1
|
Abstract
Glycosphingolipids (GSLs) are a subclass of glycolipids made of a glycan and a ceramide that, in turn, is composed of a sphingoid base moiety and a fatty acyl group. GSLs represent the vast majority of glycolipids in eukaryotes, and as an essential component of the cell membrane, they play an important role in many biological and pathological processes. Therefore, they are useful targets for the development of novel diagnostic and therapeutic methods for human diseases. Since sphingosine was first described by J. L. Thudichum in 1884, several hundred GSL species, not including their diverse lipid forms that can further amplify the number of individual GSLs by many folds, have been isolated from natural sources and structurally characterized. This review tries to provide a comprehensive survey of the major GSL species, especially those with distinct glycan structures and modification patterns, and the ceramides with unique modifications of the lipid chains, that have been discovered to date. In particular, this review is focused on GSLs from eukaryotic species. This review has listed 251 GSL glycans with different linkages, 127 glycans with unique modifications, 46 sphingoids, and 43 fatty acyl groups. It should be helpful for scientists who are interested in GSLs, from isolation and structural analyses to chemical and enzymatic syntheses, as well as their biological studies and applications.
Collapse
|
2
|
Moe GR, Steirer LM, Lee JA, Shivakumar A, Bolanos AD. A cancer-unique glycan: de-N-acetyl polysialic acid (dPSA) linked to cell surface nucleolin depends on re-expression of the fetal polysialyltransferase ST8SIA2 gene. J Exp Clin Cancer Res 2021; 40:293. [PMID: 34544457 PMCID: PMC8451149 DOI: 10.1186/s13046-021-02099-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polysialic acid (polySia) modifies six cell surface proteins in humans mainly during fetal development and some blood cells in adults. Two genes in humans, ST8SIA2 and ST8SIA4, code for polysialyltransferases that synthesize polySia. ST8SIA2 is highly expressed during fetal development and in cancer but not in adult normal human cells. ST8SIA4 is expressed in fetal and adult brain, spleen, thymus, and peripheral blood leukocytes and in cancer. We identified a derivative of polySia containing de-N-acetyl neuraminic acid residues (dPSA), which is expressed on the cell surface of human cancer cell lines and tumors but not normal cells. METHODS dPSA-modified proteins in several human cancer cell lines and normal blood cells were identified using co-immunoprecipitation with anti-dPSA antibodies, mass spectroscopy and Western blot. RNAi and CRISPR were used to knockdown and knockout, respectively, the polysialyltransferase genes in human melanoma SK-MEL-28 and neuroblastoma CHP-134 cell lines, respectively, to determine the effect on production of cell surface dPSA measured by flow cytometry and fluorescence microscopy. RESULTS We found that dPSA is linked to or associated with nucleolin, a nuclear protein reported to be on the cell surface of cancer but not normal cells. Knocking down expression of ST8SIA2 with RNAi or knocking out each gene individually and in combination using CRISPR showed that cell surface dPSA depended on expression of ST8SIA2. CONCLUSIONS The presence of dPSA specifically in a broad range of human cancers but not human adult normal cells offers novel possibilities for diagnosis, prevention and treatment targeting the dPSA antigen that appears to be cancer-specific, consistent across not only human cancers but also species, and may be an unrecognized mechanism of immune shielding.
Collapse
Affiliation(s)
- Gregory R Moe
- UCSF Benioff Children's Hospital Oakland, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA.
| | - Lindsay M Steirer
- UCSF Benioff Children's Hospital Oakland, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | - Joshua A Lee
- UCSF Benioff Children's Hospital Oakland, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | - Adarsha Shivakumar
- UCSF Benioff Children's Hospital Oakland, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | - Alejandro D Bolanos
- UCSF Benioff Children's Hospital Oakland, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| |
Collapse
|
3
|
El-Harakeh M, Al-Ghadban S, Safi R. Medicinal Plants Towards Modeling Skin Cancer. Curr Drug Targets 2021; 22:148-161. [PMID: 33019926 DOI: 10.2174/1389450121666201005103521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/29/2020] [Accepted: 08/11/2020] [Indexed: 11/22/2022]
Abstract
Skin cancer remains a major cause of mortality worldwide. It can be divided into melanoma and non-melanoma cancer, which comprise mainly squamous cell carcinoma and basal cell carcinoma. Although conventional therapies have ameliorated the management of skin cancer, the search for chemopreventive compounds is still the most effective and safer strategy to treat cancer. Nowadays, chemoprevention is recognized as a novel approach to prevent or inhibit carcinogenesis steps with the use of natural products. Crude extracts of plants and isolated phytocompounds are considered chemopreventive agents since they harbor anti-inflammatory, antioxidant and anti-oncogenic properties against many types of diseases and cancers. In this review, we will discuss the therapeutic effect and preventive potential of selected medicinal plants used as crude extracts or as phytocompounds against melanoma and non-melanoma cutaneous cancers.
Collapse
Affiliation(s)
- Mohammad El-Harakeh
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Sara Al-Ghadban
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA 70112, United States
| | - Rémi Safi
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
4
|
Iqbal J, Abbasi BA, Ahmad R, Batool R, Mahmood T, Ali B, Khalil AT, Kanwal S, Afzal Shah S, Alam MM, Bashir S, Badshah H, Munir A. Potential phytochemicals in the fight against skin cancer: Current landscape and future perspectives. Biomed Pharmacother 2019; 109:1381-1393. [DOI: 10.1016/j.biopha.2018.10.107] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/12/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023] Open
|
5
|
Abstract
Sialic acids are cytoprotectors, mainly localized on the surface of cell membranes with multiple and outstanding cell biological functions. The history of their structural analysis, occurrence, and functions is fascinating and described in this review. Reports from different researchers on apparently similar substances from a variety of biological materials led to the identification of a 9-carbon monosaccharide, which in 1957 was designated "sialic acid." The most frequently occurring member of the sialic acid family is N-acetylneuraminic acid, followed by N-glycolylneuraminic acid and O-acetylated derivatives, and up to now over about 80 neuraminic acid derivatives have been described. They appeared first in the animal kingdom, ranging from echinoderms up to higher animals, in many microorganisms, and are also expressed in insects, but are absent in higher plants. Sialic acids are masks and ligands and play as such dual roles in biology. Their involvement in immunology and tumor biology, as well as in hereditary diseases, cannot be underestimated. N-Glycolylneuraminic acid is very special, as this sugar cannot be expressed by humans, but is a xenoantigen with pathogenetic potential. Sialidases (neuraminidases), which liberate sialic acids from cellular compounds, had been known from very early on from studies with influenza viruses. Sialyltransferases, which are responsible for the sialylation of glycans and elongation of polysialic acids, are studied because of their significance in development and, for instance, in cancer. As more information about the functions in health and disease is acquired, the use of sialic acids in the treatment of diseases is also envisaged.
Collapse
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Johannis P Kamerling
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Otake AH, de Freitas Saito R, Duarte APM, Ramos AF, Chammas R. G D3 ganglioside-enriched extracellular vesicles stimulate melanocyte migration. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:422-432. [PMID: 29908366 DOI: 10.1016/j.bbalip.2018.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/17/2018] [Accepted: 06/12/2018] [Indexed: 01/30/2023]
Abstract
Melanomas often accumulate gangliosides, sialic acid-containing glycosphingolipids found in the outer leaflet of plasma membranes, as disialoganglioside GD3 and its derivatives. Here, we have transfected the GD3 synthase gene (ST8Sia I) in a normal melanocyte cell line in order to evaluate changes in the biological behavior of non-transformed cells. GD3-synthase expressing cells converted GM3 into GD3 and accumulated both GD3 and its acetylated form, 9-O-acetyl-GD3. Melanocytes were rendered more migratory on laminin-1 surfaces. Cell migration studies using the different transfectants, either treated or not with the glucosylceramide synthase inhibitor d-1-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (PPPP), allowed us to show that while GM3 is a negative regulator of melanocyte migration, GD3 increases it. We showed that gangliosides were shed to the matrix by migrating cells and that GD3 synthase transfected cells shed extracellular vesicles (EVs) enriched in GD3. EVs enriched in GD3 stimulated cell migration of GD3 negative cells, as observed in time lapse microscopy studies. Otherwise, EVs shed by GM3+veGD3-ve cells impaired migration and diminished cell velocity in cells overexpressing GD3. The balance of antimigratory GM3 and promigratory GD3 gangliosides in melanocytes could be altered not only by the overexpression of enzymes such as ST8Sia I, but also by the horizontal transfer of ganglioside enriched extracellular vesicles. This study highlights that extracellular vesicles transfer biological information also through their membrane components, which include a variety of glycosphingolipids remodeled in disease states such as cancer.
