1
|
Rudge SA, Wakelam MJO. Phosphatidylinositolphosphate phosphatase activities and cancer. J Lipid Res 2015; 57:176-92. [PMID: 26302980 DOI: 10.1194/jlr.r059154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Indexed: 12/13/2022] Open
Abstract
Signaling through the phosphoinositide 3-kinase pathways mediates the actions of a plethora of hormones, growth factors, cytokines, and neurotransmitters upon their target cells following receptor occupation. Overactivation of these pathways has been implicated in a number of pathologies, in particular a range of malignancies. The tight regulation of signaling pathways necessitates the involvement of both stimulatory and terminating enzymes; inappropriate activation of a pathway can thus result from activation or inhibition of the two signaling arms. The focus of this review is to discuss, in detail, the activities of the identified families of phosphoinositide phosphatase expressed in humans, and how they regulate the levels of phosphoinositides implicated in promoting malignancy.
Collapse
Affiliation(s)
- Simon A Rudge
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Michael J O Wakelam
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| |
Collapse
|
2
|
Planchart A. Analysis of an intronic promoter within Synj2. Biochem Biophys Res Commun 2013; 440:640-5. [PMID: 24103750 DOI: 10.1016/j.bbrc.2013.09.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 09/24/2013] [Indexed: 11/26/2022]
Abstract
Synj2 (synaptojanin 2) encodes an inositol polyphosphate phosphatase that functions in recycling neurotransmitter vesicles and is implicated in spermatogenesis. Transcription of Synj2 is thought to occur from one of two promoters based on analysis of a variable 5' untranslated region. Clustering all known mouse Synj2 transcripts led us to uncover a novel subset of transcripts that appears to derive from a region located within intron 7. We identified two alternate splice variants emanating from use of this promoter. These alternate splice variants manifest developmental stage specificity and somatic versus gametic differences in expression.
Collapse
Affiliation(s)
- Antonio Planchart
- Department of Biological Sciences, North Carolina State University, Campus Box 7617, Raleigh, NC 27695, USA.
| |
Collapse
|
3
|
Stephens L, Hawkins P. Signalling via class IA PI3Ks. ACTA ACUST UNITED AC 2010; 51:27-36. [PMID: 21035483 DOI: 10.1016/j.advenzreg.2010.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 09/23/2010] [Indexed: 11/28/2022]
Affiliation(s)
- Len Stephens
- The Babraham Institute, Babraham, Cambridge, UK.
| | | |
Collapse
|
4
|
Zolles G, Klöcker N, Wenzel D, Weisser-Thomas J, Fleischmann BK, Roeper J, Fakler B. Pacemaking by HCN channels requires interaction with phosphoinositides. Neuron 2007; 52:1027-36. [PMID: 17178405 DOI: 10.1016/j.neuron.2006.12.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 11/08/2006] [Accepted: 12/05/2006] [Indexed: 01/07/2023]
Abstract
Hyperpolarization-activated, cyclic-nucleotide-gated (HCN) channels mediate the depolarizing cation current (termed I(h) or I(f)) that initiates spontaneous rhythmic activity in heart and brain. This function critically depends on the reliable opening of HCN channels in the subthreshold voltage-range. Here we show that activation of HCN channels at physiologically relevant voltages requires interaction with phosphoinositides such as phosphatidylinositol-4,5-bisphosphate (PIP(2)). PIP(2) acts as a ligand that allosterically opens HCN channels by shifting voltage-dependent channel activation approximately 20 mV toward depolarized potentials. Allosteric gating by PIP(2) occurs in all HCN subtypes and is independent of the action of cyclic nucleotides. In CNS neurons and cardiomyocytes, enzymatic degradation of phospholipids results in reduced channel activation and slowing of the spontaneous firing rate. These results demonstrate that gating by phospholipids is essential for the pacemaking activity of HCN channels in cardiac and neuronal rhythmogenesis.
Collapse
Affiliation(s)
- Gerd Zolles
- Institute of Physiology, University of Freiburg, Hermann-Herder-Strasse 7, 79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
5
|
Ces O, Mulet X. Physical coupling between lipids and proteins: a paradigm for cellular control. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200500079] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Schmid AC, Wise HM, Mitchell CA, Nussbaum R, Woscholski R. Type II phosphoinositide 5-phosphatases have unique sensitivities towards fatty acid composition and head group phosphorylation. FEBS Lett 2004; 576:9-13. [PMID: 15474001 DOI: 10.1016/j.febslet.2004.08.052] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 08/19/2004] [Accepted: 08/23/2004] [Indexed: 10/26/2022]
Abstract
The catalytic properties of the type II phosphoinositide 5-phosphatases of Lowe's oculocerebrorenal syndrome, INPP5B, Synaptojanin1, Synaptojanin2 and SKIP were analysed with respect to their substrate specificity and enzymological properties. Our data reveal that all phosphatases have unique substrate specificities as judged by their corresponding KM and VMax values. They also possessed an exclusive sensitivity towards fatty acid composition, head group phosphorylation and micellar presentation. Thus, the biological function of these enzymes will not just be determined by their corresponding regulatory domains, but will be distinctly influenced by their catalytic properties as well. This suggests that the phosphatase domains fulfil a unique catalytic function that cannot be fully compensated by other phosphatases.
Collapse
Affiliation(s)
- Annette C Schmid
- Department of Biological Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
7
|
Woscholski R. Characterization and purification of phosphatidylinositol trisphosphate 5-phosphatase from rat brain tissues. Methods Enzymol 2002; 345:335-45. [PMID: 11665617 DOI: 10.1016/s0076-6879(02)45027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rudiger Woscholski
- Department of Biology and Biochemistry, Wolfson Laboratories, Imperial College of Science, Technology, and Medicine, London SW7 2AY, United Kingdom
| |
Collapse
|
8
|
Abstract
Phosphoinositide 3-kinases (PI3Ks) phosphorylate the 3′-OH position of the inositol ring of inositol phospholipids, producing three lipid products: PtdIns(3)P, PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3). These lipids bind to the pleckstrin homology (PH) domains of proteins and control the activity and subcellular localisation of a diverse array of signal transduction molecules. Three major classes of signalling molecule are regulated by binding of D-3 phosphoinositides to PH domains: guanine-nucleotide-exchange proteins for Ρ family GTPases, the TEC family tyrosine kinases such as BTK and ITK in B and T lymphocytes, respectively, and the AGC superfamily of serine/threonine protein kinases. These molecules are activated by a variety of extracellular stimuli and have been implicated in a wide range of cellular processes, including cell cycle progression, cell growth, cell motility, cell adhesion and cell survival.
