) within the membrane. The aggregates of enzyme trypsinized in the presence of NaCl are larger than those for enzyme trypsinized in RbCl, at both low and high aqueous viscosities. Similarities in mobility for native and Rb-trypsinized enzymes suggest either a change in average orientation of the spin-label upon trypsinization or that trypsinization leads to a reorganized protein structure that is more prone to aggregation.
Collapse
Affiliation(s)
- Mikael Esmann
- Department of Biophysics, Institute of Physiology and Biophysics, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
21
|
Lecchi S, Allen KE, Pardo JP, Mason AB, Slayman CW. Conformational Changes of Yeast Plasma Membrane H+-ATPase during Activation by Glucose: Role of Threonine-912 in the Carboxy-Terminal Tail†. Biochemistry 2005; 44:16624-32. [PMID: 16342953 DOI: 10.1021/bi051555f] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Yeast Pma1 H(+)-ATPase, which belongs to the P-type family of cation-transporting ATPases, is activated up to 10-fold by growth on glucose, and indirect evidence has linked the activation to Ser/Thr phosphorylation within the C-terminal tail. We have now used limited trypsinolysis to map glucose-induced conformational changes throughout the 100 kDa ATPase. In the wild-type enzyme, trypsin cleaves first at Lys-28 and Arg-73 in the extended N-terminal segment (sites T1 and T2); subsequent cleavages occur at Arg-271 between the A domain and M3 (site T3) and at Lys-749 or Lys-754 in the M6-M7 cytoplasmic loop (site T4). Activation by glucose leads to a striking increase in trypsin sensitivity. At the C-terminal end of the protein, the Arg- and Lys-rich tail is shielded from trypsin in membranes from glucose-starved cells (GS) but becomes accessible in membranes from glucose-metabolizing cells (GM). In the presence of orthovanadate, Lys-174 at the boundary between M2 and the A domain also becomes open to cleavage in GM but not GS samples (site T5). Significantly, this global conformational change can be suppressed by mutations at Thr-912, a consensus phosphorylation site near the C-terminus. Substitution by Ala at position 912 leads to a GS-like (trypsin-resistant) state, while substitution by Asp leads to a GM-like (trypsin-sensitive) state. Thus, the present results help to dissect the intramolecular movements that result in glucose activation.
Collapse
Affiliation(s)
- Silvia Lecchi
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
22
|
Stokes DL, Delavoie F, Rice WJ, Champeil P, McIntosh DB, Lacapère JJ. Structural Studies of a Stabilized Phosphoenzyme Intermediate of Ca2+-ATPase. J Biol Chem 2005; 280:18063-72. [PMID: 15734741 DOI: 10.1074/jbc.m500031200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca(2+)-ATPase belongs to the family of P-type ATPases and maintains low concentrations of intracellular Ca(2+). Its reaction cycle consists of four main intermediates that alternate ion binding in the transmembrane domain with phosphorylation of an aspartate residue in a cytoplasmic domain. Previous work characterized an ultrastable phosphoenzyme produced first by labeling with fluorescein isothiocyanate, then by allowing this labeled enzyme to establish a maximal Ca(2+) gradient, and finally by removing Ca(2+) from the solution. This phosphoenzyme is characterized by very low fluorescence and has specific enzymatic properties suggesting the existence of a high energy phosphoryl bond. To study the structural properties of this phosphoenzyme, we used cryoelectron microscopy of two-dimensional crystals formed in the presence of decavanadate and determined the structure at 8-A resolution. To our surprise we found that at this resolution the low fluorescence phosphoenzyme had a structure similar to that of the native enzyme crystallized under equivalent conditions. We went on to use glutaraldehyde cross-linking and proteolysis for independent structural assessment and concluded that, like the unphosphorylated native enzyme, Ca(2+) and vanadate exert a strong influence over the global structure of this low fluorescence phosphoenzyme. Based on a structural model with fluorescein isothiocyanate bound at the ATP site, we suggest that the stability as well as the low fluorescence of this phosphoenzyme is due to a fluorescein-mediated cross-link between two cytoplasmic domains that prevents hydrolysis of the aspartyl phosphate. Finally, we consider the alternative possibility that phosphate transfer to fluorescein itself could explain the properties of this low fluorescence species.
Collapse
Affiliation(s)
- David L Stokes
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York 10012, USA
| | | | | | | | | | | |
Collapse
|
23
|
Hua S, Xu C, Ma H, Inesi G. Interference with phosphoenzyme isomerization and inhibition of the sarco-endoplasmic reticulum Ca2+ ATPase by 1,3-dibromo-2,4,6-tris(methylisothiouronium) benzene. J Biol Chem 2005; 280:17579-83. [PMID: 15746094 DOI: 10.1074/jbc.m500472200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP hydrolysis and Ca(2+) transport by the sarco-endoplasmic reticulum Ca(2+) ATPase (SERCA) are inhibited by 1,3-dibromo-2,4,6-tris(methylisothiouronium) benzene (Br(2)-TITU) in the micromolar range (Berman, M. C., and Karlish, S. J. (2003) Biochemistry 42, 3556-3566). In a study of the mechanism of inhibition, we found that Br(2)-TITU allows the enzyme to bind Ca(2+) and undergo phosphorylation by ATP. The level of ADP-sensitive phosphoenzyme (i.e. E1P-2Ca(2+)) observed in the transient state following addition of ATP is much higher in the presence than in the absence of the inhibitor. Br(2)-TITU does not interfere with enzyme phosphorylation by P(i) in the reverse direction of the cycle (i.e. E2P) and produces only a slight inhibition of its hydrolytic cleavage. The inhibitory effect of Br(2)-TITU on steady state ATPase velocity is attributed to interference with the E1P-2Ca(2+) to E2P-2Ca(2+) transition. In fact, experiments on conformation-dependent protection from proteolytic digestion suggest that, in the presence of Br(2)-TITU, the loops connecting the "A" domain to the ATPase transmembrane region undergo greater fluctuation than expected in the E2 and E2P states. Optimal stability of the gathered headpiece domains is thereby prevented. These effects are opposite to those of thapsigargin, in which the mechanism of inhibition is related to stabilization of a highly compact ATPase conformation and interference with Ca(2+) binding and phosphoenzyme formation. Our experiments with Br(2)-TITU provide the first demonstration of a kinetic limit posed by an inhibitor on the E1P-2Ca(2+) to E2P-2Ca(2+) transition in the wild-type enzyme.
