1
|
Ni WF, Zhou KL, Zhang HJ, Chen YT, Hu XL, Cai WT, Wang XY. Functions and mechanisms of cytosolic phospholipase A 2 in central nervous system trauma. Neural Regen Res 2023; 18:258-266. [PMID: 35900400 PMCID: PMC9396495 DOI: 10.4103/1673-5374.346460] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
2
|
Toelzer C, Gupta K, Yadav SKN, Hodgson L, Williamson MK, Buzas D, Borucu U, Powers K, Stenner R, Vasileiou K, Garzoni F, Fitzgerald D, Payré C, Gautam G, Lambeau G, Davidson AD, Verkade P, Frank M, Berger I, Schaffitzel C. The free fatty acid-binding pocket is a conserved hallmark in pathogenic β-coronavirus spike proteins from SARS-CoV to Omicron. SCIENCE ADVANCES 2022; 8:eadc9179. [PMID: 36417532 PMCID: PMC9683698 DOI: 10.1126/sciadv.adc9179] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/19/2022] [Indexed: 06/01/2023]
Abstract
As coronavirus disease 2019 (COVID-19) persists, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) emerge, accumulating spike (S) glycoprotein mutations. S receptor binding domain (RBD) comprises a free fatty acid (FFA)-binding pocket. FFA binding stabilizes a locked S conformation, interfering with virus infectivity. We provide evidence that the pocket is conserved in pathogenic β-coronaviruses (β-CoVs) infecting humans. SARS-CoV, MERS-CoV, SARS-CoV-2, and VOCs bind the essential FFA linoleic acid (LA), while binding is abolished by one mutation in common cold-causing HCoV-HKU1. In the SARS-CoV S structure, LA stabilizes the locked conformation, while the open, infectious conformation is devoid of LA. Electron tomography of SARS-CoV-2-infected cells reveals that LA treatment inhibits viral replication, resulting in fewer deformed virions. Our results establish FFA binding as a hallmark of pathogenic β-CoV infection and replication, setting the stage for FFA-based antiviral strategies to overcome COVID-19.
Collapse
Affiliation(s)
- Christine Toelzer
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Kapil Gupta
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
- Imophoron Ltd., St. Philips Central, Albert Rd, Bristol BS2 0XJ, UK
| | - Sathish K. N. Yadav
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Lorna Hodgson
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | | | - Dora Buzas
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - Ufuk Borucu
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Kyle Powers
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Richard Stenner
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Kate Vasileiou
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Frederic Garzoni
- Imophoron Ltd., St. Philips Central, Albert Rd, Bristol BS2 0XJ, UK
| | - Daniel Fitzgerald
- Halo Therapeutics Ltd., St. Philips Central, Albert Rd, Bristol BS2 0XJ, UK
| | - Christine Payré
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne Sophia Antipolis, France
| | - Gunjan Gautam
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Gérard Lambeau
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne Sophia Antipolis, France
| | - Andrew D. Davidson
- Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Paul Verkade
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | | | - Imre Berger
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
- Halo Therapeutics Ltd., St. Philips Central, Albert Rd, Bristol BS2 0XJ, UK
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
- Halo Therapeutics Ltd., St. Philips Central, Albert Rd, Bristol BS2 0XJ, UK
| |
Collapse
|
3
|
cPLA 2α Enzyme Inhibition Attenuates Inflammation and Keratinocyte Proliferation. Biomolecules 2020; 10:biom10101402. [PMID: 33023184 PMCID: PMC7600040 DOI: 10.3390/biom10101402] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
As a regulator of cellular inflammation and proliferation, cytosolic phospholipase A2 α (cPLA2α) is a promising therapeutic target for psoriasis; indeed, the cPLA2α inhibitor AVX001 has shown efficacy against plaque psoriasis in a phase I/IIa clinical trial. To improve our understanding of the anti-psoriatic properties of AVX001, we sought to determine how the compound modulates inflammation and keratinocyte hyperproliferation, key characteristics of the psoriatic epidermis. We measured eicosanoid release from human peripheral blood mononuclear cells (PBMC) and immortalized keratinocytes (HaCaT) and studied proliferation in HaCaT grown as monolayers and stratified cultures. We demonstrated that inhibition of cPLA2α using AVX001 produced a balanced reduction of prostaglandins and leukotrienes; significantly limited prostaglandin E2 (PGE2) release from both PBMC and HaCaT in response to pro-inflammatory stimuli; attenuated growth factor-induced arachidonic acid and PGE2 release from HaCaT; and inhibited keratinocyte proliferation in the absence and presence of exogenous growth factors, as well as in stratified cultures. These data suggest that the anti-psoriatic properties of AVX001 could result from a combination of anti-inflammatory and anti-proliferative effects, probably due to reduced local eicosanoid availability.
