1
|
Belyaeva OV, Wirth SE, Boeglin WE, Karki S, Goggans KR, Wendell SG, Popov KM, Brash AR, Kedishvili NY. Dehydrogenase reductase 9 (SDR9C4) and related homologs recognize a broad spectrum of lipid mediator oxylipins as substrates. J Biol Chem 2021; 298:101527. [PMID: 34953854 PMCID: PMC8761697 DOI: 10.1016/j.jbc.2021.101527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/15/2023] Open
Abstract
Bioactive oxylipins play multiple roles during inflammation and in the immune response, with termination of their actions partly dependent on the activity of yet-to-be characterized dehydrogenases. Here, we report that human microsomal dehydrogenase reductase 9 (DHRS9, also known as SDR9C4 of the short-chain dehydrogenase/reductase (SDR) superfamily) exhibits a robust oxidative activity toward oxylipins with hydroxyl groups located at carbons C9 and C13 of octadecanoids, C12 and C15 carbons of eicosanoids, and C14 carbon of docosanoids. DHRS9/SDR9C4 is also active toward lipid inflammatory mediator dihydroxylated Leukotriene B4 and proresolving mediators such as tri-hydroxylated Resolvin D1 and Lipoxin A4, although notably, with lack of activity on the 15-hydroxyl of prostaglandins. We also found that the SDR enzymes phylogenetically related to DHRS9, i.e., human SDR9C8 (or retinol dehydrogenase 16), the rat SDR9C family member known as retinol dehydrogenase 7, and the mouse ortholog of human DHRS9 display similar activity toward oxylipin substrates. Mice deficient in DHRS9 protein are viable, fertile, and display no apparent phenotype under normal conditions. However, the oxidative activity of microsomal membranes from the skin, lung, and trachea of Dhrs9−/− mice toward 1 μM Leukotriene B4 is 1.7- to 6-fold lower than that of microsomes from wild-type littermates. In addition, the oxidative activity toward 1 μM Resolvin D1 is reduced by about 2.5-fold with DHRS9-null microsomes from the skin and trachea. These results strongly suggest that DHRS9 might play an important role in the metabolism of a wide range of bioactive oxylipins in vivo.
Collapse
Affiliation(s)
- Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Samuel E Wirth
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - William E Boeglin
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Suman Karki
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kelli R Goggans
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stacy G Wendell
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kirill M Popov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alan R Brash
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
2
|
Abstract
Generation of the autacoid all-trans-retinoic acid (ATRA) from retinol (vitamin A) relies on a complex metabolon that includes retinol binding-proteins and enzymes from the short-chain dehydrogenase/reductase and aldehyde dehydrogenase gene families. Serum retinol binding-protein delivers all-trans-retinol (vitamin A) from blood to cells through two membrane receptors, Stra6 and Rbpr2. Stra6 and Rbpr2 convey retinol to cellular retinol binding-protein type 1 (Crbp1). Holo-Crbp1 delivers retinol to lecithin: retinol acyl transferase (Lrat) for esterification and storage. Lrat channels retinol directly into its active site from holo-Crbp1 by protein-protein interaction. The ratio apo-Crbp1/holo-Crbp1 directs flux of retinol into and out of retinyl esters, through regulating esterification vs ester hydrolysis. Multiple retinol dehydrogenases (Rdh1, Rdh10, Dhrs9, Rdhe2, Rdhe2s) channel retinol from holo-Crbp1 to generate retinal for ATRA biosynthesis. β-Carotene oxidase type 1 generates retinal from carotenoids, delivered by the scavenger receptor-B1. Retinal reductases (Dhrs3, Dhrs4, Rdh11) reduce retinal into retinol, thereby restraining ATRA biosynthesis. Retinal dehydrogenases (Raldh1, 2, 3) dehydrogenate retinal irreversibly into ATRA. ATRA regulates its own concentrations by inducing Lrat and ATRA degradative enzymes. ATRA exhibits hormesis. Its effects relate to its concentration as an inverted J-shaped curve, transitioning from beneficial in the "goldilocks" zone to toxicity, as concentrations increase. Hormesis has distorted understanding physiological effects of ATRA post-nataly using chow-diet fed, ATRA-dosed animal models. Cancer, immune deficiency and metabolic abnormalities result from mutations and/or insufficiency in Crbp1 and retinoid metabolizing enzymes.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, CA, United States.
| |
Collapse
|
3
|
Abstract
Multiple binding and transport proteins facilitate many aspects of retinoid biology through effects on retinoid transport, cellular uptake, metabolism, and nuclear delivery. These include the serum retinol binding protein sRBP (aka Rbp4), the plasma membrane sRBP receptor Stra6, and the intracellular retinoid binding-proteins such as cellular retinol-binding proteins (CRBP) and cellular retinoic acid binding-proteins (CRABP). sRBP transports the highly lipophilic retinol through an aqueous medium. The major intracellular retinol-binding protein, CRBP1, likely enhances efficient retinoid use by providing a sink to facilitate retinol uptake from sRBP through the plasma membrane or via Stra6, delivering retinol or retinal to select enzymes that generate retinyl esters or retinoic acid, and protecting retinol/retinal from excess catabolism or opportunistic metabolism. Intracellular retinoic acid binding-proteins (CRABP1 and 2, and FABP5) seem to have more diverse functions distinctive to each, such as directing retinoic acid to catabolism, delivering retinoic acid to specific nuclear receptors, and generating non-canonical actions. Gene ablation of intracellular retinoid binding-proteins does not cause embryonic lethality or gross morphological defects. Metabolic and functional defects manifested in knockouts of CRBP1, CRBP2 and CRBP3, however, illustrate their essentiality to health, and in the case of CRBP2, to survival during limited dietary vitamin A. Future studies should continue to address the specific molecular interactions that occur between retinoid binding-proteins and their targets and their precise physiologic contributions to retinoid homeostasis and function.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, 119 Morgan Hall, 94720, Berkeley, CA, USA.
| |
Collapse
|
4
|
Napoli JL. Cellular retinoid binding-proteins, CRBP, CRABP, FABP5: Effects on retinoid metabolism, function and related diseases. Pharmacol Ther 2017; 173:19-33. [PMID: 28132904 DOI: 10.1016/j.pharmthera.2017.01.004] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cellular binding-proteins (BP), including CRBP1, CRBP2, CRABP1, CRABP2, and FABP5, shepherd the poorly aqueous soluble retinoids during uptake, metabolism and function. Holo-BP promote efficient use of retinol, a scarce but essential nutrient throughout evolution, by sheltering it and its major metabolite all-trans-retinoic acid from adventitious interactions with the cellular milieu, and by imposing specificity of delivery to enzymes, nuclear receptors and other partners. Apo-BP reflect cellular retinoid status and modify activities of retinoid metabolon enzymes, or exert non-canonical actions. High ligand binding affinities and the nature of ligand sequestration necessitate external factors to prompt retinoid release from holo-BP. One or more of cross-linking, kinetics, and colocalization have identified these factors as RDH, RALDH, CYP26, LRAT, RAR and PPARβ/δ. Michaelis-Menten and other kinetic approaches verify that BP channel retinoids to select enzymes and receptors by protein-protein interactions. Function of the BP and enzymes that constitute the retinoid metabolon depends in part on retinoid exchanges unique to specific pairings. The complexity of these exchanges configure retinol metabolism to meet the diverse functions of all-trans-retinoic acid and its ability to foster contrary outcomes in different cell types, such as inducing apoptosis, differentiation or proliferation. Altered BP expression affects retinoid function, for example, by impairing pancreas development resulting in abnormal glucose and energy metabolism, promoting predisposition to breast cancer, and fostering more severe outcomes in prostate cancer, ovarian adenocarcinoma, and glioblastoma. Yet, the extent of BP interactions with retinoid metabolon enzymes and their impact on retinoid physiology remains incompletely understood.
Collapse
Affiliation(s)
- Joseph L Napoli
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
5
|
Abstract
Retinoic acid (RA) was identified as the biologically active form of vitamin A almost 70 years ago and work on its function and mechanism of action is still of major interest both from a scientific and a clinical perspective. The currently accepted model postulates that RA is produced in two sequential oxidative steps: first, retinol is oxidized reversibly to retinaldehyde, and then retinaldehyde is oxidized irreversibly to RA. Excess RA is inactivated by conversion to hydroxylated derivatives. Much is left to learn, especially about retinoid binding proteins and the trafficking of the hydrophobic retinoid substrates between membrane bound and cytosolic enzymes. Here, background on development of the field and an update on recent advances in our understanding of the enzymatic pathways and mechanisms that control the rate of RA production and degradation are presented with a focus on the many questions that remain unanswered.
Collapse
|
6
|
Adams MK, Belyaeva OV, Wu L, Kedishvili NY. The retinaldehyde reductase activity of DHRS3 is reciprocally activated by retinol dehydrogenase 10 to control retinoid homeostasis. J Biol Chem 2014; 289:14868-80. [PMID: 24733397 PMCID: PMC4031538 DOI: 10.1074/jbc.m114.552257] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/07/2014] [Indexed: 01/08/2023] Open
Abstract
The retinoic acid-inducible dehydrogenase reductase 3 (DHRS3) is thought to function as a retinaldehyde reductase that controls the levels of all-trans-retinaldehyde, the immediate precursor for bioactive all-trans-retinoic acid. However, the weak catalytic activity of DHRS3 and the lack of changes in retinaldehyde conversion to retinol and retinoic acid in the cells overexpressing DHRS3 undermine its role as a physiologically important all-trans-retinaldehyde reductase. This study demonstrates that DHRS3 requires the presence of retinol dehydrogenase 10 (RDH10) to display its full catalytic activity. The RDH10-activated DHRS3 acts as a robust high affinity all-trans-retinaldehyde-specific reductase that effectively converts retinaldehyde back to retinol, decreasing the rate of retinoic acid biosynthesis. In turn, the retinol dehydrogenase activity of RDH10 is reciprocally activated by DHRS3. At E13.5, DHRS3-null embryos have ∼4-fold lower levels of retinol and retinyl esters, but only slightly elevated levels of retinoic acid. The membrane-associated retinaldehyde reductase and retinol dehydrogenase activities are decreased by ∼4- and ∼2-fold, respectively, in Dhrs3(-/-) embryos, and Dhrs3(-/-) mouse embryonic fibroblasts exhibit reduced metabolism of both retinaldehyde and retinol. Neither RDH10 nor DHRS3 has to be itself catalytically active to activate each other. The transcripts encoding DHRS3 and RDH10 are co-localized at least in some tissues during development. The mutually activating interaction between the two related proteins may represent a highly sensitive and conserved mechanism for precise control over the rate of retinoic acid biosynthesis.