Collapse
Affiliation(s)
- Suming Hua
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
24
|
Abstract
With the recent atomic models for the sarcoplasmic reticulum Ca(2+)-ATPase in the Ca(2+)-bound state, the Ca(2+)-free, thapsigargin-inhibited state, and the Ca(2+)-free, vanadate-inhibited state, we are that much closer to understanding and animating the Ca(2+)-transport cycle. These "snapshots" of the Ca(2+)-transport cycle reveal an impressive breadth and complexity of conformational change. The cytoplasmic domains undergo rigid-body movements that couple the energy of ATP to the transport of Ca2+ across the membrane. Large-scale rearrangements in the transmembrane domain suggest that the Ca(2+)-binding sites may alternately cease to exist and reform during the transport cycle. Of the three cytoplasmic domains, the actuator (A) domain undergoes the largest movement, namely a 110 degrees rotation normal to the membrane. This domain is linked to transmembrane segments M1-M3, which undergo large rearrangements in the membrane domain. Together, these movements are a main event in Ca2+ transport, yet their significance is poorly understood. Nonetheless, inhibition or modulation of Ca(2+)-ATPase activity appears to target these conformational changes. Thapsigargin is a high-affinity inhibitor that binds to the M3 helix near Phe256, and phospholamban is a modulator of Ca(2+)-ATPase activity that has been cross-linked to M2 and M4. The purpose of this review is to postulate roles for the A domain and M1-M3 in Ca2+ transport and inhibition.
Collapse
Affiliation(s)
- H S Young
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G2H7, Canada.
| | | |
Collapse
|
25
|
Abstract
The structures of the Ca2+-ATPase (SERCA1a) have been determined for five different states by X-ray crystallography. Detailed comparison of the structures in the Ca2+ bound form and unbound (but thapsigargin bound) form reveals that very large rearrangements of the transmembrane helices take place accompanying Ca2+ dissociation and binding and that they are mechanically linked with equally large movements of the cytoplasmic domains. The meanings of the rearrangements of the transmembrane helices and those of the cytoplasmic domains as well as the mechanistic roles of phosphorylation are now becoming clear. Furthermore, the roles of critical amino acid residues identified by extensive mutagenesis studies are becoming evident in terms of atomic structure.
Collapse
Affiliation(s)
- Chikashi Toyoshima
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan.
| | | |
Collapse
|
26
|
Toyoshima C, Nomura H, Tsuda T. Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature 2004; 432:361-8. [PMID: 15448704 DOI: 10.1038/nature02981] [Citation(s) in RCA: 365] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2004] [Accepted: 09/01/2004] [Indexed: 11/08/2022]
Abstract
P-type ion transporting ATPases are ATP-powered ion pumps that establish ion concentration gradients across biological membranes. Transfer of bound cations to the lumenal or extracellular side occurs while the ATPase is phosphorylated. Here we report at 2.3 A resolution the structure of the calcium-ATPase of skeletal muscle sarcoplasmic reticulum, a representative P-type ATPase that is crystallized in the absence of Ca2+ but in the presence of magnesium fluoride, a stable phosphate analogue. This and other crystal structures determined previously provide atomic models for all four principal states in the reaction cycle. These structures show that the three cytoplasmic domains rearrange to move six out of ten transmembrane helices, thereby changing the affinity of the Ca2+-binding sites and the gating of the ion pathway. Release of ADP triggers the opening of the lumenal gate and release of phosphate its closure, effected mainly through movement of the A-domain, the actuator of transmembrane gates.
Collapse
Affiliation(s)
- Chikashi Toyoshima
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| | | | | |
Collapse
|
27
|
Montigny C, Jaxel C, Shainskaya A, Vinh J, Labas V, Møller JV, Karlish SJD, le Maire M. Fe2+ -catalyzed oxidative cleavages of Ca2+ -ATPase reveal novel features of its pumping mechanism. J Biol Chem 2004; 279:43971-81. [PMID: 15262996 DOI: 10.1074/jbc.m407142200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have analyzed the Fe2+ -catalyzed oxidative cleavages of Ca2+ -ATPase in the presence of Ca2+, with or without the ATP analog 5'-adenylyl-beta,gamma-imidodiphosphate (AMP-PNP) or in the presence of the inhibitor thapsigargin. To identify the positions of cleavages as precisely as possible, we have used previously identified proteinase K and tryptic fragments as a standard, advanced mass spectrometry techniques, as well as specific antibodies. A number of cleavages are similar to those described for Na+,K+ -ATPase or other P-type pumps and are expected on the basis of the putative Mg2+ binding residues near the phosphorylated Asp351 in E1 or E2P conformations. However, intriguing new features have also been observed. These include a Fe2+ site near M3, which cannot be due to the presence of histidine residues as it was postulated in the case of Na+,K+ -ATPase and H+,K+ -ATPase. This site could represent a Ca2+ binding zone between M1 and M3, preceding Ca2+ occlusion within M4, 5, 6, and 8. In addition, we present evidence that, in the non-crystalline state, the N- and P-domain may approach each other, at least temporarily, in the presence of Ca2+ (E1Ca2 conformation), whereas the presence of Mg.ATP stabilizes the N to P interaction (E1.Mg.ATP conformation).
