1
|
Szél V, Zsidó BZ, Hetényi C. Enthalpic Classification of Water Molecules in Target-Ligand Binding. J Chem Inf Model 2024; 64:6583-6595. [PMID: 39135312 DOI: 10.1021/acs.jcim.4c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Water molecules play various roles in target-ligand binding. For example, they can be replaced by the ligand and leave the surface of the binding pocket or stay conserved in the interface and form bridges with the target. While experimental techniques supply target-ligand complex structures at an increasing rate, they often have limitations in the measurement of a detailed water structure. Moreover, measurements of binding thermodynamics cannot distinguish between the different roles of individual water molecules. However, such a distinction and classification of the role of individual water molecules would be key to their application in drug design at atomic resolution. In this study, we investigate a quantitative approach for the description of the role of water molecules during ligand binding. Starting from complete hydration structures of the free and ligand-bound target molecules, binding enthalpy scores are calculated for each water molecule using quantum mechanical calculations. A statistical evaluation showed that the scores can distinguish between conserved and displaced classes of water molecules. The classification system was calibrated and tested on more than 1000 individual water positions. The practical tests of the enthalpic classification included important cases of antiviral drug research on HIV-1 protease inhibitors and the Influenza A ion channel. The methodology of classification is based on open source program packages, Gromacs, Mopac, and MobyWat, freely available to the scientific community.
Collapse
Affiliation(s)
- Viktor Szél
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, Pécs 7624, Hungary
| | - Balázs Zoltán Zsidó
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, Pécs 7624, Hungary
| | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, Pécs 7624, Hungary
| |
Collapse
|
2
|
Kramer L, Sarkar A, Foderaro T, Markley AL, Lee J, Edstrom H, Sharma S, Gill E, Traylor MJ, Fox JM. Genetically Encoded Detection of Biosynthetic Protease Inhibitors. ACS Synth Biol 2023; 12:83-94. [PMID: 36574400 PMCID: PMC10072156 DOI: 10.1021/acssynbio.2c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Proteases are an important class of drug targets that continue to drive inhibitor discovery. These enzymes are prone to resistance mutations, yet their promise for treating viral diseases and other disorders continues to grow. This study develops a general approach for detecting microbially synthesized protease inhibitors and uses it to screen terpenoid pathways for inhibitory compounds. The detection scheme relies on a bacterial two-hybrid (B2H) system that links protease inactivation to the transcription of a swappable reporter gene. This system, which can accomodate multiple biochemical outputs (i.e., luminescence and antibiotic resistance), permitted the facile incorporation of four disease-relevant proteases. A B2H designed to detect the inactivation of the main protease of severe acute respiratory syndrome coronavirus 2 enabled the identification of a terpenoid inhibitor of modest potency. An analysis of multiple pathways that make this terpenoid, however, suggested that its production was necessary but not sufficient to confer a survival advantage in growth-coupled assays. This finding highlights an important challenge associated with the use of genetic selection to search for inhibitors─notably, the influence of pathway toxicity─and underlines the value of including multiple pathways with overlapping product profiles in pathway screens. This study provides a detailed experimental framework for using microbes to screen libraries of biosynthetic pathways for targeted protease inhibitors.
Collapse
Affiliation(s)
- Levi Kramer
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado80303, United States
| | - Ankur Sarkar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado80303, United States
| | - Tom Foderaro
- Think Bioscience, Inc., 1945 Colorado Avenue, Boulder, Colorado80309, United States
| | - Andrew L Markley
- Think Bioscience, Inc., 1945 Colorado Avenue, Boulder, Colorado80309, United States
| | - Jessica Lee
- Think Bioscience, Inc., 1945 Colorado Avenue, Boulder, Colorado80309, United States
| | - Hannah Edstrom
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado80303, United States
| | - Shajesh Sharma
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado80303, United States
| | - Eden Gill
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado80303, United States
| | - Matthew J Traylor
- Think Bioscience, Inc., 1945 Colorado Avenue, Boulder, Colorado80309, United States
| | - Jerome M Fox
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado80303, United States
| |
Collapse
|
3
|
Mótyán JA, Kassay N, Matúz K, Tőzsér J. Different Mutation Tolerance of Lentiviral (HIV-1) and Deltaretroviral (BLV and HTLV) Protease Precursors. Viruses 2022; 14:v14091888. [PMID: 36146695 PMCID: PMC9505669 DOI: 10.3390/v14091888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The bovine leukemia virus (BLV) and the human T-lymphothropic viruses (HTLVs) are members of the deltaretrovirus genus of Retroviridae family. An essential event of the retroviral life cycle is the processing of the polyproteins by the viral protease (PR); consequently, these enzymes became important therapeutic targets of the anti-retroviral drugs. As compared to human immunodeficiency viruses (HIVs), the deltaretroviruses have a different replication strategy, as they replicate predominantly in the DNA form, by forcing the infected cell to divide, unlike HIV-1, which replicates mainly by producing a vast number of progeny virions and by reinfection. Due to bypassing the error-prone reverse transcription step of replication, the PRs of deltaretroviruses did not undergo such extensive evolution as HIV PRs and remained more highly conserved. In this work, we studied the abilities of wild-type and modified BLV, HTLV (type 1, 2 and 3), and HIV-1 PRs (fused to an N-terminal MBP tag) for self-processing. We designed a cleavage site mutant MBP-fused BLV PR precursor as well, this recombinant enzyme was unable for self-proteolysis, the MBP fusion tag decreased its catalytic efficiency but showed an unusually low Ki for the IB-268 protease inhibitor. Our results show that the HTLV and BLV deltaretrovirus PRs exhibit lower mutation tolerance as compared to HIV-1 PR, and are less likely to retain their activity upon point mutations at various positions, indicating a higher flexibility of HIV-1 PR in tolerating mutations under selective pressure.
Collapse
Affiliation(s)
- János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: (J.A.M.); (J.T.); Tel.: +36-52-512-900 (J.A.M. & J.T.)
| | - Norbert Kassay
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Krisztina Matúz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: (J.A.M.); (J.T.); Tel.: +36-52-512-900 (J.A.M. & J.T.)
| |
Collapse
|
4
|
Nirmatrelvir-remdesivir association for non-hospitalized adults with COVID-19, point of view. Inflammopharmacology 2022; 30:1927-1931. [PMID: 35980509 PMCID: PMC9386652 DOI: 10.1007/s10787-022-01055-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/05/2022]
Abstract
The efforts of the scientific world directed to identifying new antiviral drugs and therapies effective against SARS-CoV-2 continue. New oral antivirals against SARS-CoV-2 such as paxlovid have recently authorized. Evidence shows that these antivirals have good efficacy in reducing the risk of hospitalization in COVID-19 positive patients. Remdesivir is an authorized antiviral for the treatment of SARS-CoV-2 infection. To date, there are still few data in the literature on the safety profile and the risk of generating antiviral-resistant SARS-CoV-2 drug variants. In this manuscript we describe the evidence in the literature on the monotherapy use of paxlovid and monotherapy use of remdesivir, and the scientific hypothesis of using nirmatrelvir and remdesivir in association with the aim of increasing treatment efficacy, reducing the risk of adverse reactions and generating antiviral drug-resistant variants.
Collapse
|
5
|
Mótyán JA, Mahdi M, Hoffka G, Tőzsér J. Potential Resistance of SARS-CoV-2 Main Protease (Mpro) against Protease Inhibitors: Lessons Learned from HIV-1 Protease. Int J Mol Sci 2022; 23:3507. [PMID: 35408866 PMCID: PMC8998604 DOI: 10.3390/ijms23073507] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome 2 (SARS-CoV-2), has been one of the most devastating pandemics of recent times. The lack of potent novel antivirals had led to global health crises; however, emergence and approval of potent inhibitors of the viral main protease (Mpro), such as Pfizer's newly approved nirmatrelvir, offers hope not only in the therapeutic front but also in the context of prophylaxis against the infection. By their nature, RNA viruses including human immunodeficiency virus (HIV) have inherently high mutation rates, and lessons learnt from previous and currently ongoing pandemics have taught us that these viruses can easily escape selection pressure through mutation of vital target amino acid residues in monotherapeutic settings. In this paper, we review nirmatrelvir and its binding to SARS-CoV-2 Mpro and draw a comparison to inhibitors of HIV protease that were rendered obsolete by emergence of resistance mutations, emphasizing potential pitfalls in the design of inhibitors that may be of important relevance to the long-term use of novel inhibitors against SARS-CoV-2.
Collapse
Affiliation(s)
- János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.A.M.); (M.M.); (G.H.)
| | - Mohamed Mahdi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.A.M.); (M.M.); (G.H.)
| | - Gyula Hoffka
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.A.M.); (M.M.); (G.H.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.A.M.); (M.M.); (G.H.)
| |
Collapse
|
6
|
Taguchi M, Oyama R, Kaneso M, Hayashi S. Hybrid QM/MM Free-Energy Evaluation of Drug-Resistant Mutational Effect on the Binding of an Inhibitor Indinavir to HIV-1 Protease. J Chem Inf Model 2022; 62:1328-1344. [PMID: 35212226 DOI: 10.1021/acs.jcim.1c01193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A human immunodeficiency virus-1 (HIV-1) protease is a homodimeric aspartic protease essential for the replication of HIV. The HIV-1 protease is a target protein in drug discovery for antiretroviral therapy, and various inhibitor molecules of transition state analogues have been developed. However, serious drug-resistant mutants have emerged. For understanding the molecular mechanism of the drug resistance, an accurate examination of the impacts of the mutations on ligand binding and enzymatic activity is necessary. Here, we present a molecular simulation study on the ligand binding of indinavir, a potent transition state analogue inhibitor, to the wild-type protein and a V82T/I84V drug-resistant mutant of the HIV-1 protease. We employed a hybrid ab initio quantum mechanical/molecular mechanical (QM/MM) free-energy optimization technique which combines a highly accurate QM description of the ligand molecule and its interaction with statistically ample conformational sampling of the MM protein environment by long-time molecular dynamics simulations. Through the free-energy calculations of protonation states of catalytic groups at the binding pocket and of the ligand-binding affinity changes upon the mutations, we successfully reproduced the experimentally observed significant reduction of the binding affinity upon the drug-resistant mutations and elucidated the underlying molecular mechanism. The present study opens the way for understanding the molecular mechanism of drug resistance through the direct quantitative comparison of ligand binding and enzymatic reaction with the same accuracy.