Collapse
|
4
|
Hanna VS, Hafez EAA. Synopsis of arachidonic acid metabolism: A review. J Adv Res 2018; 11:23-32. [PMID: 30034873 PMCID: PMC6052663 DOI: 10.1016/j.jare.2018.03.005] [Citation(s) in RCA: 327] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/08/2018] [Accepted: 03/11/2018] [Indexed: 12/11/2022] Open
Abstract
Arachidonic acid (AA), a 20 carbon chain polyunsaturated fatty acid with 4 double bonds, is an integral constituent of biological cell membrane, conferring it with fluidity and flexibility. The four double bonds of AA predispose it to oxygenation that leads to a plethora of metabolites of considerable importance for the proper function of the immune system, promotion of allergies and inflammation, resolving of inflammation, mood, and appetite. The present review presents an illustrated synopsis of AA metabolism, corroborating the instrumental importance of AA derivatives for health and well-being. It provides a comprehensive outline on AA metabolic pathways, enzymes and signaling cascades, in order to develop new perspectives in disease treatment and diagnosis.
Collapse
Affiliation(s)
- Violette Said Hanna
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | |
Collapse
|
5
|
Di T, Sullivan JA, Rupnow HL, Magness RR, Bird IM. Pregnancy Induces Expression of cPLA2 in Ovine Uterine Artery but Not Systemic Artery Endothelium. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155769900600604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | | | | | - Ronald R. Magness
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories and Department of Animal Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ian M. Bird
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories and Department of Animal Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
6
|
Nemenoff R, Gijon M. Inflammation and Lung Cancer: Eicosanoids. INFLAMMATION AND LUNG CANCER 2015:161-189. [DOI: 10.1007/978-1-4939-2724-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
7
|
Lin CC, Hsieh HL, Liu SW, Tseng HC, Hsiao LD, Yang CM. BK Induces cPLA2 Expression via an Autocrine Loop Involving COX-2-Derived PGE2 in Rat Brain Astrocytes. Mol Neurobiol 2014; 51:1103-15. [DOI: 10.1007/s12035-014-8777-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/01/2014] [Indexed: 01/26/2023]
|
8
|
[Botulinum toxin type-A toxin activity on prostate cancer cell lines]. Urologia 2012; 79:135-41. [PMID: 22610840 DOI: 10.5301/ru.2012.9254] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2012] [Indexed: 11/20/2022]
Abstract
AIM OF THE STUDY Botulinum toxin A (BoNT/A) has been recently used in the treatment of benign prostatic hyperplasia due to its apoptotic activity on prostatic epithelium but few data exist on this issue in prostate cancer. Also no information exist on the eventual modulation exerted by the neurotoxin on Phospholipase A2 (PLA2) expression in prostate cancer. The aim of this study was to evaluate the activity of BoNT/A on cell growth and expression of PLA2 in prostate cancer lines. MATERIALS AND METHODS PC-3 and LNCaP cell lines were exposed to BoNT/A (Xeomin®), different doses and time of exposure. Presence of SV2 receptors (SV2-A and SV2-B) for the neurotoxin was also investigated. The expression of P-Ser505-cPLA2-α (phosphorylated enzyme) was performed immunofluorescence. RESULTS After 96 hours of BoNT/A administration a 20% reduction of cell growth in LNCaP and 25% in PC-3 were observed. SV-2 receptors were expressed in both cell lines. No cPLA2-α total expression was found in LnCaP. In PC-3 there was a high expression of cPLA2-α total which was not modified after BoNT/A treatment. In both LNCap and PC-3 the expression of P-Ser505-cPLA2-α (phosphorylated enzyme) increases significantly after treatment with [10 U/ml] of BoNT/A. CONCLUSIONS LNCaP and PC-3 cell lines are sensitive to treatment with BoNT/A which probably enters the cells by SV2 receptors. The increase in the phosphorylated form of cPLA2-a, induced by BoNT/A may represent one mechanism by which the toxin reduces cell growth and proliferation.