Collapse
Affiliation(s)
- Cedric Montigny
- Unité de Recherche Associée 2096 of the Centre National de la Recherche Scientifique, Département de Biologie Joliot Curie, CEA Saclay, 91191 Gif-sur-Yvette Cedex, Université Paris Sud, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Toyoshima C, Mizutani T. Crystal structure of the calcium pump with a bound ATP analogue. Nature 2004; 430:529-35. [PMID: 15229613 DOI: 10.1038/nature02680] [Citation(s) in RCA: 367] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 05/19/2004] [Indexed: 11/09/2022]
Abstract
P-type ATPases are ATP-powered ion pumps that establish ion concentration gradients across cell and organelle membranes. Here, we describe the crystal structure of the Ca2+ pump of skeletal muscle sarcoplasmic reticulum, a representative member of the P-type ATPase superfamily, with an ATP analogue, a Mg2+ and two Ca2+ ions in the respective binding sites. In this state, the ATP analogue reorganizes the three cytoplasmic domains (A, N and P), which are widely separated without nucleotide, by directly bridging the N and P domains. The structure of the P-domain itself is altered by the binding of the ATP analogue and Mg2+. As a result, the A-domain is tilted so that one of the transmembrane helices moves to lock the cytoplasmic gate of the transmembrane Ca2+-binding sites. This appears to be the mechanism for occluding the bound Ca2+ ions, before releasing them into the lumen of the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Chikashi Toyoshima
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| | | |
Collapse
|
29
|
Gaffaney JD, Vaughan RA. Uptake inhibitors but not substrates induce protease resistance in extracellular loop two of the dopamine transporter. Mol Pharmacol 2004; 65:692-701. [PMID: 14978248 DOI: 10.1124/mol.65.3.692] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Changes in protease sensitivity of extracellular loop two (EL2) of the dopamine transporter (DAT) during inhibitor and substrate binding were examined using trypsin proteolysis and epitope-specific immunoblotting. In control rat striatal membranes, proteolysis of DAT in a restricted region of EL2 was produced by 0.001 to 10 microg/ml trypsin. However, in the presence of the dopamine uptake blockers [2-(diphenylmethoxyl) ethyl]-4-(3phenylpropyl) piperazine (GBR 12909), mazindol, 2beta-carbomethoxy-3beta-(4-flourophenyl)tropane (beta-CFT), nomifensine, benztropine, or (-)-cocaine, 100- to 1000-fold higher concentrations of trypsin were required to produce comparable levels of proteolysis. Protease resistance induced by ligands was correlated with their affinity for DAT binding, was not observed with Zn2+, (+)-cocaine, or inhibitors of norepinephrine or serotonin transporters, and was not caused by altered catalytic activity of trypsin. Together, these results support the hypothesis that the interaction of uptake inhibitors with DAT induces a protease-resistant conformation in EL2. In contrast, binding of substrates did not induce protease resistance in EL2, suggesting that substrates and inhibitors interact with DAT differently during binding. To assess the effects of EL2 proteolysis on DAT function, the binding and transport properties of trypsin-digested DAT were assayed with [3H]CFT and [3H]dopamine. Digestion decreased the Bmax for binding and the Vmax for uptake in amounts that were proportional to the extent of proteolysis, indicating that the structural integrity of EL2 is required for maintenance of both DAT binding and transport functions. Together this data provides novel information about inhibitor and substrate interactions at EL2, possibly relating the protease resistant DAT conformation to a mechanism of transport inhibition.
Collapse
Affiliation(s)
- Jon D Gaffaney
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | | |
Collapse
|
30
|
Lenoir G, Picard M, Gauron C, Montigny C, Le Maréchal P, Falson P, Le Maire M, Møller JV, Champeil P. Functional Properties of Sarcoplasmic Reticulum Ca2+-ATPase after Proteolytic Cleavage at Leu119-Lys120, Close to the A-domain. J Biol Chem 2004; 279:9156-66. [PMID: 14672956 DOI: 10.1074/jbc.m311411200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
By measuring the phosphorylation levels of individual proteolytic fragments of SERCA1a separated by electrophoresis after their phosphorylation, we were able to study the catalytic properties of a p95C-p14N complex arising from SERCA1a cleavage by proteinase K between Leu(119) and Lys(120), in the loop linking the A-domain with the second transmembrane segment. ATP hydrolysis by the complex was very strongly inhibited, although ATP-dependent phosphorylation and the conversion of the ADP-sensitive E1P form to E2P still occurred at appreciable rates. However, the rate of subsequent dephosphorylation of E2P was inhibited to a dramatic extent, and this was also the case for the rate of "backdoor" formation of E2P from E2 and P(i). E2P formation from E2 at equilibrium nevertheless indicated little change in the apparent affinity for P(i) or Mg(2+), while binding of orthovanadate was weaker. The p95C-p14N complex also had a slightly reduced affinity for Ca(2+) and exhibited a reduced rate for its Ca(2+)-dependent transition from E2 to Ca(2)E1. Thus, disruption of the N-terminal link of the A-domain with the transmembrane region seems to shift the conformational equilibria of Ca(2+)-ATPase from the E1/E1P toward the E2/E2P states and to increase the activation energy for dephosphorylation of Ca(2+)-ATPase, reviving the old idea of the A-domain being a phosphatase domain as part of the transduction machinery.
Collapse
Affiliation(s)
- Guillaume Lenoir
- Service de Biophysique des Fonctions Membranaires (Départment de Biologie Joliot-Curie, CEA), CNRS, Laboratoire de Recherche Associé-17V, Université Paris-Sud, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Møller JV, Lenoir G, Le Maire M, Juul BS, Champeil P. Proteolytic studies on the transduction mechanism of sarcoplasmic reticulum Ca2+-ATPase: common features with other P-type ATPases. Ann N Y Acad Sci 2003; 986:82-9. [PMID: 12763778 DOI: 10.1111/j.1749-6632.2003.tb07142.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
After proteinase K-induced excision of five amino acid residues in the semiconserved polypeptide chain linking the end of the A domain with the S3/M3 transmembrane segment we find that Ca(2+) transport is blocked while partial reactions like Ca(2+) binding, ATP phosphorylation, and Ca(2+)-occlusion are left intact. However, formation of the so-called E2P state (either from the phosphorylated species formed in the presence of ATP and Ca(2+) or from the Ca(2+)-depleted unphosphorylated species) is blocked. We conclude that the proteinase K-treated ATPase, while maintaining many of the partial reactions, is incapable of energy transduction because of the absence of an E2P state with Ca(2+) binding sites exposed to the intravesicular space. Sequence comparisons and mutagenesis data point to an important role in energy transduction of P-type ATPases of a conserved motif located at the end of the A domain.