Collapse
Affiliation(s)
- Mark K Adams
- From the Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Olga V Belyaeva
- From the Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Lizhi Wu
- From the Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Natalia Y Kedishvili
- From the Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
7
|
Chen G. Roles of Vitamin A Metabolism in the Development of Hepatic Insulin Resistance. ISRN HEPATOLOGY 2013; 2013:534972. [PMID: 27335827 PMCID: PMC4890907 DOI: 10.1155/2013/534972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/18/2013] [Indexed: 02/07/2023]
Abstract
The increase in the number of people with obesity- and noninsulin-dependent diabetes mellitus has become a major public health concern. Insulin resistance is a common feature closely associated with human obesity and diabetes. Insulin regulates metabolism, at least in part, via the control of the expression of the hepatic genes involved in glucose and fatty acid metabolism. Insulin resistance is always associated with profound changes of the expression of hepatic genes for glucose and lipid metabolism. As an essential micronutrient, vitamin A (VA) is needed in a variety of physiological functions. The active metablite of VA, retinoic acid (RA), regulates the expression of genes through the activation of transcription factors bound to the RA-responsive elements in the promoters of RA-targeted genes. Recently, retinoids have been proposed to play roles in glucose and lipid metabolism and energy homeostasis. This paper summarizes the recent progresses in our understanding of VA metabolism in the liver and of the potential transcription factors mediating RA responses. These transcription factors are the retinoic acid receptor, the retinoid X receptor, the hepatocyte nuclear factor 4α, the chicken ovalbumin upstream promoter-transcription factor II, and the peroxisome proliferator-activated receptor β/δ. This paper also summarizes the effects of VA status and RA treatments on the glucose and lipid metabolism in vivo and the effects of retinoid treatments on the expression of insulin-regulated genes involved in the glucose and fatty acid metabolism in the primary hepatocytes. I discuss the roles of RA production in the development of insulin resistance in hepatocytes and proposes a mechanism by which RA production may contribute to hepatic insulin resistance. Given the large amount of information and progresses regarding the physiological functions of VA, this paper mainly focuses on the findings in the liver and hepatocytes and only mentions the relative findings in other tissues and cells.
Collapse
Affiliation(s)
- Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| |
Collapse
|
8
|
Chen Y, Reese DH. A screen for disruptors of the retinol (vitamin A) signaling pathway. ACTA ACUST UNITED AC 2013; 98:276-82. [PMID: 23696197 DOI: 10.1002/bdrb.21062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/06/2013] [Indexed: 11/09/2022]
Abstract
The pathway through which retinol (vitamin A) is converted to its active metabolite, all-trans-retinoic acid (atRA), and subsequent receptor-mediated regulation of gene transcription by atRA is essential for all mammal life stages. This pathway is required for normal embryonic development and maintenance of cellular phenotype in adult organisms; chemicals that cause even minor interference with its normal function are potential developmental and adult toxicants. A short-term (24 h) in vitro mode-of-action screen for detecting chemicals that disrupt this essential pathway is described. It uses the mouse pluripotent P19 stem cell in a 96-well format, RT-qPCR gene-expression assay that does not require RNA purification to detect chemicals that interfere with retinol-induced Hoxa1 gene expression, a target of retinol signaling in mammals. A total of 21 chemicals were screened at a single 45 μM concentration. Four chemicals known to disrupt the pathway in the rodent embryo (citral, disulfiram, and two rodent teratogens, nitrofen and bisdiamine) all significantly inhibited Hoxa1 upregulation by retinol. An additional four of seven chemicals with varying degrees of structural similarity to known disruptors or to the retinoid side chain, but not previously known to disrupt the pathway, were positive in the screen. The xenoestrogens, diethylstilbestrol, bisphenol A, 4-n-nonylphenol, and genistein and the phthalate esters, dibutyl phthalate and dipentyl phthalate, but not diethylhexyl phthalate, also significantly disrupted the pathway. Of the 21 chemicals tested, diethylstilbestrol was the only chemical that showed evidence in the MTT assay that cytotoxicity may have contributed to disruption of the pathway.
Collapse
Affiliation(s)
- Yanling Chen
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. FDA, Laurel, Maryland 20878, USA
| | | |
Collapse
|
9
|
De Marco F, Bucaj E, Foppoli C, Fiorini A, Blarzino C, Filipi K, Giorgi A, Schininà ME, Di Domenico F, Coccia R, Butterfield DA, Perluigi M. Oxidative stress in HPV-driven viral carcinogenesis: redox proteomics analysis of HPV-16 dysplastic and neoplastic tissues. PLoS One 2012; 7:e34366. [PMID: 22470562 PMCID: PMC3314612 DOI: 10.1371/journal.pone.0034366] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 02/27/2012] [Indexed: 11/18/2022] Open
Abstract
Genital infection by high risk Human Papillomavirus (HR-HPV), although recognized as the main etio-pathogenetic factor of cervical cancer, is not per se sufficient to induce tumour development. Oxidative stress (OS) represents an interesting and under-explored candidate as a promoting factor in HPV-initiated carcinogenesis. To gain insight into the role of OS in cervical cancer, HPV-16 positive tissues were collected from patients with invasive squamous cervical carcinoma, from patients with High Grade dysplastic HPV lesions and from patients with no clinical evidence of HPV lesions. After virological characterization, modulation of proteins involved in the redox status regulation was investigated. ERp57 and GST were sharply elevated in dysplastic and neoplastic tissues. TrxR2 peaked in dysplastic samples while iNOS was progressively reduced in dysplastic and neoplastic samples. By redox proteomic approach, five proteins were found to have increased levels of carbonyls in dysplastic samples respect to controls namely: cytokeratin 6, actin, cornulin, retinal dehydrogenase and GAPDH. In carcinoma samples the peptidyl-prolyl cis-trans isomerase A, ERp57, serpin B3, Annexin 2 and GAPDH were found less oxidized than in dysplastic tissues. HPV16 neoplastic progression seems associated with increased oxidant environment. In dysplastic tissues the oxidative modification of DNA and proteins involved in cell morphogenesis and terminal differentiation may provide the conditions for the neoplastic progression. Conversely cancer tissues seem to attain an improved control on oxidative damage as shown by the selective reduction of carbonyl adducts on key detoxifying/pro-survival proteins.
Collapse
Affiliation(s)
- Federico De Marco
- Laboratory of Virology. The Regina Elena Cancer Institute, Rome, Italy
| | - Elona Bucaj
- Laboratory of Virology. The Regina Elena Cancer Institute, Rome, Italy
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Cesira Foppoli
- CNR Institute of Molecular Biology and Pathology, Rome, Italy
| | - Ada Fiorini
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Carla Blarzino
- Laboratory of Virology. The Regina Elena Cancer Institute, Rome, Italy
| | - Kozeta Filipi
- Cancer Unit - Department of Epidemiology, Institute of Public Health, Tirana, Albania
| | - Alessandra Giorgi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Raffaella Coccia
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - D. Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
- * E-mail:
| |
Collapse
|
10
|
Saloniemi T, Jokela H, Strauss L, Pakarinen P, Poutanen M. The diversity of sex steroid action: novel functions of hydroxysteroid (17β) dehydrogenases as revealed by genetically modified mouse models. J Endocrinol 2012; 212:27-40. [PMID: 22045753 DOI: 10.1530/joe-11-0315] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Disturbed action of sex steroid hormones, i.e. androgens and estrogens, is involved in the pathogenesis of various severe diseases in humans. Interestingly, recent studies have provided data further supporting the hypothesis that the circulating hormone concentrations do not explain all physiological and pathological processes observed in hormone-dependent tissues, while the intratissue sex steroid concentrations are determined by the expression of steroid metabolising enzymes in the neighbouring cells (paracrine action) and/or by target cells themselves (intracrine action). This local sex steroid production is also a valuable treatment option for developing novel therapies against hormonal diseases. Hydroxysteroid (17β) dehydrogenases (HSD17Bs) compose a family of 14 enzymes that catalyse the conversion between the low-active 17-keto steroids and the highly active 17β-hydroxy steroids. The enzymes frequently expressed in sex steroid target tissues are, thus, potential drug targets in order to lower the local sex steroid concentrations. The present review summarises the recent data obtained for the role of HSD17B1, HSD17B2, HSD17B7 and HSD17B12 enzymes in various metabolic pathways and their physiological and pathophysiological roles as revealed by the recently generated genetically modified mouse models. Our data, together with that provided by others, show that, in addition to having a role in sex steroid metabolism, several of these HSD17B enzymes possess key roles in other metabolic processes: for example, HD17B7 is essential for cholesterol biosynthesis and HSD17B12 is involved in elongation of fatty acids. Additional studies in vitro and in vivo are to be carried out in order to fully define the metabolic role of the HSD17B enzymes and to evaluate their value as drug targets.
Collapse
Affiliation(s)
- Taija Saloniemi
- Department of Physiology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20014 Turku, Finland
| | | | | | | | | |
Collapse
|
11
|
Napoli JL. Physiological insights into all-trans-retinoic acid biosynthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:152-67. [PMID: 21621639 DOI: 10.1016/j.bbalip.2011.05.004] [Citation(s) in RCA: 246] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/05/2011] [Accepted: 05/12/2011] [Indexed: 01/25/2023]
Abstract
All-trans-retinoic acid (atRA) provides essential support to diverse biological systems and physiological processes. Epithelial differentiation and its relationship to cancer, and embryogenesis have typified intense areas of interest into atRA function. Recently, however, interest in atRA action in the nervous system, the immune system, energy balance and obesity has increased considerably, especially concerning postnatal function. atRA action depends on atRA biosynthesis: defects in retinoid-dependent processes increasingly relate to defects in atRA biogenesis. Considerable evidence indicates that physiological atRA biosynthesis occurs via a regulated process, consisting of a complex interaction of retinoid binding-proteins and retinoid recognizing enzymes. An accrual of biochemical, physiological and genetic data have identified specific functional outcomes for the retinol dehydrogenases, RDH1, RDH10, and DHRS9, as physiological catalysts of the first step in atRA biosynthesis, and for the retinal dehydrogenases RALDH1, RALDH2, and RALDH3, as catalysts of the second and irreversible step. Each of these enzymes associates with explicit biological processes mediated by atRA. Redundancy occurs, but seems limited. Cumulative data support a model of interactions among these enzymes with retinoid binding-proteins, with feedback regulation and/or control by atRA via modulating gene expression of multiple participants. The ratio apo-CRBP1/holo-CRBP1 participates by influencing retinol flux into and out of storage as retinyl esters, thereby modulating substrate to support atRA biosynthesis. atRA biosynthesis requires the presence of both an RDH and an RALDH: conversely, absence of one isozyme of either step does not indicate lack of atRA biosynthesis at the site. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.
Collapse
|
12
|
Wang C, Kane MA, Napoli JL. Multiple retinol and retinal dehydrogenases catalyze all-trans-retinoic acid biosynthesis in astrocytes. J Biol Chem 2010; 286:6542-53. [PMID: 21138835 DOI: 10.1074/jbc.m110.198382] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
All-trans-retinoic acid (atRA) stimulates neurogenesis, dendritic growth of hippocampal neurons, and higher cognitive functions, such as spatial learning and memory formation. Although astrocyte-derived atRA has been considered a key factor in neurogenesis, little direct evidence identifies hippocampus cell types and the enzymes that biosynthesize atRA. Here we show that primary rat astrocytes, but not neurons, biosynthesize atRA using multiple retinol dehydrogenases (Rdh) of the short chain dehydrogenase/reductase gene family and retinaldehyde dehydrogenases (Raldh). Astrocytes secrete atRA into their medium; neurons sequester atRA. The first step, conversion of retinol into retinal, is rate-limiting. Neurons and astrocytes both synthesize retinyl esters and reduce retinal into retinol. siRNA knockdown indicates that Rdh10, Rdh2 (mRdh1), and Raldh1, -2, and -3 contribute to atRA production. Knockdown of the Rdh Dhrs9 increased atRA synthesis ∼40% by increasing Raldh1 expression. Immunocytochemistry revealed cytosolic and nuclear expression of Raldh1 and cytosol and perinuclear expression of Raldh2. atRA autoregulated its concentrations by inducing retinyl ester synthesis via lecithin:retinol acyltransferase and stimulating its catabolism via inducing Cyp26B1. These data show that adult hippocampus astrocytes rely on multiple Rdh and Raldh to provide a paracrine source of atRA to neurons, and atRA regulates its own biosynthesis in astrocytes by directing flux of retinol. Observation of cross-talk between Dhrs9 and Raldh1 provides a novel mechanism of regulating atRA biosynthesis.