Collapse
Affiliation(s)
- D A Cantrell
- Lymphocyte Activation Laboratory, Imperial Cancer Research Fund, London, WC2A 3PX, UK.
| |
Collapse
|
9
|
Hsu AL, Ching TT, Sen G, Wang DS, Bondada S, Authi KS, Chen CS. Novel function of phosphoinositide 3-kinase in T cell Ca2+ signaling. A phosphatidylinositol 3,4,5-trisphosphate-mediated Ca2+ entry mechanism. J Biol Chem 2000; 275:16242-50. [PMID: 10748064 DOI: 10.1074/jbc.m002077200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study presents evidence that phosphoinositide (PI) 3-kinase is involved in T cell Ca(2+) signaling via a phosphatidylinositol 3,4, 5-trisphosphate PI(3,4,5)P(3)-sensitive Ca(2+) entry pathway. First, exogenous PI(3,4,5)P(3) at concentrations close to its physiological levels induces Ca(2+) influx in T cells, whereas PI(3,4)P(2), PI(4, 5)P(2), and PI(3)P have no effect on [Ca(2+)](i). This Ca(2+) entry mechanism is cell type-specific as B cells and a number of cell lines examined do not respond to PI(3,4,5)P(3) stimulation. Second, inhibition of PI 3-kinase by wortmannin and by overexpression of the dominant negative inhibitor Deltap85 suppresses anti-CD3-induced Ca(2+) response, which could be reversed by subsequent exposure to PI(3,4,5)P(3). Third, PI(3,4,5)P(3) is capable of stimulating Ca(2+) efflux from Ca(2+)-loaded plasma membrane vesicles prepared from Jurkat T cells, suggesting that PI(3,4,5)P(3) interacts with a Ca(2+) entry system directly or via a membrane-bound protein. Fourth, although D-myo-inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4, 5)P(4)) mimics PI(3,4,5)P(3) in many aspects of biochemical functions such as membrane binding and Ca(2+) transport, we raise evidence that Ins(1,3,4,5)P(4) does not play a role in anti-CD3- or PI(3,4,5)P(3)-mediated Ca(2+) entry. This PI(3,4,5)P(3)-stimulated Ca(2+) influx connotes physiological significance, considering the pivotal role of PI 3-kinase in the regulation of T cell function. Given that PI 3-kinase and phospholipase C-gamma form multifunctional complexes downstream of many receptor signaling pathways, we hypothesize that PI(3,4,5)P(3)-induced Ca(2+) entry acts concertedly with Ins(1,4,5)P(3)-induced Ca(2+) release in initiating T cell Ca(2+) signaling. By using a biotinylated analog of PI(3,4,5)P(3) as the affinity probe, we have detected several putative PI(3,4,5)P(3)-binding proteins in T cell plasma membranes.
Collapse
Affiliation(s)
- A L Hsu
- Division of Pharmaceutical Sciences, College of Pharmacy and Department of Microbiology and Immunology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Ijuin T, Mochizuki Y, Fukami K, Funaki M, Asano T, Takenawa T. Identification and characterization of a novel inositol polyphosphate 5-phosphatase. J Biol Chem 2000; 275:10870-5. [PMID: 10753883 DOI: 10.1074/jbc.275.15.10870] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a cDNA encoding a novel inositol polyphosphate 5-phosphatase. It contains two highly conserved catalytic motifs for 5-phosphatase, has a molecular mass of 51 kDa, and is ubiquitously expressed and especially abundant in skeletal muscle, heart, and kidney. We designated this 5-phosphatase as SKIP (Skeletal muscle and Kidney enriched Inositol Phosphatase). SKIP is a simple 5-phosphatase with no other motifs. Baculovirus-expressed recombinant SKIP protein exhibited 5-phosphatase activities toward inositol 1,4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate, phosphatidylinositol (PtdIns) 4,5-bisphosphate, and PtdIns 3,4, 5-trisphosphate but has 6-fold more substrate specificity for PtdIns 4,5-bisphosphate (K(m) = 180 microM) than for inositol 1,4, 5-trisphosphate (K(m) = 1.15 mM). The ectopic expression of SKIP protein in COS-7 cells and immunostaining of neuroblastoma N1E-115 cells revealed that SKIP is expressed in cytosol and that loss of actin stress fibers occurs where the SKIP protein is concentrated. These results imply that SKIP plays a negative role in regulating the actin cytoskeleton through hydrolyzing PtdIns 4,5-bisphosphate.
Collapse
Affiliation(s)
- T Ijuin
- Department of Biochemistry, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Hughes WE, Woscholski R, Cooke FT, Patrick RS, Dove SK, McDonald NQ, Parker PJ. SAC1 encodes a regulated lipid phosphoinositide phosphatase, defects in which can be suppressed by the homologous Inp52p and Inp53p phosphatases. J Biol Chem 2000; 275:801-8. [PMID: 10625610 DOI: 10.1074/jbc.275.2.801] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast protein Sac1p is involved in a range of cellular functions, including inositol metabolism, actin cytoskeletal organization, endoplasmic reticulum ATP transport, phosphatidylinositol-phosphatidylcholine transfer protein function, and multiple-drug sensitivity. The activity of Sac1p and its relationship to these phenotypes are unresolved. We show here that the regulation of lipid phosphoinositides in sac1 mutants is defective, resulting in altered levels of all lipid phos- phoinositides, particularly phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. We have identified two proteins with homology to Sac1p that can suppress drug sensitivity and also restore the levels of the phosphoinositides in sac1 mutants. Overexpression of truncated forms of these suppressor genes confirmed that suppression was due to phosphoinositide phosphatase activity within these proteins. We have now demonstrated this activity for Sac1p and have characterized its specificity. The in vitro phosphatase activity and specificity of Sac1p were not altered by some mutations. Indeed, in vivo mutant Sac1p phosphatase activity also appeared unchanged under conditions in which cells were drug-resistant. However, under different growth conditions, both drug sensitivity and the phosphatase defect were manifest. It is concluded that SAC1 encodes a novel lipid phosphoinositide phosphatase in which specific mutations can cause the sac1 phenotypes by altering the in vivo regulation of the protein rather than by destroying phosphatase activity.