Collapse
|
32
|
Costa V, Carloni P. Calcium binding to the transmembrane domain of the sarcoplasmic reticulum Ca2+-ATPase: insights from molecular modeling. Proteins 2003; 50:104-13. [PMID: 12471603 DOI: 10.1002/prot.10219] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sarcoplasmic reticulum Ca(2+)- ATPase pumps Ca(2+) ions from muscle cells to the sarcoplasmic reticulum. Here we use molecular dynamics and electrostatic modeling to investigate structural and dynamical features of key intermediates in the Ca(2+) binding process of the protein. Structural models of the protein (containing either two, one, or no calcium ions in the transmembrane domain) are constructed based on the X-ray structure by Toyoshima et al. (Nature 2000;405:647-655). The protein is embedded in a water/octane bilayer, which mimics the water/membrane environment. Our calculations provide information on the hydration of the two Ca(2+) ions, not emerging from the X-ray structure. Furthermore, they indicate that uptake of the metal ions causes large structural rearrangements of the metal binding sites. In addition, they suggest that the two ions reach their binding sites via two specific pathways. Finally, they allow identification of residues in the outer mouth of the protein that might interact with the Ca(2+) ions during the binding process.
Collapse
Affiliation(s)
- Valeria Costa
- International School for Advanced Studies (ISAS-SISSA) and INFM-DEMOCRITOS National Simulation Center, Trieste, Italy
| | | |
Collapse
|
33
|
Chen CP, Kernytsky A, Rost B. Transmembrane helix predictions revisited. Protein Sci 2002; 11:2774-91. [PMID: 12441377 PMCID: PMC2373751 DOI: 10.1110/ps.0214502] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2002] [Revised: 07/22/2002] [Accepted: 09/16/2002] [Indexed: 12/24/2022]
Abstract
Methods that predict membrane helices have become increasingly useful in the context of analyzing entire proteomes, as well as in everyday sequence analysis. Here, we analyzed 27 advanced and simple methods in detail. To resolve contradictions in previous works and to reevaluate transmembrane helix prediction algorithms, we introduced an analysis that distinguished between performance on redundancy-reduced high- and low-resolution data sets, established thresholds for significant differences in performance, and implemented both per-segment and per-residue analysis of membrane helix predictions. Although some of the advanced methods performed better than others, we showed in a thorough bootstrapping experiment based on various measures of accuracy that no method performed consistently best. In contrast, most simple hydrophobicity scale-based methods were significantly less accurate than any advanced method as they overpredicted membrane helices and confused membrane helices with hydrophobic regions outside of membranes. In contrast, the advanced methods usually distinguished correctly between membrane-helical and other proteins. Nonetheless, few methods reliably distinguished between signal peptides and membrane helices. We could not verify a significant difference in performance between eukaryotic and prokaryotic proteins. Surprisingly, we found that proteins with more than five helices were predicted at a significantly lower accuracy than proteins with five or fewer. The important implication is that structurally unsolved multispanning membrane proteins, which are often important drug targets, will remain problematic for transmembrane helix prediction algorithms. Overall, by establishing a standardized methodology for transmembrane helix prediction evaluation, we have resolved differences among previous works and presented novel trends that may impact the analysis of entire proteomes.
Collapse
Affiliation(s)
- Chien Peter Chen
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
34
|
Möller JV, Lenoir G, Marchand C, Montigny C, le Maire M, Toyoshima C, Juul BS, Champeil P. Calcium transport by sarcoplasmic reticulum Ca(2+)-ATPase. Role of the A domain and its C-terminal link with the transmembrane region. J Biol Chem 2002; 277:38647-59. [PMID: 12138099 DOI: 10.1074/jbc.m204603200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After treatment of sarcoplasmic reticulum Ca(2+)-ATPase with proteinase K (PK) in the presence of Ca(2+) and a protecting non-phosphorylated ligand (e.g. adenosine 5'-(beta,gamma-methylenetriphosphate), we were able to prepare in high yield an ATPase species that only differs from intact ATPase because of excision of the MAATE(243) sequence from the loop linking the A domain with the third transmembrane segment. The PK-treated ATPase was unable to transport Ca(2+) and to catalyze ATP hydrolysis, but it could bind two calcium ions with high affinity and react with ATP to form a classical ADP-sensitive phosphoenzyme, Ca(2)E1P, with occluded Ca(2+). The ability of Ca(2)E1P to become converted to the Ca(2+)-free ADP-insensitive form, E2P, was strongly reduced, as was the ability of PK-treated ATPase to react with orthovanadate or to form an E2P intermediate from inorganic phosphate in the absence of Ca(2+). PK-treated ATPase also reacted with thapsigargin to form a complex with altered properties, and the tryptic cleavage "T2" site in the A domain was no longer protected in the absence of Ca(2+). It is probable that disrupting the C-terminal link of the A domain with the transmembrane region severely compromises reorientation of A and P domains and the functionally critical cross-talk of these domains with the membrane-bound Ca(2+) ions.
Collapse
Affiliation(s)
- Jesper V Möller
- Department of Biophysics, University of Aarhus, Ole Worms Allé 185, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Reyes-Vivas H, Martínez-Martínez E, Mendoza-Hernández G, López-Velázquez G, Pérez-Montfort R, Tuena de Gómez-Puyou M, Gómez-Puyou A. Susceptibility to proteolysis of triosephosphate isomerase from two pathogenic parasites: characterization of an enzyme with an intact and a nicked monomer. Proteins 2002; 48:580-90. [PMID: 12112681 DOI: 10.1002/prot.10179] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The susceptibility to subtilisin of homodimeric triosephosphate isomerase from Trypanosoma brucei (TbTIM) and Trypanosoma cruzi (TcTIM) was studied. Their amino sequence and 3D structure are markedly similar. In 36 h of incubation at a molar ratio of 4 TIM per subtilisin, TcTIM underwent extensive hydrolysis, loss of activity, and large structural alterations. Under the same conditions, only about 50% of the monomers of TbTIM were cleaved in two sites. The higher sensitivity of TcTIM to subtilisin is probably due to a higher intrinsic flexibility. We isolated and characterized TbTIM that had been exposed to subtilisin. It exhibited the molecular mass of the dimer, albeit it was formed by one intact and one nicked monomer. Its k(cat) with glyceraldehyde 3-phosphate was half that of native TbTIM, with no change in K(m). The intrinsic fluorescence of nicked TbTIM was red-shifted by 5 nm. The association between subunits was not affected. The TbTIM data suggest that there are structural differences in the two monomers or that alterations of one subunit change the characteristics of the other subunit. In comparison to the action of subtilisin on TIMs from other species, the trypanosomal enzymes appear to be unique.