Collapse
Affiliation(s)
- Masahiko Taguchi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.,Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - Ryo Oyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masahiro Kaneso
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
7
|
Co-evolution of drug resistance and broadened substrate recognition in HIV protease variants isolated from an Escherichia coli genetic selection system. Biochem J 2022; 479:479-501. [PMID: 35089310 DOI: 10.1042/bcj20210767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/07/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022]
Abstract
A genetic selection system for activity of HIV protease is described that is based on a synthetic substrate constructed as a modified AraC regulatory protein that when cleaved stimulate L-arabinose metabolism in an Escherichia coli araC strain. Growth stimulation on selective plates was shown to depend on active HIV protease and the scissile bond in the substrate. In addition, the growth of cells correlated well with the established cleavage efficiency of the sites in the viral polyprotein, Gag, when these sites were individually introduced into the synthetic substate of the selection system. Plasmids encoding protease variants selected based on stimulation of cell growth in the presence of saquinavir or cleavage of a site not cleaved by wild-type protease, were indistinguishable with respect to both phenotypes. Also, both groups of selected plasmids encoded side chain substitutions known from clinical isolates or displayed different side chain substitutions but at identical positions. One highly frequent side chain substitution, E34V, not regarded as a major drug resistance substitution was found in variants obtained under both selective conditions and is suggested to improve protease processing of the synthetic substrate. This substitution is away from the substrate-binding cavity and together with other substitutions in the selected reading frames supports the previous suggestion of a substrate-binding site extended from the active site binding pocket itself.
Collapse
|
8
|
Sherry D, Worth R, Sayed Y. Elasticity-Associated Functionality and Inhibition of the HIV Protease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1371:79-108. [PMID: 34351572 DOI: 10.1007/5584_2021_655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV protease plays a critical role in the life cycle of the virus through the generation of mature and infectious virions. Detailed knowledge of the structure of the enzyme and its substrate has led to the development of protease inhibitors. However, the development of resistance to all currently available protease inhibitors has contributed greatly to the decreased success of antiretroviral therapy. When therapy failure occurs, multiple mutations are found within the protease sequence starting with primary mutations, which directly impact inhibitor binding, which can also negatively impact viral fitness and replicative capacity by decreasing the binding affinity of the natural substrates to the protease. As such, secondary mutations which are located outside of the active site region accumulate to compensate for the recurrently deleterious effects of primary mutations. However, the resistance mechanism of these secondary mutations is not well understood, but what is known is that these secondary mutations contribute to resistance in one of two ways, either through increasing the energetic penalty associated with bringing the protease into the closed conformation, or, through decreasing the stability of the protein/drug complex in a manner that increases the dissociation rate of the drug, leading to diminished inhibition. As a result, the elasticity of the enzyme-substrate complex has been implicated in the successful recognition and catalysis of the substrates which may be inferred to suggest that the elasticity of the enzyme/drug complex plays a role in resistance. A realistic representation of the dynamic nature of the protease may provide a more powerful tool in structure-based drug design algorithms.
Collapse
Affiliation(s)
- Dean Sherry
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Roland Worth
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
9
|
Eche S, Kumar A, Sonela N, Gordon ML. Acquired HIV-1 Protease Conformational Flexibility Associated with Lopinavir Failure May Shape the Outcome of Darunavir Therapy after Antiretroviral Therapy Switch. Biomolecules 2021; 11:489. [PMID: 33805099 PMCID: PMC8064090 DOI: 10.3390/biom11040489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
Understanding the underlying molecular interaction during a therapy switch from lopinavir (LPV) to darunavir (DRV) is essential to achieve long-term virological suppression. We investigated the kinetic and structural characteristics of multidrug-resistant South African HIV-1 subtype C protease (HIV-1 PR) during therapy switch from LPV to DRV using enzyme activity and inhibition assay, fluorescence spectroscopy, and molecular dynamic simulation. The HIV-1 protease variants were from clinical isolates with a combination of drug resistance mutations; MUT-1 (M46I, I54V, V82A, and L10F), MUT-2 (M46I, I54V, L76V, V82A, L10F, and L33F), and MUT-3 (M46I, I54V, L76V, V82A, L90M, and F53L). Enzyme kinetics analysis shows an association between increased relative resistance to LPV and DRV with the progressive decrease in the mutant HIV-1 PR variants' catalytic efficiency. A direct relationship between high-level resistance to LPV and intermediate resistance to DRV with intrinsic changes in the three-dimensional structure of the mutant HIV-1 PR as a function of the multidrug-resistance mutation was observed. In silico analysis attributed these structural adjustments to the multidrug-resistance mutations affecting the LPV and DRV binding landscape. Though DRV showed superiority to LPV, as a lower concentration was needed to inhibit the HIV-1 PR variants, the inherent structural changes resulting from mutations selected during LPV therapy may dynamically shape the DRV treatment outcome after the therapy switch.
Collapse
Affiliation(s)
- Simeon Eche
- Discipline of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Ajit Kumar
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban 4000, South Africa;
| | - Nelson Sonela
- School of Medicine, Physical and Natural Sciences, University of Rome Tor Vegata, 1-00133 Rome, Italy;
- Chantal Biya International Reference Center for Research on the Management and Prevention of HIV/AIDS (CIRCB), Yaoundé P.O. Box 3077, Cameroon
| | - Michelle L. Gordon
- Discipline of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa;
| |
Collapse
|
10
|
Castain L, Perrier M, Charpentier C, Palich R, Desire N, Wirden M, Descamps D, Sayon S, Landman R, Valantin MA, Joly V, Peytavin G, Yazdanpanah Y, Katlama C, Calvez V, Marcelin AG, Todesco E. New mechanisms of resistance in virological failure to protease inhibitors: selection of non-described protease, Gag and Gp41 mutations. J Antimicrob Chemother 2020; 74:2019-2023. [PMID: 31050739 DOI: 10.1093/jac/dkz151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To further characterize HIV-1 viruses of patients experiencing unexplained virological failure (VF) on PI-containing regimens, ultradeep sequencing was performed on protease, gag and gp41 genes in patients failing a first-line treatment. METHODS All naive patients initiating an antiretroviral treatment based on boosted darunavir, atazanavir or lopinavir and experiencing VF without any transmitted drug resistance mutation detected by Sanger sequencing on protease and reverse transcriptase genes were selected. Ultradeep sequencing (IlluminaTM Nextera®) was performed on protease, gag and gp41 genes in plasma before initiation of treatment and at VF to identify emergent mutations. RESULTS Among the 32 patients included in the study, emergent and previously undescribed mutations in the viral protease gene were identified in five patients at VF: 64M (1 CRF02_AG), 64M/70R with mutation 15V (2 CRF02_AG), 79A (1 CRF06_cpx) and 79A with mutation 15V (1 CRF02_AG). Two patients showed the emergence of R286K in the gag region, outside of cleavage sites (2 CRF02_AG). In the gp41 region, the V321I mutation emerged inside the cytoplasmic tail (1 subtype A and 1 subtype B). All these patients were treated with a darunavir/ritonavir-based regimen. CONCLUSIONS In some cases of VF to PIs, we observed the emergence of protease, Gag or Gp41 mutations that had not previously been associated with VF or PI resistance. These mutations should be further studied, in particular the 15V/64M/70R pattern in the protease gene identified among CRF02_AG viruses.
Collapse
Affiliation(s)
- Louise Castain
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de virologie, Paris, France
| | - Marine Perrier
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Laboratoire de Virologie, Hôpital Bichat, AP-HP, Paris, France
| | - Charlotte Charpentier
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Laboratoire de Virologie, Hôpital Bichat, AP-HP, Paris, France
| | - Romain Palich
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Service des maladies infectieuses et tropicales, Paris, France
| | - Nathalie Desire
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de virologie, Paris, France
| | - Marc Wirden
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de virologie, Paris, France
| | - Diane Descamps
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Laboratoire de Virologie, Hôpital Bichat, AP-HP, Paris, France
| | - Sophie Sayon
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de virologie, Paris, France
| | - Roland Landman
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Service de Maladies Infectieuses et Tropicales, Hôpital Bichat, AP-HP, Paris, France
| | - Marc-Antoine Valantin
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Service des maladies infectieuses et tropicales, Paris, France
| | - Véronique Joly
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Service de Maladies Infectieuses et Tropicales, Hôpital Bichat, AP-HP, Paris, France
| | - Gilles Peytavin
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Département de Pharmaco-Toxicologie, Hôpital Bichat-Claude Bernard, Paris, France
| | - Yazdan Yazdanpanah
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Service de Maladies Infectieuses et Tropicales, Hôpital Bichat, AP-HP, Paris, France
| | - Christine Katlama
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Service des maladies infectieuses et tropicales, Paris, France
| | - Vincent Calvez
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de virologie, Paris, France
| | - Anne-Geneviève Marcelin
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de virologie, Paris, France
| | - Eve Todesco
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de virologie, Paris, France
| |
Collapse
|
11
|
Bastys T, Gapsys V, Walter H, Heger E, Doncheva NT, Kaiser R, de Groot BL, Kalinina OV. Non-active site mutants of HIV-1 protease influence resistance and sensitisation towards protease inhibitors. Retrovirology 2020; 17:13. [PMID: 32430025 PMCID: PMC7236880 DOI: 10.1186/s12977-020-00520-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Background HIV-1 can develop resistance to antiretroviral drugs, mainly through mutations within the target regions of the drugs. In HIV-1 protease, a majority of resistance-associated mutations that develop in response to therapy with protease inhibitors are found in the protease’s active site that serves also as a binding pocket for the protease inhibitors, thus directly impacting the protease-inhibitor interactions. Some resistance-associated mutations, however, are found in more distant regions, and the exact mechanisms how these mutations affect protease-inhibitor interactions are unclear. Furthermore, some of these mutations, e.g. N88S and L76V, do not only induce resistance to the currently administered drugs, but contrarily induce sensitivity towards other drugs. In this study, mutations N88S and L76V, along with three other resistance-associated mutations, M46I, I50L, and I84V, are analysed by means of molecular dynamics simulations to investigate their role in complexes of the protease with different inhibitors and in different background sequence contexts. Results Using these simulations for alchemical calculations to estimate the effects of mutations M46I, I50L, I84V, N88S, and L76V on binding free energies shows they are in general in line with the mutations’ effect on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$IC_{50}$$\end{document}IC50 values. For the primary mutation L76V, however, the presence of a background mutation M46I in our analysis influences whether the unfavourable effect of L76V on inhibitor binding is sufficient to outweigh the accompanying reduction in catalytic activity of the protease. Finally, we show that L76V and N88S changes the hydrogen bond stability of these residues with residues D30/K45 and D30/T31/T74, respectively. Conclusions We demonstrate that estimating the effect of both binding pocket and distant mutations on inhibitor binding free energy using alchemical calculations can reproduce their effect on the experimentally measured \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$IC_{50}$$\end{document}IC50 values. We show that distant site mutations L76V and N88S affect the hydrogen bond network in the protease’s active site, which offers an explanation for the indirect effect of these mutations on inhibitor binding. This work thus provides valuable insights on interplay between primary and background mutations and mechanisms how they affect inhibitor binding.