Collapse
Affiliation(s)
- Chao Wang
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
13
|
Abstract
The vitamin A metabolite all-trans-retinoic acid (RA) regulates multiple biological processes by virtue of its ability to regulate gene expression. It thus plays critical roles in embryonic development and is involved in regulating growth, remodeling, and metabolic responses in adult tissues. RA can also suppress carcinoma cell growth and is currently used in treatment of some cancers. Growth inhibition by RA may be exerted by induction of differentiation, cell cycle arrest, or apoptosis, or by a combination of these activities. Paradoxically, in the context of some cells, RA not only fails to inhibit growth but, instead, enhances proliferation and survival. This review focuses on the involvement of RA in regulating apoptotic responses. It includes brief overviews of transcriptional signaling by RA and of apoptotic pathways, and then addresses available information on the mechanisms by which RA induces apoptosis or, conversely, inhibits cell death and enhances survival.
Collapse
Affiliation(s)
- Noa Noy
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4965, USA.
| |
Collapse
|
14
|
Characterization of key residues and membrane association domains in retinol dehydrogenase 10. Biochem J 2009; 419:113-22, 1 p following 122. [PMID: 19102727 DOI: 10.1042/bj20080812] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RDH10 (retinol dehydrogenase 10) was originally identified from the retinal pigment epithelium and retinal Müller cells. It has retinoid oxidoreductase activity and is thought to play a role in the retinoid visual cycle. A recent study showed that RDH10 is essential for generating retinoic acid at early embryonic stages. The present study demonstrated that wild-type RDH10 catalysed both oxidation of all-trans-retinol and reduction of all-trans-retinal in a cofactor-dependent manner In vitro. In cultured cells, however, oxidation is the favoured reaction catalysed by RDH10. Substitution of any of the predicted key residues in the catalytic centre conserved in the RDH family abolished the enzymatic activity of RDH10 without affecting its protein level. Unlike other RDH members, however, replacement of Ser(197), a key residue for stabilizing the substrate, by glycine and alanine did not abolish the enzymatic activity of RDH10, whereas RDH10 mutants S197C, S197T and S197V completely lost their enzymatic activity. These results suggest that the size of the residue at position 197 is critical for the activity of RDH10. Mutations of the three glycine residues (Gly(43), Gly(47) and Gly(49)) in the predicted cofactor-binding motif (Gly-Xaa(3)-Gly-Xaa-Gly) of RDH10 abolished its enzymatic activity, suggesting that the cofactor-binding motif is essential for its activity. Deletion of the two hydrophobic domains dissociated RDH10 from the membrane and abolished its activity. These studies identified the key residues for the activity of RDH10 and will contribute to the further elucidation of mechanism of this important enzyme.
Collapse
|
15
|
Parés X, Farrés J, Kedishvili N, Duester G. Medium- and short-chain dehydrogenase/reductase gene and protein families : Medium-chain and short-chain dehydrogenases/reductases in retinoid metabolism. Cell Mol Life Sci 2008; 65:3936-49. [PMID: 19011747 PMCID: PMC2654207 DOI: 10.1007/s00018-008-8591-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Retinoic acid (RA), the most active retinoid, is synthesized in two steps from retinol. The first step, oxidation of retinol to retinaldehyde, is catalyzed by cytosolic alcohol dehydrogenases (ADHs) of the medium-chain dehydrogenase/reductase (MDR) superfamily and microsomal retinol dehydrogenases (RDHs) of the short-chain dehydrogenase/reductase (SDR) superfamily. The second step, oxidation of retinaldehyde to RA, is catalyzed by several aldehyde dehydrogenases. ADH1 and ADH2 are the major MDR enzymes in liver retinol detoxification, while ADH3 (less active) and ADH4 (most active) participate in RA generation in tissues. Several NAD(+)- and NADP(+)-dependent SDRs are retinoid active. Their in vivo contribution has been demonstrated in the visual cycle (RDH5, RDH12), adult retinoid homeostasis (RDH1) and embryogenesis (RDH10). K(m) values for most retinoid-active ADHs and RDHs are close to 1 microM or lower, suggesting that they participate physiologically in retinol/retinaldehyde interconversion. Probably none of these enzymes uses retinoids bound to cellular retinol-binding protein, but only free retinoids. The large number of enzymes involved in the two directions of this step, also including aldo-keto reductases, suggests that retinaldehyde levels are strictly regulated.
Collapse
Affiliation(s)
- X Parés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | | | | | |
Collapse
|
16
|
Eyanagi R, Toda A, Ishii Y, Saito H, Soeda S, Shimeno H, Shigematsu H. Antigenicity of sulfanilamide and its metabolites using fluorescent-labelled compounds. Xenobiotica 2008; 35:911-25. [PMID: 16308284 DOI: 10.1080/00498250500251533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In order to clarify the onset mechanisms of drug-induced allergies, three fluorescent-labelled compounds were synthesized by subjecting sulfanilamide (SA), a base compound for sulfonamides, and its active metabolites, i.e. sulfanilamide hydroxylamine and sulfanilamide nitroso, to dansylation using dansylchloride. In other words, 5-dimethylamino-N-(4-aminobenzyl)-naphthalenesulfonamide (DNS-4ABA), 5-dimethylamino-N-(4-hydroxylaminobenzyl)-1-naphthalenesulfonamide (DNS-4HABA) and 5-dimethylamino-N-(4-nitrosobenzyl)-1-naphthalenesulfonamide (DNS-4NSBA) were synthesized as model haptens. When analysed by HPLC, a conjugate of DNS-4HABA and glutathione (GSH) with nucleophilic amino acids had two peaks (P-1 and P-2). FAB-MS and 1H-NMR revealed that the DNS-4HABA-GSH conjugate consisted of sulphinamide and semimercaptal. The reactivity of GSH to DNS-4ABA, DNS-4HABA and DNS-4NSBA was quantified by HPLC using an oxidization system (horseradish peroxidase/H2O2). The results show that production of DNS-4NSBA-GSH-conjugate was four to eight times higher than that of DNS-4HABA-GSH conjugate, but that DNS-4ABA did not bind with GSH. Skin reactions were assessed using guinea pigs, and strong delayed erythema was seen with DNS-4NSBA, which bound most strongly with GSH, whereas weak delayed erythema was seen with DNS-4ABA, which did not bind with GSH. This suggests a correlation between GSH conjugate production and skin reactions. DNS-4HABA enzymatically bound with proteins in rat and guinea pig liver cytosol and microsomal fractions. The proteins that bound to DNS-4HABA were purified by HPLC and then subjected to N-terminal amino acid analysis. Ubiquitin (10 kDa) and fatty acid binding protein (30 kDa) were detected in the rat liver cytosol fraction; retinol-dehydrogenase (35 kDa) in the rat microsomal fraction; and glutathione-S-transferase B (mmu) (25 kDa) in the guinea pig liver cytosol fraction. When DNS-4HABA or DNS-4NSBA binds to proteins that play important roles in the body, unexpected adverse reactions may occur. Furthermore, by utilizing our technique using model compounds, it may be possible to identify the carrier proteins of various compounds, including pharmaceutical agents.
Collapse
Affiliation(s)
- R Eyanagi
- Daiichi College of Pharmaceutical Sciences, Fukuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Ohno T, Hiroi H, Momoeda M, Hosokawa Y, Tsutsumi R, Koizumi M, Nakazawa F, Yano T, Tsutsumi O, Taketani Y. Evidence for the expression of alcohol dehydrogenase class I gene in rat uterus and its up-regulation by progesterone. Endocr J 2008; 55:83-90. [PMID: 18219182 DOI: 10.1507/endocrj.k07-082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The endometrium is one of the target tissues of the ovarian steroid hormones, estrogen and progesterone. In order to elucidate the mechanism of gene regulation in the endometrium, suppressive subtraction hybridization was performed to isolate the candidate genes controlled by progesterone in rat uterus. Alcohol dehydrogenase (ADH) class I gene was one of the candidate genes. Here we investigated the expression and regulation of ADH class I gene in rat uterus. The mRNA of ADH class I was detected in uterus by RT-PCR using specific primers. Using specific probe for ADH class I, in situ hybridization was performed to investigate localization in rat uterus. Positive signals were detected in the endometrial stromal cells of rat uterus by in situ hybridization and were not detected in endometrial epithelial cells and myometrium in rat uterus. Ovariectomized rats were treated with 17-beta estradiol and progesterone and the uteri of these rats were used for Northern blot analysis and assay of the ADH activity. Northern blot analysis revealed that the expression of ADH class I mRNA in rat uteri was up-regulated approximately two-fold after progesterone treatment, but not estrogen. Likewise, ADH activity was approximately two-fold higher in progesterone-treated rat uteri compared with controls. This study demonstrated that ADH class I gene is progesterone-responsive in the uterus. This implies that progesterone might be involved with retinoic acid synthesis in the uterus, since ADH is the key enzyme for retinoic acid synthesis.
Collapse
Affiliation(s)
- Tomoko Ohno
- Department of Obstetrics and Gynecology, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rantakari P, Strauss L, Kiviranta R, Lagerbohm H, Paviala J, Holopainen I, Vainio S, Pakarinen P, Poutanen M. Placenta defects and embryonic lethality resulting from disruption of mouse hydroxysteroid (17-beta) dehydrogenase 2 gene. Mol Endocrinol 2007; 22:665-75. [PMID: 18048640 DOI: 10.1210/me.2007-0257] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hydroxysteroid (17-beta) dehydrogenase 2 (HSD17B2) is a member of aldo-keto reductase superfamily, known to catalyze the inactivation of 17beta-hydroxysteroids to less active 17-keto forms and catalyze the conversion of 20alpha-hydroxyprogesterone to progesterone in vitro. To examine the role of HSD17B2 in vivo, we generated mice deficient in Hsd17b2 [HSD17B2 knockout (KO)] by a targeted gene disruption in embryonic stem cells. From the homozygous mice carrying the disrupted Hsd17b2, 70% showed embryonic lethality appearing at the age of embryonic d 11.5 onward. The embryonic lethality was associated with reduced placental size measured at embryonic d 17.5. The HSD17B2KO mice placentas presented with structural abnormalities in all three major layers: the decidua, spongiotrophoblast, and labyrinth. Most notable was the disruption of the spongiotrophoblast and labyrinthine layers, together with liquid-filled cysts in the junctional region and the basal layer. Treatments with an antiestrogen or progesterone did not rescue the embryonic lethality or the placenta defect in the homozygous mice. In hybrid background used, 24% of HSD17B2KO mice survived through the fetal period but were born growth retarded and displayed a phenotype in the brain with enlargement of ventricles, abnormal laminar organization, and increased cellular density in the cortex. Furthermore, the HSD17B2KO mice had unilateral renal degeneration, the affected kidney frequently appearing as a fluid-filled sac. Our results provide evidence for a role for HSD17B2 enzyme in the cellular organization of the mouse placenta.