Collapse
Affiliation(s)
- Horacio Reyes-Vivas
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico.
| | | | | | | | | | | | | |
Collapse
|
36
|
Toyoshima C, Nomura H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 2002; 418:605-11. [PMID: 12167852 DOI: 10.1038/nature00944] [Citation(s) in RCA: 669] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In skeletal muscle, calcium ions are transported (pumped) against a concentration gradient from the cytoplasm into the sarcoplasmic reticulum, an intracellular organelle. This causes muscle cells to relax after cytosolic calcium increases during excitation. The Ca(2+) ATPase that carries out this pumping is a representative P-type ion-transporting ATPase. Here we describe the structure of this ion pump at 3.1 A resolution in a Ca(2+)-free (E2) state, and compare it with that determined previously for the Ca(2+)-bound (E1Ca(2+)) state. The structure of the enzyme stabilized by thapsigargin, a potent inhibitor, shows large conformation differences from that in E1Ca(2+). Three cytoplasmic domains gather to form a single headpiece, and six of the ten transmembrane helices exhibit large-scale rearrangements. These rearrangements ensure the release of calcium ions into the lumen of sarcoplasmic reticulum and, on the cytoplasmic side, create a pathway for entry of new calcium ions.
Collapse
Affiliation(s)
- Chikashi Toyoshima
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| | | |
Collapse
|
37
|
Menguy T, Corre F, Juul B, Bouneau L, Lafitte D, Derrick PJ, Sharma PS, Falson P, Levine BA, Møller JV, le Maire M. Involvement of the cytoplasmic loop L6-7 in the entry mechanism for transport of Ca2+ through the sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 2002; 277:13016-28. [PMID: 11801592 DOI: 10.1074/jbc.m108899200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously found that mutants of conserved aspartate residues of sarcoplasmic reticulum Ca(2+)-ATPase in the cytosolic loop, connecting transmembrane segments M6 and M7 (L6-7 loop), exhibit a strongly reduced sensitivity toward Ca(2+) activation of the transport process. In this study, yeast membranes, expressing wild type and mutant Ca(2+)-ATPases, were reacted with Cr small middle dotATP and tested for their ability to occlude (45)Ca(2+) by HPLC analysis, after cation resin and C(12)E(8) treatment. We found that the D813A/D818A mutant that displays markedly low calcium affinity was capable of occluding Ca(2+) to the same extent as wild type ATPase. Using NMR and mass spectrometry we have analyzed the conformational properties of the synthetic L6-7 loop and demonstrated the formation of specific 1:1 cation complexes of the peptide with calcium and lanthanum. All three aspartate Asp(813)/Asp(815)/Asp(818) were required to coordinate the trivalent lanthanide ion. Overall these observations suggest a dual function of the loop: in addition to mediating contact between the intramembranous Ca(2+)-binding sites and the cytosolic phosphorylation site (Zhang, Z., Lewis, D., Sumbilla, C., Inesi G., and Toyoshima, C. (2001) J. Biol. Chem. 276, 15232-15239), the L6-7 loop, in a preceding step, participates in the formation of an entrance port, before subsequent high affinity binding of Ca(2+) inside the membrane.
Collapse
Affiliation(s)
- Thierry Menguy
- Section de Biophysique des Fonctions Membranaires, DBJC, CEA et CNRS URA 2096 and LRA17V Université de Paris XI, CE Saclay, 91191 Gif sur Yvette Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hua S, Ma H, Lewis D, Inesi G, Toyoshima C. Functional role of "N" (nucleotide) and "P" (phosphorylation) domain interactions in the sarcoplasmic reticulum (SERCA) ATPase. Biochemistry 2002; 41:2264-72. [PMID: 11841218 DOI: 10.1021/bi015684h] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Experimental perturbations of the nucleotide site in the N domain of the SR Ca2+ ATPase were produced by chemical derivatization of Lys492 or/and Lys515, mutation of Arg560 to Ala, or addition of inactive nucleotide analogue (TNP-AMP). Selective labeling of either Lys492 or Lys515 produces strong inhibition of ATPase activity and phosphoenzyme intermediate formation by utilization of ATP, while AcP utilization and reverse ATPase phosphorylation by Pi are much less affected. Cross-linking of the two residues with DIDS, however, drastically inhibits utilization of both ATP and AcP, as well as of formation of phosphoenzyme intermediate by utilization of ATP, or reverse phosphorylation by Pi. Mutation of Arg560 to Ala produces strong inhibition of ATPase activity and enzyme phosphorylation by ATP but has a much lower effect on enzyme phosphorylation by Pi. TNP-AMP increases the ATPase activity at low concentrations (0.1-0.3 microM), but inhibits ATP, AcP, and Pi utilization at higher concentration (1-10 microM). Cross-linking with DIDS and TNP-AMP binding inhibits formation of the transition state analogue with orthovanadate. It is concluded that in addition to the binding pocket delimited by Lys 492 and Lys515, Arg560 sustains an important and direct role in nucleotide substrate stabilization. Furthermore, the effects of DIDS and TNP-AMP suggest that approximation of N (nucleotide) and P (phosphorylation) domains is required not only for delivery of nucleotide substrate, but also to favor enzyme phosphorylation by nucleotide and nonnucleotide substrates, in the presence and in the absence of Ca2+. Domain separation is then enhanced by secondary nucleotide binding to the phosphoenzyme, thereby favoring its hydrolytic cleavage.
Collapse
Affiliation(s)
- Suming Hua
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | | | |
Collapse
|
39
|
Lenoir G, Menguy T, Corre F, Montigny C, Pedersen PA, Thinès D, le Maire M, Falson P. Overproduction in yeast and rapid and efficient purification of the rabbit SERCA1a Ca(2+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1560:67-83. [PMID: 11958776 DOI: 10.1016/s0005-2736(01)00458-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Large amounts of heterologous C-terminally his-tagged SERCA1a Ca(2+)-ATPase were expressed in yeast using a galactose-regulated promoter and purified by Ni(2+) affinity chromatography followed by Reactive red chromatography. Optimizing the number of galactose inductions and increasing the amount of Gal4p transcription factor improved expression. Lowering the temperature from 28 degrees C to 18 degrees C during expression enhanced the recovery of solubilized and active Ca(2+)-ATPase. In these conditions, a 4 l yeast culture produced 100 mg of Ca(2+)-ATPase, 60 and 22 mg being pelleted with the heavy and light membrane fractions respectively, representing 7 and 1.7% of total proteins. The Ca(2+)-ATPase expressed in light membranes was 100% solubilized with L-alpha-lysophosphatidylcholine (LPC), 50% with n-dodecyl beta-D-maltoside (DM) and 25% with octaethylene glycol mono-n-dodecyl ether (C(12)E(8)). Compared to LPC, DM preserved specific activity of the solubilized Ca(2+)-ATPase during the chromatographic steps. Starting from 1/6 (3.8 mg) of the total amount of Ca(2+)-ATPase expressed in light membranes, 800 microg could be routinely purified to 50% purity by metal affinity chromatography and then 200 microg to 70% with Reactive red chromatography. The purified Ca(2+)-ATPase displayed the same K(m) for calcium and ATP as the native enzyme but a reduced specific activity ranging from 4.5 to 7.3 micromol ATP hydrolyzed/min/mg Ca(2+)-ATPase. It was stable and active for several days at 4 degrees C or after removal of DM with Bio-beads and storage at -80 degrees C.