Collapse
Affiliation(s)
- W E Hughes
- Protein Phosphorylation, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
12
|
Hishiya A, Ohnishi M, Tamura S, Nakamura F. Protein phosphatase 2C inactivates F-actin binding of human platelet moesin. J Biol Chem 1999; 274:26705-12. [PMID: 10480873 DOI: 10.1074/jbc.274.38.26705] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During activation of platelets by thrombin phosphorylation of Thr(558) in the C-terminal domain of the membrane-F-actin linking protein moesin increases transiently, and this correlates with protrusion of filopodial structures. Calyculin A enhances phosphorylation of moesin by inhibition of phosphatases. To measure this moesin-specific activity, a nonradioactive enzyme-linked immunosorbent assay method was developed with the synthetic peptide Cys-Lys(555)-Tyr-Lys-Thr(P)-Leu-Arg(560) coupled to bovine serum albumin as the substrate and moesin phosphorylation state-specific polyclonal antibodies for the detection and quantitation of dephosphorylation. Calyculin A-sensitive and -insensitive protein-threonine phosphatase activities were detected in platelet lysates and separated by DEAE-cellulose chromatography. The calyculin A-sensitive enzyme was identified as a type 1 protein phosphatase. The calyculin A-insensitive enzyme activity was purified to homogeneity by phenyl- Sepharose, protamine-, and phosphonic acid peptide-agarose chromatography and characterized biochemically and immunologically as a 53-kDa protein(s) and a type 2C protein phosphatase (PP2C). Phosphorylation of Thr(558) is necessary for F-actin binding of moesin in vitro. The purified enzyme, as well as bacterially made PP2Calpha and PP2Cbeta, efficiently dephosphorylate(s) highly purified platelet phospho-moesin. This reverses the activating effect of phosphorylation, and moesin no longer co-sediments with actin filaments. In vivo, regulation of these phosphatase activities are likely to influence dynamic interactions between the actin cytoskeleton and membrane constituents linked to moesin.
Collapse
Affiliation(s)
- A Hishiya
- Department of Environmental Biology, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | | | | | | |
Collapse
|
13
|
Ching TT, Wang DS, Hsu AL, Lu PJ, Chen CS. Identification of multiple phosphoinositide-specific phospholipases D as new regulatory enzymes for phosphatidylinositol 3,4, 5-trisphosphate. J Biol Chem 1999; 274:8611-7. [PMID: 10085097 DOI: 10.1074/jbc.274.13.8611] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the course of delineating the regulatory mechanism underlying phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) metabolism, we have discovered three distinct phosphoinositide-specific phospholipase D (PI-PLD) isozymes from rat brain, tentatively designated as PI-PLDa, PI-PLDb, and PI-PLDc. These enzymes convert [3H]PI(3,4,5)P3 to generate a novel inositol phosphate, D-myo-[3H]inositol 3,4,5-trisphosphate ([3H]Ins(3,4,5)P3) and phosphatidic acid. These isozymes are predominantly associated with the cytosol, a notable difference from phosphatidylcholine PLDs. They are partially purified by a three-step procedure consisting of DEAE, heparin, and Sephacryl S-200 chromatography. PI-PLDa and PI-PLDb display a high degree of substrate specificity for PI(3,4, 5)P3, with a relative potency of PI(3,4,5)P3 >> phosphatidylinositol 3-phosphate (PI(3)P) or phosphatidylinositol 4-phosphate (PI(4)P) > phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) > phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2). In contrast, PI-PLDc preferentially utilizes PI(3)P as substrate, followed by, in sequence, PI(3,4,5)P3, PI(4)P, PI(3,4)P2, and PI(4,5)P2. Both PI(3, 4)P2 and PI(4,5)P2 are poor substrates for all three isozymes, indicating that the regulatory mechanisms underlying these phosphoinositides are different from that of PI(3,4,5)P3. None of these enzymes reacts with phosphatidylcholine, phosphatidylserine, or phosphatidylethanolamine. All three PI-PLDs are Ca2+-dependent. Among them, PI-PLDb and PI-PLDc show maximum activities within a sub-microM range (0.3 and 0.9 microM Ca2+, respectively), whereas PI-PLDa exhibits an optimal [Ca2+] at 20 microM. In contrast to PC-PLD, Mg2+ has no significant effect on the enzyme activity. All three enzymes require sodium deoxycholate for optimal activities; other detergents examined including Triton X-100 and Nonidet P-40 are, however, inhibitory. In addition, PI(4,5)P2 stimulates these isozymes in a dose-dependent manner. Enhancement in the enzyme activity is noted only when the molar ratio of PI(4,5)P2 to PI(3,4, 5)P3 is between 1:1 and 2:1.
Collapse
Affiliation(s)
- T T Ching
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0082, USA
| | | | | | | | | |
Collapse
|
14
|
Gaidarov I, Krupnick JG, Falck JR, Benovic JL, Keen JH. Arrestin function in G protein-coupled receptor endocytosis requires phosphoinositide binding. EMBO J 1999; 18:871-81. [PMID: 10022830 PMCID: PMC1171180 DOI: 10.1093/emboj/18.4.871] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Internalization of agonist-activated G protein-coupled receptors is mediated by non-visual arrestins, which also bind to clathrin and are therefore thought to act as adaptors in the endocytosis process. Phosphoinositides have been implicated in the regulation of intracellular receptor trafficking, and are known to bind to other coat components including AP-2, AP180 and COPI coatomer. Given these observations, we explored the possibility that phosphoinositides play a role in arrestin's function as an adaptor. High-affinity binding sites for phosphoinositides in beta-arrestin (arrestin2) and arrestin3 (beta-arrestin2) were identified, and dissimilar effects of phosphoinositide and inositol phosphate on arrestin interactions with clathrin and receptor were characterized. Alteration of three basic residues in arrestin3 abolished phosphoinositide binding with complete retention of clathrin and receptor binding. Unlike native protein, upon agonist activation, this mutant arrestin3 expressed in COS1 cells neither supported beta2-adrenergic receptor internalization nor did it concentrate in coated pits, although it was recruited to the plasma membrane. These findings indicate that phosphoinositide binding plays a critical regulatory role in delivery of the receptor-arrestin complex to coated pits, perhaps by providing, with activated receptor, a multi-point attachment of arrestin to the plasma membrane.