Collapse
Affiliation(s)
- Andreia Hanada Otake
- Center for Translational Research in Oncology (LIM-24), Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, 01246-000 São Paulo, SP, Brazil
| | - Renata de Freitas Saito
- Center for Translational Research in Oncology (LIM-24), Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, 01246-000 São Paulo, SP, Brazil
| | - Ana Paula Marques Duarte
- Center for Translational Research in Oncology (LIM-24), Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, 01246-000 São Paulo, SP, Brazil
| | - Alexandre Ferreira Ramos
- Center for Translational Research in Oncology (LIM-24), Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, 01246-000 São Paulo, SP, Brazil; Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM-24), Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, 01246-000 São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Phytochemicals in Skin Cancer Prevention and Treatment: An Updated Review. Int J Mol Sci 2018; 19:ijms19040941. [PMID: 29565284 PMCID: PMC5979545 DOI: 10.3390/ijms19040941] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 01/16/2023] Open
Abstract
Skin is the largest human organ, our protection against various environmental assaults and noxious agents. Accumulation of these stress events may lead to the formation of skin cancers, including both melanoma and non-melanoma skin cancers. Although modern targeted therapies have ameliorated the management of cutaneous malignancies, a safer, more affordable, and more effective strategy for chemoprevention and treatment is clearly needed for the improvement of skin cancer care. Phytochemicals are biologically active compounds derived from plants and herbal products. These agents appear to be beneficial in the battle against cancer as they exert anti-carcinogenic effects and are widely available, highly tolerated, and cost-effective. Evidence has indicated that the anti-carcinogenic properties of phytochemicals are due to their anti-oxidative, anti-inflammatory, anti-proliferative, and anti-angiogenic effects. In this review, we discuss the preventive potential, therapeutic effects, bioavailability, and structure–activity relationship of these selected phytochemicals for the management of skin cancers. The knowledge compiled here will provide clues for future investigations on novel oncostatic phytochemicals and additional anti-skin cancer mechanisms.
Collapse
|
8
|
Padler-Karavani V, Hurtado-Ziola N, Chang YC, Sonnenburg JL, Ronaghy A, Yu H, Verhagen A, Nizet V, Chen X, Varki N, Varki A, Angata T. Rapid evolution of binding specificities and expression patterns of inhibitory CD33-related Siglecs in primates. FASEB J 2013; 28:1280-93. [PMID: 24308974 DOI: 10.1096/fj.13-241497] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Siglecs are sialic acid-binding Ig-like lectins that recognize sialoglycans via amino-terminal V-set domains. CD33-related Siglecs (CD33rSiglecs) on innate immune cells recognize endogenous sialoglycans as "self-associated molecular patterns" (SAMPs), dampening immune responses via cytosolic immunoreceptor tyrosine-based inhibition motifs that recruit tyrosine phosphatases. However, sialic acid-expressing pathogens subvert this mechanism through molecular mimicry. Meanwhile, endogenous host SAMPs must continually evolve to evade other pathogens that exploit sialic acids as invasion targets. We hypothesized that these opposing selection forces have accelerated CD33rSiglec evolution. We address this by comparative analysis of major CD33rSiglec (Siglec-3, Siglec-5, and Siglec-9) orthologs in humans, chimpanzees, and baboons. Recombinant soluble molecules displaying ligand-binding domains show marked quantitative and qualitative interspecies differences in interactions with strains of the sialylated pathogen, group B Streptococcus, and with sialoglycans presented as gangliosides or in the form of sialoglycan microarrays, including variations such as N-glycolyl and O-acetyl groups. Primate Siglecs also show quantitative and qualitative intra- and interspecies variations in expression patterns on leukocytes, both in circulation and in tissues. Taken together our data explain why the CD33rSiglec-encoding gene cluster is undergoing rapid evolution via multiple mechanisms, driven by the need to maintain self-recognition by innate immune cells, while escaping 2 distinct mechanisms of pathogen subversion.
Collapse
Affiliation(s)
- Vered Padler-Karavani
- 39500 Gilman Dr., University of California at San Diego, La Jolla, CA 92093-0687, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sialic acid cyclization of human Th homing receptor glycan associated with recurrent exacerbations of atopic dermatitis. J Dermatol Sci 2012; 68:187-93. [PMID: 23088960 DOI: 10.1016/j.jdermsci.2012.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 08/16/2012] [Accepted: 09/18/2012] [Indexed: 11/23/2022]
Abstract
BACKGROUND The molecular pathogenesis underlying recurrent exacerbations of atopic dermatitis (AD) is unclear. Some peripheral CCR4(+) and CCR7(+) helper memory T cells express the specific homing receptor, sialyl 6-sulfo Lewis X (G152 glycan). This glycan loses receptor activity via cyclization of its sialic acid moiety, thus becoming cyclic sialyl 6-sulfo Lewis X (G159 glycan). These findings suggest that the disordered expression of G152 and G159 glycans may be associated with recurrent exacerbations of AD. OBJECTIVE To assess the possible association of G152 and G159 glycans, which are expressed on peripheral helper T (Th) cells, with frequency of exacerbations. METHODS The percentage of glycan-expressing cells among peripheral blood CD4(+)CD45RO(+) lymphocytes was determined by flow cytometry. The association of glycans with the frequency of exacerbations determined by recurrence scores as well as with current disease activity was statistically tested. RESULTS Current disease activity was significantly associated with CCR4(+)CCR7(-) memory Th cells expressing CSLEX-1 glycan, the conventional skin-trafficking receptor without sialic-acid-cyclization activity. In contrast, the frequency of exacerbations was positively and negatively associated with CCR4(+)CCR7(+) memory Th cells expressing G152 and G159 glycans, respectively. Receiver operating characteristics analyses indicated that the ratio of the G152(+)/G159(+) cell percentages discriminated patients with highly recurrent AD with the best accuracy. CONCLUSION Flow cytometric determination of G159 and G152 glycans on peripheral helper memory T cells may be clinically useful for identifying patients with highly recurrent AD. Disordered sialic acid cyclization of G152 glycan may underlie highly recurrent AD, which may provide a novel therapeutic approach.
Collapse
|
10
|
Steirer LM, Moe GR. An antibody to de-N-acetyl sialic acid containing-polysialic acid identifies an intracellular antigen and induces apoptosis in human cancer cell lines. PLoS One 2011; 6:e27249. [PMID: 22096542 PMCID: PMC3212545 DOI: 10.1371/journal.pone.0027249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/12/2011] [Indexed: 02/01/2023] Open
Abstract
Polysialic acid (PSA), an α2,8-linked homopolymer of N-acetylneuraminic acid (Neu5Ac), is developmentally regulated and its expression is thought to be restricted to a few tissues in adults. Recently, we showed that two human pathogens expressed a derivative of PSA containing de-N-acetyl sialic acid residues (NeuPSA). Here we show that an epitope identified by the anti-NeuPSA monoclonal antibody, SEAM 3 (SEAM 3-reactive antigen or S3RA), is expressed in human melanomas, and also intracellularly in a human melanoma cell line (SK-MEL-28), a human T cell leukemia cell line (Jurkat), and two neuroblastoma cell lines (CHP-134 and SH-SY5Y). SEAM 3 binding induced apoptosis in the four cell lines tested. The unusual intracellular distribution of S3RA was similar to that described for the PSA polysialyltransferases, STX and PST, which are also expressed in the four cell lines used here. Interestingly, suppression of PST mRNA expression by transfection of SK-MEL-28 cells with PST-specific short interfering RNA (siRNA) resulted in decreased SEAM 3 binding. The results suggest further studies of the utility of antibodies such as SEAM 3 as therapeutic agents for certain malignancies.