Collapse
Affiliation(s)
- Guillaume Lenoir
- CEA, Centre d'Etudes de Saclay, Département de Biologie Cellulaire et Moléculaire, Section de Biophysique des Protéines Membranaires, Unité de Recherche Associée 2096 of the CNRS, Bât. 528, 91191 Cedex, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Penheiter AR, Filoteo AG, Croy CL, Penniston JT. Characterization of the deafwaddler mutant of the rat plasma membrane calcium-ATPase 2. Hear Res 2001; 162:19-28. [PMID: 11707348 DOI: 10.1016/s0378-5955(01)00356-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The deafwaddler mutant in mice was the first spontaneous mutant discovered in the plasma membrane Ca(2+) pump (PMCA) [Street, V.A. et al., 1998, Nat. Genet. 19, 390-394]. A nucleotide substitution in deafwaddler results in a Gly to Ser transition at amino acid 283 in the small cytoplasmic loop of PMCA isoform 2 (PMCA2). PMCA2 is abundant in the stereocilia of auditory and vestibular hair cells, neurons of the spiral ganglion, and participates in inner ear development. Mice that are homozygous for deafwaddler are deaf and have poor balance. However, the balance and hearing disorders of the deafwaddler mice appear to be less severe than homozygotes for a functionally null frameshift mutant or homozygous PMCA2 knockout mice, suggesting that deafwaddler PMCA2 retains some biological activity. To examine the enzymic effects of the deafwaddler mutant, PMCA2 wild-type and deafwaddler were produced by transient expression in COS cells as well as baculovirus-mediated expression in Sf9 insect cells. Membrane preparations were assayed for calcium transport and ATPase activity. No significant differences in the regulation by calmodulin of the wild-type and deafwaddler PMCA2b were found. Steady-state transport assays and pre-steady-state ATPase assays of these two proteins revealed that the K(0.5) for Ca(2+), K(0.5) for calmodulin, degree of activation by calmodulin and rate of activation by Ca-calmodulin were nearly identical. However, calcium transport of the deafwaddler pump was reduced to 30% of the wild-type activity. Although calcium transport activity was reduced in the deafwaddler pump, total phosphoenzyme formation from ATP was slightly higher for deafwaddler than for wild-type. 50 microM LaCl3 (which blocks the E(1)P to E(2)P conformational transition) increased the steady-state level of phosphoenzyme 3-fold for the wild-type but had no effect on the deafwaddler. Taken together, the kinetic data suggest that the deafwaddler mutation affects PMCA2 by slowing the E(1)P to E(2)P transition, resulting in approximately 70% reduction in the PMCA2-mediated Ca(2+) export.
Collapse
Affiliation(s)
- A R Penheiter
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
41
|
Abstract
MotA and MotB are integral membrane proteins of Escherichia coli that form the stator of the proton-fueled flagellar rotary motor. The motor contains several MotA/MotB complexes, which function independently to conduct protons across the cytoplasmic membrane and couple proton flow to rotation. MotB contains a conserved aspartic acid residue, Asp32, that is critical for rotation. We have proposed that the protons energizing the motor interact with Asp32 of MotB to induce conformational changes in the stator that drive movement of the rotor. To test for conformational changes, we examined the protease susceptibility of MotA in membrane-bound complexes with either wild-type MotB or MotB mutated at residue 32. Small, uncharged replacements of Asp32 in MotB (D32N, D32A, D32G, D32S, or D32C) caused a significant change in the conformation of MotA, as evidenced by a change in the pattern of proteolytic fragments. The conformational change does not require any flagellar proteins besides MotA and MotB, as it was still seen in a strain that expresses no other flagellar genes. It affects a cytoplasmic domain of MotA that contains residues known to interact with the rotor, consistent with a role in the generation of torque. Influences of key residues of MotA on conformation were also examined. Pro173 of MotA, known to be important for rotation, is a significant determinant of conformation: Dominant Pro173 mutations, but not recessive ones, altered the proteolysis pattern of MotA and also prevented the conformational change induced by Asp32 replacements. Arg90 and Glu98, residues of MotA that engage in electrostatic interactions with the rotor, appear not to be strong determinants of conformation of the MotA/MotB complex in membranes. We note sequence similarity between MotA and ExbB, a cytoplasmic-membrane protein that energizes outer-membrane transport in Gram-negative bacteria. ExbB and associated proteins might also employ a mechanism involving proton-driven conformational change.
Collapse
Affiliation(s)
- S Kojima
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
42
|
Danko S, Yamasaki K, Daiho T, Suzuki H, Toyoshima C. Organization of cytoplasmic domains of sarcoplasmic reticulum Ca(2+)-ATPase in E(1)P and E(1)ATP states: a limited proteolysis study. FEBS Lett 2001; 505:129-35. [PMID: 11557055 DOI: 10.1016/s0014-5793(01)02801-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to characterize the domain organization of sarcoplasmic reticulum Ca(2+)-ATPase in different physiological states, limited proteolysis using three proteases (proteinase K (prtK), V8 and trypsin) was conducted systematically and quantitatively. The differences between E(2) and E(2)P were examined in our previous study and E(2)P was characterized by the complete resistance to all three proteases (except for trypsin attack at the very top of the molecule (T1 site)). The same strategies were employed in this study for E(1)ATP, E(1)PADP and E(1)P states. Because of the transient nature of these states, they were either stabilized by non-hydrolyzable analogues or made predominant by adjusting buffer conditions. Aluminum fluoride (without ADP) was found to stabilize E(1)P. All these states were characterized by strong (E(1)ATP) to complete (E(1)PADP and E(1)P) resistance to prtK and to V8 but only weak resistance to trypsin at the T2 site. Because prtK and V8 primarily attack the loops connecting the A domain to the transmembrane helices whereas the trypsin T2 site (Arg(198)) is located on the outermost loop in the A domain, these results lead us to propose that the A domain undergoes a large amount of rotation between E(1)P and E(2)P. Combined with previous results, we demonstrated that four states can be clearly distinguished by the susceptibility to three proteases, which will be very useful for establishing the conditions for structural studies.