Collapse
Affiliation(s)
- Tomas Bastys
- Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, 66123, Saarbrücken, Germany.,Saarbrücken Graduate School of Computer Science, University of Saarland, 66123, Saarbrücken, Germany
| | - Vytautas Gapsys
- Computational Biomolecular Dynamics Group, Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Hauke Walter
- Medizinisches Labor Stendal, 39576, Stendal, Germany
| | - Eva Heger
- Institute of Virology, University of Cologne, 50935, Cologne, Germany
| | - Nadezhda T Doncheva
- Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, 66123, Saarbrücken, Germany.,Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Rolf Kaiser
- Institute of Virology, University of Cologne, 50935, Cologne, Germany
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Olga V Kalinina
- Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, 66123, Saarbrücken, Germany. .,Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), 66123, Saarbrücken, Germany. .,Faculty of Medicine, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
12
|
Kletenkov K, Hoffmann D, Böni J, Yerly S, Aubert V, Schöni-Affolter F, Struck D, Verheyen J, Klimkait T. Role of Gag mutations in PI resistance in the Swiss HIV cohort study: bystanders or contributors? J Antimicrob Chemother 2017; 72:866-875. [PMID: 27999036 DOI: 10.1093/jac/dkw493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/15/2016] [Indexed: 12/24/2022] Open
Abstract
Background HIV Gag mutations have been reported to confer PI drug resistance. However, clinical implications are still controversial and most current genotyping algorithms consider solely the protease gene for assessing PI resistance. Objectives Our goal was to describe for HIV infections in Switzerland the potential role of the C-terminus of Gag (NC-p6) in PI resistance. We aimed to characterize resistance-relevant mutational patterns in Gag and protease and their possible interactions. Methods Resistance information on plasma samples from 2004-12 was collected for patients treated by two diagnostic centres of the Swiss HIV Cohort Study. Sequence information on protease and the C-terminal Gag region was paired with the corresponding patient treatment history. The prevalence of Gag and protease mutations was analysed for PI treatment-experienced patients versus PI treatment-naive patients. In addition, we modelled multiple paths of an assumed ordered accumulation of genetic changes using random tree mixture models. Results More than half of all PI treatment-experienced patients in our sample set carried HIV variants with at least one of the known Gag mutations, and 17.9% (66/369) carried at least one Gag mutation for which a phenotypic proof of PI resistance by in vitro mutagenesis has been reported. We were able to identify several novel Gag mutations that are associated with PI exposure and therapy failure. Conclusions Our analysis confirmed the association of Gag mutations, well known and new, with PI exposure. This could have clinical implications, since the level of potential PI drug resistance might be underestimated.
Collapse
Affiliation(s)
- K Kletenkov
- Molecular Virology, Department of Biomedicine - Petersplatz, University of Basel, Basel, Switzerland
| | - D Hoffmann
- Bioinformatics and Computational Biophysics, Centre for Medical Biotechnology, University of Duisburg-Essen, Duisburg, Germany
| | - J Böni
- Institute of Medical Virology, National Reference Center for Retroviruses, University of Zurich, Zurich, Switzerland
| | - S Yerly
- Laboratory of Virology, University Hospital Geneva, University of Geneva, Geneva, Switzerland
| | - V Aubert
- Division of Immunology and Allergy, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - F Schöni-Affolter
- Swiss HIV Cohort Study, Data Centre, Institute for Social and Preventive Medicine, University of Lausanne, Lausanne, Switzerland
| | - D Struck
- Department of Population Health, Luxembourg Institute of Health, Luxembourg
| | - J Verheyen
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Duisburg, Germany
| | - T Klimkait
- Molecular Virology, Department of Biomedicine - Petersplatz, University of Basel, Basel, Switzerland
| | | |
Collapse
|
13
|
Chen J. Drug resistance mechanisms of three mutations V32I, I47V and V82I in HIV-1 protease toward inhibitors probed by molecular dynamics simulations and binding free energy predictions. RSC Adv 2016. [DOI: 10.1039/c6ra09201b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Molecular dynamics simulation and binding free energy calculations were used to probe drug resistance of HIV-1 protease mutations toward inhibitors.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science
- Shandong Jiaotong University
- Jinan 250357
- China
| |
Collapse
|
14
|
Laco GS. HIV-1 protease substrate-groove: Role in substrate recognition and inhibitor resistance. Biochimie 2015; 118:90-103. [PMID: 26300060 DOI: 10.1016/j.biochi.2015.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/18/2015] [Indexed: 11/17/2022]
Abstract
A key target in the treatment of HIV-1/AIDS has been the viral protease. Here we first studied in silico the evolution of protease resistance. Primary active site resistance mutations were found to weaken interactions between protease and both inhibitor and substrate P4-P4' residues. We next studied the effects of secondary resistance mutations, often distant from the active site, on protease binding to inhibitors and substrates. Those secondary mutations contributed to the rise of multi-drug resistance while also enhancing viral replicative capacity. Here many secondary resistance mutations were found in the HIV-1 protease substrate-grooves, one on each face of the symmetrical protease dimer. The protease active site binds substrate P4-P4' residues, while the substrate-groove allows the protease to bind residues P12-P5/P5'-P12', for a total of twenty-four residues. The substrate-groove secondary resistance mutations were found to compensate for the loss of interactions between the inhibitor resistant protease active site and substrate P4-P4' residues, due to primary resistance mutations, by increasing interactions with substrate P12-P5/P5'-P12' residues. In vitro experiments demonstrated that a multi-drug resistant protease with substrate-groove resistance mutations was slower than wild-type protease in cleaving a peptide substrate, which did not allow for substrate-groove interactions, while it had similar activity as wild-type protease when using a Gag polyprotein in which cleavage-site P12-P5/P5'-P12' residues could be bound by the protease substrate-grooves. When the Gag MA/CA cleavage site P12-P5/P5'-P12' residues were mutated the multi-drug resistant protease cleaved the mutant Gag significantly slower, indicating the importance of the protease S-grooves in binding to substrate.
Collapse
Affiliation(s)
- Gary S Laco
- Laboratory of Computational and Molecular Biochemistry, The Roskamp Institute, Sarasota, FL, USA.
| |
Collapse
|
15
|
De Conto V, Braz ASK, Perahia D, Scott LPB. Recovery of the wild type atomic flexibility in the HIV-1 protease double mutants. J Mol Graph Model 2015; 59:107-16. [PMID: 25948548 DOI: 10.1016/j.jmgm.2015.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/09/2015] [Accepted: 04/17/2015] [Indexed: 02/04/2023]
Abstract
The emergence of drug resistant mutations due to the selective pressure exerted by antiretrovirals, including protease inhibitors (PIs), remains a major problem in the treatment of AIDS. During PIs therapy, the occurrence of primary mutations in the wild type HIV-1 protease reduces both the affinity for the inhibitors and the viral replicative capacity compared to the wild type (WT) protein, but additional mutations compensate for this reduced viral fitness. To investigate this phenomenon from the structural point of view, we combined Molecular Dynamics and Normal Mode Analysis to analyze and compare the variations of the flexibility of C-alpha atoms and the differences in hydrogen bond (h-bond) network between the WT and double mutants. In most cases, the flexibility profile of the double mutants was more often similar to that of the WT than to that of the related single base mutants. All single mutants showed a significant alteration in h-bond formation compared to WT. Most of the significant changes occur in the border between the flap and cantilever regions. We found that all the considered double mutants have their h-bond pattern significantly altered in comparison to the respective single base mutants affecting their flexibility profile that becomes more similar to that of WT. This WT flexibility restoration in the double mutants appears as an important factor for the HIV-1 fitness recovery observed in patients.