Collapse
Affiliation(s)
- I Gaidarov
- Kimmel Cancer Institute and the Departments of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
15
|
Pesesse X, Moreau C, Drayer AL, Woscholski R, Parker P, Erneux C. The SH2 domain containing inositol 5-phosphatase SHIP2 displays phosphatidylinositol 3,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate 5-phosphatase activity. FEBS Lett 1998; 437:301-3. [PMID: 9824312 DOI: 10.1016/s0014-5793(98)01255-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Distinct forms of inositol and phosphatidylinositol polyphosphate 5-phosphatases selectively remove the phosphate from the 5-position of the inositol ring from both soluble and lipid substrates. SHIP1 is the 145-kDa SH2 domain-containing inositol 5-phosphatase expressed in haematopoietic cells. SHIP2 is a related but distinct gene product. We report here that SHIP2 can be expressed in an active form both in Escherichia coli and in COS-7 cells. A truncated 103-kDa recombinant protein could be purified from bacteria that display both inositol 1,3,4,5-tetrakisphosphate (InsP4) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) phosphatase activities. COS-7 cell lysates transfected with SHIP2 had increased PtdIns(3,4,5)P3 phosphatase activity as compared to the vector alone.
Collapse
Affiliation(s)
- X Pesesse
- Interdisciplinary Research Institute (IRIBHN), Université Libre de Bruxelles, Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
16
|
Jones AT, Wessling-Resnick M. Inhibition of in vitro endosomal vesicle fusion activity by aminoglycoside antibiotics. J Biol Chem 1998; 273:25301-9. [PMID: 9737996 DOI: 10.1074/jbc.273.39.25301] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effects of two aminoglycoside antibiotics, neomycin and Geneticin, on the endocytic pathway were studied using a cell-free assay that reconstitutes endosome-endosome fusion. Both drugs inhibit the rate and extent of endosome fusion in a dose-dependent manner with IC50 values of approximately 45 microM and approximately 1 mM, respectively. Because the IC50 for neomycin falls within the range of affinities reported for its binding to acidic phospholipids, notably phosphatidylinositol 4,5-bisphosphate (PIP2), these data suggest that negatively charged lipids are required for endosome fusion. A role for negatively charged lipids in membrane traffic has been postulated to involve the activity of a PIP2-dependent phospholipase D (PLD) stimulated by the GTP-binding protein ADP-ribosylation factor (ARF). Although neomycin blocks endosome fusion at a stage of the in vitro reaction that is temporally related to steps inhibited by cytosolic ARFs when they bind guanosine-5'-gamma-thiophosphate (GTPgammaS), these inhibitors appear to act in a synergistic manner. This idea is confirmed by the fact that addition of a PIP2-independent PLD does not suppress neomycin inhibition of endosome fusion; moreover, in vitro fusion activity is not affected by the pleckstrin homology domain of phosphoinositide-specific phospholipase C delta1, which binds to acidic phospholipids, particularly PIP2, with high affinity. Thus, although aminoglycoside-sensitive elements of endosome fusion are required at mechanistic stages that are also blocked by GTPgammaS-bound ARF, these effects are unrelated to inhibition of the PIP2-dependent PLD activity stimulated by this GTP-binding protein. These results argue that there are additional mechanistic roles for acidic phospholipids in the endosomal pathway.
Collapse
Affiliation(s)
- A T Jones
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
17
|
Wurmser AE, Emr SD. Phosphoinositide signaling and turnover: PtdIns(3)P, a regulator of membrane traffic, is transported to the vacuole and degraded by a process that requires lumenal vacuolar hydrolase activities. EMBO J 1998; 17:4930-42. [PMID: 9724630 PMCID: PMC1170822 DOI: 10.1093/emboj/17.17.4930] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The Golgi/endosome-associated Vps34 phosphatidylinositol 3-kinase is essential for the sorting of hydrolases from the Golgi to the vacuole/lysosome. Upon inactivation of a temperature-conditional Vps34 kinase, cellular levels of PtdIns(3)P rapidly decrease and it has been proposed that this decrease is due to the continued turnover of PtdIns(3)P by cytoplasmic phosphatases. Here we show that mutations in VAM3 (vacuolar t-SNARE) and YPT7 (rab GTPase), which are required to direct protein and membrane delivery from prevacuolar endosomal compartments to the vacuole, dramatically increase/stabilize PtdIns(3)P levels in vivo by disrupting its turnover. We find that the majority of the total pool of PtdIns(3)P which has been synthesized, but not PtdIns(4)P, requires transport to the vacuole in order to be turned over. Unexpectedly, strains with impaired vacuolar hydrolase activity accumulate 4- to 5-fold higher PtdIns(3)P levels than wild-type cells, suggesting that lumenal vacuolar lipase and/or phosphatase activities degrade PtdIns(3)P. Because vacuolar hydrolases act in the lumen, PtdIns(3)P is likely to be transferred from the cytoplasmic membrane leaflet where it is synthesized, to the lumen of the vacuole. Interestingly, mutants that stabilize PtdIns(3)P accumulate small uniformly-sized vesicles (40-50 nm) within prevacuolar endosomes (multivesicular bodies) or the vacuole lumen. Based on these and other observations, we propose that PtdIns(3)P is degraded by an unexpected mechanism which involves the sorting of PtdIns(3)P into vesicles generated by invagination of the limiting membrane of the endosome or vacuole, ultimately delivering the phosphoinositide into the lumen of the compartment where it can be degraded by the resident hydrolases.
Collapse
Affiliation(s)
- A E Wurmser
- Division of Cellular and Molecular Medicine and Howard Hughes Medical Institute, University of California at San Diego, School of Medicine, La Jolla, CA 92093-0668, USA
| | | |
Collapse
|
18
|
Woscholski R, Finan PM, Radley E, Parker PJ. Identification and characterisation of a novel splice variant of synaptojanin1. FEBS Lett 1998; 432:5-8. [PMID: 9710239 DOI: 10.1016/s0014-5793(98)00820-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Synaptojanin1, the major constitutively active PtdInsP3 5-phosphatase activity in rat brain, is one of two closely related proteins both extensively spliced in their C-terminal proline rich domain. We describe here the discovery of a novel splice variant of synaptojanin1 which misses the major N-terminal part of the SAC1 domain. This deltaSAC-synaptojanin1 is expressed in rat brain tissue as shown by Northern and Western analysis. However, the deletion of the SAC1 domain does not alter PtdInsP3 5-phosphatase activity demonstrating that the SAC1 domain is not necessary for catalytic function.
Collapse
Affiliation(s)
- R Woscholski
- Protein Phosphorylation Laboratory, Imperial Cancer Research Fund, London, UK
| | | | | | | |
Collapse
|
19
|
Göransson O, Wijkander J, Manganiello V, Degerman E. Insulin-induced translocation of protein kinase B to the plasma membrane in rat adipocytes. Biochem Biophys Res Commun 1998; 246:249-54. [PMID: 9600101 DOI: 10.1006/bbrc.1998.8602] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein kinase B (PKB) has previously been shown to be activated in response to insulin and growth factor stimulation. The activation mechanism has been suggested to involve translocation of PKB to membranes, where it is phosphorylated and activated. Insulin-induced translocation of PKB has not been demonstrated in a physiological target cell. Therefore we have used the primary rat adipocyte to investigate insulin-induced translocation of PKB. In the presence of 1 nM insulin translocation of PKB was detected within 30 seconds and was blocked by wortmannin, a selective phosphatidylinositol 3-kinase inhibitor. This translocation was potentiated by the tyrosine phosphatase inhibitor vanadate. Subcellular localization studies revealed that PKB translocated to the plasma membrane.