Collapse
Affiliation(s)
- S Danko
- Department of Biochemistry, Asahikawa Medical College, Midorigaokahigashi, Japan
| | | | | | | | | |
Collapse
|
43
|
Sweadner KJ, Donnet C. Structural similarities of Na,K-ATPase and SERCA, the Ca(2+)-ATPase of the sarcoplasmic reticulum. Biochem J 2001; 356:685-704. [PMID: 11389677 PMCID: PMC1221896 DOI: 10.1042/0264-6021:3560685] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The crystal structure of SERCA1a (skeletal-muscle sarcoplasmic-reticulum/endoplasmic-reticulum Ca(2+)-ATPase) has recently been determined at 2.6 A (note 1 A = 0.1 nm) resolution [Toyoshima, Nakasako, Nomura and Ogawa (2000) Nature (London) 405, 647-655]. Other P-type ATPases are thought to share key features of the ATP hydrolysis site and a central core of transmembrane helices. Outside of these most-conserved segments, structural similarities are less certain, and predicted transmembrane topology differs between subclasses. In the present review the homologous regions of several representative P-type ATPases are aligned with the SERCA sequence and mapped on to the SERCA structure for comparison. Homology between SERCA and the Na,K-ATPase is more extensive than with any other ATPase, even PMCA, the Ca(2+)-ATPase of plasma membrane. Structural features of the Na,K-ATPase are projected on to the Ca(2+)-ATPase crystal structure to assess the likelihood that they share the same fold. Homology extends through all ten transmembrane spans, and most insertions and deletions are predicted to be at the surface. The locations of specific residues are examined, such as proteolytic cleavage sites, intramolecular cross-linking sites, and the binding sites of certain other proteins. On the whole, the similarity supports a shared fold, with some particular exceptions.
Collapse
Affiliation(s)
- K J Sweadner
- Neuroscience Center, Massachusetts General Hospital, 149-6118, 149 13th Street, Charlestown, MA 02129, USA.
| | | |
Collapse
|
44
|
Danko S, Daiho T, Yamasaki K, Kamidochi M, Suzuki H, Toyoshima C. ADP-insensitive phosphoenzyme intermediate of sarcoplasmic reticulum Ca(2+)-ATPase has a compact conformation resistant to proteinase K, V8 protease and trypsin. FEBS Lett 2001; 489:277-82. [PMID: 11165264 DOI: 10.1016/s0014-5793(01)02111-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sarcoplasmic reticulum Ca(2+)-ATPase was digested with proteinase K, V8 protease and trypsin in the absence of Ca(2+). Unphosphorylated enzyme was rapidly degraded. In contrast, ADP-insensitive phosphoenzyme formed with P(i) and phosphorylated state analogues produced by the binding of F(-) or orthovanadate, were almost completely resistant to the proteolysis except for tryptic cleavage at the T1 site (Arg(505)). The results indicate that the phosphoenzyme and its analogues have a very compact form in the cytoplasmic region, being consistent with large domain motions (gathering of three cytoplasmic domains). Results further show that the structure of the enzyme with bound decavanadate is very similar to ADP-insensitive phosphoenzyme. Thapsigargin did not affect the changes in digestion time course induced by the formation of the phosphorylated state analogues.
Collapse
Affiliation(s)
- S Danko
- Department of Biochemistry, Asahikawa Medical College, Midorigaokahigashi, Asahikawa, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Fuentes JM, Lompré AM, Møller JV, Falson P, le Maire M. Clean Western blots of membrane proteins after yeast heterologous expression following a shortened version of the method of Perini et al. Anal Biochem 2000; 285:276-8. [PMID: 11017716 DOI: 10.1006/abio.2000.4784] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- J M Fuentes
- Unité de Recherche Associée 2096 (Centre National de la Recherche Scientifique et Commissariat à l'Energie Atomique), CEA Saclay, Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
46
|
Toyoshima C, Nakasako M, Nomura H, Ogawa H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 2000; 405:647-55. [PMID: 10864315 DOI: 10.1038/35015017] [Citation(s) in RCA: 1346] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Calcium ATPase is a member of the P-type ATPases that transport ions across the membrane against a concentration gradient. Here we have solved the crystal structure of the calcium ATPase of skeletal muscle sarcoplasmic reticulum (SERCA1a) at 2.6 A resolution with two calcium ions bound in the transmembrane domain, which comprises ten alpha-helices. The two calcium ions are located side by side and are surrounded by four transmembrane helices, two of which are unwound for efficient coordination geometry. The cytoplasmic region consists of three well separated domains, with the phosphorylation site in the central catalytic domain and the adenosine-binding site on another domain. The phosphorylation domain has the same fold as haloacid dehalogenase. Comparison with a low-resolution electron density map of the enzyme in the absence of calcium and with biochemical data suggests that large domain movements take place during active transport.