Collapse
|
9
|
Salmeri M, Motta C, Mastrojeni S, Amodeo A, Anfuso CD, Giurdanella G, Morello A, Alberghina M, Toscano MA, Lupo G. Involvement of PKCα-MAPK/ERK-phospholipase A(2) pathway in the Escherichia coli invasion of brain microvascular endothelial cells. Neurosci Lett 2012; 511:33-7. [PMID: 22306096 DOI: 10.1016/j.neulet.2012.01.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/19/2011] [Accepted: 01/17/2012] [Indexed: 01/12/2023]
Abstract
Escherichia coli K1 is the most common Gram-negative organism that causes neonatal meningitis following penetration of the blood-brain barrier. In the present study we demonstrated the involvement of cytosolic (cPLA(2)) and calcium-independent phospholipase A(2) (iPLA(2)) and the contribution of cyclooxygenase-2 products in E. coli invasion of microvascular endothelial cells. The traversal of bacteria did not determine trans-endothelial electrical resistance (TEER) and ZO-1 expression changes and was reduced by PLA(2)s siRNA. cPLA(2) and iPLA(2) enzyme activities and cPLA(2) phosphorylation were stimulated after E. coli incubation and were attenuated by PLA(2), PI3-K, ERK 1/2 inhibitors. Our results demonstrate the role of PKCα/ERK/MAPK signaling pathways in governing the E. coli penetration into the brain.
Collapse
Affiliation(s)
- Mario Salmeri
- Dept. Scienze Bio-Mediche, University of Catania, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 2011; 111:6130-85. [PMID: 21910409 PMCID: PMC3196595 DOI: 10.1021/cr200085w] [Citation(s) in RCA: 835] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Edward A. Dennis
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Jian Cao
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Yuan-Hao Hsu
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Victoria Magrioti
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| |
Collapse
|
11
|
Yang JS, Valente C, Polishchuk RS, Turacchio G, Layre E, Moody DB, Leslie CC, Gelb MH, Brown WJ, Corda D, Luini A, Hsu VW. COPI acts in both vesicular and tubular transport. Nat Cell Biol 2011; 13:996-1003. [PMID: 21725317 PMCID: PMC3149785 DOI: 10.1038/ncb2273] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 05/04/2011] [Indexed: 12/20/2022]
Abstract
Intracellular transport occurs through two general types of carrier, either vesicles or tubules. Coat proteins act as the core machinery that initiates vesicle formation, but the counterpart that initiates tubule formation has been unclear. Here, we find that the coat protein I (COPI) complex initially drives the formation of Golgi buds. Subsequently, a set of opposing lipid enzymatic activities determines whether these buds become vesicles or tubules. Lysophosphatidic acid acyltransferase-γ (LPAATγ) promotes COPI vesicle fission for retrograde vesicular transport. In contrast, cytosolic phospholipase A2-α (cPLA2α) inhibits this fission event to induce COPI tubules, which act in anterograde intra-Golgi transport and Golgi ribbon formation. These findings not only advance a molecular understanding of how COPI vesicle fission is achieved, but also provide insight into how COPI acts in intra-Golgi transport and reveal an unexpected mechanistic relationship between vesicular and tubular transport.