Collapse
Affiliation(s)
- Lindsay M. Steirer
- Centers for Cancer, Children's Hospital Oakland Research Institute (CHORI), Oakland, California, United States of America
| | - Gregory R. Moe
- Centers for Cancer, Children's Hospital Oakland Research Institute (CHORI), Oakland, California, United States of America
- Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute (CHORI), Oakland, California, United States of America
| |
Collapse
|
11
|
Human KDN (Deaminated Neuraminic Acid) and Its Elevated Expression in Cancer Cells: Mechanism and Significance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:669-78. [DOI: 10.1007/978-1-4419-7877-6_35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Moe GR, Bhandari TS, Flitter BA. Vaccines containing de-N-acetyl sialic acid elicit antibodies protective against neisseria meningitidis groups B and C. THE JOURNAL OF IMMUNOLOGY 2009; 182:6610-7. [PMID: 19414816 DOI: 10.4049/jimmunol.0803677] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Murine mAbs that were produced by immunization with a vaccine containing the N-propionyl derivative of Neisseria meningitidis group B (MenB) capsular polysaccharide (NPr MBPS) mediate protective responses against MenB but were not reactive with unmodified MBPS or chemically identical human polysialic acid (PSA). Recently, we showed that some of the mAbs were reactive with MBPS derivatives that contain de-N-acetyl sialic acid residues. In this study we evaluated the immunogenicity of de-N-acetyl sialic acid-containing derivatives of PSA (de-N-acetyl PSA) in mice. Four de-N-acetyl PSA Ags were prepared and conjugated to tetanus toxoid, including completely de-N-acetylated PSA. All of the vaccines elicited anti-de-N-acetyl PSA responses (titers >/=1/10,000), but only vaccines enriched for nonreducing end de-N-acetyl residues by treatment with exoneuraminidase or complete de-N-acetylation elicited high titers against the homologous Ag. Also, nonreducing end de-N-acetyl residue-enriched vaccines elicited IgM and IgG Abs of all subclasses that could bind to MenB. The results suggest that the zwitterionic characteristic of neuraminic acid, particularly at the nonreducing end, may be important for processing and presentation mechanisms that stimulate T cells. Abs elicited by all four vaccines were able to activate deposition of human complement proteins and passively protect against challenge by MenB in the infant rat model of meningococcal bacteremia. Some vaccine antisera mediated bactericidal activity against a N. meningitidis group C strain with human complement. Thus, de-N-acetyl PSA Ags are immunogenic and elicit Abs that can be protective against MenB and N. meningitidis group C strains.
Collapse
Affiliation(s)
- Gregory R Moe
- Center for Immunobiology and Vaccine Development, Children's Hospital & Research Center Oakland, Oakland, CA 94609, USA.
| | | | | |
Collapse
|
13
|
Varki A. Loss of N-glycolylneuraminic acid in humans: Mechanisms, consequences, and implications for hominid evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2008. [PMID: 11786991 PMCID: PMC7159735 DOI: 10.1002/ajpa.10018] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The surface of all mammalian cells is covered with a dense and complex array of sugar chains, which are frequently terminated by members of a family of molecules called sialic acids. One particular sialic acid called N‐glycolylneuraminic acid (Neu5Gc) is widely expressed on most mammalian tissues, but is not easily detectable on human cells. In fact, it provokes an immune response in adult humans. The human deficiency of Neu5Gc is explained by an inactivating mutation in the gene encoding CMP‐N‐acetylneuraminic acid hydroxylase, the rate‐limiting enzyme in generating Neu5Gc in cells of other mammals. This deficiency also results in an excess of the precursor sialic acid N‐acetylneuraminic acid (Neu5Ac) in humans. This mutation appears universal to modern humans, occurred sometime after our last common ancestor with the great apes, and happens to be one of the first known human‐great ape genetic differences with an obvious biochemical readout. While the original selection mechanisms and major biological consequences of this human‐specific mutation remain uncertain, several interesting clues are currently being pursued. First, there is evidence that the human condition can explain differences in susceptibility or resistance to certain microbial pathogens. Second, the functions of some endogenous receptors for sialic acids in the immune system may be altered by this difference. Third, despite the lack of any obvious alternate pathway for synthesis, Neu5Gc has been reported in human tumors and possibly in human fetal tissues, and traces have even been detected in normal human tissues. One possible explanation is that this represents accumulation of Neu5Gc from dietary sources of animal origin. Finally, a markedly reduced expression of hydroxylase in the brains of other mammals raises the possibility that the human‐specific mutation of this enzyme could have played a role in human brain evolution. Yrbk Phys Anthropol 44:54–69, 2001. © 2001 Wiley‐Liss, Inc.
Collapse
Affiliation(s)
- A Varki
- Glycobiology Research and Training Center and Department of Medicine and University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
14
|
Popa I, Pons A, Mariller C, Tai T, Zanetta JP, Thomas L, Portoukalian J. Purification and structural characterization of de-N-acetylated form of GD3 ganglioside present in human melanoma tumors. Glycobiology 2007; 17:367-73. [PMID: 17242043 DOI: 10.1093/glycob/cwm006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The presence of gangliosides containing de-N-acetylated sialic acids in human tissues has been so far shown by using mouse monoclonal antibodies specific for the de-N-acetylated forms, but the isolation and chemical characterization of such compounds have not yet been performed. Since indirect evidence suggested that de-N-acetylGD3 ganglioside could be present in human melanoma tumors, we analyzed the gangliosides purified from a 500-g pool of those tumors. The de-N-acetylGD3 that was found to migrate just below GD2 in thin-layer chromatography was isolated from the disialogangliosides by high-pressure liquid chromatography using the specific antibody SGR37 to monitor the elution. The amount of antigen was found to be 320 ng per gram of fresh tumor or 0.1% of total gangliosides. Gas chromatography-mass spectrometry analysis of the antibody-positive ganglioside showed that sialic acids were formed of one molecule of N-acetylneuraminic acid and one molecule of neuraminic acid. Radioactive re-N-acetylation of the antigen yielded a GD3-like ganglioside with the radioactive label on the external sialic acid. The constitutive fatty acids were found to differ markedly from those of GD3 and 9-O-acetylGD3 isolated from the same pool of tumors. The major fatty acids were C16:0 and C18:0 in de-N-acetylGD3, whereas GD3 and its 9-O-acetylated derivative contained a large amount of C24:1. These data show that de-N-acetylGD3 ganglioside is indeed present in human melanoma tumors, and the fatty acid content suggests the existence of a de-N-acetylase mostly active on the molecular species of gangliosides with short-chain fatty acids.