Collapse
Affiliation(s)
- O Göransson
- Department of Cell and Molecular Biology, Lund University, Sweden.
| | | | | | | |
Collapse
|
20
|
O'Rourke LM, Tooze R, Turner M, Sandoval DM, Carter RH, Tybulewicz VL, Fearon DT. CD19 as a membrane-anchored adaptor protein of B lymphocytes: costimulation of lipid and protein kinases by recruitment of Vav. Immunity 1998; 8:635-45. [PMID: 9620684 DOI: 10.1016/s1074-7613(00)80568-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CD19 is a coreceptor that amplifies signaling by membrane immunoglobulin (mIg) to promote responses of the B lymphocyte to T-dependent antigens. Vav is a guanine nucleotide exchange factor for the Rho, Rac, Cdc42 family of small GTPases. We found that coligating mIg and CD19 causes a synergistic increase in the tyrosine phosphorylation of CD19. Phosphorylated tyrosine-391 of CD19 binds Vav to mediate a sustained increase in intracellular Ca2+ concentration. This response correlates with activation by the CD19-Vav complex of phosphatidylinositol 4-phosphate 5-kinase for the synthesis of phosphatidylinositol 4,5-bisphosphate. Interaction of CD19 with Vav also mediates the synergistic activation of the mitogen-activated protein kinase JNK. Therefore, CD19 is a membrane adaptor protein that recruits Vav for the activation of lipid and protein kinases.
Collapse
Affiliation(s)
- L M O'Rourke
- Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
Stolz LE, Huynh CV, Thorner J, York JD. Identification and characterization of an essential family of inositol polyphosphate 5-phosphatases (INP51, INP52 and INP53 gene products) in the yeast Saccharomyces cerevisiae. Genetics 1998; 148:1715-29. [PMID: 9560389 PMCID: PMC1460112 DOI: 10.1093/genetics/148.4.1715] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We recently demonstrated that the S. cerevisiae INP51 locus (YIL002c) encodes an inositol polyphosphate 5-phosphatase. Here we describe two related yeast loci, INP52 (YNL106c) and INP53 (YOR109w). Like Inp51p, the primary structures of Inp52p and Inp53p resemble the mammalian synaptic vesicle-associated protein, synaptojanin, and contain a carboxy-terminal catalytic domain and an amino-terminal SAC1-like segment. Inp51p (108 kD), Inp52p (136 kD) and Inp53p (124 kD) are membrane-associated. Single null mutants (inp51, inp52, or inp53) are viable. Both inp51 inp52 and inp52 inp53 double mutants display compromised cell growth, whereas an inp51 inp53 double mutant does not. An inp51 inp52 inp53 triple mutant is inviable on standard medium, but can grow weakly on media supplemented with an osmotic stabilizer (1 M sorbitol). An inp51 mutation, and to a lesser degree an inp52 mutation, confers cold-resistant growth in a strain background that cannot grow at temperatures below 15 degrees. Analysis of inositol metabolites in vivo showed measurable accumulation of phosphatidylinositol 4,5-bisphosphate in the inp51 mutant. Electron microscopy revealed plasma membrane invaginations and cell wall thickening in double mutants and the triple mutant grown in sorbitol-containing medium. A fluorescent dye that detects endocytic and vacuolar membranes suggests that the vacuole is highly fragmented in inp51 inp52 double mutants. Our observations indicate that Inp51p, Inp52p, and Inp53p have distinct functions and that substrates and/or products of inositol polyphosphate 5-phosphatases may have roles in vesicle trafficking, membrane structure, and/or cell wall formation.
Collapse
Affiliation(s)
- L E Stolz
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
22
|
Khvotchev M, Südhof TC. Developmentally regulated alternative splicing in a novel synaptojanin. J Biol Chem 1998; 273:2306-11. [PMID: 9442075 DOI: 10.1074/jbc.273.4.2306] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Phosphatidylinositol phosphates (PIPs) perform central functions in signal transduction and membrane traffic. Synaptojanin is a PIP 5-phosphatase that is expressed in a brain-specific and a ubiquitous splice variants and is thought to constitute the major PIP 5-phosphatase in mammalian brain (Woscholski, R., Finan, P.M., Radley, E., Totty, N.F., Sterling, A.E., Hsuan, J.J., Waterfield, M. D., and Parker, P. J. (1997) J. Biol. Chem. 272, 9625-9628). We now describe synaptojanin 2, a novel isoform of synaptojanin that, similar to synaptojanin 1, contains an N-terminal SAC1-like sequence and a central 5-phosphatase domain but a distinct, unique C-terminal sequence. Transfection studies demonstrated that synaptojanin 2, like synaptojanin 1, is an active PIP phosphatase. An interesting feature of synaptojanin 1 is the presence of a long open reading frame in the 3' region of the brain mRNA that in non-brain tissues is joined to the coding region by alternative splicing, resulting in a shorter synaptojanin 1 form in brain and a longer form in peripheral tissues (Ramjaun, A. R., and McPherson, P. S. (1996) J. Biol. Chem. 271, 24856-24861). Although it exhibits no homology to synaptojanin 1 in this region, synaptojanin 2 also contains an open reading frame in the 3' region that is subject to alternative splicing. Similar to synaptojanin 1, alternative splicing of synaptojanin 2 is tissue-specific and creates a shorter isoform expressed in brain and a longer form in peripheral tissues. The similar alternative splicing of two homologous proteins in a region of non-homology raises the possibility of evolutionary convergence and supports the significance of the variants. Analysis of mRNAs from three brain regions at different developmental stages revealed that alternative splicing of synaptojanin 2 is a developmentally late event, occurring only after the first postnatal week after the generation of neurons and initial synaptogenesis.