Collapse
Affiliation(s)
- Jia-Shu Yang
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 USA
| | - Carmen Valente
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, 80131 Napoli, Italy
- Institute of Protein Biochemistry, National Research Council Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Roman S. Polishchuk
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Gabriele Turacchio
- Institute of Protein Biochemistry, National Research Council Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Emilie Layre
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 USA
| | - D. Branch Moody
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 USA
| | - Christina C. Leslie
- Department of Pediatrics, National Jewish Medical and Research Center, and Departments of Pathology and Pharmacology, University of Colorado School of Medicine, Denver, CO 80262
| | - Michael H. Gelb
- Department of Chemistry and Biochemistry, University of Washington, Seattle, WA 98195
| | - William J. Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Daniela Corda
- Institute of Protein Biochemistry, National Research Council Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Alberto Luini
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, 80131 Napoli, Italy
- Institute of Protein Biochemistry, National Research Council Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Victor W. Hsu
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
12
|
Jin M, Son KH, Chang HW. Luteolin-7-O-glucoside Suppresses Leukotriene C4 Production and Degranulation by Inhibiting the Phosphorylation of Mitogen Activated Protein Kinases and Phospholipase C.GAMMA.1 in Activated Mouse Bone Marrow-Derived Mast Cells. Biol Pharm Bull 2011; 34:1032-6. [DOI: 10.1248/bpb.34.1032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Meihua Jin
- College of Pharmacy, Yeungnam University
| | - Kun Ho Son
- Department of Food Science and Nutrition, Andong National University
| | | |
Collapse
|
13
|
Song H, Rohrs H, Tan M, Wohltmann M, Ladenson JH, Turk J. Effects of endoplasmic reticulum stress on group VIA phospholipase A2 in beta cells include tyrosine phosphorylation and increased association with calnexin. J Biol Chem 2010; 285:33843-57. [PMID: 20732873 DOI: 10.1074/jbc.m110.153197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Group VIA phospholipase A(2) (iPLA(2)β) hydrolyzes glycerophospholipids at the sn-2-position to yield a free fatty acid and a 2-lysophospholipid, and iPLA(2)β has been reported to participate in apoptosis, phospholipid remodeling, insulin secretion, transcriptional regulation, and other processes. Induction of endoplasmic reticulum (ER) stress in β-cells and vascular myocytes with SERCA inhibitors activates iPLA(2)β, resulting in hydrolysis of arachidonic acid from membrane phospholipids, by a mechanism that is not well understood. Regulatory proteins interact with iPLA(2)β, including the Ca(2+)/calmodulin-dependent protein kinase IIβ, and we have characterized the iPLA(2)β interactome further using affinity capture and LC/electrospray ionization/MS/MS. An iPLA(2)β-FLAG fusion protein was expressed in an INS-1 insulinoma cell line and then adsorbed to an anti-FLAG matrix after cell lysis. iPLA(2)β and any associated proteins were then displaced with FLAG peptide and analyzed by SDS-PAGE. Gel sections were digested with trypsin, and the resultant peptide mixtures were analyzed by LC/MS/MS with database searching. This identified 37 proteins that associate with iPLA(2)β, and nearly half of them reside in ER or mitochondria. They include the ER chaperone calnexin, whose association with iPLA(2)β increases upon induction of ER stress. Phosphorylation of iPLA(2)β at Tyr(616) also occurs upon induction of ER stress, and the phosphoprotein associates with calnexin. The activity of iPLA(2)β in vitro increases upon co-incubation with calnexin, and overexpression of calnexin in INS-1 cells results in augmentation of ER stress-induced, iPLA(2)β-catalyzed hydrolysis of arachidonic acid from membrane phospholipids, reflecting the functional significance of the interaction. Similar results were obtained with mouse pancreatic islets.
Collapse
Affiliation(s)
- Haowei Song
- Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
14
|
Leslie CC, Gangelhoff TA, Gelb MH. Localization and function of cytosolic phospholipase A2alpha at the Golgi. Biochimie 2010; 92:620-6. [PMID: 20226226 DOI: 10.1016/j.biochi.2010.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 03/04/2010] [Indexed: 11/17/2022]
Abstract
Cytosolic phospholipase A(2)alpha (cPLA(2)alpha, Group IVA phospholipase A(2)) is a central mediator of arachidonate release from cellular phospholipids for the biosynthesis of eicosanoids. cPLA(2)alpha translocates to intracellular membranes including the Golgi in response to a rise in intracellular calcium level. The enzyme's calcium-dependent phospholipid-binding C2 domain provides the targeting specificity for cPLA(2)alpha translocation to the Golgi. However, other features of cPLA(2)alpha regulation are incompletely understood such as the role of phosphorylation of serine residues in the catalytic domain and the function of basic residues in the cPLA(2)alpha C2 and catalytic domains that are proposed to interact with anionic phospholipids in the membrane to which cPLA(2)alpha is targeted. Increasing evidence strongly suggests that cPLA(2)alpha plays a role in regulating Golgi structure, tubule formation and intra-Golgi transport. For example, recent data suggests that cPLA(2)alpha regulates the transport of tight junction and adherens junction proteins through the Golgi to cell-cell contacts in confluent endothelial cells. However, there are now examples where data based on knockdown using siRNA or pharmacological inhibition of enzymatic activity of cPLA(2)alpha affects fundamental cellular processes yet these phenotypes are not observed in cells from cPLA(2)alpha deficient mice. These results suggest that in some cases there may be compensation for the lack of cPLA(2)alpha. Thus, there is continued need for studies employing highly specific cPLA(2)alpha antagonists in addition to genetic deletion of cPLA(2)alpha in mice.