Collapse
Affiliation(s)
- Iuliana Popa
- Laboratory of Dermatological Research, University of Lyon-1 and Edouard Herriot Hospital, 69437 Lyon Cx 03, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Rinninger A, Richet C, Pons A, Kohla G, Schauer R, Bauer HC, Zanetta JP, Vlasak R. Localisation and distribution of O-acetylated N-acetylneuraminic acids, the endogenous substrates of the hemagglutinin-esterases of murine coronaviruses, in mouse tissue. Glycoconj J 2006; 23:73-84. [PMID: 16575524 PMCID: PMC7088067 DOI: 10.1007/s10719-006-5439-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Infections by mouse hepatitis viruses result in disease of the liver, the gastrointestinal tract, respiratory tract, and the central nervous system. Coronaviruses related to mouse hepatitis virus express a hemagglutinin-esterase surface glycoprotein, which specifically hydrolyses either 5-N-acetyl-4-O-acetyl neuraminic acid (Neu4,5Ac2) or 5-N-acetyl-9-O-acetyl neuraminic acid (Neu5,9Ac2). Moreover, these sialic acids represent potential cellular receptor determinants for murine coronaviruses. Until now, the distribution of these sialic acids in mouse brain was not thoroughly investigated. Particularly Neu4,5Ac2 was not yet found in mouse brain. Using a sensitive method of gas chromatography coupled to mass spectrometry in the electron impact mode of ionization this manuscript demonstrates the occurrence of 13 different sialic acids varying in their alkyl and acyl substituents in mouse tissues including 5-N-acetyl-4-O-acetyl-9-O-lactyl-neuraminic acid (Neu4,5Ac29Lt), 5-N-acetyl-9-O-lactyl-neuraminic acid (Neu5Ac9Lt), 5-N-acetyl-8-O-methyl-neuraminic acid (Neu5Ac8Me) and the 1,7-lactone (Neu5Ac1,7L) of neuraminic acid. Neu4,5Ac2, relatively abundant in the gut, was present as a minor compound in all tissues, including liver, olfactory lobe, telencephalon, metencephalon and hippocampus. Neu5,9Ac2 was also found in these tissues, except in the liver. It is suggested that these sialic acids represent the endogenous substrate and receptor determinants for murine coronaviruses.
Collapse
Affiliation(s)
- Andreas Rinninger
- Applied Biotechnology, Departments of Cell Biology and Organismic Biology, University Salzburg, A-5020 Salzburg, Austria
| | | | - Alexandre Pons
- CNRS Unité Mixte de Recherche 8576, Laboratoire de Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Guido Kohla
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - Roland Schauer
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - Hans-Christian Bauer
- Applied Biotechnology, Departments of Cell Biology and Organismic Biology, University Salzburg, A-5020 Salzburg, Austria
| | - Jean-Pierre Zanetta
- CNRS Unité Mixte de Recherche 8576, Laboratoire de Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Reinhard Vlasak
- Applied Biotechnology, Departments of Cell Biology and Organismic Biology, University Salzburg, A-5020 Salzburg, Austria
| |
Collapse
|
16
|
Hikita T, Tadano-Aritomi K, Iida-Tanaka N, Ishizuka I, Hakomori S. De-N-acetyllactotriaosylceramide as a Novel Cationic Glycosphingolipid of Bovine Brain White Matter: Isolation and Characterization. Biochemistry 2005; 44:9555-62. [PMID: 15996110 DOI: 10.1021/bi0504411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel cationic lipid was separated from bovine brain white matter by a series of chromatographies on carboxymethyl-Sephadex and silica gel in chloroform and methanol. Its structure was identified unambiguously as de-N-acetyllactotriaosylceramide (deNAcLc(3)Cer) by mass spectrometry and (1)H NMR. The natural occurrence of this glycolipid in white matter extract was detected by immunostaining of thin-layer chromatography with monoclonal antibody 5F5, which is directed to deNAcLc(3)Cer and recognizes the terminal beta-glucosaminyl (GlcNH(2)) residue, having a free NH(2) group. A de-N-acetylase capable of hydrolyzing the N-acetyl group of Lc(3)Cer was detected in bovine brain extract using N-[(14)C]acetyl-labeled Lc(3)Cer as a substrate. The biogenesis and possible functional significance of deNAcLc(3)Cer are discussed.
Collapse
Affiliation(s)
- Toshiyuki Hikita
- Division of Biomembrane Research, Pacific Northwest Research Institute, Seattle, Washington 98122-4302, USA
| | | | | | | | | |
Collapse
|
17
|
Yamaguchi M, Ishida H, Kanamori A, Kannagi R, Kiso M. 6-O-Sulfo sialylparagloboside and sialyl Lewis X neo-glycolipids containing lactamized neuraminic acid: Synthesis and antigenic reactivity against G159 monoclonal antibody. Glycoconj J 2005; 22:95-108. [PMID: 16133830 DOI: 10.1007/s10719-005-0352-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 01/10/2005] [Accepted: 01/18/2005] [Indexed: 10/25/2022]
Abstract
Synthesis and antigenic reactivity of 6-O-sulfo sialylparagloboside (SPG) and sialyl Lewis X (sLeX) neo-glycolipids containing lactamized neuraminic acid are described. The suitably protected GlcNAc-beta (1-->3)-Gal-beta (1-->4)-GlcOSE derivative was glycosylated with NeuTFAc-alpha (2-->3)-Gal imidate to give NeuTFAc-alpha (2-->3)-Galbeta (1-->4)-GlcNAc-beta (1-->3)-Gal-beta (1-->4)-GlcOSE pentasaccharide. The partial N,O-deacylation in the NeuTFAc-alpha (2-->3)-Gal part afforded N-deacetylated SPG derivative which was converted to the desired oligosaccharide containing lactamized neuraminic acid. Similar treatment of the sLeX hexasaccharide derivative, NeuTFAc-alpha (2-->3)-Gal-beta (1-->4) [Fuc-alpha (1-->3)]-GlcNAc-beta (1-->3)-Gal-beta (1-->4)-GlcOSE, gave the key hexasaccharide intermediate containing lactamized neuraminic acid. These suitably protected SPG and sLex oligosaccharides were converted stepwise into the desired neo-glycolipids (GSC-551 and GSC-552) by the coupling with 2-(tetradecyl)hexadecanol, 6-O-sulfation at C-6 of the GlcNAc residure, and complete deprotection. Both lactamized-sialyl 6-O-sulfo SPG (GSC-551) and sLex (GSC-552) neo-glycolipids were clearly recognized with G159 monoclonal antibody showing that both the lactamized neuraminic acid and the 6-O-sulfate at C-6 of GlcNAc would be involved in the G159-defined determinant. However, the Fuc residue and the lipophilic (ceramide) part may not be critical for this recognition.
Collapse
Affiliation(s)
- Masanori Yamaguchi
- Department of Applied Bio-Organic Chemistry, Gifu University, Gifu, 501-1193, Japan
| | | | | | | | | |
Collapse
|
18
|
Ravindranath MH, Muthugounder S, Presser N, Viswanathan S. Anticancer therapeutic potential of soy isoflavone, genistein. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 546:121-65. [PMID: 15584372 DOI: 10.1007/978-1-4757-4820-8_11] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genistein (4'5, 7-trihydroxyisoflavone) occurs as a glycoside (genistin) in the plant family Leguminosae, which includes the soybean (Glycine max). A significant correlation between the serum/plasma level of genistein and the incidence of gender-based cancers in Asian, European and American populations suggests that genistein may reduce the risk of tumor formation. Other evidence includes the mechanism of action of genistein in normal and cancer cells. Genistein inhibits protein tyrosine kinase (PTK), which is involved in phosphorylation of tyrosyl residues of membrane-bound receptors leading to signal transduction, and it inhibits topoisomerase II, which participates in DNA replication, transcription and repair. By blocking the activities of PTK, topoisomerase II and matrix metalloprotein (MMP9) and by down-regulating the expression of about 11 genes, including that of vascular endothelial growth factor (VEGF), genistein can arrest cell growth and proliferation, cell cycle at G2/M, invasion and angiogenesis. Furthermore, genistein can alter the expression of gangliosides and other carbohydrate antigens to facilitate their immune recognition. Genistein acts synergistically with drugs such as tamoxifen, cisplatin, 1,3-bis 2-chloroethyl-1-nitrosourea (BCNU), dexamethasone, daunorubicin and tiazofurin, and with bioflavonoid food supplements such as quercetin, green-tea catechins and black-tea thearubigins. Genistein can augment the efficacy of radiation for breast and prostate carcinomas. Because it increases melanin production and tyrosinase activity, genistein can protect melanocytes of the skin of Caucasians from UV-B radiation-induced melanoma. Genistein-induced antigenic alteration has the potential for improving active specific immunotherapy of melanoma and carcinomas. When conjugated to B43 monoclonal antibody, genistein becomes a tool for passive immunotherapy to target B-lineage leukemias that overexpress the target antigen CD19. Genistein is also conjugated to recombinant EGF to target cancers overexpressing the EGF receptor. Although genistein has many potentially therapeutic actions against cancer, its biphasic bioactivity (inhibitory at high concentrations and activating at low concentrations) requires caution in determining therapeutic doses of genistein alone or in combination with chemotherapy, radiation therapy, and/or immunotherapies. Of the more than 4500 genistein studies in peer-reviewed primary publications, almost one fifth pertain to its antitumor capabilities and more than 400 describe its mechanism of action in normal and malignant human and animal cells, animal models, in vitro experiments, or phase I/II clinical trials. Several biotechnological firms in Japan, Australia and in the United States (e.g., Nutrilite) manufacture genistein as a natural supplement under quality controlled and assured conditions.