Collapse
Affiliation(s)
- M Khvotchev
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | |
Collapse
|
23
|
Dove SK, Cooke FT, Douglas MR, Sayers LG, Parker PJ, Michell RH. Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis. Nature 1997; 390:187-92. [PMID: 9367158 DOI: 10.1038/36613] [Citation(s) in RCA: 376] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inositol phospholipids play multiple roles in cell signalling systems. Two widespread eukaryotic phosphoinositide-based signal transduction mechanisms, phosphoinositidase C-catalysed phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) hydrolysis and 3-OH kinase-catalysed PtdIns(4,5)P2 phosphorylation, make the second messengers inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) sn-1,2-diacylglycerol and PtdIns(3,4,5)P3. In addition, PtdIns(4,5)P2 and PtdIns3P have been implicated in exocytosis and membrane trafficking. We now show that when the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe are hyperosmotically stressed, they rapidly synthesize phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2) by a process that involves activation of a PtdIns3P 5-OH kinase. This PtdIns(3,5)P2 accumulation only occurs in yeasts that have an active vps34-encoded PtdIns 3-OH kinase, showing that this latter kinase makes the PtdIns3P needed for PtdIns(3,5)P2 synthesis and indicating that PtdIns(3,5)P2 may have a role in sorting vesicular proteins. PtdIns(3,5)P2 is also present in mammalian and plant cells: in monkey Cos-7 cells, its labelling is inversely related to the external osmotic pressure. The stimulation of a PtdIns3P 5-OH kinase-catalysed synthesis of PtdIns(3,5)P2, a molecule that might be a new type of phosphoinositide 'second messenger, thus appears to be central to a widespread and previously uncharacterized regulatory pathway.
Collapse
Affiliation(s)
- S K Dove
- Centre for Clinical Research in Immunology and Signalling, University of Birmingham, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Giuriato S, Payrastre B, Drayer AL, Plantavid M, Woscholski R, Parker P, Erneux C, Chap H. Tyrosine phosphorylation and relocation of SHIP are integrin-mediated in thrombin-stimulated human blood platelets. J Biol Chem 1997; 272:26857-63. [PMID: 9341117 DOI: 10.1074/jbc.272.43.26857] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The SH2 domain-containing inositol 5-phosphatase, SHIP, known to dephosphorylate inositol 1,3,4,5-tetrakisphosphate and phosphatidylinositol 3,4,5-trisphosphate has recently been shown to be expressed in a variety of hemopoietic cells. This 145-kDa protein is induced to associate with Shc by multiple cytokines and may play an important role in the negative regulation of immunocompetent cells mediated by FcgammaRIIB receptor. We report here that SHIP is present in human blood platelets and may be involved in platelet activation evoked by thrombin. Platelet SHIP was identified by Western blotting as a single 145-kDa protein. Both phosphatidylinositol 3,4,5-trisphosphate and inositol 1,3,4, 5-tetrakisphosphate 5-phosphatase activities could be demonstrated in anti-SHIP immunoprecipitates of platelet lysate. Thrombin stimulation induced a tyrosine phosphorylation of SHIP, this effect being prevented if platelets were not shaken or if RGD-containing peptides were present, indicating an aggregation-dependent, integrin-mediated event. Moreover, although the intrinsic phosphatase activity of SHIP did not appear to be significantly increased, tyrosine-phosphorylated SHIP was relocated to the actin cytoskeleton upon activation in an aggregation- and integrin engagement-dependent manner. Finally, the striking correlation observed between phosphatidylinositol 3,4-bisphosphate production and the tyrosine phosphorylation of SHIP, as well as its relocation to the cytoskeleton upon thrombin stimulation, suggest a role for SHIP in the aggregation-dependent and GpIIb-IIIa-mediated accumulation of this important phosphoinositide.
Collapse
Affiliation(s)
- S Giuriato
- INSERM Unité 326, Institut Fédératif de Recherche 30, Hôpital Purpan, 31059 Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Songyang Z, Baltimore D, Cantley LC, Kaplan DR, Franke TF. Interleukin 3-dependent survival by the Akt protein kinase. Proc Natl Acad Sci U S A 1997; 94:11345-50. [PMID: 9326612 PMCID: PMC23462 DOI: 10.1073/pnas.94.21.11345] [Citation(s) in RCA: 306] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interleukin 3 (IL-3)-dependent survival of hematopoietic cells is known to rely on the activity of multiple signaling pathways, including a pathway leading to activation of phosphoinositide 3-kinase (PI 3-kinase), and protein kinase Akt is a direct target of PI 3-kinase. We find that Akt kinase activity is rapidly induced by the cytokine IL-3, suggesting a role for Akt in PI 3-kinase-dependent signaling in hematopoetic cells. Dominant-negative mutants of Akt specifically block Akt activation by IL-3 and interfere with IL-3-dependent proliferation. Overexpression of Akt or oncogenic v-akt protects 32D cells from apoptosis induced by IL-3 withdrawal. Apoptosis after IL-3 withdrawal is accelerated by expression of dominant-negative mutants of Akt, indicating that a functional Akt signaling pathway is necessary for cell survival mediated by the cytokine IL-3. Thus Akt appears to be an important mediator of anti-apoptotic signaling in this system.
Collapse
Affiliation(s)
- Z Songyang
- Department of Biology, Massachusetts Institute of Technology, 68-380, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
26
|
Wijkander J, Holst LS, Rahn T, Resjö S, Castan I, Manganiello V, Belfrage P, Degerman E. Regulation of protein kinase B in rat adipocytes by insulin, vanadate, and peroxovanadate. Membrane translocation in response to peroxovanadate. J Biol Chem 1997; 272:21520-6. [PMID: 9261171 DOI: 10.1074/jbc.272.34.21520] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Protein kinase B (PKB) (also referred to as RAC/Akt kinase) has been shown to be controlled by various growth factors, including insulin, using cell lines and transfected cells. However, information is so far scarce regarding its regulation in primary insulin-responsive cells. We have therefore used isolated rat adipocytes to examine the mechanisms, including membrane translocation, whereby insulin and the insulin-mimicking agents vanadate and peroxovanadate control PKB. Stimulation of adipocytes with insulin, vanadate, or peroxovanadate caused decreased PKB mobility on sodium dodecyl sulfate-polyacrylamide gels, indicative of increased phosphorylation, which correlated with an increase in kinase activity detected with the peptide KKRNRTLTK. This peptide was found to detect activated PKB selectively in crude cytosol and partially purified cytosol fractions from insulin-stimulated adipocytes. The decrease in electrophoretic mobility and activation of PKB induced by insulin was reversed both in vitro by treatment of the enzyme with alkaline phosphatase and in the intact adipocyte upon removal of insulin or addition of the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor wortmannin. Significant translocation of PKB to membranes could not be demonstrated after insulin stimulation, but peroxovanadate, which appeared to activate PI 3-kinase to a higher extent than insulin, induced substantial translocation. The translocation was prevented by wortmannin, suggesting that PI 3-kinase and/or the 3-phosphorylated phosphoinositides generated by PI 3-kinase are indeed involved in the membrane targeting of PKB.