Collapse
Affiliation(s)
- Valderes De Conto
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Antônio S K Braz
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC, Santo André, SP, Brazil
| | - David Perahia
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Luis P B Scott
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC, Santo André, SP, Brazil; Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), Ecole Normale Supérieure de Cachan, Cachan, France.
| |
Collapse
|
16
|
Lee SK, Potempa M, Swanstrom R. The choreography of HIV-1 proteolytic processing and virion assembly. J Biol Chem 2012; 287:40867-74. [PMID: 23043111 DOI: 10.1074/jbc.r112.399444] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HIV-1 has been the target of intensive research at the molecular and biochemical levels for >25 years. Collectively, this work has led to a detailed understanding of viral replication and the development of 24 approved drugs that have five different targets on various viral proteins and one cellular target (CCR5). Although most drugs target viral enzymatic activities, our detailed knowledge of so much of the viral life cycle is leading us into other types of inhibitors that can block or disrupt protein-protein interactions. Viruses have compact genomes and employ a strategy of using a small number of proteins that can form repeating structures to enclose space (i.e. condensing the viral genome inside of a protein shell), thus minimizing the need for a large protein coding capacity. This creates a relatively small number of critical protein-protein interactions that are essential for viral replication. For HIV-1, the Gag protein has the role of a polyprotein precursor that contains all of the structural proteins of the virion: matrix, capsid, spacer peptide 1, nucleocapsid, spacer peptide 2, and p6 (which contains protein-binding domains that interact with host proteins during budding). Similarly, the Gag-Pro-Pol precursor encodes most of the Gag protein but now includes the viral enzymes: protease, reverse transcriptase (with its associated RNase H activity), and integrase. Gag and Gag-Pro-Pol are the substrates of the viral protease, which is responsible for cleaving these precursors into their mature and fully active forms (see Fig. 1A).
Collapse
Affiliation(s)
- Sook-Kyung Lee
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
17
|
Saravanan S, Vidya M, Balakrishnan P, Kantor R, Solomon SS, Katzenstein D, Kumarasamy N, Yeptomi T, Sivamalar S, Rifkin S, Mayer KH, Solomon S. Viremia and HIV-1 drug resistance mutations among patients receiving second-line highly active antiretroviral therapy in Chennai, Southern India. Clin Infect Dis 2012; 54:995-1000. [PMID: 22323567 DOI: 10.1093/cid/cir967] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND A cross-sectional study among individuals receiving second-line antiretroviral treatment was conducted to report on the level of detectable viremia and the types of drug resistance mutations among those with detectable human immunodeficiency virus (HIV) type 1 plasma viral loads (PVLs). METHODS PVLs were measured using Abbott m2000rt real-time polymerase chain reaction, and genotyping was performed with the ViroSeq genotyping system, version 2.0, and ViroSeq analysis software, version 2.8. RESULTS Of 107 patient plasma specimens consecutively analyzed, 30 (28%) had undetectable PVLs (<150 copies/mL), and 77 (72%) were viremic with a median PVL of 5450 copies/mL (interquartile range, 169-1 997 967). Sequencing was done for 107 samples with PVLs >2000 copies/mL: 33 patients (73%) had 1 of the protease (PR) inhibitor mutations; 41 (91%) had nucleoside reverse-transcriptase inhibitor (NRTI) mutations; 33 (73%) had non-NRTI (NNRTI) mutations; and 30 (66.7%) had both NRTI and NNRTI mutations. Triple-class resistance to NRTIs, NNRTIs, and PR inhibitors was observed in 24 (53%) patients. Based on the mutational profiles observed, all 45 sequences were susceptible to darunavir and tipranavir, whereas 47% showed resistance to lopinavir, 58% showed resistance to atazanavir, and >60% showed resistance to saquinavir, indinavir, nelfinavir, and fosamprenavir. CONCLUSIONS The results of the study showed that the majority of patients receiving second-line antiretroviral therapy started to accumulate PR resistance mutations, and the mutation profiles suggest that darunavir might be the drug of choice for third-line regimens in India.
Collapse
|
18
|
Interplay between single resistance-associated mutations in the HIV-1 protease and viral infectivity, protease activity, and inhibitor sensitivity. Antimicrob Agents Chemother 2011; 56:623-33. [PMID: 22083488 DOI: 10.1128/aac.05549-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance-associated mutations in the HIV-1 protease modify viral fitness through changes in the catalytic activity and altered binding affinity for substrates and inhibitors. In this report, we examine the effects of 31 mutations at 26 amino acid positions in protease to determine their impact on infectivity and protease inhibitor sensitivity. We found that primary resistance mutations individually decrease fitness and generally increase sensitivity to protease inhibitors, indicating that reduced virion-associated protease activity reduces virion infectivity and the reduced level of per virion protease activity is then more easily titrated by a protease inhibitor. Conversely, mutations at more variable positions (compensatory mutations) confer low-level decreases in sensitivity to all protease inhibitors with little effect on infectivity. We found significant differences in the observed effect on infectivity with a pseudotype virus assay that requires the protease to cleave the cytoplasmic tail of the amphotropic murine leukemia virus (MuLV) Env protein. Additionally, we were able to mimic the fitness loss associated with resistance mutations by directly reducing the level of virion-associated protease activity. Virions containing 50% of a D25A mutant protease were 3- to 5-fold more sensitive to protease inhibitors. This level of reduction in protease activity also resulted in a 2-fold increase in sensitivity to nonnucleoside inhibitors of reverse transcriptase and a similar increase in sensitivity to zidovudine (AZT), indicating a pleiotropic effect associated with reduced protease activity. These results highlight the interplay between enzyme activity, viral fitness, and inhibitor mechanism and sensitivity in the closed system of the viral replication complex.
Collapse
|
19
|
Impact of HIV-1 group O genetic diversity on genotypic resistance interpretation by algorithms designed for HIV-1 group M. J Acquir Immune Defic Syndr 2011; 56:139-45. [PMID: 21233638 DOI: 10.1097/qai.0b013e318201a904] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND HIV-1 group O (HIV-O) is characterized by a high genetic divergence from HIV-1 group M viruses. Little is known about the therapeutic impact of this diversity. The aim of this study was to assess in a large series of samples (1) the genotypic impact of natural polymorphism of the HIV-O reverse transcriptase and protease genes; and (2) the predictive value of resistance interpretation algorithms developed for HIV-1 group M when used for highly mutated HIV-O viruses. METHODS Sixty-eight antiretroviral-naive and 9 highly antiretroviral-experienced HIV-O-infected patients were included. The viruses were sequenced and resistance-associated mutations were identified using 3 different algorithms (Agence Nationale de Recherches sur le SIDA et les hépatites virales, Rega, Stanford). RESULTS All HIV-O samples naturally exhibited the A98G and V179E resistance mutations in the reverse transcriptase region; 54% of samples presented the Y181C mutation, conferring resistance to nonnucleoside reverse transcriptase inhibitors. Twelve minor resistance mutations, present in more than 75% of the protease sequences, led to the different algorithms giving discrepant results for nelfinavir and saquinavir susceptibility. A marked virological response was observed in 8 of the 9 antiretroviral-experienced patients, despite the prediction of limited activity of the combination for 5 to 8 patients according to the algorithm used. CONCLUSIONS The high level of natural polymorphism in HIV-O genes, and the important discrepancies between genotypic resistance interpretation and the virological response, emphasize the need for resistance algorithm rules better adapted to HIV-O.
Collapse
|
20
|
Geng QM, Li HP, Bao ZY, Liu YJ, Zhuang DM, Li L, Liu SY, Li JY. Indinavir resistance evolution in one human immunodeficiency virus type 1 infected patient revealed by single-genome amplification. Virol Sin 2010; 25:316-28. [PMID: 20960178 DOI: 10.1007/s12250-010-3122-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 05/07/2010] [Indexed: 11/29/2022] Open
Abstract
UNLABELLED Human Immunodeficiency Virus Type 1 exists in vivo as quasispecies, and one of the genome's characteristics is its diversity. During the antiretroviral therapy, drug resistance is the main obstacle to effective viral prevention. Understanding the molecular evolution process is fundamental to analyze the mechanism of drug resistance and develop a strategy to minimize resistance. OBJECTIVE The molecular evolution of drug resistance of one patient who had received reverse transcriptase inhibitors for a long time and had treatment which replaced Nevirapine with Indinavir was analyzed, with the aim of observing the drug resistance evolution pathway. METHODS The patient, XLF, was followed-up for six successive times. The viral populations were amplified and sequenced by single-genome amplification. All the sequences were submitted to the Stanford HIV Drug Resistance Database for the analysis of genotypic drug resistance. RESULTS 149 entire protease and 171 entire reverse transcriptase sequences were obtained from these samples, and all sequences were identified as subtype B. Before the patient received Indinavir, the viral population only had some polymorphisms in the protease sequences. After the patient began Indinavir treatment, the variants carrying polymorphisms declined while variants carrying the secondary mutation G73S gained the advantage. As therapy was prolonged, G73S was combined with M46I/L90M to form a resistance pattern M46I/G73S/L90M, which then became the dominant population. 97.9% of variants had the M46I/G73S/L90M pattern at XLF6. During the emergence of protease inhibitors resistance, reverse transcriptase inhibitors resistance maintained high levels. CONCLUSION Indinavir-resistance evolution was observed by single-genome amplification. During the course of changing the regimen to incorporate Indinavir, the G73S mutation occurred and was combined with M46I/L90M.