Collapse
Affiliation(s)
- Mepur H Ravindranath
- Laboratory of Glycoimmunotherapy, John Wayne Cancer Institute, 2200 Santa Monica Blvd., Santa Monica, CA 90404-2302, USA.
| | | | | | | |
Collapse
|
19
|
Kannagi R, Hakomori S. A guide to monoclonal antibodies directed to glycotopes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 491:587-630. [PMID: 14533823 DOI: 10.1007/978-1-4615-1267-7_38] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- R Kannagi
- Program of Molecular Pathology, Aichi Cancer Center, Nagoya 464-8681, Japan.
| | | |
Collapse
|
20
|
Bulai T, Bratosin D, Pons A, Montreuil J, Zanetta JP. Diversity of the human erythrocyte membrane sialic acids in relation with blood groups. FEBS Lett 2003; 534:185-9. [PMID: 12527384 DOI: 10.1016/s0014-5793(02)03838-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The composition of the human erythrocyte membrane (RBC) glycoprotein- and glycolipid-bound sialic acids of A, B, AB and O type donors was studied using a new method (Zanetta et al., Glycobiology 11 (2001) 663-676). In addition to Neu5Ac as the major compound, Kdn, Neu5,9Ac(2), Neu5,7Ac(2), Neu (de-N-acetylated-Neu5Ac), Neu5Ac8Me, Neu5Ac9Lt, Neu4,5Ac(2), Neu5,8Ac(2)9Lt and Neu5Ac8S were characterised. Among these different compounds, Neu5Ac8Me, Neu5Ac9Lt, Neu4,5Ac(2), Neu5,8Ac(2)9Lt and Neu5Ac8S have never been described and quantitatively determined before in human tissues or cells. Neu5Gc and its O-alkylated or O-acylated derivatives were not detected.
Collapse
Affiliation(s)
- Tatiana Bulai
- Laboratoire de Glycobiologie Structurale et Fonctionnelle, CNRS Unité Mixte de Recherche No. 8576, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Cedex, Villeneuve d'Ascq, France
| | | | | | | | | |
Collapse
|
21
|
Sonnenburg JL, van Halbeek H, Varki A. Characterization of the acid stability of glycosidically linked neuraminic acid: use in detecting de-N-acetyl-gangliosides in human melanoma. J Biol Chem 2002; 277:17502-10. [PMID: 11884388 DOI: 10.1074/jbc.m110867200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glycosidic linkage of sialic acids is much more sensitive to acid hydrolysis than those of other monosaccharides in vertebrates. The commonest sialic acids in nature are neuraminic acid (Neu)-based and are typically N-acylated at the C5 position. Unsubstituted Neu is thought to occur on native gangliosides of certain tumors and cell lines, and synthetic de-N-acetyl-gangliosides have potent biological properties in vitro. However, claims for their natural existence are based upon monoclonal antibodies and pulse-chase experiments, and there have been no reports of their chemical detection. Here we report that one of these antibodies shows nonspecific cross-reactivity with a polypeptide epitope, further emphasizing the need for definitive chemical proof of unsubstituted Neu on naturally occurring gangliosides. While pursuing this, we found that alpha2-3-linked Neu on chemically de-N-acetylated G(M3) ganglioside resists acid hydrolysis under conditions where the N-acetylated form is completely labile. To ascertain the generality of this finding, we investigated the stability of glycosidically linked alpha- and beta-methyl glycosides of Neu. Using NMR spectroscopy to monitor glycosidic linkage hydrolysis, we find that only 47% of Neualpha2Me is hydrolyzed after 3 h in 10 mm HCl at 80 degrees C, whereas Neu5Acalpha2Me is 95% hydrolyzed after 20 min under the same conditions. Notably, Neubeta2Me is hydrolyzed even slower than Neualpha2Me, indicating that acid resistance is a general property of glycosidically linked Neu. Taking advantage of this, we modified classical purification techniques for de-N-acetyl-ganglioside isolation using acid to first eliminate conventional gangliosides. We also introduce a phospholipase-based approach to remove contaminating phospholipids that previously hindered efforts to study de-N-acetyl-gangliosides. The partially purified sample can then be N-propionylated, allowing acid release and mass spectrometric detection of any originally existing Neu as Neu5Pr. These advances allowed us to detect covalently bound Neu in lipid extracts of a human melanoma tumor, providing the first chemical proof for naturally occurring de-N-acetyl-gangliosides.
Collapse
Affiliation(s)
- Justin L Sonnenburg
- Glycobiology Research and Training Center, Department of Medicine, University of California, San Diego, La Jolla, California 92093-0687, USA
| | | | | |
Collapse
|
22
|
Zanetta JP, Pons A, Iwersen M, Mariller C, Leroy Y, Timmerman P, Schauer R. Diversity of sialic acids revealed using gas chromatography/mass spectrometry of heptafluorobutyrate derivatives. Glycobiology 2001; 11:663-76. [PMID: 11479277 DOI: 10.1093/glycob/11.8.663] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The fine structural motifs of sialic acids, a frequent terminal monosaccharide of glycans, seem to contain essential biological properties. To identify such subtle structural differences, a reliable method was developed for the qualitative and quantitative identification of sialic acids present in different tissues and fluids. This method involved, after liberation of sialic acids by mild acid hydrolysis, their methyl esterification using diazomethane in the presence of methanol and the formation of volatile derivatives using heptafluorobutyric anhydride. The derivatives were analyzed by gas chromatography coupled to mass spectrometry in the electron impact mode. This technique allowed the separation and identification of a large variety of sialic acids, including different O-acylated forms of N-acetyl and N-glycolyl neuraminic acids and of 3-deoxy-D-glycero-D-galacto-nonulosonic acid (Kdn). This method allowed also identifying 8-O-methylated and 8-O-sulfated derivatives, de-N-acetylated neuraminic acid, and 1,7-sialic acid lactones. Compounds present in very complex mixtures could be identified through their fragmentation patterns. Because of the stability of the heptafluorobutyrate derivatives, this method presents important improvements compared to the previous techniques, because it can be frequently applied on very small amounts of crude samples. This methodology will support progress in the field of the biology of sialic acids.
Collapse
Affiliation(s)
- J P Zanetta
- Laboratoire de Chimie Biologique, CNRS UMR 8576, 59655 Villeneuve d'Ascq Cedex France
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Classic studies suggested that the common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc) is an oncofetal antigen in humans, being immunogenic in adult humans and yet apparently expressed in human fetuses and tumors. We and others have recently found that the human deficiency of Neu5Gc can be explained by an inactivating mutation in the gene encoding CMP-N-acetylneuraminic acid hydroxylase. Thus, Neu5Gc is not an oncofetal antigen in the classical sense, and other explanations must be found for the observed expression pattern. This review provides an update on this matter, and considers a variety of other old and new questions that arise from it.