Collapse
Affiliation(s)
- Pia Rantakari
- Department of Physiology, Institute of Biomedicine, University of Turku, FIN-20520 Turku, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Brodeur H, Parisotto M, Chagnon S, Mader S, Bhat PV. Isomer-specific retinoic acid biosynthesis in HeLa cells expressing recombinant class I aldehyde dehydrogenases. Biochim Biophys Acta Gen Subj 2007; 1770:1548-56. [DOI: 10.1016/j.bbagen.2007.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Revised: 07/28/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
|
20
|
Zhang M, Hu P, Krois CR, Kane MA, Napoli JL. Altered vitamin A homeostasis and increased size and adiposity in the rdh1-null mouse. FASEB J 2007; 21:2886-96. [PMID: 17435174 DOI: 10.1096/fj.06-7964com] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rat RoDH performs efficiently (V(m)/K(m)) in a pathway of all-trans-retinoic acid biosynthesis in cells and recognizes the physiological form of vitamin A, i.e., retinol bound with cellular retinol binding-protein, type I. Here we report that mouse embryo (e7.5 to e18.5) and liver (e12.5 to P2M) display inversely related mRNA expression of an Rodh ortholog, rdh1, and a major retinoic acid catabolic enzyme, cyp26a1, suggesting coordinate modulation of retinoic acid homeostasis. Rdh1 inactivation by homologous recombination produces mice with decreased liver cyp26a1 mRNA and protein and increased liver and kidney retinoid stores, when fed vitamin A-restricted diets. Thus, null mice autocompensate by down-regulating cyp26a1 and sparing retinoids, indicating that rdh1 metabolizes retinoids in vivo. Surprisingly, rdh1-null mice grow longer than wild type, with increased weight and adiposity, when restricted in vitamin A. Liver, kidney, and multiple fat pads increase in weight. Some differences reflect the larger sizes of rdh1-null mice, but mesentery, femoral, and inguinal fat pads grow disproportionately larger. These data reveal an unexpected contribution of Rdh1 to size and adiposity and provide the first genetic evidence of a candidate retinol dehydrogenase affecting either vitamin A-related homeostasis physiologically or vitamin A-related gene expression or biological function in vivo.
Collapse
Affiliation(s)
- Min Zhang
- Nutritional Science and Toxicology, University of California, Berkeley, CA 94720-3104, USA
| | | | | | | | | |
Collapse
|
21
|
Du K, Liu GF, Xie JP, Song XH, Li R, Liang B, Huang DY. A 27.368 kDa retinal reductase in New Zealand white rabbit liver cytosol encoded by the peroxisomal retinol dehydrogenase-reductase cDNA: purification and characterization of the enzyme. Biochem Cell Biol 2007; 85:209-17. [PMID: 17534402 DOI: 10.1139/o06-183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We obtained a full-length cDNA based on a sequence deposited in GenBank (accession No. AB045133), annotated as rabbit peroxisomal NADP(H)-dependent retinol dehydrogenase-reductase (NDRD). The rabbit NDRD gene, like its mouse and human homologs, harbors 2 initiation sites, one of which theoretically encodes a 29.6 kDa protein with 279 amino acids, and the other encodes a 27.4 kDa protein with 260 amino acids. The purification of a rabbit cytosolic retinol oxidoreductase with a subunit molecular mass of 34 kDa and an N terminus that is not completely identical to that of NDRD, has been reported. An enzyme responsible for the all-trans retinal reductase activity in the liver cytosol of New Zealand white rabbit was purified to homogeneity using differential centrifugation and successive chromatographic analyses. The subunit molecular mass of the purified enzyme, revealed by SDS-PAGE, was approximately 27 kDa. The intact molecular mass, measured by MALDI-TOF mass spectrometry, was 27.368 kDa. The 60 kDa relative mobility observed in size-exclusion chromatography indicates that the native protein probably exists as a dimer. The purified enzyme was positively confirmed to be the product of NDRD by peptide mass fingerprinting, tandem mass spectrometry, and N-terminal sequencing. Taken together, the results suggested that the native protein is truncated at the N terminus.
Collapse
Affiliation(s)
- Kun Du
- Center for Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | | | | | | | | | | | | |
Collapse
|
22
|
López-Valencia V, Rangel P, Rodríguez S, Hernández-Muñoz R. Involvement of alcohol and aldehyde dehydrogenase activities on hepatic retinoid metabolism and its possible participation in the progression of rat liver regeneration. Biochem Pharmacol 2006; 73:586-96. [PMID: 17126819 DOI: 10.1016/j.bcp.2006.10.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 10/20/2006] [Accepted: 10/20/2006] [Indexed: 01/20/2023]
Abstract
Liver alcohol dehydrogenase (ADH) activity is decreased towards exogenous substrates after partial hepatectomy (PH), probably due to putative endogenous substrates acting as ADH inhibitors. Hence, retinoids could be suitable candidates as such endogenous substrates. Therefore, cytosolic ADH kinetic analysis using several substrates, liver cytosolic and mitochondrial aldehyde dehydrogenase (ALDH) activities, retinal and retinol content, as well as expression of proteins for ADH and CRBPI (a retinol carrier protein) were determined in liver samples, at two stages of liver regeneration (one- or two-thirds PH). The effect of inhibiting in vivo liver ADH by 4-methylpyrazole (4-MP) was also evaluated after 70%-PH. With 70%-PH, in vitro ADH activity towards exogenous alcohols and aldehydes was diminished, but retinol oxidation was increased and retinal reduction was decreased. These activities that be due to the participation of an ADH type which did not correlate with the amount of immunoreactive ADH protein. Cytosolic and mitochondrial ALDH activities oxidized actively retinal, whereas retinol and CBRP-I expression were reduced in these animals. With 30%-PH, these changes were less evident and sometimes opposite to those found with 70%-PH. In addition, retinol readily inhibited ADH-mediated ethanol oxidation. Interestingly, in vivo 4-MP administration inhibited ADH activity in a dose-dependent manner correlating with a progressive inhibition of liver regeneration. In conclusion, PH-induced inhibition of ADH (mainly type I) seems to be related to ADH-mediated retinoid metabolism during liver proliferation. Thus, results suggest a role of ADH in retinoid metabolism, which is apparently required during rat liver regeneration.
Collapse
Affiliation(s)
- Verónica López-Valencia
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México 04510, D.F., Mexico
| | | | | | | |
Collapse
|
23
|
Belyaeva OV, Kedishvili NY. Comparative genomic and phylogenetic analysis of short-chain dehydrogenases/reductases with dual retinol/sterol substrate specificity. Genomics 2006; 88:820-830. [PMID: 16860536 DOI: 10.1016/j.ygeno.2006.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 06/08/2006] [Accepted: 06/09/2006] [Indexed: 10/24/2022]
Abstract
Human short-chain dehydrogenases/reductases with dual retinol/sterol substrate specificity (RODH-like enzymes) are thought to contribute to the oxidation of retinol for retinoic acid biosynthesis and to the metabolism of androgenic and neuroactive 3alpha-hydroxysteroids. Here, we investigated the phylogeny and orthology of these proteins to understand better their origins and physiological roles. Phylogenetic and genomic analysis showed that two proteins (11-cis-RDH and RDHL) are highly conserved, and their orthologs can be identified in the lower taxa, such as amphibians and fish. Two other proteins (RODH-4 and 3alpha-HSD) are significantly less conserved. Orthologs for 3alpha-HSD are present in all mammals analyzed, whereas orthologs for RODH-4 can be identified in some mammalian species but not in others due to species-specific gene duplications. Understanding the evolution and divergence of RODH-like enzymes in various vertebrate species should facilitate further investigation of their in vivo functions using animal models.
Collapse
Affiliation(s)
- Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, 720 20th Street South, 466 Kaul Genetics Building, Birmingham, AL 35294, USA.
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, 720 20th Street South, 466 Kaul Genetics Building, Birmingham, AL 35294, USA
| |
Collapse
|
24
|
Everts HB, Sundberg JP, Ong DE. Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res 2005; 308:309-19. [PMID: 15950969 DOI: 10.1016/j.yexcr.2005.04.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 04/15/2005] [Accepted: 04/20/2005] [Indexed: 11/25/2022]
Abstract
Vitamin A deficiency leads to focal metaplasia of numerous epithelial tissues with altered differentiation from columnar (in general) to stratified squamous cells. This process can be reversed with vitamin A repletion. Previously, we described a system of retinoic acid (RA) synthesis in the cycling rat uterus consisting of cellular retinol binding protein (Crbp), epithelial retinol dehydrogenase (eRoldh), retinal dehydrogenase 2 (Aldh1a2), and cellular retinoic acid binding protein type II (Crabp2). Western blot analysis, RT-PCR, and immunohistochemistry were performed to test whether this retinoic acid synthesis system was also present in other vitamin A sensitive tissues. We found that combinations of Crbp, eRoldh, Aldh1a2 or Aldh1a3, and Crabp2 were present in all vitamin A sensitive tissues examined. In the ureter, while eRoldh was present, another short chain alcohol dehydrogenase reductase (possibly Roldh 1, 2, or 3) was in higher concentration in the transitional epithelia. In several tissues, Crbp, Aldh1a2, and/or Aldh1a3 localized to mesenchyme and/or epithelial cells, while eRoldh and Crabp2 were expressed only in epithelial cells. This suggests that mesenchymal-epithelial interactions may be as important in the adult as they are during development and that local synthesis of RA is important in maintenance of these tissues.
Collapse
Affiliation(s)
- Helen B Everts
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | |
Collapse
|
25
|
Belyaeva OV, Korkina OV, Stetsenko AV, Kim T, Nelson PS, Kedishvili NY. Biochemical properties of purified human retinol dehydrogenase 12 (RDH12): catalytic efficiency toward retinoids and C9 aldehydes and effects of cellular retinol-binding protein type I (CRBPI) and cellular retinaldehyde-binding protein (CRALBP) on the oxidation and reduction of retinoids. Biochemistry 2005; 44:7035-47. [PMID: 15865448 PMCID: PMC2679700 DOI: 10.1021/bi050226k] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Retinol dehydrogenase 12 (RDH12) is a novel member of the short-chain dehydrogenase/reductase superfamily of proteins that was recently linked to Leber's congenital amaurosis 3 (LCA). We report the first biochemical characterization of purified human RDH12 and analysis of its expression in human tissues. RDH12 exhibits approximately 2000-fold lower K(m) values for NADP(+) and NADPH than for NAD(+) and NADH and recognizes both retinoids and lipid peroxidation products (C(9) aldehydes) as substrates. The k(cat) values of RDH12 for retinaldehydes and C(9) aldehydes are similar, but the K(m) values are, in general, lower for retinoids. The enzyme exhibits the highest catalytic efficiency for all-trans-retinal (k(cat)/K(m) approximately 900 min(-)(1) microM(-)(1)), followed by 11-cis-retinal (450 min(-)(1) mM(-)(1)) and 9-cis-retinal (100 min(-)(1) mM(-)(1)). Analysis of RDH12 activity toward retinoids in the presence of cellular retinol-binding protein (CRBP) type I or cellular retinaldehyde-binding protein (CRALBP) suggests that RDH12 utilizes the unbound forms of all-trans- and 11-cis-retinoids. As a result, the widely expressed CRBPI, which binds all-trans-retinol with much higher affinity than all-trans-retinaldehyde, restricts the oxidation of all-trans-retinol by RDH12, but has little effect on the reduction of all-trans-retinaldehyde, and CRALBP inhibits the reduction of 11-cis-retinal stronger than the oxidation of 11-cis-retinol, in accord with its higher affinity for 11-cis-retinal. Together, the tissue distribution of RDH12 and its catalytic properties suggest that, in most tissues, RDH12 primarily contributes to the reduction of all-trans-retinaldehyde; however, at saturating concentrations of peroxidic aldehydes in the cells undergoing oxidative stress, for example, photoreceptors, RDH12 might also play a role in detoxification of lipid peroxidation products.