Collapse
Affiliation(s)
- Qing-Mao Geng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Seibold SA, Cukier RI. A molecular dynamics study comparing a wild-type with a multiple drug resistant HIV protease: Differences in flap and aspartate 25 cavity dimensions. Proteins 2007; 69:551-65. [PMID: 17623840 DOI: 10.1002/prot.21535] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HIV proteases can develop resistance to therapeutic drugs by mutating specific residues, but still maintain activity with their natural substrates. To gain insight into why mutations confer such resistance, long ( approximately 70 ns) Molecular Dynamics simulations in explicit solvent were performed on a multiple drug resistant (MDR) mutant (with Asn25 in the crystal structure mutated in silico back to the catalytically active Asp25) and a wild type (WT) protease. HIV proteases are homodimers, with characteristic flap tips whose conformations and dynamics are known to be important influences of ligand binding to the aspartates that form the catalytic center. The WT protease undergoes a transition between 25 and 35 ns that is absent in the MDR protease. The origin of this distinction is investigated using principal component analysis, and is related to differences in motion mainly in the flap region of each monomer. Trajectory analysis suggests that the WT transition arises from a concerted motion of the flap tip distances to their catalytic aspartate residues, and the distance between the two flap tips. These distances form a triangle that in the WT expands the active site from an initial (semi-open) form to an open form, in a correlated manner. In contrast, the MDR protease remains in a more closed configuration, with uncorrelated fluctuations in the distances defining the triangle. This contrasting behavior suggests that the MDR mutant achieves its resistance to drugs by making its active site less accessible to inhibitors. The migration of water to the active site aspartates is monitored. Water molecules move in and out of the active site and individual waters hydrogen bond to both aspartate carboxylate oxygens, with residence times in the ns time regime.
Collapse
Affiliation(s)
- Steve A Seibold
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, USA
| | | |
Collapse
|
22
|
Abstract
The effectiveness of systemic chemotherapy for metastatic gastric cancer has already been established. However, a standard chemotherapy still remains uncertain. New agents such as S-1, CPT-11 and taxanes are markedly improving the response rates for gastric cancer. Including these new drugs, several randomized phase III trials are ongoing in Japan. In the near future, the candidate for standard regimen to treat gastric cancer will be reported. In this article, we described the current state of S-1 +CPT-11 combination chemotherapy for gastric cancer. Among various CPT-11 based chemotherapy, S-1 +CPT-11 appears to be the most effective and less toxic treatment.
Collapse
Affiliation(s)
- Naotoshi Sugimoto
- Dept. of Clinical Oncology Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | | |
Collapse
|
23
|
Weinheimer S, Discotto L, Friborg J, Yang H, Colonno R. Atazanavir signature I50L resistance substitution accounts for unique phenotype of increased susceptibility to other protease inhibitors in a variety of human immunodeficiency virus type 1 genetic backbones. Antimicrob Agents Chemother 2005; 49:3816-24. [PMID: 16127058 PMCID: PMC1195397 DOI: 10.1128/aac.49.9.3816-3824.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Substitution of leucine for isoleucine at residue 50 (I50L) of human immunodeficiency virus (HIV) protease is the signature substitution for atazanavir (ATV) resistance. A unique phenotypic profile has been associated with viruses containing the I50L substitution, which produces ATV-specific resistance and increased susceptibility to most other approved HIV protease inhibitors (PIs). The basis for this unique phenotype has not been clearly elucidated. In this report, a direct effect of I50L on the susceptibility to the PI class is described. Cell-based protease assays using wild-type and PI-resistant proteases from laboratory and clinical isolates and in vitro antiviral assays were used to demonstrate a strong concordance between changes in PI susceptibility at the level of protease inhibition and changes in susceptibility observed at the level of virus infection. The results show that the induction of ATV resistance and increased susceptibility to other PIs by the I50L substitution is likely determined at the level of protease inhibition. Moreover, the I50L substitution functions to increase PI susceptibility even in the presence of other primary and secondary PI resistance substitutions. These findings may have implications regarding the optimal sequencing of PI therapies necessary to preserve PI treatment options of patients with ATV-resistant HIV infections.
Collapse
Affiliation(s)
- S Weinheimer
- Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, Conn, USA
| | | | | | | | | |
Collapse
|
24
|
Liu F, Boross PI, Wang YF, Tozser J, Louis JM, Harrison RW, Weber IT. Kinetic, stability, and structural changes in high-resolution crystal structures of HIV-1 protease with drug-resistant mutations L24I, I50V, and G73S. J Mol Biol 2005; 354:789-800. [PMID: 16277992 PMCID: PMC1403828 DOI: 10.1016/j.jmb.2005.09.095] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 09/30/2005] [Accepted: 09/30/2005] [Indexed: 10/25/2022]
Abstract
The crystal structures, dimer stabilities, and kinetics have been analyzed for wild-type human immunodeficiency virus type 1 (HIV-1) protease (PR) and resistant mutants PR(L24I), PR(I50V), and PR(G73S) to gain insight into the molecular basis of drug resistance. The mutations lie in different structural regions. Mutation I50V alters a residue in the flexible flap that interacts with the inhibitor, L24I alters a residue adjacent to the catalytic Asp25, and G73S lies at the protein surface far from the inhibitor-binding site. PR(L24I) and PR(I50V), showed a 4% and 18% lower k(cat)/K(m), respectively, relative to PR. The relative k(cat)/K(m) of PR(G73S) varied from 14% to 400% when assayed using different substrates. Inhibition constants (K(i)) of the antiviral drug indinavir for the reaction catalyzed by the mutant enzymes were about threefold and 50-fold higher for PR(L24I) and PR(I50V), respectively, relative to PR and PR(G73S). The dimer dissociation constant (K(d)) was estimated to be approximately 20 nM for both PR(L24I) and PR(I50V), and below 5 nM for PR(G73S) and PR. Crystal structures of the mutants PR(L24I), PR(I50V) and PR(G73S) were determined in complexes with indinavir, or the p2/NC substrate analog at resolutions of 1.10-1.50 Angstrom. Each mutant revealed distinct structural changes relative to PR. The mutated residues in PR(L24I) and PR(I50V) had reduced intersubunit contacts, consistent with the increased K(d) for dimer dissociation. Relative to PR, PR(I50V) had fewer interactions of Val50 with inhibitors, in agreement with the dramatically increased K(i). The distal mutation G73S introduced new hydrogen bond interactions that can transmit changes to the substrate-binding site and alter catalytic activity. Therefore, the structural alterations observed for drug-resistant mutations were in agreement with kinetic and stability changes.
Collapse
Affiliation(s)
- Fengling Liu
- Department of Biology, Molecular Basis of Disease Program, Georgia State University, Atlanta, GA 30303, USA
| | - Peter I. Boross
- Department of Biology, Molecular Basis of Disease Program, Georgia State University, Atlanta, GA 30303, USA
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen, H4012 Hungary
| | - Yuan-Fang Wang
- Department of Biology, Molecular Basis of Disease Program, Georgia State University, Atlanta, GA 30303, USA
| | - Jozsef Tozser
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen, H4012 Hungary
| | - John M. Louis
- Laboratory of Chemical Physics National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda MD 20892, USA
| | - Robert W. Harrison
- Department of Biology, Molecular Basis of Disease Program, Georgia State University, Atlanta, GA 30303, USA
- Department of Computer Science, Molecular Basis of Disease Program, Georgia State University, Atlanta GA 30303, USA
| | - Irene T. Weber
- Department of Biology, Molecular Basis of Disease Program, Georgia State University, Atlanta, GA 30303, USA
- Department of Chemistry Molecular Basis of Disease Program, Georgia State University, Atlanta, GA 30303, USA
- * E-mail address of the corresponding author:
| |
Collapse
|
25
|
Svicher V, Ceccherini-Silberstein F, Erba F, Santoro M, Gori C, Bellocchi MC, Giannella S, Trotta MP, Monforte AD, Antinori A, Perno CF. Novel human immunodeficiency virus type 1 protease mutations potentially involved in resistance to protease inhibitors. Antimicrob Agents Chemother 2005; 49:2015-25. [PMID: 15855527 PMCID: PMC1087636 DOI: 10.1128/aac.49.5.2015-2025.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasma-derived sequences of human immunodeficiency virus type 1 (HIV-1) protease from 1,162 patients (457 drug-naive patients and 705 patients receiving protease inhibitor [PI]-containing antiretroviral regimens) led to the identification and characterization of 17 novel protease mutations potentially associated with resistance to PIs. Fourteen mutations were positively associated with PIs and significantly correlated in pairs and/or clusters with known PI resistance mutations, suggesting their contribution to PI resistance. In particular, E34Q, K43T, and K55R, which were associated with lopinavir treatment, correlated with mutations associated with lopinavir resistance (E34Q with either L33F or F53L, or K43T with I54A) or clustered with multi-PI resistance mutations (K43T with V82A and I54V or V82A, V32I, and I47V, or K55R with V82A, I54V, and M46I). On the other hand, C95F, which was associated with treatment with saquinavir and indinavir, was highly expressed in clusters with either L90M and I93L or V82A and G48V. K45R and K20T, which were associated with nelfinavir treatment, were specifically associated with D30N and N88D and with L90M, respectively. Structural analysis showed that several correlated positions were within 8 A of each other, confirming the role of the local environment for interactions among mutations. We also identified three protease mutations (T12A, L63Q, and H69N) whose frequencies significantly decreased in PI-treated patients compared with that in drug-naive patients. They never showed positive correlations with PI resistance mutations; if anything, H69N showed a negative correlation with the compensatory mutations M36I and L10I. These mutations may prevent the appearance of PI resistance mutations, thus increasing the genetic barrier to PI resistance. Overall, our study contributes to a better definition of protease mutational patterns that regulate PI resistance and strongly suggests that other (novel) mutations beyond those currently known to confer resistance should be taken into account to better predict resistance to antiretroviral drugs.