Collapse
Affiliation(s)
- Christina C Leslie
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA.
| | | | | |
Collapse
|
15
|
Pérez-Chacón G, Astudillo AM, Balgoma D, Balboa MA, Balsinde J. Control of free arachidonic acid levels by phospholipases A2 and lysophospholipid acyltransferases. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:1103-13. [DOI: 10.1016/j.bbalip.2009.08.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/17/2009] [Accepted: 08/18/2009] [Indexed: 12/11/2022]
|
16
|
Advances in Separation and Enrichment Approach of Phosphoproteome Researches. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2009. [DOI: 10.1016/s1872-2040(08)60131-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Chalimoniuk M, Stolecka A, Ziemińska E, Stepień A, Langfort J, Strosznajder JB. Involvement of multiple protein kinases in cPLA2 phosphorylation, arachidonic acid release, and cell death in in vivo and in vitro models of 1-methyl-4-phenylpyridinium-induced parkinsonism--the possible key role of PKG. J Neurochem 2009; 110:307-17. [PMID: 19457107 DOI: 10.1111/j.1471-4159.2009.06147.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The study was aimed at investigating in vivo and in vitro the involvement of the cGMP/cGMP-dependent protein kinase (PKG) signaling pathway in MPP(+)-induced cytosolic phospholipase A(2) (cPLA(2)) activation of dopaminergic neurons. MPP(+) activated neuronal nitric oxide synthase (NOS)/soluble guanylyl cyclase/cGMP pathway in mouse midbrain and striatum, and in pheochromocytoma cell line 12 cells, and caused an upward shift in [Ca(2+)](i) level in the latter. The activation was accompanied by increases in total and phosphorylated cPLA(2), and increased arachidonic acid release. Effects of selective inhibitors [2-oxo-1,1,1-trifluoro-6,9-12,15-heneicosatetraene (AACOCF(3)), (E)-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)2h-pyran-2-one (BEL)] indicated the main impact of cPLA(2) on arachidonic acid release in pheochromocytoma cell line 12 cells. Treatment of the cells with the protein kinase inhibitors GF102610x, UO126, and KT5823, and with the nitric oxide synthase (NOS) inhibitor NNLA revealed the involvement of protein kinase C (PKC) and extracellular signal-regulated kinases 1 and 2 (ERK 1/2), with the possible key role of PKG, in cPLA(2) phosphorylation at Ser505. Inhibitors of cPLA(2) and PKG increased viability and reduced MPP(+)-induced apoptosis of the cells. Our results indicate that the neuronal NOS/cGMP/PKG pathway stimulates cPLA(2) phosphorylation at Ser505 by activating PKC and ERK1/2, and suggest that up-regulation of this pathway in experimental models of Parkinson's disease may mediate dopaminergic neuron degeneration and death through activation of cPLA(2).