Collapse
Affiliation(s)
| | | | | | | | | | - Natalia Y. Kedishvili
- To whom correspondence should be addressed: Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama-Birmingham, 720, 20th Street South, 440B KAUL, Birmingham, AL 35294. Phone, (205) 996 4023; fax, (205) 934 0758; e-mail,
| |
Collapse
|
26
|
Li XH, Kakkad B, Ong DE. Estrogen directly induces expression of retinoic acid biosynthetic enzymes, compartmentalized between the epithelium and underlying stromal cells in rat uterus. Endocrinology 2004; 145:4756-62. [PMID: 15205379 DOI: 10.1210/en.2004-0514] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogen (E2) has been shown to induce the biosynthesis of retinoic acid (RA) in rat uterus. Here we examined whether E2 could directly induce the enzymes involved in this process by using the ovariectomized rat. A retinol dehydrogenase that we have previously described, eRolDH, and the retinal dehydrogenase, RalDH II, were found to have markedly increased uterine mRNA levels within 4 h of E2 administration, independent of the prior administration of puromycin. eRolDH and RalDH II and their mRNAs were also increased in uteri of rats during estrus. This indicated that RA biosynthesis in rat uterus is directly controlled by E2 and provides a direct link between the action of a steroid hormone and retinoid action. We also examined the cell-specific localization of RalDH II by immunohistochemistry. The enzyme was observed in the stromal compartment, particularly in cells close to the uterine lumenal epithelium. eRolDH was observed only in the lining epithelial cells. Taken together with the previous observations of cellular retinol-binding protein and cellular retinoic acid-binding protein, type two also being expressed in the lumenal epithelium, we propose that RA production is compartmentalized, with retinol oxidation occurring in the lumenal epithelium and subsequent oxidation of retinal to RA occurring in the underlying stromal cells.
Collapse
Affiliation(s)
- Xiao-Hong Li
- Department of Biochemistry, Vanderbilt University, 23rd Avenue at Pierce, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
27
|
Zhang M, Hu P, Napoli JL. Elements in the N-terminal signaling sequence that determine cytosolic topology of short-chain dehydrogenases/reductases. Studies with retinol dehydrogenase type 1 and cis-retinol/androgen dehydrogenase type 1. J Biol Chem 2004; 279:51482-9. [PMID: 15355969 DOI: 10.1074/jbc.m409051200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
High affinity, retinoid-specific binding proteins chaperone retinoids to manage their transport and metabolism. Proposing mechanisms of retinoid transfer between these binding proteins and membrane-associated retinoid-metabolizing enzymes requires insight into enzyme topology. We therefore determined the topology of mouse retinol dehydrogenase type 1 (Rdh1) and cis-retinoid androgen dehydrogenase type 1 (Crad1) in the endoplasmic reticulum of intact mammalian cells. The properties of Rdh1 were compared with a chimera with a luminal signaling sequence (11beta-hydroxysteroid dehydrogenase (11beta-HSD1)(1-41)/Rdh1(23-317); the green fluorescent protein (GFP) fusion proteins Rdh1(1-22)/GFP, Crad1(1-22)/GFP, and 11beta-HSD1(1-41)/GFP; and signaling sequence charge difference mutants using confocal immunofluorescence, antibody access, proteinase K sensitivity, and deglycosylation assays. An N-terminal signaling sequence of 22 residues, consisting of a hydrophobic helix ending in a net positive charge, anchors Rdh1 and Crad1 in the endoplasmic reticulum facing the cytoplasm. Mutating arginine to glutamine in the signaling sequence did not affect topology. Inserting one or two arginine residues near the N terminus of the signaling sequence caused 28-95% inversion from cytoplasmic to luminal, depending on the net positive charge remaining at the C terminus of the signaling sequence; e.g. the mutant L3R,L5R,R16Q,R19Q,R21Q faced the lumen. Experiments with N- and C-terminal epitope-tagged Rdh1 and molecular modeling indicated that a hydrophobic helix-turn-helix near the C terminus of Rdh1 (residues 289-311) projects into the cytoplasm. These data provide insight into the features necessary to orient type III (reverse signal-anchor) proteins and demonstrate that Rdh1, Crad1, and other short-chain dehydrogenases/reductases, which share similar N-terminal signaling sequences such as human Rdh5 and mouse Rdh4, orient with their catalytic domains facing the cytoplasm.
Collapse
Affiliation(s)
- Min Zhang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720-3104, USA
| | | | | |
Collapse
|
28
|
Lidén M, Tryggvason K, Eriksson U. Structure and function of retinol dehydrogenases of the short chain dehydrogenase/reductase family. Mol Aspects Med 2004; 24:403-9. [PMID: 14585311 DOI: 10.1016/s0098-2997(03)00036-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
All-trans-retinol is the common precursor of the active retinoids 11-cis-retinal, all-trans-retinoic acid (atRA) and 9-cis-retinoic acid (9cRA). Genetic and biochemical data supports an important role of the microsomal members of the short chain dehydrogenases/reductases (SDRs) in the first oxidative conversion of retinol into retinal. Several retinol dehydrogenases of this family have been reported in recent years. However, the structural and functional data on these enzymes is limited. The prototypic enzyme RDH5 and the related enzyme CRAD1 have been shown to face the lumen of the endoplasmic reticulum (ER), suggesting a compartmentalized synthesis of retinal. This is a matter of debate as a related enzyme has been proposed to have the opposite membrane topology. Recent data indicates that RDH5, and presumably other members of the SDRs, occur as functional homodimers, and need to interact with other proteins for proper intracellular localization and catalytic activity. Further analyses on the compartmentalization, membrane topology, and functional properties of microsomal retinol dehydrogenases, will give important clues about how retinoids are processed.
Collapse
Affiliation(s)
- Martin Lidén
- Ludwig Institute for Cancer Research, Stockholm Branch, Box 240, S-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
29
|
Perrotta S, Nobili B, Rossi F, Di Pinto D, Cucciolla V, Borriello A, Oliva A, Della Ragione F. Vitamin A and infancy. Biochemical, functional, and clinical aspects. VITAMINS AND HORMONES 2003; 66:457-591. [PMID: 12852263 DOI: 10.1016/s0083-6729(03)01013-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Vitamin A is a very intriguing natural compound. The molecule not only has a complex array of physiological functions, but also represents the precursor of promising and powerful new pharmacological agents. Although several aspects of human retinol metabolism, including absorption and tissue delivery, have been clarified, the type and amounts of vitamin A derivatives that are intracellularly produced remain quite elusive. In addition, their precise function and targets still need to be identified. Retinoic acids, undoubtedly, play a major role in explaining activities of retinol, but, recently, a large number of physiological functions have been attributed to different retinoids and to vitamin A itself. One of the primary roles this vitamin plays is in embryogenesis. Almost all steps in organogenesis are controlled by retinoic acids, thus suggesting that retinol is necessary for proper development of embryonic tissues. These considerations point to the dramatic importance of a sufficient intake of vitamin A and explain the consequences if intake of retinol is deficient. However, hypervitaminosis A also has a number of remarkable negative consequences, which, in same cases, could be fatal. Thus, the use of large doses of retinol in the treatment of some human diseases and the use of megavitamin therapy for certain chronic disorders as well as the growing tendency toward vitamin faddism should alert physicians to the possibility of vitamin overdose.
Collapse
Affiliation(s)
- Silverio Perrotta
- Department of Pediatric, Medical School, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Mic FA, Molotkov A, Benbrook DM, Duester G. Retinoid activation of retinoic acid receptor but not retinoid X receptor is sufficient to rescue lethal defect in retinoic acid synthesis. Proc Natl Acad Sci U S A 2003; 100:7135-40. [PMID: 12782789 PMCID: PMC165842 DOI: 10.1073/pnas.1231422100] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2003] [Accepted: 04/22/2003] [Indexed: 11/18/2022] Open
Abstract
Two isomers of retinoic acid (RA) may be necessary as ligands for retinoid signaling: all-trans-RA for RA receptors (RARs) and 9-cis-RA for retinoid X receptors (RXRs). This was explored by using retinaldehyde dehydrogenase (Raldh)2-/- mouse embryos lacking mesodermal RA synthesis that display early growth arrest unless rescued by all-trans-RA administration. Because isomerization of all-trans-RA to 9-cis-RA can occur, it is unclear whether both ligands are needed for rescue. We show here that an RAR-specific ligand can rescue Raldh2-/- embryos as efficiently as all-trans-RA, whereas an RXR-specific ligand has no effect. Further, whereas all-trans-RA was detected in embryos, 9-cis-RA was undetectable unless a supraphysiological dose of all-trans-RA was administered, revealing that 9-cis-RA is of pharmacological but not physiological significance. Because 9-cis-RA is undetectable and unnecessary for Raldh2-/- rescue, and others have shown that 4-oxo-RA is unnecessary for mouse development, all-trans-RA emerges as the only ligand clearly necessary for retinoid receptor signaling.
Collapse
Affiliation(s)
- Felix A Mic
- OncoDevelopmental Biology Program, Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
31
|
Karlsson T, Vahlquist A, Kedishvili N, Törmä H. 13-cis-retinoic acid competitively inhibits 3 alpha-hydroxysteroid oxidation by retinol dehydrogenase RoDH-4: a mechanism for its anti-androgenic effects in sebaceous glands? Biochem Biophys Res Commun 2003; 303:273-8. [PMID: 12646198 DOI: 10.1016/s0006-291x(03)00332-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Retinol dehydrogenase-4 (RoDH-4) converts retinol and 13-cis-retinol to corresponding aldehydes in human liver and skin in the presence of NAD(+). RoDH-4 also converts 3 alpha-androstanediol and androsterone into dihydrotestosterone and androstanedione, which may stimulate sebum secretion. This oxidative 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSD) activity of RoDH-4 is competitively inhibited by retinol and 13-cis-retinol. Here, we further examine the substrate specificity of RoDH-4 and the inhibition of its 3 alpha-HSD activity by retinoids. Recombinant RoDH-4 oxidized 3,4-didehydroretinol-a major form of vitamin A in the skin-to its corresponding aldehyde. 13-cis-retinoic acid (isotretinoin), 3,4-didehydroretinoic acid, and 3,4-didehydroretinol, but not all-trans-retinoic acid or the synthetic retinoids acitretin and adapalene, were potent competitive inhibitors of the oxidative 3 alpha-HSD activity of RoDH-4, i.e., reduced the formation of dihydrotestosterone and androstandione in vitro. Extrapolated to the in vivo situation, this effect might explain the unique sebosuppressive effect of isotretinoin when treating acne.
Collapse
Affiliation(s)
- Teresa Karlsson
- Department of Medical Sciences/Dermatology and Venereology, University Hospital, Uppsala, Sweden
| | | | | | | |
Collapse
|
32
|
Markova NG, Pinkas-Sarafova A, Karaman-Jurukovska N, Jurukovski V, Simon M. Expression pattern and biochemical characteristics of a major epidermal retinol dehydrogenase. Mol Genet Metab 2003; 78:119-35. [PMID: 12618084 DOI: 10.1016/s1096-7192(02)00226-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The biological functions of vitamin A in the epidermis are mediated by all-trans retinoic acid, which is biosynthesized from retinol in two oxidative reactions. The first step involves enzymatic conversion of retinol to retinaldehyde. The physiological significance and relative contributions of the various retinol dehydrogenases to the oxidation of retinol in epidermal cells remain unclear. We report the characterization of a retinol dehydrogenase/reductase of the SDR superfamily, hRoDH-E2, which is abundantly expressed in the epidermis, epidermal appendages and in cultured epidermal keratinocytes. Both in live keratinocytes and in isolated keratinocyte microsomes, where the enzyme normally localizes, hRoDH-E2 functions as a bona fide retinol dehydrogenase. In the prevailing oxidative reaction it recognizes both free- and CRBP-bound retinol, and shows preference toward NADP as a co-substrate. In comparison, hRoDH-E2 retinol dehydrogenase activity in the simple epithelial HEK 293 cells is much lower and in CHO cells is non-existent. hRoDH-E2 transcripts are distributed throughout the epidermal layers but are more abundant in the basal cells. In contrast, the protein is detected predominantly in the basal and the most differentiated living layers. Its synthesis is negatively regulated by retinoic acid. The biochemical properties and the differential expression of hRoDH-E2 in the strata where retinoic acid signaling is critical for epidermal homeostasis support a conclusion that hRoDH-E2 bears the characteristics of the major microsomal retinol dehydrogenase activity in the epidermal keratinocytes in physiological circumstances.