Collapse
Affiliation(s)
- Valentina Svicher
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Turner D, Schapiro JM, Brenner BG, Wainberg MA. The Influence of Protease Inhibitor Resistance Profiles on Selection of HIV Therapy in Treatment-Naive Patients. Antivir Ther 2004. [DOI: 10.1177/135965350400900308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although protease inhibitors (PIs) have dramatically improved outcomes in HIV-infected patients, half still fail treatment with PI-based combination therapy. Genetic pressure from incomplete viral suppression rapidly selects for HIV variants with protease gene mutations that confer reduced susceptibility to PI drugs. A number of specific amino acid substitutions have been associated with PI resistance. However, high-level resistance to individual PIs requires the accumulation of several primary and secondary mutations, developing along drug-specific, step-wise pathways. HIV variants resistant to saquinavir and ritonavir usually contain L90M and V82A substitutions, respectively. Indinavir resistance may be linked to substitutions at positions 46 or 82. Resistance to nelfinavir is primarily associated with D30N but may alternatively be found with L90M. Resistance during exposure to amprenavir can follow development of I50V, which also may confer resistance to lopinavir. Failure during treatment with atazanavir is closely linked to I50L. The overlapping of these pathways can lead to multiple-PI resistance, limiting therapeutic options in antiretroviral-experienced patients. Reduced susceptibility to more than one PI is most likely to be associated with amino acid substitutions at six positions: 10, 46, 54, 82, 84 and 90. Other mutations (D30N, G48V, I50V or I50L) are relatively specific for particular PIs and are less likely to produce cross resistance. Certain resistance mutations selected by exposure to one PI may actually increase susceptibility to others. Patients newly diagnosed with HIV infection are increasingly found to harbour virus that is resistant to the more commonly used drugs. Newer PIs may select for mutations that result in less cross resistance with older agents.
Collapse
Affiliation(s)
- Dan Turner
- McGill University AIDS Center, Lady Davis Institute, Jewish General Hospital, Montreal, Canada
| | - Jonathan M Schapiro
- Division of Infectious Diseases, Stanford University School of Medicine, Palo Alto, Calif., USA, and Tel-Hashomer Hospital, Ramat-Gan, Israel
| | - Bluma G Brenner
- McGill University AIDS Center, Lady Davis Institute, Jewish General Hospital, Montreal, Canada
| | - Mark A Wainberg
- McGill University AIDS Center, Lady Davis Institute, Jewish General Hospital, Montreal, Canada
| |
Collapse
|
27
|
Affiliation(s)
- François Clavel
- Unité de Recherche Antivirale, Institut National de la Santé et de la Recherche Médicale, Unité 552, Hôpital Bichat-Claude Bernard, Paris.
| | | |
Collapse
|
28
|
Abstract
We have examined patterns of sequence variability for evidence of linked sequence changes in HIV-1 subtype B protease using translated sequences from protease inhibitor (PI) treated and untreated subjects downloaded from the Stanford HIV RT and Protease Sequence Database (http://hivdb.stanford.edu). The final data set size was 648 sequences from untreated subjects (notx) and 531 for PI-treated subjects (tx). Each subject was uniquely represented by a single sequence. Mutual information was calculated for all pairwise comparisons of positions with nonconsensus amino acids in at least 5% of sequences; significance of pairwise association was assessed using permutation tests. In addition pairs of positions were assessed for linkage by comparing the observed occurrences of amino acid combinations to expected values. The mutual information statistic indicated linkage between nine pairs of sites in the untreated data set (10:93, 12:19, 35:38, 37:41, 62:71, 63:64, 71:77, 71:93, 77:93). Strong statistical support for linkage in the treated data set was seen for 32 pairs, eight involving position 10:7 involving position 71, with the rest being 12:19, 15:77, 20:36, 30:88, 35:36, 35:37, 36:62, 36:77, 46:82, 46:84, 48:54, 48:82, 54:82, 63:64, 63:90, 73:90, 77:93, and 84:90. Most associations were positive, although negative associations were seen for five pairs of interactions. Structural proximity suggests that numerous pairs may interact within a local environment. These interactions include two distinct clusters around 36/77 and 71/93. While some of these interactions may reflect fortuitous linkage in heavily treated subjects with many resistance mutations, others will likely represent important cooperative interactions that are amenable to experimental validation.
Collapse
Affiliation(s)
- Noah G Hoffman
- UNC Center for AIDS Research, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| | | | | |
Collapse
|
29
|
Affiliation(s)
- Benedikt Weissbrich
- Institute for Virology and Immunobiology, Julius Maximilians University, 97078 Würzburg, Germany
| | | | | |
Collapse
|
30
|
Nair AC, Bonin I, Tossi A, Wels WJ, Miertus S. Computational studies of the resistance patterns of mutant HIV-1 aspartic proteases towards ABT-538 (ritonavir) and design of new derivatives. J Mol Graph Model 2002; 21:171-9. [PMID: 12463635 DOI: 10.1016/s1093-3263(02)00149-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Kinetic characterization and cross resistance pattern studies of HIV-1 aspartic protase (PR) inhibitors have shown that some mutations cause considerable reduction in inhibition efficiency. We have performed a computational study of the binding of ABT-538 (ritonavir) with wild type (wt) PR and 12 model mutant structures (R8Q, V321, M461, V82A, V82F, V821, I84V, M46I/V82F, M46I/I84V, V32I/I84V, V82F/I84V and V32I/K45I/F53L/A71V/I84V/L89M (6X)) for which inhibition data are available. Our computational studies indicate a significant correlation between computed complexation energies of ABT-538 with the modeled mutant enzyme structures and the corresponding experimental inhibition constants. By evaluating non-bonding interaction energies between the inhibitor and the mutant enzymes, we have carried out a mechanistic analysis to ascertain the reasons underlying the decrease in binding affinities. This analysis indicated that several residues in addition to the mutated residues contribute to the loss of binding. Taking these considerations into account, a number of new derivatives of ABT-538 were designed, so as to increase van der Waal's and hydrogen bonding interactions with selected mutants. A significant improvement in calculated complexation energies towards both mutant and wt PR structures was obtained for several of the redesigned analogues.
Collapse
Affiliation(s)
- Anil C Nair
- International Center for Science and High Technology, Area Science Park I-34102 Trieste, Italy
| | | | | | | | | |
Collapse
|
31
|
Piana S, Carloni P, Rothlisberger U. Drug resistance in HIV-1 protease: Flexibility-assisted mechanism of compensatory mutations. Protein Sci 2002; 11:2393-402. [PMID: 12237461 PMCID: PMC2384161 DOI: 10.1110/ps.0206702] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The emergence of drug-resistant variants is a serious side effect associated with acquired immune deficiency syndrome therapies based on inhibition of human immunodeficiency virus type 1 protease (HIV-1 PR). In these variants, compensatory mutations, usually located far from the active site, are able to affect the enzymatic activity via molecular mechanisms that have been related to differences in the conformational flexibility, although the detailed mechanistic aspects have not been clarified so far. Here, we perform multinanosecond molecular dynamics simulations on L63P HIV-1 PR, corresponding to the wild type, and one of its most frequently occurring compensatory mutations, M46I, complexed with the substrate and an enzymatic intermediate. The quality of the calculations is established by comparison with the available nuclear magnetic resonance data. Our calculations indicate that the dynamical fluctuations of the mutated enzyme differ from those in the wild type. These differences in the dynamic properties of the adducts with the substrate and with the gem-diol intermediate might be directly related to variations in the enzymatic activity and therefore offer an explanation of the observed changes in catalytic rate between wild type and mutated enzyme. We anticipate that this "flexibility-assisted" mechanism might be effective in the vast majority of compensatory mutations, which do not change the electrostatic properties of the enzyme.
Collapse
Affiliation(s)
- Stefano Piana
- Laboratory of Inorganic Chemistry, ETH Hönggerberg-HCI, Zürich, Switzerland
| | | | | |
Collapse
|
32
|
Abstract
There are 16 approved human immunodeficiency virus type 1 (HIV-1) drugs belonging to three mechanistic classes: protease inhibitors, nucleoside and nucleotide reverse transcriptase (RT) inhibitors, and nonnucleoside RT inhibitors. HIV-1 resistance to these drugs is caused by mutations in the protease and RT enzymes, the molecular targets of these drugs. Drug resistance mutations arise most often in treated individuals, resulting from selective drug pressure in the presence of incompletely suppressed virus replication. HIV-1 isolates with drug resistance mutations, however, may also be transmitted to newly infected individuals. Three expert panels have recommended that HIV-1 protease and RT susceptibility testing should be used to help select HIV drug therapy. Although genotypic testing is more complex than typical antimicrobial susceptibility tests, there is a rich literature supporting the prognostic value of HIV-1 protease and RT mutations. This review describes the genetic mechanisms of HIV-1 drug resistance and summarizes published data linking individual RT and protease mutations to in vitro and in vivo resistance to the currently available HIV drugs.
Collapse
Affiliation(s)
- Robert W Shafer
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
33
|
King NM, Melnick L, Prabu-Jeyabalan M, Nalivaika EA, Yang SS, Gao Y, Nie X, Zepp C, Heefner DL, Schiffer CA. Lack of synergy for inhibitors targeting a multi-drug-resistant HIV-1 protease. Protein Sci 2002; 11:418-29. [PMID: 11790852 PMCID: PMC2373441 DOI: 10.1110/ps.25502] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2001] [Revised: 11/01/2001] [Accepted: 11/06/2001] [Indexed: 10/16/2022]
Abstract
The three-dimensional structures of indinavir and three newly synthesized indinavir analogs in complex with a multi-drug-resistant variant (L63P, V82T, I84V) of HIV-1 protease were determined to approximately 2.2 A resolution. Two of the three analogs have only a single modification of indinavir, and their binding affinities to the variant HIV-1 protease are enhanced over that of indinavir. However, when both modifications were combined into a single compound, the binding affinity to the protease variant was reduced. On close examination, the structural rearrangements in the protease that occur in the tightest binding inhibitor complex are mutually exclusive with the structural rearrangements seen in the second tightest inhibitor complex. This occurs as adaptations in the S1 pocket of one monomer propagate through the dimer and affect the conformation of the S1 loop near P81 of the other monomer. Therefore, structural rearrangements that occur within the protease when it binds to an inhibitor with a single modification must be accounted for in the design of inhibitors with multiple modifications. This consideration is necessary to develop inhibitors that bind sufficiently tightly to drug-resistant variants of HIV-1 protease to potentially become the next generation of therapeutic agents.