Collapse
Affiliation(s)
- J Wijkander
- Section for Molecular Signaling, Department of Cell and Molecular Biology, Lund University, S-221 00 Lund, Sweden. jonny
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Woscholski R, Finan PM, Radley E, Totty NF, Sterling AE, Hsuan JJ, Waterfield MD, Parker PJ. Synaptojanin is the major constitutively active phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase in rodent brain. J Biol Chem 1997; 272:9625-8. [PMID: 9092489 DOI: 10.1074/jbc.272.15.9625] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The major constitutive phosphatidylinositol-3,4,5-P3 (PtdIns) 5-phosphatase activity was purified and subjected to peptide sequence analysis providing extensive amino acid sequence which was subsequently used for cloning the cDNA. Peptide and cDNA sequences revealed that the purified PtdIns(3,4,5)P3 5-phosphatase was identical to a splice variant of a recently cloned inositol polyphosphate 5-phosphatase termed synaptojanin. Since synaptojanin is not known to possess PtdIns(3,4,5)P3 5-phosphatase activity, we verified that the purified PtdIns(3,4,5)P3 5-phosphatase activity and synaptojanin are identical by Western blot using specific antibodies raised against synaptojanin sequences. Immunoprecipitation from crude lysates of rat brain tissue showed that synaptojanin accounts for the major part of the active PtdIns(3, 4,5)P3 5-phosphatase activity. It is also shown that the protein is localized to the soluble fraction. Expression of a truncated recombinant protein demonstrates that the conserved 5-phosphatase region of the synaptojanin gene expresses PtdIns(3,4,5)P3 5-phosphatase activity. However, immunological analysis demonstrates that the PtdIns(3,4,5)P3 5-phosphatase activity expressed from the synaptojanin gene in brain is due to a particular splice variant which contains a 16-amino acid insert as shown by immunoprecipitation using a specific antibody raised against this particular splice variant.
Collapse
Affiliation(s)
- R Woscholski
- Protein Phosphorylation Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Jefferson AB, Auethavekiat V, Pot DA, Williams LT, Majerus PW. Signaling inositol polyphosphate-5-phosphatase. Characterization of activity and effect of GRB2 association. J Biol Chem 1997; 272:5983-8. [PMID: 9038219 DOI: 10.1074/jbc.272.9.5983] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
An inositol polyphosphate-5-phosphatase (SIP-110) that binds the SH3 domains of the adaptor protein GRB2 was produced in Sf9 cells and characterized. SIP-110 binds to GRB2 in vitro with a stoichiometry of 1 mol of GRB2/0.7 mol of SIP-110. GRB2 binding does not affect enzyme activity implying that GRB2 serves mainly to localize SIP-110 within cells. SIP-110 hydrolyses inositol (Ins)(1,3,4,5)P4 to Ins(1, 3,4)P3. The enzyme does not hydrolyze Ins(1,4,5)P3 that is a substrate for previously described 5-phosphatases nor does it hydrolyze phosphatidylinositol (PtdIns)(4,5)P2. SIP-110 also hydrolyzed PtdIns(3,4,5)P3 to PtdIns(3,4)P2 as did recombinant forms of two other 5-phosphatases designated as inositol polyphosphate-5- phosphatase II, and OCRL (the protein that is mutated in oculocerebrorenal syndrome). The inositol polyphosphate-5-phosphatase enzyme family now is represented by at least 9 distinct genes and includes enzymes that fall into 4 subfamilies based on their activities toward various 5-phosphatase substrates.
Collapse
Affiliation(s)
- A B Jefferson
- Division of Hematology-Oncology, Washington University School of Medicine, Box 8125, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
29
|
Desai T, Gigg J, Gigg R, Martín-Zamora E. The preparation of racemic and enantiomerically pure myo-inositol derivatives as intermediates for the synthesis of phosphatidylinositol 3-, 3,4-bis-, and 3,4,5-tris-phosphates and for the synthesis of analogues of 1d-myo-inositol 1,3,4,5-tetrakisphosphate. Carbohydr Res 1996. [DOI: 10.1016/s0008-6215(96)00211-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Liu L, Jefferson AB, Zhang X, Norris FA, Majerus PW, Krystal G. A novel phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase associates with the interleukin-3 receptor. J Biol Chem 1996; 271:29729-33. [PMID: 8939907 DOI: 10.1074/jbc.271.47.29729] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To gain insight into the intracellular signaling cascades that are activated by the binding of interleukin-3 (IL-3) to its target cells, we have embarked on the identification of proteins that are associated with the IL-3 receptor (IL-3R). In a previous study we reported that a 110-kDa serine/threonine protein kinase is constitutively associated with the IL-3R and activated following IL-3 stimulation. We now report that a phosphatidylinositol-3,4, 5-trisphosphate (PtdIns-3,4,5-P3) 5-phosphatase (5-ptase) is also constitutively associated with the IL-3R. This 5-ptase is magnesium-dependent and removes the 5-position phosphate from PtdIns-3,4,5-P3 but does not metabolize PtdIns-4,5-P2, inositol (Ins)-1,3,4,5-P4, or Ins-1,4,5-P3. This substrate specificity distinguishes it from any previously characterized 5-ptase. Interestingly, it may be bound indirectly via phosphatidylinositol 3-kinase (PI 3-kinase), another enzyme that is constitutively bound to the IL-3R. However, unlike PI 3-kinase which becomes activated following IL-3 stimulation, this receptor-associated 5-ptase activity does not increase following IL-3 stimulation, and its primary function may be to keep the principal in vivo product of PI 3-kinase, PtdIns-3,4,5-P3, at low levels in unstimulated cells, to terminate the PI 3-kinase signal following IL-3 stimulation or to metabolize PtdIns-3,4,5-P3 to a metabolically active second messenger, i.e. PtdIns-3,4-P2.