Collapse
Affiliation(s)
- A Varki
- Glycobiology Research and Training Center and Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0687, USA.
| |
Collapse
|
24
|
Khunkeawla P, Moonsom S, Staffler G, Kongtawelert P, Kasinrerk W. Engagement of CD147 molecule-induced cell aggregation through the activation of protein kinases and reorganization of the cytoskeleton. Immunobiology 2001; 203:659-69. [PMID: 11402500 DOI: 10.1016/s0171-2985(01)80015-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
CD147 is a broadly expressed cell surface molecule of the immunoglobulin superfamily whose expression is up-regulated upon T cell activation. Engagement of CD147 by CD147 monoclonal antibodies (mAbs) has been shown to induce homotypic aggregation of U937 cells. To study intracellular signal transduction induced by the engagement of CD147 molecules, protein kinase C (PKC) and protein tyrosine kinase (PTK) inhibitors were used to inhibit cell aggregation. The results indicated that a PKC inhibitor, sphingosine, and a PTK inhibitor, herbimycin A, inhibited CD147 mAb-induced cell aggregation in a dose-dependent manner. In contrast to herbimycin A, a PTK inhibitor, genistein, enhanced cell aggregation. This discrepancy may be due to the differential effect of herbimycin A and genistein on the target cells. Effect of actin filament polymerization blocking agent, cytochalasin B, was also studied and it was found that cytochalasin B completely inhibited CD147 mAb-induced cell aggregation. This result implied that U937 cell aggregation induced by CD147 mAbs is associated with cytoskeleton reorganization. Thus, our observations suggest that cell aggregation induced by the engagement of CD147 with specific mAbs depend upon the activation of protein kinases and a functional cytoskeleton.
Collapse
Affiliation(s)
- P Khunkeawla
- Department of Clinical Immunology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | | |
Collapse
|
25
|
Feizi T. Carbohydrate ligands for the leukocyte-endothelium adhesion molecules, selectins. Results Probl Cell Differ 2001; 33:201-23. [PMID: 11190676 DOI: 10.1007/978-3-540-46410-5_11] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- T Feizi
- Glycosciences Laboratory, Imperial College School of Medicine, Northwick Park Campus, Watford Road, Harrow, Middlesex HA1 3UJ, UK
| |
Collapse
|
26
|
Komba S, Yamaguchi M, Ishida H, Kiso M. 6-O-sulfo de-N-acetylsialyl Lewis X as a novel high-affinity ligand for human L-selectin: total synthesis and structural characterization. Biol Chem 2001; 382:233-40. [PMID: 11308021 DOI: 10.1515/bc.2001.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Total synthesis and structural characterization of a novel 6-O-sulfo de-N-acetylsialyl Lewis X, which was originally discovered as a minor by-product of the parent 6-O-sulfo N-acetylsialyl Lewis X, a high-affinity endogenous ligand for human L-selectin, are described. The total synthesis has been achieved by a highly efficient, regio- and alpha-stereoselective glycosylation of N-trifluoroacetylneuraminic acid, selective protections of the 3- and 6-hydroxyl groups of N-acetylglucosamine that undergo fucosylation and sulfation, and construction of the glycolipid structure containing a ceramide. The structure of 6-O-sulfo de-N-acetylsialyl Lewis X ganglioside was characterized by fast atom bombardment mass spectrometry (FAB-MS).
Collapse
Affiliation(s)
- S Komba
- Department of Applied Bioorganic Chemistry, Gifu University, Japan
| | | | | | | |
Collapse
|
27
|
Otsubo N, Ishida H, Kiso M. Synthesis of novel ganglioside GM4 analogues containing N-deacetylated and lactamized sialic acid: probes for searching new ligand structures for human L-selectin. Carbohydr Res 2001; 330:1-5. [PMID: 11217952 DOI: 10.1016/s0008-6215(00)00278-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Novel ganglioside GM4 analogues, which contain N-deacetylated or lactamized sialic acid instead of usual N-acetylneuraminic acid, were synthesized in a highly efficient manner. (Methyl 4,7,8,9-tetra-O-acetyl-3,5-dideoxy-5-trifluoroacetamido-D-glycero-alpha-D-galacto-2-nonulopyranosylonate)-(2-->3)-4,6-di-O-acetyl-2-O-benzoyl-D-galactopyranosyl trichloroacetimidate was coupled with 2-(tetradecyl)hexadecanol to give the desired beta-glycoside in high yield. Successive O- and N-deacylation, and saponification of the methyl ester group afforded the N-deacetylated sialyl derivative that was converted by treatment with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride in Me2SO into the lactamized sialic acid-containing ganglioside GM4 analogue.
Collapse
Affiliation(s)
- N Otsubo
- Department of Applied Bioorganic Chemistry, Gifu University, Japan
| | | | | |
Collapse
|
28
|
Feizi T. ‘Glyco-Epitope’ Assignments for the Selectins: Advances Enabled By the Neoglycolipid (Ngl) Technology in Conjunction with Synthetic Carbohydrate Chemistry’. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 491:65-78. [PMID: 14533790 DOI: 10.1007/978-1-4615-1267-7_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The neoglycolipid (NGL) technology involving the preparation of lipid-linked oligosaccharide probes for binding experiments with carbohydrate-recognizing proteins, and their analysis by mass spectrometry, is a unique and powerful means of discovering oligosaccharide ligands for carbohydrate-binding proteins, and assigning details of their specificities. The key feature is that it enables the pinpointing and sequence determination of bioactive oligosaccharides within highly heterogeneous mixtures derived from natural glycoconjugates. A new generation of NGLs incorporating a fluorescent label now establishes the principles for a streamlined technology whereby oligosaccharide populations are carried through ligand detection and isolation steps, and sequence determination. Advances in selectin research made through applications of the NGL technology include (i) demonstration of the importance of density of selectin expression, and of oligosaccharide ligands, in the magnitude and the specificity of the binding signals; (ii) demonstration of the efficacy of lipid-linked oligosaccharides in supporting selectin-mediated cell interactions; (iii) the discovery of 3-sulphated Le(a)/Le(x) as selectin ligands; (iv) the isolation and sequencing of carbohydrate ligands for E-selectin on murine myeloid cells and kidney; (v) the finding that sulphation at position 6 of the penultimate N-acetylglucosamine confers superior L-selectin binding signals not only to 3-sialyl-Le(x) but also to 3'-sulpho-Le(x); and (vi) the finding that sialic acid de-N-acetylation, or further modification with formation of an intra-molecular amide bond in the carboxyl group, enhances or virtually abolishes, respectively, the potency of the 6'-sulfo-sialyl-Le(X) ligand. Working with biotinylated forms of the oligosaccharide ligands, we have observed that their presentation on a streptavidin matrix influences differentially the efficacy of interactions of the L- and P-selectins (but not E-selectin) with the sialylated and sulphated ligands.