Collapse
Affiliation(s)
- C Toyoshima
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Japan.
| | | | | | | |
Collapse
|
47
|
Soulié S, Neumann JM, Berthomieu C, Møller JV, le Maire M, Forge V. NMR conformational study of the sixth transmembrane segment of sarcoplasmic reticulum Ca2+-ATPase. Biochemistry 1999; 38:5813-21. [PMID: 10231532 DOI: 10.1021/bi983039d] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In current topological models, the sarcoplasmic reticulum Ca2+-ATPase contains 10 putative transmembrane spans (M1-M10), with spans M4/M5/M6 and probably M8 participating in the formation of the membranous calcium-binding sites. We describe here the conformational properties of a synthetic peptide fragment (E785-N810) encompassing the sixth transmembrane span (M6) of Ca2+-ATPase. Peptide M6 includes three residues (N796, T799, and D800) out of the six membranous residues critically involved in the ATPase calcium-binding sites. 2D-NMR experiments were performed on the M6 peptide selectively labeled with 15N and solubilized in dodecylphosphocholine micelles to mimic a membrane-like environment. Under these conditions, M6 adopts a helical structure in its N-terminal part, between residues I788 and T799, while its C-terminal part (G801-N810) remains disordered. Addition of 20% trifluoroethanol stabilizes the alpha-helical N-terminal segment of the peptide, and reveals the propensity of the C-terminal segment (G801-L807) to form also a helix. This second helix is located at the interface or in the aqueous environment outside the micelles, while the N-terminal helix is buried in the hydrophobic core of the micelles. Furthermore, the two helical segments of M6 are linked by a flexible hinge region containing residues T799 and D800. These conformational features may be related to the transient formation of a Schellman motif (L797VTDGL802) encoded in the M6 sequence, which probably acts as a C-cap of the N-terminal helix and induces a bend with respect to the helix axis. We propose a model illustrating two conformations of M6 and its insertion in the membrane. The presence of a flexible region within M6 would greatly facilitate concomitant participation of all three residues (N796, T799, and D800) believed to be involved in calcium complexation.
Collapse
Affiliation(s)
- S Soulié
- Section de Biophysique des Protéines et des Membranes, Département de Biologie Cellulaire et Moléculaire, CEA et CNRS Unité de Recherche Associée 2096, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
48
|
Raussens V, le Maire M, Ruysschaert JM, Goormaghtigh E. Secondary structure of the membrane-bound domains of H+,K+-ATPase and Ca2+-ATPase, a comparison by FTIR after proteolysis treatment of the native membranes. FEBS Lett 1998; 437:187-92. [PMID: 9824287 DOI: 10.1016/s0014-5793(98)01225-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The sarcoplasmic reticulum Ca2+-ATPase and the gastric H+,K+-ATPase were cleaved under three different proteolysis conditions. After elimination of the protease and of the cleaved peptides, the vesicles containing the membrane-bound peptides of the ATPases were studied by Fourier transform attenuated total reflection infrared spectroscopy. In the harsher proteolysis conditions, the membrane-associated domain of the Ca2+-ATPase represented about 20% of the protein and was mainly constituted of alpha-helices. Polarized infrared spectroscopy showed that these alpha-helices were mainly oriented perpendicular to the membrane. However, only 10-20% of the H+,K+-ATPase was cleaved. The remaining, membrane-associated domain of the protein contained about 30% of alpha-helices and 30% of beta-sheet structures. The alpha-helices adopted a mainly transmembrane orientation. While the data on the Ca2+-ATPase are in general agreement with the current model of the protein, our results indicate that caution must be used in choosing this protein as a general structural model for all P-type ATPases. The protease-resistant, membrane-associated domain of the H+K+-ATPase is indeed much larger than predicted and also contained beta-sheet structures.
Collapse
Affiliation(s)
- V Raussens
- Laboratoire de Chimie-Physique des Macromolécules aux Interfaces, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | |
Collapse
|
49
|
Menguy T, Corre F, Bouneau L, Deschamps S, Møller JV, Champeil P, le Maire M, Falson P. The cytoplasmic loop located between transmembrane segments 6 and 7 controls activation by Ca2+ of sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 1998; 273:20134-43. [PMID: 9685357 DOI: 10.1074/jbc.273.32.20134] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During active cation transport, sarcoplasmic reticulum Ca2+-ATPase, like other P-type ATPases, undergoes major conformational changes, some of which are dependent on Ca2+ binding to high affinity transport sites. We here report that, in addition to previously described residues of the transmembrane region (Clarke, D. M., Loo, T. W., Inesi, G., and MacLennan, D. H. (1989) Nature 339, 476-478), the region located in the cytosolic L6-7 loop connecting transmembrane segments M6 and M7 has a definite influence on the sensitivity of the Ca2+-ATPase to Ca2+, i.e. on the affinity of the ATPase for Ca2+. Cluster mutation of aspartic residues in this loop results in a strong reduction of the affinity for Ca2+, as shown by the Ca2+ dependence of ATPase phosphorylation from either ATP or Pi. The reduction in Ca2+ affinity for phosphorylation from Pi is observed both at acidic and neutral pH, suggesting that these mutations interfere with binding of the first Ca2+, as proposed for some of the intramembranous residues essential for Ca2+ binding (Andersen, J. P. (1995) Biosci. Rep. 15, 243-261). Treatment of the mutated Ca2+-ATPase with proteinase K, in the absence or presence of various Ca2+ concentrations, leads to Ca2+-dependent changes in the proteolytic degradation pattern similar to those in the wild type but observed only at higher Ca2+ concentrations. This implies that these effects are not due to changes in the conformational state of Ca2+-free ATPase but that changes affecting the proteolytic digestion pattern require higher Ca2+ concentrations. We conclude that aspartic residues in the L6-7 loop might interact with Ca2+ during the initial steps of Ca2+ binding.
Collapse
Affiliation(s)
- T Menguy
- Section de Biophysique des Protéines et des Membranes, DBCM, Commissariat à l'Energie Atomique et CNRS URA 2096, CE Saclay, 91191 Gif sur Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ogawa H, Stokes DL, Sasabe H, Toyoshima C. Structure of the Ca2+ pump of sarcoplasmic reticulum: a view along the lipid bilayer at 9-A resolution. Biophys J 1998; 75:41-52. [PMID: 9649366 PMCID: PMC1299678 DOI: 10.1016/s0006-3495(98)77493-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We have used multilamellar crystals of the ATP-driven calcium pump from sarcoplasmic reticulum to address the structural effects of calcium binding to the enzyme. They are stacks of disk-shaped two-dimensional crystals. A density map projected along the lipid bilayer was obtained at 9-A resolution by frozen-hydrated electron microscopy. Although only in projection, much more details of the structure were revealed than previously available, especially in the transmembrane region. Quantitative comparison was made with the model obtained from the tubular crystals of this enzyme formed in the absence of calcium. Unexpectedly large differences in conformation were found, particularly in the cytoplasmic domain.
Collapse
Affiliation(s)
- H Ogawa
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | |
Collapse
|