Collapse
Affiliation(s)
- Nancy M King
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Domingo E, Mas A, Yuste E, Pariente N, Sierra S, Gutiérrez-Riva M, Menéndez-Arias L. Virus population dynamics, fitness variations and the control of viral disease: an update. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2002; 57:77-115. [PMID: 11728003 DOI: 10.1007/978-3-0348-8308-5_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Viral quasispecies dynamics and variations of viral fitness are reviewed in connection with viral disease control. Emphasis is put on resistance of human immunodeficiency virus and some human DNA viruses to antiviral inhibitors. Future trends in multiple target antiviral therapy and new approaches based on virus entry into error catastrophe (extinction mutagenesis) are discussed.
Collapse
Affiliation(s)
- E Domingo
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Spain.
| | | | | | | | | | | | | |
Collapse
|
35
|
Bühler B, Lin YC, Morris G, Olson AJ, Wong CH, Richman DD, Elder JH, Torbett BE. Viral evolution in response to the broad-based retroviral protease inhibitor TL-3. J Virol 2001; 75:9502-8. [PMID: 11533212 PMCID: PMC114517 DOI: 10.1128/jvi.75.19.9502-9508.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TL-3 is a protease inhibitor developed using the feline immunodeficiency virus protease as a model. It has been shown to efficiently inhibit replication of human, simian, and feline immunodeficiency viruses and therefore has broad-based activity. We now demonstrate that TL-3 efficiently inhibits the replication of 6 of 12 isolates with confirmed resistance mutations to known protease inhibitors. To dissect the spectrum of molecular changes in protease and viral properties associated with resistance to TL-3, a panel of chronological in vitro escape variants was generated. We have virologically and biochemically characterized mutants with one (V82A), three (M46I/F53L/V82A), or six (L24I/M46I/F53L/L63P/V77I/V82A) changes in the protease and structurally modeled the protease mutant containing six changes. Virus containing six changes was found to be 17-fold more resistant to TL-3 in cell culture than was wild-type virus but maintained similar in vitro replication kinetics compared to the wild-type virus. Analyses of enzyme activity of protease variants with one, three, and six changes indicated that these enzymes, compared to wild-type protease, retained 40, 47, and 61% activity, respectively. These results suggest that deficient protease enzymatic activity is sufficient for function, and the observed protease restoration might imply a selective advantage, at least in vitro, for increased protease activity.
Collapse
Affiliation(s)
- B Bühler
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Huff JR, Kahn J. Discovery and clinical development of HIV-1 protease inhibitors. ADVANCES IN PROTEIN CHEMISTRY 2001; 56:213-51. [PMID: 11329855 DOI: 10.1016/s0065-3233(01)56007-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- J R Huff
- Department of Medicinal Chemistry, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | |
Collapse
|
37
|
Abstract
Techniques from graph theory are applied to analyze the bond networks in proteins and identify the flexible and rigid regions. The bond network consists of distance constraints defined by the covalent and hydrogen bonds and salt bridges in the protein, identified by geometric and energetic criteria. We use an algorithm that counts the degrees of freedom within this constraint network and that identifies all the rigid and flexible substructures in the protein, including overconstrained regions (with more crosslinking bonds than are needed to rigidify the region) and underconstrained or flexible regions, in which dihedral bond rotations can occur. The number of extra constraints or remaining degrees of bond-rotational freedom within a substructure quantifies its relative rigidity/flexibility and provides a flexibility index for each bond in the structure. This novel computational procedure, first used in the analysis of glassy materials, is approximately a million times faster than molecular dynamics simulations and captures the essential conformational flexibility of the protein main and side-chains from analysis of a single, static three-dimensional structure. This approach is demonstrated by comparison with experimental measures of flexibility for three proteins in which hinge and loop motion are essential for biological function: HIV protease, adenylate kinase, and dihydrofolate reductase.
Collapse
Affiliation(s)
- D J Jacobs
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Three-dimensional structure of an asymmetrically mutated (C95M) tethered human immunodeficiency virus type 1 protease enzyme (HIV-1 PR) has been determined in an unliganded form using X-ray diffraction data to 1.9 A resolution. The structure, refined using X-PLOR to an R factor of 19.5%, is unexpectedly similar to the ligand-bound native enzyme, rather than to the ligand-free native enzyme. In particular, the two flaps in the tethered dimer are in a closed configuration. The environments around M95 and C1095 are identical, showing no structural effect of this asymmetric mutation at position 95. Oxidation of Cys1095 has been observed for the first time. There is one well-defined water molecule that hydrogen bonds to both carboxyl groups of the essential aspartic acids in the active site. Proteins 2001;43:57-64.
Collapse
Affiliation(s)
- B Pillai
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | | | | |
Collapse
|
39
|
|
40
|
Miller V. International perspectives on antiretroviral resistance. Resistance to protease inhibitors. J Acquir Immune Defic Syndr 2001; 26 Suppl 1:S34-50. [PMID: 11265000 DOI: 10.1097/00042560-200103011-00005] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The availability of protease inhibitors (PIs) and their combination with nucleoside reverse transcriptase inhibitors marked the passage of antiretroviral therapy (ART) from potential for control to effective suppression and thus substantially reduced rates of morbidity and mortality related to HIV. Even so, what was first hoped to be an immutable HIV DNA treatment target has proved to be prone to resistance mutations, with substitutions identified at more than 20 amino acid sites, which reduces PI susceptibility and increases resistance to treatment. The mutation patterns associated with each PI have been defined, and have been observed to occur at one of two locations: at or near the active site, or in the substrate cleavage site. The natural history of PI resistance has been extensively studied, and the genetic and cellular pathways are described in detail in this article. In addition, cross-resistance among PIs is now recognized to be fairly extensive, although the degree of cross-resistance varies with the number of mutations and the variants selected by drug pressure. Thus, it is still possible to salvage a response with another PI after a first regimen with another PI has failed. The extensive basic science and clinical experience with PIs in the fight against HIV are reviewed in this article, which provides data on resistance-mutation profiles, cellular resistance mechanisms, viral fitness studies, and clinical outcome trials with various first-line and subsequent regimens that contain PIs. It is hoped that the information provided will guide physicians in best using PIs as part of a logical and successful ART strategy.
Collapse
Affiliation(s)
- V Miller
- J. W. Goethe University, Zentrum der Inneren Medizin, Frankfurt, Germany.
| |
Collapse
|
41
|
Cecconi F, Micheletti C, Carloni P, Maritan A. Molecular dynamics studies on HIV-1 protease: Drug resistance and folding pathways. Proteins 2001. [DOI: 10.1002/prot.1049] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Qari SH, Magre S, García-Lerma JG, Hussain AI, Takeuchi Y, Patience C, Weiss RA, Heneine W. Susceptibility of the porcine endogenous retrovirus to reverse transcriptase and protease inhibitors. J Virol 2001; 75:1048-53. [PMID: 11134319 PMCID: PMC114002 DOI: 10.1128/jvi.75.2.1048-1053.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine xenografts may offer a solution to the shortage of human donor allografts. However, all pigs contain the porcine endogenous retrovirus (PERV), raising concerns regarding the transmission of PERV and the possible development of disease in xenotransplant recipients. We evaluated 11 antiretroviral drugs licensed for human immunodeficiency virus type 1 (HIV-1) therapy for their activities against PERV to assess their potential for clinical use. Fifty and 90% inhibitory concentrations (IC(50)s and IC(90)s, respectively) of five nucleoside reverse transcriptase inhibitors (RTIs) were determined enzymatically for PERV and for wild-type (WT) and RTI-resistant HIV-1 reference isolates. In a comparison of IC(50)s, the susceptibilities of PERV RT to lamivudine, stavudine, didanosine, zalcitabine, and zidovudine were reduced >20-fold, 26-fold, 6-fold, 4-fold, and 3-fold, respectively, compared to those of WT HIV-1. PERV was also resistant to nevirapine. Tissue culture-based, single-round infection assays using replication-competent virus confirmed the relative sensitivity of PERV to zidovudine and its resistance to all other RTIs. A Gag polyprotein-processing inhibition assay was developed and used to assess the activities of protease inhibitors against PERV. No inhibition of PERV protease was seen with saquinavir, ritonavir, indinavir, nelfinavir, or amprenavir at concentrations >200-fold the IC(50)s for WT HIV-1. Thus, following screening of many antiretroviral agents, our findings support only the potential clinical use of zidovudine.
Collapse
Affiliation(s)
- S H Qari
- HIV and Retrovirology Branch, Division of AIDS, STD, and TB Laboratory Research, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hong L, Zhang XC, Hartsuck JA, Tang J. Crystal structure of an in vivo HIV-1 protease mutant in complex with saquinavir: insights into the mechanisms of drug resistance. Protein Sci 2000; 9:1898-904. [PMID: 11106162 PMCID: PMC2144469 DOI: 10.1110/ps.9.10.1898] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Saquinavir is a widely used HIV-1 protease inhibitor drug for AIDS therapy. Its effectiveness, however, has been hindered by the emergence of resistant mutations, a common problem for inhibitor drugs that target HIV-1 viral enzymes. Three HIV-1 protease mutant species, G48V, L90M, and G48V/L90M double mutant, are associated in vivo with saquinavir resistance by the enzyme (Jacobsen et al., 1996). Kinetic studies on these mutants demonstrate a 13.5-, 3-, and 419-fold increase in Ki values, respectively, compared to the wild-type enzyme (Ermolieff J, Lin X, Tang J, 1997, Biochemistry 36:12364-12370). To gain an understanding of how these mutations modulate inhibitor binding, we have solved the HIV-1 protease crystal structure of the G48V/L90M double mutant in complex with saquinavir at 2.6 A resolution. This mutant complex is compared with that of the wild-type enzyme bound to the same inhibitor (Krohn A, Redshaw S, Richie JC, Graves BJ, Hatada MH, 1991, J Med Chem 34:3340-3342). Our analysis shows that to accommodate a valine side chain at position 48, the inhibitor moves away from the protease, resulting in the formation of larger gaps between the inhibitor P3 subsite and the flap region of the enzyme. Other subsites also demonstrate reduced inhibitor interaction due to an overall change of inhibitor conformation. The new methionine side chain at position 90 has van der Waals interactions with main-chain atoms of the active site residues resulting in a decrease in the volume and the structural flexibility of S1/S1' substrate binding pockets. Indirect interactions between the mutant methionine side chain and the substrate scissile bond or the isostere part of the inhibitor may differ from those of the wild-type enzyme and therefore may facilitate catalysis by the resistant mutant.