Collapse
Affiliation(s)
- T Feizi
- The Glycosciences Laboratory, Imperial College School of Medicine, Northwick Park Campus, Harrow HA1 3UJ, UK
| |
Collapse
|
29
|
Varki A. Loss of N-glycolylneuraminic acid in humans: Mechanisms, consequences, and implications for hominid evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2001; Suppl 33:54-69. [PMID: 11786991 PMCID: PMC7159735 DOI: 10.1002/ajpa.10018.abs] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The surface of all mammalian cells is covered with a dense and complex array of sugar chains, which are frequently terminated by members of a family of molecules called sialic acids. One particular sialic acid called N-glycolylneuraminic acid (Neu5Gc) is widely expressed on most mammalian tissues, but is not easily detectable on human cells. In fact, it provokes an immune response in adult humans. The human deficiency of Neu5Gc is explained by an inactivating mutation in the gene encoding CMP-N-acetylneuraminic acid hydroxylase, the rate-limiting enzyme in generating Neu5Gc in cells of other mammals. This deficiency also results in an excess of the precursor sialic acid N-acetylneuraminic acid (Neu5Ac) in humans. This mutation appears universal to modern humans, occurred sometime after our last common ancestor with the great apes, and happens to be one of the first known human-great ape genetic differences with an obvious biochemical readout. While the original selection mechanisms and major biological consequences of this human-specific mutation remain uncertain, several interesting clues are currently being pursued. First, there is evidence that the human condition can explain differences in susceptibility or resistance to certain microbial pathogens. Second, the functions of some endogenous receptors for sialic acids in the immune system may be altered by this difference. Third, despite the lack of any obvious alternate pathway for synthesis, Neu5Gc has been reported in human tumors and possibly in human fetal tissues, and traces have even been detected in normal human tissues. One possible explanation is that this represents accumulation of Neu5Gc from dietary sources of animal origin. Finally, a markedly reduced expression of hydroxylase in the brains of other mammals raises the possibility that the human-specific mutation of this enzyme could have played a role in human brain evolution.
Collapse
Affiliation(s)
- A Varki
- Glycobiology Research and Training Center and Department of Medicine and University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
30
|
Feizi T, Galustian C. Novel oligosaccharide ligands and ligand-processing pathways for the selectins. Trends Biochem Sci 1999; 24:369-72. [PMID: 10500298 DOI: 10.1016/s0968-0004(99)01458-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- T Feizi
- Glycosciences Laboratory, Imperial College School of Medicine, Northwick Park Campus, Watford Road, Harrow, UK HA1 3UJ.
| | | |
Collapse
|
31
|
Mitsuoka C, Ohmori K, Kimura N, Kanamori A, Komba S, Ishida H, Kiso M, Kannagi R. Regulation of selectin binding activity by cyclization of sialic acid moiety of carbohydrate ligands on human leukocytes. Proc Natl Acad Sci U S A 1999; 96:1597-602. [PMID: 9990070 PMCID: PMC15530 DOI: 10.1073/pnas.96.4.1597] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We provide here evidence that supports the occurrence of a biologically dormant form of selectin ligand carbohydrate, the sialyl 6-sulfo Lewis X containing modified sialic acid, in human leukocytes. The modification of sialic acid involves first de-N-acetylation of sialic acid moiety through ubiquitous de-N-acetylation/re-N-acetylation cycle, followed by the dehydrative cyclization of de-N-acetyl sialic acid to form "cyclic sialic acid." The enzyme involved in the dehydration of de-N-acetyl sialic acid is a calcium-dependent enzyme having neutral-alkaline pH optimum. De-N-acetyl sialyl 6-sulfo Lewis X retained selectin binding activity as well as parental sialyl 6-sulfo Lewis X, but cyclic sialyl 6-sulfo Lewis X was devoid of selectin binding activity. Sialyl 6-sulfo Lewis X carrying the cyclic sialic acid is specifically recognized by the newly generated mAb, G159. The determinant was distributed widely among normal human leukocytes, especially on monocytes and subsets of lymphocytes including NK cells, helper memory T cells, Tcr-gammadelta T cells, and a part of B cells. The determinant was detected also on several cultured lymphocytic leukemia cell lines and O-tetradecanoylphorbol 13-acetate-activated lymphoid cells. Cyclic sialyl 6-sulfo Lewis X is efficiently formed by the action of the partly membrane-bound calcium-dependent enzyme, tentatively called "sialic acid cyclase," and a possible physiological significance of this reaction could be a rapid inactivation of selectin binding activity at the cell surface. Conversely, the accumulated intracellular cyclic sialyl 6-sulfo Lewis X determinant may function as a dormant pool of selectin ligands, which, on appropriate stimulation, is hydrolyzed and becomes active in selectin-dependent cell adhesion.
Collapse
Affiliation(s)
- C Mitsuoka
- Program of Experimental Pathology, Aichi Cancer Center, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Hakomori S, Yamamura S, Handa AK. Signal transduction through glyco(sphingo)lipids. Introduction and recent studies on glyco(sphingo)lipid-enriched microdomains. Ann N Y Acad Sci 1998; 845:1-10. [PMID: 9668338 DOI: 10.1111/j.1749-6632.1998.tb09657.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The presence of microdomains enriched in clustered glycosphingolipids (GSLs) at the surface of plasma membranes and liposome membranes, and their functional role in signal transduction, have been suggested by a series of observations, as follows: (1) GSL clusters (patches) are observed by electron microscopy; (2) microvesicles enriched in GSLs and other sphingolipids can be isolated as detergent-insoluble particles by sucrose density gradient ultracentrifugation: (3) such vesicles isolated from B16 melanoma cells contain > 90% of cellular GM3, > 90% of c-Src and Ras, approximately 50% of Rho, and approximately 20 percent of Fak, despite the fact that this vesicle fraction contains only 0.5% of total cellular protein (this fraction is termed "detergent-insoluble GSL-enriched microdomain" (DIGEM)); (4) GM3 in DIGEM can be coimmunoprecipitated with c-Src and Rho, indicating a close association of GM3 with these transducer molecules; (5) stimulation of GM3 in B16 melanoma cells by anti-GM3 antibody or by Gg3 results in change of signal transduction. Thus, GSLs, together with various transducer molecules present at DIGEM, may directly induce signal transduction rather than modulate or modify signal transduction created through receptors of growth factors or hormones as previously observed.
Collapse
Affiliation(s)
- S Hakomori
- Pacific Northwest Research Foundation, Seattle, Washington 98122, USA.
| | | | | |
Collapse
|
33
|
Chappell MD, Halcomb RL. Synthesis of CMP-sialic acid conjugates: Substrates for the enzymatic synthesis of natural and designed sialyl oligosaccharides. Tetrahedron 1997. [DOI: 10.1016/s0040-4020(97)00370-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Ozawa H, Yamashita K, Sakuraba H, Itoh K, Kase R, Tai T. Generation and characterization of mouse monoclonal antibodies specific for N-linked neutral oligosaccharides of glycoproteins. Arch Biochem Biophys 1997; 342:48-57. [PMID: 9185613 DOI: 10.1006/abbi.1997.9993] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We generated four monoclonal antibodies (MAbs) specific for asparagine-linked neutral oligosaccharides of glycoproteins by immunizing mice with neoglycolipids, which were derived from glycoproteins by conjugation to phosphatidylethanolamine dipalmitoyl. The binding specificity of these MAbs was determined by an enzyme-linked immunosorbent assay and immunostaining on thin-layer chromatography. The four MAbs designated OMB3, OMB4, OMR5, and OMR6 reacted strongly with the neoglycolipids, Gal beta1-4GlcNAc beta1-2Man alpha1-6(Gal beta1-4GlcNAc beta1-2Man alpha1-3)Man beta1-4GlcNAc-PD, GlcNAc beta1-2Man alpha1-6(GlcNAc beta1-2Man alpha1-3)(GlcNAc beta1-4)Man beta1-4GlcNAc beta1-4GlcNAc-PD, Man alpha1-6Man beta1-4GlcNAc beta1-4(Fuc alpha1-6)GlcNAc-PD, and Man alpha1-3Man beta1-4GlcNAc-PD, respectively, that were used as immunogens. All of these MAbs exhibited a high binding specificity. The epitopes of the MAbs OMB3 and OMB4 were suggested to be nonreducing terminal trisaccharides, Gal beta1-4GlcNAc beta1-2Man-, and nonreducing beta-GlcNAc residues, respectively. MAbs OMR5 and OMR6 showed a highly restricted binding specificity, reacting only with the immunizing neoglycolipids. Subsequently, MAbs OMB3 and OMB4 were shown to react strongly with asialo-alpha1-acid-glycoprotein and asialo-agalacto-alpha1-acid-glycoprotein, respectively, by Western blotting. Furthermore, it was shown that these MAbs reacted specifically with the epitope on Chinese hamster ovary cells by an immunofluorescence technique. MAb OMB4 was also shown to detect the accumulated oligosaccharides with nonreducing terminal beta-GlcNAc residues as granular inclusions in the cultured fibroblasts from a classical Sandhoff disease patient.