Collapse
Affiliation(s)
- Nedialka G Markova
- Living Skin Bank, Department of Oral Biology and Pathology, School of Dental Medicine, SUNY Stony Brook, 11794-8702, USA.
| | | | | | | | | |
Collapse
|
33
|
Belyaeva OV, Chetyrkin SV, Kedishvili NY. Characterization of truncated mutants of human microsomal short-chain dehydrogenase/reductase RoDH-4. Chem Biol Interact 2003; 143-144:279-87. [PMID: 12604214 DOI: 10.1016/s0009-2797(02)00181-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human NAD(+)-dependent microsomal short-chain dehydrogenase/reductase RoDH-4 oxidizes all-trans-retinol, 13-cis-retinol and 3alpha-hydroxysteroids to corresponding retinaldehydes and 3-ketones. RoDH-4 behaves as an integral membrane protein, but its topology in the membrane is not known. Analysis of RoDH-4 polypeptide using algorithms for secondary structure predictions suggests that RoDH-4 contains four potential membrane-spanning domains: the N-terminal, the C-terminal, and the two central hydrophobic segments. To determine the role of each segment in association of RoDH-4 with the membrane, we prepared several expression constructs coding for truncated RoDH-4 polypeptides that lacked the putative membrane-spanning domains and expressed them in insect Sf9 cells using the Baculovirus system. Association of truncated RoDH-4 constructs with the microsomal membranes was analyzed by alkaline extraction and floatation in sucrose gradient. Catalytic activity of truncated RoDH-4 constructs was assayed using the 3alpha-hydroxysteroid androsterone as substrate. Truncated RoDH-4 that lacked the first thirteen amino acids of the N-terminal segment was partially active and exhibited the apparent K(m) value for androsterone similar to that of the wild-type enzyme. Removal of 23 N-terminal hydrophobic amino acids resulted in significant loss of activity and a 14-fold increase in the apparent K(m) value. Removal of the C-terminal 27 amino acid segment resulted in a approximately 600-fold increase in the apparent K(m) value. Each truncated mutant behaved as an integral membrane protein. Furthermore, protein that lacked all four hydrophobic segments remained associated with the membrane. Thus, the N-terminal and the C-terminal ends are both important for RoDH-4 activity and the removal of the putative transmembrane segments does not convert RoDH-4 into a soluble protein, suggesting additional sites of membrane interaction.
Collapse
Affiliation(s)
- Olga V Belyaeva
- School of Biological Sciences, Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City, 5007 Rockhill Road, 103 BSB, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
34
|
Rexer BN, Ong DE. A novel short-chain alcohol dehydrogenase from rats with retinol dehydrogenase activity, cyclically expressed in uterine epithelium. Biol Reprod 2002; 67:1555-64. [PMID: 12390888 DOI: 10.1095/biolreprod.102.007021] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Retinoic acid is necessary for the maintenance of many lining epithelia of the body, such as the epithelium of the luminal surface of the uterus. Administration of estrogen to prepubertal rats induces in these epithelial cells the ability to synthesize retinoic acid from retinol, coincident with the appearance of cellular retinoic acid-binding protein, type two, which is normally present in these cells only at estrus in the mature, cycling animal. Here, we report the isolation, from a cDNA library prepared from uterine mRNA collected at the estrous stage and from a rat mammary adenocarcinoma cell line, of a cDNA that encodes a novel retinol dehydrogenase. A member of the short-chain alcohol dehydrogenase family, the encoded enzyme was capable of metabolizing retinol to retinal when expressed in cells after transfection of its cDNA. When cotransfected with the cDNA of human aldehyde 6, a known retinaldehyde dehydrogenase, the transfected cells synthesized retinoic acid from retinol. Immunohistochemical analysis revealed that the protein was present in the uterine lining epithelium of the mature animal only at estrus, coincident with the presence of cellular retinol-binding protein and cellular retinoic acid-binding protein, type two. Consequently, this novel short-chain alcohol dehydrogenase is an excellent candidate for the retinol dehydrogenase that catalyzes the first step in retinoic acid biosynthesis that occurs in uterine epithelial cells.
Collapse
Affiliation(s)
- Brent N Rexer
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
35
|
Kallberg Y, Oppermann U, Jörnvall H, Persson B. Short-chain dehydrogenases/reductases (SDRs). EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4409-17. [PMID: 12230552 DOI: 10.1046/j.1432-1033.2002.03130.x] [Citation(s) in RCA: 324] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Short-chain dehydrogenases/reductases (SDRs) are enzymes of great functional diversity. Even at sequence identities of typically only 15-30%, specific sequence motifs are detectable, reflecting common folding patterns. We have developed a functional assignment scheme based on these motifs and we find five families. Two of these families were known previously and are called 'classical' and 'extended' families, but they are now distinguished at a further level based on coenzyme specificities. This analysis gives seven subfamilies of classical SDRs and three subfamilies of extended SDRs. We find that NADP(H) is the preferred coenzyme among most classical SDRs, while NAD(H) is that preferred among most extended SDRs. Three families are novel entities, denoted 'intermediate', 'divergent' and 'complex', encompassing short-chain alcohol dehydrogenases, enoyl reductases and multifunctional enzymes, respectively. The assignment scheme was applied to the genomes of human, mouse, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana and Saccharomyces cerevisiae. In the animal genomes, the extended SDRs amount to around one quarter or less of the total number of SDRs, while in the A. thaliana and S. cerevisiae genomes, the extended members constitute about 40% of the SDR forms. The numbers of NAD(H)-dependent and NADP(H)-dependent SDRs are similar in human, mouse and plant, while the proportions of NAD(H)-dependent enzymes are much lower in fruit fly, worm and yeast. We show that, in spite of the great diversity of the SDR superfamily, the primary structure alone can be used for functional assignments and for predictions of coenzyme preference.
Collapse
Affiliation(s)
- Yvonne Kallberg
- Department of Medical Biochemistry and Biophysics and Stockholm Bioinformatics Centre, Karolinska Institutet, Sweden
| | | | | | | |
Collapse
|
36
|
Chen W, Song MS, Napoli JL. SDR-O: an orphan short-chain dehydrogenase/reductase localized at mouse chromosome 10/human chromosome 12. Gene 2002; 294:141-6. [PMID: 12234675 DOI: 10.1016/s0378-1119(02)00757-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report cloning a cDNA that encodes a novel short-chain dehydrogenase/reductase, SDR-O, conserved in mouse, human and rat. Human and mouse liver express SDR-O (short-chain dehydrogenase/reductase-orphan) mRNA intensely. The mouse embryo expresses SDR-O mRNA as early as day seven. Human SDR-O localizes on chromosome 12; mouse SDR-O localizes on chromosome 10 with CRAD1, CRAD2 and RDH4. SDR-O shares highest amino acid similarity with rat RoDH1 and mouse RDH1 (69-70%), but does not have the retinol and 3alpha-hydroxysteroid dehydrogenase activity of either, nor is it active as a 17beta- or 11beta-hydroxysteroid dehydrogenase. Short-chain dehydrogenase/reductases catalyse the metabolism of ligands that bind with nuclear receptors: the occurrence of 'orphan' nuclear receptors may imply existence of 'orphan' SDR, suggesting that SDR-O may catalyse the metabolism of another class of nuclear receptor ligand. Alternatively, SDR-O may not have a catalytic function, but may regulate metabolism by binding substrates/products and/or by serving as a regulatory factor.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- CHO Cells
- Chromosome Mapping
- Chromosomes/genetics
- Chromosomes, Human, Pair 12/genetics
- Cloning, Molecular
- Cricetinae
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Female
- Gene Expression Regulation, Enzymologic
- Humans
- Male
- Mice
- Molecular Sequence Data
- Oxidoreductases/genetics
- Oxidoreductases/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Synteny
Collapse
Affiliation(s)
- Weiguo Chen
- Department of Nutritional Sciences and Toxicology, University of California, 119 Morgan Hall, MC#3104, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
37
|
Rout UK, Armant DR. Expression of genes for alcohol and aldehyde metabolizing enzymes in mouse oocytes and preimplantation embryos. Reprod Toxicol 2002; 16:253-8. [PMID: 12128098 DOI: 10.1016/s0890-6238(02)00022-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alcohols and aldehydes are metabolized primarily by alcohol (ADH) and aldehyde (ALDH) dehydrogenase isozymes. Although significant progress has been made towards understanding the involvement of these isozymes in the oxidation of alcohol and aldehydes in the body, it is not known how these compounds are handled during fertilization and preimplantation embryogenesis. In this study, reverse transcription and the polymerase chain reaction (RT-PCR) was used to determine which ADH and ALDH isozymes are expressed at the oocyte, zygote, morula, and blastocyst stages of preimplantation development in the mouse. Transcripts of beta-actin and vimentin, assayed as controls, were detected at all stages, as well as Class III ADH (Adh-2) and Class 3 ALDH (Ahd-4), involved in the detoxification of formaldehyde and aromatic aldehydes, respectively. In contrast, transcripts for the major ethanol oxidizing isozyme, Class I ADH (Adh-1) was not detected during preimplantation development. Cytosolic retinol dehydrogenase (Adh-3) transcripts were marginally detected in oocytes and zygotes. The mRNA for cytosolic retinal dehydrogenase (Ahd-2), microsomal short-chain retinol dehydrogenases (RoDH Type I), and the mitochondrial low-Km acetaldehyde dehydrogenase (Ahd-5) only appeared as maternal transcripts. Microsomal ALDH (Ahd-3), which is induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), was not expressed until the blastocyst stage. ADH and ALDH enzyme systems may guard mouse preimplantation embryos against the toxic effects of industrial pollutants, such as formaldehyde and TCDD, as well as peroxidatic aldehydes generated during lipid peroxidation. The absence of enzymes to convert ethanol to acetaldehyde, coupled with oocyte expression of the acetaldehyde-degrading enzyme, Ahd-5, may be protective for the early embryo.
Collapse
Affiliation(s)
- Ujjwal Kumar Rout
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI 48201, USA.
| | | |
Collapse
|
38
|
Molotkov A, Fan X, Deltour L, Foglio MH, Martras S, Farrés J, Parés X, Duester G. Stimulation of retinoic acid production and growth by ubiquitously expressed alcohol dehydrogenase Adh3. Proc Natl Acad Sci U S A 2002; 99:5337-42. [PMID: 11959987 PMCID: PMC122770 DOI: 10.1073/pnas.082093299] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2001] [Accepted: 02/15/2002] [Indexed: 11/18/2022] Open
Abstract
Influence of vitamin A (retinol) on growth depends on its sequential oxidation to retinal and then to retinoic acid (RA), producing a ligand for RA receptors essential in development of specific tissues. Genetic studies have revealed that aldehyde dehydrogenases function as tissue-specific catalysts for oxidation of retinal to RA. However, enzymes catalyzing the first step of RA synthesis, oxidation of retinol to retinal, remain unclear because none of the present candidate enzymes have expression patterns that fully overlap with those of aldehyde dehydrogenases during development. Here, we provide genetic evidence that alcohol dehydrogenase (ADH) performs this function by demonstrating a role for Adh3, a ubiquitously expressed form. Adh3 null mutant mice exhibit reduced RA generation in vivo, growth deficiency that can be rescued by retinol supplementation, and completely penetrant postnatal lethality during vitamin A deficiency. ADH3 was also shown to have in vitro retinol oxidation activity. Unlike the second step, the first step of RA synthesis is not tissue-restricted because it is catalyzed by ADH3, a ubiquitous enzyme having an ancient origin.