Collapse
Affiliation(s)
- Malgorzata Chalimoniuk
- Department of Cellular Signaling, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
18
|
Lee SH, Na SI, Heo JS, Kim MH, Kim YH, Lee MY, Kim SH, Lee YJ, Han HJ. Arachidonic acid release by H2O2mediated proliferation of mouse embryonic stem cells: Involvement of Ca2+/PKC and MAPKs-induced EGFR transactivation. J Cell Biochem 2009; 106:787-97. [DOI: 10.1002/jcb.22013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Tucker DE, Ghosh M, Ghomashchi F, Loper R, Suram S, John BS, Girotti M, Bollinger JG, Gelb MH, Leslie CC. Role of phosphorylation and basic residues in the catalytic domain of cytosolic phospholipase A2alpha in regulating interfacial kinetics and binding and cellular function. J Biol Chem 2009; 284:9596-611. [PMID: 19176526 DOI: 10.1074/jbc.m807299200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Group IVA cytosolic phospholipase A(2) (cPLA(2)alpha) is regulated by phosphorylation and calcium-induced translocation to membranes. Immortalized mouse lung fibroblasts lacking endogenous cPLA(2)alpha (IMLF(-/-)) were reconstituted with wild type and cPLA(2)alpha mutants to investigate how calcium, phosphorylation, and the putative phosphatidylinositol 4,5-bisphosphate (PIP(2)) binding site regulate translocation and arachidonic acid (AA) release. Agonists that elicit distinct modes of calcium mobilization were used. Serum induced cPLA(2)alpha translocation to Golgi within seconds that temporally paralleled the initial calcium transient. However, the subsequent influx of extracellular calcium was essential for stable binding of cPLA(2)alpha to Golgi and AA release. In contrast, phorbol 12-myristate 13-acetate induced low amplitude calcium oscillations, slower translocation of cPLA(2)alpha to Golgi, and much less AA release, which were blocked by chelating extracellular calcium. AA release from IMLF(-/-) expressing phosphorylation site (S505A) and PIP(2) binding site (K488N/K543N/K544N) mutants was partially reduced compared with cells expressing wild type cPLA(2)alpha, but calcium-induced translocation was not impaired. Consistent with these results, Ser-505 phosphorylation did not change the calcium requirement for interfacial binding and catalysis in vitro but increased activity by 2-fold. Mutations in basic residues in the catalytic domain of cPLA(2)alpha reduced activation by PIP(2) but did not affect the concentration of calcium required for interfacial binding or phospholipid hydrolysis. The results demonstrate that Ser-505 phosphorylation and basic residues in the catalytic domain principally act to regulate cPLA(2)alpha hydrolytic activity.
Collapse
Affiliation(s)
- Dawn E Tucker
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The phospholipase A(2) (PLA(2)) superfamily consists of many different groups of enzymes that catalyze the hydrolysis of the sn-2 ester bond in a variety of different phospholipids. The products of this reaction, a free fatty acid, and lysophospholipid have many different important physiological roles. There are five main types of PLA(2): the secreted sPLA(2)'s, the cytosolic cPLA(2)'s, the Ca(2+)independent iPLA(2)'s, the PAF acetylhydrolases, and the lysosomal PLA(2)'s. This review focuses on the superfamily of PLA(2) enzymes, and then uses three specific examples of these enzymes to examine the differing biochemistry of the three main types of these enzymes. These three examples are the GIA cobra venom PLA(2), the GIVA cytosolic cPLA(2), and the GVIA Ca(2+)-independent iPLA(2).
Collapse
Affiliation(s)
- John E Burke
- Department of Chemistry and Biochemistry, School of Medicine, University of California, La Jolla, San Diego, CA 92093-0601, USA
| | | |
Collapse
|
21
|
Siddiqui RA, Harvey KA, Zaloga GP. Modulation of enzymatic activities by n-3 polyunsaturated fatty acids to support cardiovascular health. J Nutr Biochem 2008; 19:417-37. [PMID: 17904342 DOI: 10.1016/j.jnutbio.2007.07.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 06/14/2007] [Accepted: 07/03/2007] [Indexed: 12/13/2022]
Abstract
Epidemiological evidence from Greenland Eskimos and Japanese fishing villages suggests that eating fish oil and marine animals can prevent coronary heart disease. Dietary studies from various laboratories have similarly indicated that regular fish oil intake affects several humoral and cellular factors involved in atherogenesis and may prevent atherosclerosis, arrhythmia, thrombosis, cardiac hypertrophy and sudden cardiac death. The beneficial effects of fish oil are attributed to their n-3 polyunsaturated fatty acid (PUFA; also known as omega-3 fatty acids) content, particularly eicosapentaenoic acid (EPA; 20:5, n-3) and docosahexaenoic acid (DHA; 22:6, n-3). Dietary supplementation of DHA and EPA influences the fatty acid composition of plasma phospholipids that, in turn, may affect cardiac cell functions in vivo. Recent studies have demonstrated that long-chain omega-3 fatty acids may exert beneficial effects by affecting a wide variety of cellular signaling mechanisms. Pathways involved in calcium homeostasis in the heart may be of particular importance. L-type calcium channels, the Na+-Ca2+ exchanger and mobilization of calcium from intracellular stores are the most obvious key signaling pathways affecting the cardiovascular system; however, recent studies now suggest that other signaling pathways involving activation of phospholipases, synthesis of eicosanoids, regulation of receptor-associated enzymes and protein kinases also play very important roles in mediating n-3 PUFA effects on cardiovascular health. This review is therefore focused on the molecular targets and signaling pathways that are regulated by n-3 PUFAs in relation to their cardioprotective effects.