Collapse
Affiliation(s)
- L Liu
- Terry Fox Laboratory, British Columbia Cancer Agency, University of British Columbia, Vancouver, British Columbia, Canada V5Z 1L3
| | | | | | | | | | | |
Collapse
|
31
|
Guilherme A, Klarlund JK, Krystal G, Czech MP. Regulation of phosphatidylinositol 3,4,5-trisphosphate 5'-phosphatase activity by insulin. J Biol Chem 1996; 271:29533-6. [PMID: 8939879 DOI: 10.1074/jbc.271.47.29533] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Polyphosphoinositides are thought to be mediators of cellular signaling pathways as well as regulators of cytoskeletal elements and membrane trafficking events. It has recently been demonstrated that a class of phosphatidylinositol (PI) 3,4,5-P3 5'-phosphatases contains SH2 domains and proline-rich regions, which are present in many signaling proteins. We report here that insulin stimulation of Chinese hamster ovary cells (CHO-T) expressing human insulin receptors causes an 8-10-fold increase in PI 3,4,5-P3 5'-phosphatase activity in anti-phosphotyrosine immunoprecipitates of the cell lysates. This insulin-sensitive polyphosphoinositide 5'-phosphatase did not catalyze dephosphorylation of PI 4,5-P2. No change in 5'-phosphatase activity was detected in insulin receptor or IRS-1 immune complexes in response to insulin. However, insulin treatment of CHO-T cells markedly increased the PI 3,4,5-P3 5'-phosphatase activity associated with Shc and Grb2. The insulin-regulated polyphosphoinositide 5'-phosphatase was not immunoreactive with antibody raised against the recently cloned SHIP 5'-phosphatase reported to associate with Shc and Grb2 in B lymphocytes. These data demonstrate that insulin causes formation of complexes containing a PI 3,4,5-P3 5'-phosphatase, and Shc or Grb2, or both, suggesting an important role of this enzyme in insulin signaling.
Collapse
Affiliation(s)
- A Guilherme
- Program in Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
32
|
Ramjaun AR, McPherson PS. Tissue-specific alternative splicing generates two synaptojanin isoforms with differential membrane binding properties. J Biol Chem 1996; 271:24856-61. [PMID: 8798761 DOI: 10.1074/jbc.271.40.24856] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Synaptojanin is an Src homology 3 domain-binding inositol 5-phosphatase that is thought to function in synaptic vesicle endocytosis. It is encoded by a cDNA with two open reading frames separated by an in-frame stop codon. The first open reading frame encodes a 145-kDa form of the protein, whereas a 170-kDa isoform appears to be composed of both open reading frames and contains additional Src homology 3 domain-binding consensus sequences. Here, we demonstrate that the two synaptojanin isoforms are generated by the alternative use of an exon containing the stop codon. Whereas the 145-kDa isoform is highly enriched in adult brain, the 170-kDa isoform is excluded from this tissue and has a widespread distribution in non-neuronal cells. Unlike the 145-kDa isoform, which can be removed from membranes by a low salt wash, the 170-kDa isoform remains membrane-associated, even in the presence of 1 salt. Further, the 170-kDa form, but not the 145-kDa form, can be isolated from membranes as part of a large molecular weight complex. These properties may allow the 170-kDa isoform of synaptojanin to play a unique and perhaps more general role in endocytosis as compared with the 145-kDa isoform.
Collapse
Affiliation(s)
- A R Ramjaun
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | |
Collapse
|
33
|
Navé BT, Siddle K, Shepherd PR. Phorbol esters stimulate phosphatidylinositol 3,4,5-trisphosphate production in 3T3-L1 adipocytes: implications for stimulation of glucose transport. Biochem J 1996; 318 ( Pt 1):203-5. [PMID: 8761472 PMCID: PMC1217608 DOI: 10.1042/bj3180203] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of insulin and phorbol 12-myristate 13-acetate (PMA) on the levels of cellular phosphoinositides were investigated in 3T3-L1 adipocytes. Stimulation for 4 min with PMA (1 microM) or insulin (10 nM) increased levels of PtdIns(3,4,5)P3 approx. 2-fold and 6-fold respectively. PMA also had a small effect on the cellular levels of PtdIns4P, whereas insulin had no effect on PtdIns4P levels; levels of PtdIns(4,5)P2 and PtdIns3P were not significantly affected by either agent. Insulin increased the levels of the p85 alpha subunit of phosphoinositide (PI) 3-kinase associated with membranes, whereas PMA decreased levels of membrane-associated p85 alpha. PMA did not increase PI 3-kinase activity in anti-phosphotyrosine or anti-p85 immunoprecipitates. The stimulation of glucose transport by insulin or PMA was blocked by 100 nM wortmannin or 10 ng/ml LY294002, indicating that PI 3-kinase is essential for stimulation by both agents. In summary, these results demonstrate: (1) that PMA and insulin stimulate PtdIns(3,4,5)P3 production by distinct mechanisms in 3T3-L1 adipocytes, and (2) that stimulation of PtdIns(3,4,5)P3 production by PMA is likely to be important in signalling pathways leading from PMA stimulation to end-point responses such as glucose transport.
Collapse
Affiliation(s)
- B T Navé
- Department of Clinical Biochemistry, University of Cambridge, UK
| | | | | |
Collapse
|
34
|
Batty IH, Downes CP. Thrombin receptors modulate insulin-stimulated phosphatidylinositol 3,4,5-trisphosphate accumulation in 1321N1 astrocytoma cells. Biochem J 1996; 317 ( Pt 2):347-51. [PMID: 8713057 PMCID: PMC1217494 DOI: 10.1042/bj3170347] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Thrombin and insulin receptor signaling via phosphoinositide (PI)-specific phospholipase C (PLC) and PI 3-kinase was studied in [3H]inositol-labelled 1321N1 cells. Thrombin stimulated a dramatic, transient activation of PLC which is probably mediated via receptors of the 'tethered-ligand' type, since it was both reproduced by, and abolished following, pretreatment of cells with a synthetic peptide (SFLLRN) corresponding to the ligand domain of the human thrombin receptor. However, neither thrombin nor SFLLRN stimulated PI 3-kinase. By contrast, insulin did not influence [3H]InsP3 concentration but stimulated accumulation of [3H]PtdIns(3,4,5)P3 and [3H]PtdIns(3,4)P2, the relative steady-state concentrations of which may indicate degradation of [3H]PtdIns(3,4,5)P3 by 5- and 3-phosphatases. The independent coupling of thrombin and insulin receptors to PLC and PI 3-kinase respectively in 1321N1 cells allowed interactions between these systems to be examined. Thus insulin-stimulated [3H]PtdIns(3,4,5)P3 accumulation was attenuated on co-stimulation of the thrombin receptor, whereas concentrations of [3H]PtdIns(3,4)P2 were transiently enhanced but then reduced. These results indicate that thrombin receptors in 1321N1 cells do not activate PI 3-kinase, but can modulate signalling by this enzyme.
Collapse
Affiliation(s)
- I H Batty
- Department of Biochemistry, University of Dundee, Scotland, UK
| | | |
Collapse
|