Collapse
Affiliation(s)
- Andrei Molotkov
- Gene Regulation Program, Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Mohan M, Malayer JR, Geisert RD, Morgan GL. Expression patterns of retinoid X receptors, retinaldehyde dehydrogenase, and peroxisome proliferator activated receptor gamma in bovine preattachment embryos. Biol Reprod 2002; 66:692-700. [PMID: 11870076 DOI: 10.1095/biolreprod66.3.692] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In cattle, administration of retinol at the time of superovulation has been indirectly associated with enhanced developmental potential of the embryo. Vitamin A and its metabolites influence several developmental processes by interacting with 2 different types of nuclear receptors, retinoic acid receptors and retinoid X receptors (RXRs). Given the limited information available concerning the RXR-mediated retinoid signaling system, particularly in species other than rodents, this study was performed to gain insight into the potential role of retinoid signaling during preattachment embryo development in the cow. Bovine embryos were produced in vitro from oocytes harvested from abattoir ovaries and frozen in liquid nitrogen at the oocyte, 2-, 4-, 8-, and 16- to 20-cell, morula, blastocyst, and hatched blastocyst stages. Reverse transcription polymerase chain reaction (PCR) and whole mount in situ hybridization were utilized to investigate mRNA expression for RXR alpha, RXR beta, RXR gamma, alcohol dehydrogenase I (ADH-I), retinaldehyde dehydrogenase 2 (RALDH2), peroxisome proliferator activated receptor gamma (PPAR gamma), and glyceraldehyde-3-phosphate dehydrogenase. Transcripts for RXR alpha, RXR beta, RALDH2, and PPAR gamma were detected in all stages beginning from the oocyte through to the hatched blastocyst. Whole mount in situ hybridization performed using digoxigenin-labeled antisense probes detected all 4 transcripts in both the inner cell mass and the trophectoderm of hatched blastocysts. PCR products obtained for ADH-I exhibited very low homology to known human and mouse sequences. Immunohistochemistry was performed using polyclonal anti-rabbit antibodies against RXR beta and PPAR gamma to investigate whether these embryonic mRNAs were translated to the mature protein. Strong immunostaining was observed for both RXR beta and PPAR gamma in the trophectoderm and inner cell mass cells of intact and hatched blastocysts. Messenger RNA was not detected at any stage for RXR gamma. Expression of mRNA for RXR alpha, RXR beta, RALDH2, and PPAR gamma suggests that the early embryo may be competent to synthesize retinoic acid and regulate gene expression during preattachment development in vitro.
Collapse
Affiliation(s)
- M Mohan
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078-2006, USA
| | | | | | | |
Collapse
|
40
|
Zhang M, Chen W, Smith SM, Napoli JL. Molecular characterization of a mouse short chain dehydrogenase/reductase active with all-trans-retinol in intact cells, mRDH1. J Biol Chem 2001; 276:44083-90. [PMID: 11562362 DOI: 10.1074/jbc.m105748200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metabolic activation of retinol (vitamin A) via sequential actions of retinol and retinal dehydrogenases produces the active metabolite all-trans-retinoic acid. This work reports cDNA cloning, enzymatic characterization, function in a reconstituted path of all-trans-retinoic acid biosynthesis in cell culture, and mRNA expression patterns in adult tissues and embryos of a mouse retinol dehydrogenase, RDH1. RDH1 represents a new member of the short chain dehydrogenase/reductase superfamily that differs from other mouse RDH in relative activity with all-trans and cis-retinols. RDH1 has a multifunctional catalytic nature, as do other short chain dehydrogenase/reductases. In addition to retinol dehydrogenase activity, RDH1 has strong 3alpha-hydroxy and weak 17beta-hydroxy steroid dehydrogenase activities. RDH1 has widespread and intense mRNA expression in tissues of embryonic and adult mice. The mouse embryo expresses RDH1 as early as 7.0 days post-coitus, and expression is especially intense within the neural tube, gut, and neural crest at embryo day 10.5. Cells cotransfected with RDH1 and any one of three retinal dehydrogenase isozymes synthesize all-trans-retinoic acid from retinol, demonstrating that RDH1contributes to a path of all-trans-retinoic acid biosynthesis in intact cells. These characteristics are consistent with RDH1 functioning in a path of all-trans-retinoic acid biosynthesis starting early during embryogenesis.
Collapse
Affiliation(s)
- M Zhang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
41
|
Huang XF, Luu-The V. Gene structure, chromosomal localization and analysis of 3-ketosteroid reductase activity of the human 3(alpha-->beta)-hydroxysteroid epimerase. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1520:124-30. [PMID: 11513953 DOI: 10.1016/s0167-4781(01)00247-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Following our previous characterization of the first human 3(alpha-->beta)hydroxysteroid epimerase (hHSE), we determined the genomic structure and chromosomal localization of the hHSE gene using fluorescent in situ hybridization (FISH) in this study. The gene spans 23 kb and contains five exons and four introns. FISH mapping assigned this gene to chromosome band 12q13. Primer extension analysis allowed the identification of a single transcription start site at 179 bp upstream from the ATG start codon. The 5'-flanking sequence lacks a typical TATA box in the proximal region of the transcription start site. However, analysis of the 2 kb promoter region revealed the presence of multiple potential transcription factor binding sites. Furthermore, we studied the 3-ketosteroid reductase activity demonstrated by hHSE in intact cells stably expressing the enzyme. It has been known that, in vitro, 3beta-hydroxysteroid dehydrogenase (3beta-HSD) shows both oxidative and reductive activity. Our results showed that hHSE catalyzes the reduction of 3-ketosteroids to form 3beta-hydroxysteroids while 3beta-HSD cannot catalyze this reaction in intact cells. However, hHSE showed 3-keto reductase activity in both microsomal fractions and intact cells. Since intact cells constitute a system which closely reflects in vivo intracellular conditions, we propose that hHSE might contribute to the cellular 3-ketosteroid reductase activity in the peripheral tissues.
Collapse
Affiliation(s)
- X F Huang
- Oncology and Molecular Endocrinology Research Center, Laval University Hospital Center (CHUL) and Laval University, 2705 Laurier Boulevard, G1V 4G2, Sainte-Foy, QC, Canada
| | | |
Collapse
|
42
|
Abstract
Mouse rdh6 encodes cis-retinoid/androgen dehydrogenase type 1 (CRAD1), a short-chain dehydrogenase, which recognizes as substrates 9-cis-retinol, 11-cis-retinol, 5 alpha-androstan-3 alpha,17 beta-diol and 5 alpha-androstan-3 alpha-ol-17-one, and is expressed most intensely in liver and kidney. The present study reports the genomic organization, chromosomal localization and promoter region sequence of rdh6. Rdh6 spans more than 38 kb and consists of four exons ranging from 164 to 2200 bp, and three introns ranging from 550 bp to greater than 18 kb. The gene localizes to the distal end of mouse chromosome 10, 72.5 cM from the centromere, and colocalizes with mouse rdh7, which encodes CRAD2. This corresponds to the locus of human rdh5 on human chromosome 12. Primer extension assays indicate two major transcription start sites in liver and one in kidney. The approximately 2000 kb sequenced of the 5'-flanking region contains multiple potential transcription factor binding sites, including sites for AP-1, C/EBP beta, GATA, c-Rel, ER, ROR alpha, SREBP, and CREB.
Collapse
Affiliation(s)
- X Chai
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
43
|
Nobel S, Abrahmsen L, Oppermann U. Metabolic conversion as a pre-receptor control mechanism for lipophilic hormones. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4113-25. [PMID: 11488903 DOI: 10.1046/j.1432-1327.2001.02359.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The majority of physiological effects mediated by steroids, retinoids and thyroids is accomplished by binding to members of the nuclear receptor superfamily of ligand activated transcription factors. The complex specific effects of lipid hormones depend not only on receptor expression, distribution and interactions, but also on the availability and metabolic conversion of the hormone itself. The cell-specific metabolic activation of inactive hormone precursors introduces a further level of hormonal regulation, and constitutes an important concept in endocrinology. The metabolic reactions carried out are achieved by dehydrogenases/reductases, hydroxylases and other enzymes, acting on ligands of the steroid/thyroid/retinoic hormone receptor superfamily. The concept implies that these tissue- and cell-specific metabolic conversions contribute to lipid hormone action, thus pointing to novel targets in drug development. All components of this signalling system, the hormone compounds, the receptor proteins, and modifying enzyme families originate from an early metazoan date, emphasizing the essential nature of all elements for development and diversification of vertebrate life.
Collapse
Affiliation(s)
- S Nobel
- Biovitrum AB, Division of Pharmaceuticals, Department of Assay Development and Screening, Stockholm, Sweden
| | | | | |
Collapse
|
44
|
Soref CM, Di YP, Hayden L, Zhao YH, Satre MA, Wu R. Characterization of a novel airway epithelial cell-specific short chain alcohol dehydrogenase/reductase gene whose expression is up-regulated by retinoids and is involved in the metabolism of retinol. J Biol Chem 2001; 276:24194-202. [PMID: 11304534 DOI: 10.1074/jbc.m100332200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple retinoic acid responsive cDNAs were isolated from a high density cDNA microarray membrane, which was developed from a cDNA library of human tracheobronchial epithelial cells. Five selected cDNA clones encoded the sequence of the same novel gene. The predicted open reading frame of the novel gene encoded a protein of 319 amino acids. The deduced amino acid sequence contains four motifs that are conserved in the short-chain alcohol dehydrogenase/reductase (SDR) family of proteins. The novel gene shows the greatest homology to a group of dehydrogenases that can oxidize retinol (retinol dehydrogenases). The mRNA of the novel gene was found in trachea, colon, tongue, and esophagus. In situ hybridization of airway tissue sections demonstrated epithelial cell-specific gene expression, especially in the ciliated cell type. Both all-trans-retinoic acid and 9-cis-retinoic acid were able to elevate the expression of the novel gene in primary human tracheobronchial epithelial cells in vitro. This elevation coincided with an enhanced retinol metabolism in these cultures. COS cells transfected with an expression construct of the novel gene were also elevated in the metabolism of retinol. The results suggested that the novel gene represents a new member of the SDR family that may play a critical role in retinol metabolism in airway epithelia as well as in other epithelia of colon, tongue, and esophagus.