Collapse
Affiliation(s)
- L Hong
- Protein Studies Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
| | | | | | | |
Collapse
|
44
|
Gulnik S, Erickson JW, Xie D. HIV protease: enzyme function and drug resistance. VITAMINS AND HORMONES 2000; 58:213-56. [PMID: 10668400 DOI: 10.1016/s0083-6729(00)58026-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
HIV protease is responsible for processing of the gag and gag-pol polyproteins during virion maturation. The activity of this enzyme is essential for virus infectivity, rendering the protein a major therapeutic target for AIDS treatment. This articles reviews the biochemical and biophysical properties of the enzyme. The clinical and in vitro observations of resistance to protease inhibitors are discussed from the perspective of drug resistance mechanisms of HIV protease mutants.
Collapse
Affiliation(s)
- S Gulnik
- SAIC Frederick, National Cancer Institute, Frederick Cancer Research and Development Center, Maryland 21702-1201, USA
| | | | | |
Collapse
|
45
|
Olsen DB, Stahlhut MW, Rutkowski CA, Schock HB, vanOlden AL, Kuo LC. Non-active site changes elicit broad-based cross-resistance of the HIV-1 protease to inhibitors. J Biol Chem 1999; 274:23699-701. [PMID: 10446127 DOI: 10.1074/jbc.274.34.23699] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three high level, cross-resistant variants of the HIV-1 protease have been analyzed for their ability to bind four protease inhibitors approved by the Food and Drug Administration (saquinavir, ritonavir, indinavir, and nelfinavir) as AIDS therapeutics. The loss in binding energy (DeltaDeltaG(b)) going from the wild-type enzyme to mutant enzymes ranges from 2.5 to 4.4 kcal/mol, 40-65% of which is attributed to amino acid substitutions away from the active site of the protease and not in direct contact with the inhibitor. The data suggest that non-active site changes are collectively a major contributor toward engendering resistance against the protease inhibitor and cannot be ignored when considering cross-resistance issues of drugs against the HIV-1 protease.
Collapse
Affiliation(s)
- D B Olsen
- Department of Antiviral Research, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | | | | | | | |
Collapse
|
46
|
Yager TD, Baron L, Batra R, Bouevitch A, Chan D, Chan K, Darasch S, Gilchrist R, Izmailov A, Lacroix JM, Marchelleta K, Renfrew J, Renfrew J, Rushlow D, Steinbach E, Ton C, Waterhouse P, Zaleski H, Dunn JM, Stevens J. High performance DNA sequencing, and the detection of mutations and polymorphisms, on the Clipper sequencer. Electrophoresis 1999; 20:1280-300. [PMID: 10380769 DOI: 10.1002/(sici)1522-2683(19990101)20:6<1280::aid-elps1280>3.0.co;2-#] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Visible Genetics Clipper sequencer is a new platform for automated DNA sequencing which employs disposable MicroCel cassettes and 50 microm thick polyacrylamide gels. Two DNA ladders can be analyzed simultaneously in each of 16 lanes on a gel, after labeling with far-red absorbing dyes such as Cy5 and Cy5.5. This allows a simultaneous bidirectional sequencing of four templates. We have evaluated the Clipper sequencer, by cycle-sequencing of an M13 single-stranded DNA standard, and by coupled amplification and sequencing (CLIP) of reverse-transcribed human immunodeficiency virus (HIV-1) RNA standards and clinical patient samples. (i) Limitations of instrument. We have examined basic instrument parameters such as detector stability, background, digital sampling rate, and gain. With proper usage, the optical and electronic subsystems of the Clipper sequencer do not limit the data collection or sequence-determination processes. (ii) Limitations of gel performance. We have also examined the physics of DNA band separation on 50 microm thick MicroCel gels. We routinely obtain well-resolved sequence which can be base-called with 98.5% accuracy to position approximately 450 on an 11 cm gel, and to position approximately 900 on a 25 cm gel. Resolution on 5 and 11 cm gels ultimately is limited by a sharp decrease in spacing between adjacent bands, in the biased reptation separation regime. Fick's (thermal) diffusion appears to be of minor importance on 6 cm or 11 cm gels, but becomes an additional resolution-limiting factor on 25 cm gels. (iii) Limitations of enzymology. Template quality, primer nesting, choice of DNA polymerase, and choice between dye primers and dye terminators are key determinants of the ability to detect mutations and polymorphisms on the Clipper sequencer, as on other DNA sequencers. When CLIP is used with dye-labeled primers and a DNA polymerase of the F667Y, delta(5'--> 3' exo) class, we can routinely detect single-nucleotide mutations and polymorphisms over the 0.35-0.65 heterozygosity range. We present an example of detecting therapeutically relevant mutations in a clinical HIV-1 RNA isolate.
Collapse
Affiliation(s)
- T D Yager
- Visible Genetics, Toronto, ON, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mori H, Otake T, Oishi I, Kurimura T. Characterization of human immunodeficiency virus type 1 resistant to modified cyclodextrin sulphate (mCDS71) in vitro. Antivir Chem Chemother 1999; 10:15-21. [PMID: 10079875 DOI: 10.1177/095632029901000102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Drug resistance of human immunodeficiency virus type 1 (HIV) to modified cyclodextrin sulphate (mCDS71) has been analysed with respect to both the in vitro appearance of resistance to the compound and the mechanism of the acquisition of resistance. Resistant strains could be obtained in all three strains (NL432, KK-1 and A018) tested after serial passages in MT-4 cells with a gradual increase of the concentration of mCDS71. Cross-resistance both to mCDS71 and dextran sulphate 8000 was observed. As a result of sequencing analysis of the gp120 V3-C5 region of resistant strains, the mechanism of resistance can be explained in several ways: (i) substitution of sugar chain-binding amino acids, N and S; (ii) three to five amino acid deletion in V4 loop; and (iii) several mutations in V3 and V4 regions. The real cause of the resistance may be a combination of these three mechanisms. The results suggest that the target of mCDS71 is relatively widely distributed on the viral surface glycoprotein.
Collapse
Affiliation(s)
- H Mori
- Osaka Prefectural Institute of Public Health, Japan.
| | | | | | | |
Collapse
|
48
|
Boden D, Markowitz M. Resistance to human immunodeficiency virus type 1 protease inhibitors. Antimicrob Agents Chemother 1998; 42:2775-83. [PMID: 9797203 PMCID: PMC105943 DOI: 10.1128/aac.42.11.2775] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- D Boden
- Aaron Diamond AIDS Research Center, New York, New York 10016, USA
| | | |
Collapse
|
49
|
Abstract
Currently, there are a number of approved antiviral agents for use in the treatment of viral infections. However, many instances exist in which the use of a second antiviral agent would be beneficial because it would allow the option of either an alternative or a combination therapeutic approach. Accordingly, virus-encoded proteases have emerged as new targets for antiviral intervention. Molecular studies have indicated that viral proteases play a critical role in the life cycle of many viruses by effecting the cleavage of high-molecular-weight viral polyprotein precursors to yield functional products or by catalyzing the processing of the structural proteins necessary for assembly and morphogenesis of virus particles. This review summarizes some of the important general features of virus-encoded proteases and highlights new advances and/or specific challenges that are associated with the research and development of viral protease inhibitors. Specifically, the viral proteases encoded by the herpesvirus, retrovirus, hepatitis C virus, and human rhinovirus families are discussed.
Collapse
Affiliation(s)
- A K Patick
- Agouron Pharmaceuticals, Inc., San Diego, California 92121, USA.
| | | |
Collapse
|
50
|
Patick AK, Duran M, Cao Y, Shugarts D, Keller MR, Mazabel E, Knowles M, Chapman S, Kuritzkes DR, Markowitz M. Genotypic and phenotypic characterization of human immunodeficiency virus type 1 variants isolated from patients treated with the protease inhibitor nelfinavir. Antimicrob Agents Chemother 1998; 42:2637-44. [PMID: 9756769 PMCID: PMC105911 DOI: 10.1128/aac.42.10.2637] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nelfinavir mesylate (formerly AG1343) is a potent and selective inhibitor of human immunodeficiency virus (HIV) protease approved for the treatment of individuals infected with HIV. Nucleotide sequence analysis of protease genes from plasma HIV type 1 (HIV-1) RNA revealed a unique aspartic acid (D)-to-asparagine (N) substitution at residue 30 (D30N) in 25 of 55 patients treated with nelfinavir for a median of 13 weeks. Although the appearance of D30N was occasionally associated with concurrent or sequential emergence of other changes (e.g., at residues 35, 36, 46, 71, 77, and 88), genotypic changes associated with phenotypic resistance to other protease inhibitors were not observed (e.g., at residues 48, 50, 82, and 84) or were only rarely observed (e.g., at residue 90). In phenotypic assays, viral isolates with high-level resistance to nelfinavir remained susceptible to indinavir, saquinavir, ritonavir, and amprenavir (formerly VX-478/141W94). Similar results were observed in phenotypic assays utilizing HIV-1 NL4-3, which contained the D30N substitution alone or in combination with substitutions at other residues (e.g., residues 46, 71, and 88). These data indicate that the initial pathway of resistance to nelfinavir is unique and suggest that individuals failing short courses of nelfinavir-containing regimens may respond to regimens containing other protease inhibitors.
Collapse
Affiliation(s)
- A K Patick
- Agouron Pharmaceuticals, Inc., San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|