Collapse
Affiliation(s)
- H Ozawa
- Department of Tumor Immunology, The Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Kotani M, Tai T. An immunohistochemical technique with a series of monoclonal antibodies to gangliosides: their differential distribution in the rat cerebellum. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 1997; 1:152-6. [PMID: 9385079 DOI: 10.1016/s1385-299x(96)00025-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gangliosides, sialic acid-containing glycosphingolipids, are normal membrane constituents and are highly expressed in the vertebral central nervous system. Owing to their topological localization on the outer surface of neural plasma membranes and their unique chemical structure, gangliosides have been implicated in a variety of phenomena. It was, however, difficult to study the localization of gangliosides in the central nervous system because of the lack of useful probes for gangliosides. We recently established an improved method for the generation of mouse MAbs to gangliosides by immunizing C3H/HeN mice with purified gangliosides. Using this method, we succeeded in generating a large number of the MAbs specific for gangliosides. These MAbs enabled us to determine the localization of gangliosides in the rat brain. We previously described the differential distribution patterns of gangliosides in the brain regions by an immunohistochemical technique with MAbs. In the present paper, we describe an immunofluorescence technique for the detection of ganglioside distribution in the postnatal rat cerebellar cortex in detail. The principles of immunohistochemistry have been described in several review articles.
Collapse
Affiliation(s)
- M Kotani
- Department of Tumor Immunology, Tokyo Metropolitan Institute of Medical Science, Japan
| | | |
Collapse
|
36
|
Chappell MD, Halcomb RL. Enzyme-Catalyzed Synthesis of Oligosaccharides That Contain Functionalized Sialic Acids. J Am Chem Soc 1997. [DOI: 10.1021/ja963894p] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mark D. Chappell
- Department of Chemistry and Biochemistry University of Colorado Boulder, Colorado 80309-0215
| | - Randall L. Halcomb
- Department of Chemistry and Biochemistry University of Colorado Boulder, Colorado 80309-0215
| |
Collapse
|
37
|
Hakomori SI. Functional Roles of Glycosphingolipids and Sphingolipids in Signal Transduction. SPHINGOLIPID-MEDIATED SIGNAL TRANSDUCTION 1997. [DOI: 10.1007/978-3-662-22425-0_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Schauer R, Kamerling JP. Chemistry, biochemistry and biology of sialic acids ☆. NEW COMPREHENSIVE BIOCHEMISTRY 1997; 29. [PMCID: PMC7147860 DOI: 10.1016/s0167-7306(08)60624-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechls-Universität zu Kiel, Germany
| | - Johannis P. Kamerling
- Bijuoet Center, Department of Bio-Organic Chemistry, Utrecht University, The Netherlands
| |
Collapse
|
39
|
Shi WX, Chammas R, Varki A. Regulation of sialic acid 9-O-acetylation during the growth and differentiation of murine erythroleukemia cells. J Biol Chem 1996; 271:31517-25. [PMID: 8940167 DOI: 10.1074/jbc.271.49.31517] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sialic acids are typically found at the terminal position on vertebrate oligosaccharides. They are sometimes modified by an O-acetyl ester at the 9-position, potentially altering recognition of sialic acid by antibodies, lectins, and viruses. 9-O-Acetylation is known to be selectively expressed on gangliosides in melanoma cells and on N-linked chains in hepatocytes. Using a recently developed probe, we show here that in murine erythroleukemia cells, this modification is selectively expressed on another class of oligosaccharides, O-linked chains carried on cell surface sialomucins. These cells also express 9-O-acetylation on the ganglioside GD3, but this modification appears to be undetectable on the cell surface. Increasing cell density in culture is associated with a decrease in cell surface 9-O-acetylation of sialomucins. This change correlates with the spontaneous differentiation toward a mature erythroid phenotype. This down-regulation upon differentiation and entry into the G0/G1 stage of the cell cycle is confirmed by differentiation-inducing agents. In contrast, cells arrested in G2/M by the microtubule depolymerizing agent nocodazole show increased expression of cell surface 9-O-acetylated sialomucins (but not the 9-O-acetylated ganglioside). However, the microtubule stabilizer taxol does not induce this increase, showing that the nocodazole effect is independent of cell cycle stage. Indeed, direct analysis showed no correlation of 9-O-acetylation with cell cycle stage in rapidly growing cells, and shorter treatments with nocodazole also increased expression. Western blots of cell extracts confirmed that changes caused by differentiation and nocodazole are not due to redistribution of molecules from the cell surface. Indeed, following selective removal of 9-O-acetyl groups from the cell surface by a specific esterase, the recovery of expression is mediated by new synthesis rather than by redistribution from an internal pool. Thus, 9-O-acetylation on these sialomucins appears to be primarily regulated by the rate of synthesis, and the increase with nocodazole treatment is likely due to the inhibition of turnover of cell surface molecules. These data show that 9-O-acetylation of sialic acids in murine erythroleukemia cells is a highly regulated modification, being selectively expressed in a cell type-specific manner on certain classes of oligosaccharides and differentially regulated with regard to subcellular localization and to the state of cellular differentiation.
Collapse
Affiliation(s)
- W X Shi
- Glycobiology Program, UCSD Cancer Center, the Division of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
40
|
Kawashima I, Nagata I, Tai T. Immunocytochemical analysis of gangliosides in rat primary cerebellar cultures using specific monoclonal antibodies. Brain Res 1996; 732:75-86. [PMID: 8891271 DOI: 10.1016/0006-8993(96)00493-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We studied the expression of ganglioside antigens in primary cultures of rat cerebellum using an immunocytochemical technique with mouse monoclonal antibodies (MAbs) specific for various gangliosides. Twelve MAbs that specifically recognize each ganglioside were used. Our study revealed that there is a cell type-specific expression of ganglioside antigens in the primary cultures. A number of b-series gangliosides were detected in the granule cells, whereas a-series gangliosides were not intensely expressed. GD1b was detected in the granule cells. GD2 appeared to be present in a subset of the granule cells or a type of small neurons. GD3 was associated not only with the granule cells, but also with both astrocytes and oligodendrocytes. An O-Ac-disialoganglioside, which was suggested to be O-Ac-LD1, was restrictedly detected in Purkinje cells. The other gangliosides were not detected clearly in these cells. These results suggest that several gangliosides may be useful markers for identifying cells in primary cultures of the rat cerebellum; particularly b-series gangliosides such as GD2 and GD1b for the granule cells and O-Ac-LD1 for Purkinje cells.
Collapse
Affiliation(s)
- I Kawashima
- Department of Tumor Immunology, Tokyo Metropolitan Institute of Medical Science, Japan
| | | | | |
Collapse
|
41
|
Teicher BA. A systems approach to cancer therapy. (Antioncogenics + standard cytotoxics-->mechanism(s) of interaction). Cancer Metastasis Rev 1996; 15:247-72. [PMID: 8842498 DOI: 10.1007/bf00437479] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- B A Teicher
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| |
Collapse
|
42
|
Hakomori S. Sphingolipid-dependent protein kinases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1996; 36:155-71. [PMID: 8783559 DOI: 10.1016/s1054-3589(08)60581-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S Hakomori
- Division of Biomembrane Research, Pacific Northwest Research Foundation, University of Washington, Seattle 98122, USA
| |
Collapse
|