Collapse
Affiliation(s)
- C M Soref
- Center for Comparative Respiratory Biology and Medicine and the Department of Nutrition, University of California at Davis, 95616, USA
| | | | | | | | | | | |
Collapse
|
45
|
Chetyrkin SV, Hu J, Gough WH, Dumaual N, Kedishvili NY. Further characterization of human microsomal 3alpha-hydroxysteroid dehydrogenase. Arch Biochem Biophys 2001; 386:1-10. [PMID: 11360992 DOI: 10.1006/abbi.2000.2203] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This manuscript reports further characterization of the recently discovered human short-chain alcohol dehydrogenase, proposed to oxidize 3alpha-androstanediol to dihydrotestosterone in testis and prostate (M. G. Biswas and D. W. Russell, 1997, J. Biol. Chem. 272, 15959-15966). Enzyme expressed using the Baculovirus System localized in the microsomal fraction and catalyzed oxidation and reduction of the functional groups on steroids at carbons 3 and 17. Autoradiography assays revealed that the enzyme was most efficient as a 3alpha-hydroxysteroid oxidoreductase. High affinity of the enzyme for NADH (Km of 0.18 microM), lack of stereospecificity in the reductive direction, and poor efficiency for 3beta- versus 3alpha-hydroxyl oxidation could account for the observed transient accumulation of 3beta-stereoisomers in the oxidative reaction. Consistent with the 65% sequence identity with RoDH dehydrogenases, the enzyme oxidized all-trans-retinol with the Km value of 3.2 microM and Vmax value of 1.2 nmol/min per milligram microsomes. 13-cis-Retinol and all-trans-retinol bound to the cellular retinol-binding protein were not substrates. Neurosteroid allopregnanolone was a better substrate than all-trans-retinol with the Km and Vmax values of 0.24 microM and 14.7 nmol/min per milligram microsomes. Northern blot analysis revealed that the corresponding mRNA was present in adult human brain (caudate nucleus, amygdala, hippocampus, substantia nigra, thalamus) and spinal cord in addition to other tissues. The message was also detected in fetal lung, liver, and brain. Antibodies against the enzyme recognized a protein of approximately 35 kDa in the particulate fraction of human tissues. This study presents new information about enzymatic properties, substrate specificity, and tissue distribution of this enzyme, and provides a better insight into its possible physiological function(s).
Collapse
Affiliation(s)
- S V Chetyrkin
- Division of Molecular Biology & Biochemistry, University of Missouri-Kansas City, 64110, USA
| | | | | | | | | |
Collapse
|
46
|
Huang XF, Luu-The V. Characterization of the oxidative 3alpha-hydroxysteroid dehydrogenase activity of human recombinant 11-cis-retinol dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1547:351-8. [PMID: 11410291 DOI: 10.1016/s0167-4838(01)00200-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
11-cis-Retinol dehydrogenase catalyzes the oxidation of cis-retinols, a rate-limiting step in the biosynthesis of 9-cis-retinoic acid. It is also active toward 3alpha-hydroxysteroids, and thus might be involved in steroid metabolism. To better understand the role of this enzyme, we produced stable transfectants expressing 11-cis-retinol dehydrogenase in human embryonic kidney 293 cells. In vitro enzymatic assays have demonstrated that, with an appropriate exogenous cofactor, the enzyme catalyzes the interconversion of 5alpha-androstane-3alpha,17beta-diol and dihydrotestosterone and that of androsterone and androstanedione. However, using intact transfected cells, we found that the enzyme catalyzes reactions only in the oxidative direction. Thus, it is possible that 5alpha-androstane-3alpha,17beta-diol (an inactive androgen) can be converted into dihydrotestosterone, the most potent androgen, by the action of 11-cis-retinol dehydrogenase. This reaction could constitute a non-classical pathway of production of active androgens in the peripheral tissues. We also showed that all-trans-, 9-cis- and 13-cis-retinol inhibit the oxidative 3alpha-hydroxysteroid steroid activity of 11-cis-retinol dehydrogenase with similar K(i) values. Since all-trans-retinol is a precursor of cis-retinols, its inhibitory effect on the activity suggests that it could play an important role in modulating the formation of 9-cis-retinoic acid. In addition, we examined the effect of several known enzyme modulators, namely carbenoxolone, phenylarsine oxide and phosphatidylcholine, on 11-cis-retinol dehydrogenase activity. Taken together, our results suggest that, in humans, this enzyme might play a role in the biosynthesis of both 9-cis-retinoic acid and dihydrotestosterone.
Collapse
Affiliation(s)
- X F Huang
- Oncology and Molecular Endocrinology Research Center, Laval University Hospital Center (CHUL) and Laval University, 2705 Laurier Boulevard, G1V 4G2, Sainte-Foy, QC, Canada
| | | |
Collapse
|
47
|
Tryggvason K, Romert A, Eriksson U. Biosynthesis of 9-cis-retinoic acid in vivo. The roles of different retinol dehydrogenases and a structure-activity analysis of microsomal retinol dehydrogenases. J Biol Chem 2001; 276:19253-8. [PMID: 11279029 DOI: 10.1074/jbc.m100215200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoic acid is generated by a two-step mechanism. First, retinol is converted into retinal by a retinol dehydrogenase, and, subsequently, retinoic acid is formed by a retinal dehydrogenase. In vitro, several enzymes are suggested to act in this metabolic pathway. However, little is known regarding their capacity to contribute to retinoic acid biosynthesis in vivo. We have developed a versatile cell reporter system to analyze the role of several of these enzymes in 9-cis-retinoic acid biosynthesis in vivo. Using a Gal4-retinoid X receptor fusion protein-based luciferase reporter assay, the formation of 9-cis-retinoic acid from 9-cis-retinol was measured in cells transfected with expression plasmids encoding different combinations of retinol and retinal dehydrogenases. The results suggested that efficient formation of 9-cis-retinoic acid required co-expression of retinol and retinal dehydrogenases. Interestingly, the cytosolic alcohol dehydrogenase 4 failed to efficiently catalyze 9-cis-retinol oxidation. A structure-activity analysis showed that mutants of two retinol dehydrogenases, devoid of the carboxyl-terminal cytoplasmic tails, displayed greatly reduced enzymatic activities in vivo, but were active in vitro. The cytoplasmic tails mediate efficient endoplasmic reticulum localization of the enzymes, suggesting that the unique milieu in the endoplasmic reticulum compartment is necessary for in vivo activity of microsomal retinol dehydrogenases.
Collapse
Affiliation(s)
- K Tryggvason
- Ludwig Institute for Cancer Research, Stockholm Branch, Box 240, S-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
48
|
Guo X, Morris P, Gudas L. Follicle-stimulating hormone and leukemia inhibitory factor regulate Sertoli cell retinol metabolism. Endocrinology 2001; 142:1024-32. [PMID: 11181515 DOI: 10.1210/endo.142.3.7996] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sertoli cells, the somatic epithelial cells of the seminiferous tubules, provide both structural and biochemical support for developing male germ cells. The Sertoli cells are targets of retinoid action in the testis. We have found that FSH, (Bu)(2)cAMP, and leukemia inhibitory factor elicit substantial changes in the metabolism of [(3)H]retinol (vitamin A) in primary cultures of purified rat Sertoli cells. Addition of (Bu)(2)cAMP for 2 h or FSH for 6 h results in a 3-fold increase in the metabolism of [(3)H]retinol to [(3)H]retinoic acid ([(3)H]RA); the esterification of [(3)H]retinol to [(3)H]retinyl esters, especially [(3)H]retinyl palmitate, is also increased by approximately 5-fold. The addition of 1 microM all-trans-RA also elicits changes in [(3)H]retinol metabolism, but in this case the metabolism of [(3)H]retinol to [(3)H]RA is inhibited, whereas the metabolism of [(3)H]retinol to [(3)H]retinyl esters is increased by over 50-fold. Leukemia inhibitory factor increases the esterification of [(3)H]retinol by 2- to 3-fold. FSH leads to a reduction in the level of cellular retinol binding protein I transcripts, whereas RA increases the cellular retinol binding protein I messenger RNA level by about 2-fold at approximately 24 h. Levels of AHD-2 (aldehyde dehydrogenase-2) and RALDH-2 (retinaldehyde dehydrogenase-2) messenger RNAs, which encode enzymes that convert [(3)H]retinaldehyde to [(3)H]RA, are increased by about 2-fold by FSH, whereas no change in CYP26 (RA hydroxylase) expression is seen. Our results suggest that one function of FSH (and/or (Bu)(2)cAMP) in Sertoli cells is to increase the metabolism of retinol to the biologically active metabolite RA and to retinyl esters.
Collapse
Affiliation(s)
- X Guo
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
49
|
Kedishvili NY, Belyaeva OV, Gough WH. Cloning of the human RoDH-related short chain dehydrogenase gene and analysis of its structure. Chem Biol Interact 2001; 130-132:457-67. [PMID: 11306067 DOI: 10.1016/s0009-2797(00)00291-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously characterized the first human NAD(+)-dependent short chain dehydrogenase capable of oxidizing all-trans-retinol and androgens, and found only in the liver and skin. In a search for related human enzymes, we identified a partial open reading frame, which exhibited >60% sequence identity to human RoDH-4. The full-length cDNA for this enzyme was determined in our laboratory by 5'-RACE PCR and was found to be identical to the recently reported novel type of oxidative human 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD). Analysis of the genomic structure revealed that the gene for RoDH-like 3alpha-HSD has four translated exons and, possibly, a fifth exon that codes for the 5'-untranslated region. The gene for RoDH-4 appears to have only four exons. The positions of exon-intron boundaries and the sizes of the protein coding regions are identical in 3alpha-HSD and RoDH-4. Moreover, both genes are mapped to chromosome 12q13, and are located in a close proximity to each other. Both genes appear to have satellite pseudogenes. Thus, RoDH-4 and 3alpha-HSD genes share similar structural organization and cluster on human chromosome 12, near the gene for 11-cis retinol dehydrogenase.
Collapse
Affiliation(s)
- N Y Kedishvili
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, 103 BSB, 64110, Kansas City, MO, USA.
| | | | | |
Collapse
|
50
|
Napoli JL. 17beta-Hydroxysteroid dehydrogenase type 9 and other short-chain dehydrogenases/reductases that catalyze retinoid, 17beta- and 3alpha-hydroxysteroid metabolism. Mol Cell Endocrinol 2001; 171:103-9. [PMID: 11165018 DOI: 10.1016/s0303-7207(00)00392-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Subgroups of related short-chain dehydrogenase/reductase (SDR) family members serve as retinoid/androgen/estrogen metabolizing enzymes. These include retinol dehydrogenases (RoDHs) 1-3, cis-retinol/androgen dehydrogenase 1 and 2 (CRAD), retSDRs1-4, 9/11-cis-retinol dehydrogenase, and 17beta-hydroxysteroid dehydrogenase (17beta-HSD) types 6 and 9. Interaction with cellular retinol-binding protein (CRBP), the major physiological form of retinol, led to the identification and cDNA cloning of RoDH1. Probes for RoDH1 contributed to cDNA cloning many of the others. Some of these SDRs show specificity with all-trans-retinol (RoDH, retSDR, 17beta-HSD6 and 9) and others with 9 and/or 11-cis-retinol (CRAD, 9/11-cis-retinol dehydrogenase). Many have 3alpha-HSD activities with 3alpha-androstandiol as the most efficiently used substrate, followed by androsterone. In addition to 3alpha-HSD activity, CRAD2 shows relatively weak 17beta-HSD activity with testosterone. Rat 17beta-HSD6 and mouse 17beta-HSD9, which are not interspecies homologs, have efficient 17beta-HSD activities. 17beta-HSD6 has approximately 50% greater 17beta-HSD activity with estradiol than with 3alpha-androstandiol. With 3alpha-androstandiol, 17beta-HSD9 operates equally efficiently as a 17beta-HSD or a 3alpha-HSD. The multi-substrate nature of these SDRs allows for retinoid/steroid interactions. The ability of some these SDRs to access retinol bound with CRBP provides specificity in retinoid metabolism and allows retinoic acid biosynthesis and retinol esterification to continue, as CRBP protects retinol from the general cellular milieu.
Collapse
Affiliation(s)
- J L Napoli
- Department of Nutritional Sciences and Toxicology, 119 Morgan Hall, University of California, Berkeley, CA 94720-3104, USA.
| |
Collapse
|