Collapse
Affiliation(s)
- Rafat A Siddiqui
- Cellular Biochemistry Laboratory, Methodist Research Institute, Clarian Health, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
22
|
Tucker DE, Gijón MA, Spencer DM, Qiu ZH, Gelb MH, Leslie CC. Regulation of cytosolic phospholipase A2alpha by hsp90 and a p54 kinase in okadaic acid-stimulated macrophages. J Leukoc Biol 2008; 84:798-806. [PMID: 18550790 DOI: 10.1189/jlb.0308197] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In resident mouse peritoneal macrophages, group IVA cytosolic phospholipase A(2) (cPLA(2)alpha) mediates arachidonic acid (AA) release and eicosanoid production in response to diverse agonists such as A23187, phorbol myristate acetate, zymosan, and the enterotoxin, okadaic acid (OA). cPLA(2)alpha is regulated by phosphorylation and by calcium that binds to the C2 domain and induces translocation from the cytosol to membranes. In contrast, OA activates cPLA(2)alpha-induced AA release and translocation to the Golgi in macrophages without an apparent increase in calcium. Inhibitors of heat shock protein 90 (hsp90), geldanamycin, and herbimycin blocked AA release in response to OA but not to A23187, PMA, or zymosan. OA, but not the other agonists, induced activation of a cytosolic serine/threonine 54-kDa kinase (p54), which phosphorylated cPLA(2)alpha in in-gel kinase assays and was associated with cPLA(2)alpha in immunoprecipitates. Activation of the p54 kinase was inhibited by geldanamycin. The kinase coimmunoprecipitated with hsp90 in unstimulated macrophages, and OA induced its loss from hsp90, concomitant with its association with cPLA(2)alpha. The results demonstrate a role for hsp90 in regulating cPLA(2)alpha-mediated AA release that involves association of a p54 kinase with cPLA(2)alpha upon OA stimulation.
Collapse
Affiliation(s)
- Dawn E Tucker
- Program in Cell Biology, National Jewish Medical and Research Center, 1400 Jackson St., Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
23
|
Increased production of the ether-lipid platelet-activating factor in intestinal epithelial cells infected by Salmonella enteritidis. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:270-6. [DOI: 10.1016/j.bbalip.2008.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/11/2008] [Accepted: 03/19/2008] [Indexed: 01/09/2023]
|
24
|
Pavicevic Z, Leslie CC, Malik KU. cPLA2 phosphorylation at serine-515 and serine-505 is required for arachidonic acid release in vascular smooth muscle cells. J Lipid Res 2008; 49:724-37. [PMID: 18187403 DOI: 10.1194/jlr.m700419-jlr200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytosolic phospholipase A(2) (cPLA(2)) is activated by phosphorylation at serine-505 (S505) by extracellular regulated kinase 1/2 (ERK1/2). However, rat brain calcium/calmodulin-dependent kinase II (CaMKII) phosphorylates recombinant cPLA(2) at serine-515 (S515) and increases its activity in vitro. We have studied the sites of cPLA(2) phosphorylation and their significance in arachidonic acid (AA) release in response to norepinephrine (NE) in vivo in rabbit vascular smooth muscle cells (VSMCs) using specific anti-phospho-S515- and -S505 cPLA(2) antibodies and by mutagenesis of S515 and S505 to alanine. NE increased the phosphorylation of cPLA(2) at S515, followed by phosphorylation of ERK1/2 and consequently phosphorylation of cPLA(2) at S505. The CaMKII inhibitor 2-[N-(2-hydroxyethyl)]-N-(4-methoxybenzene-sulfonyl)]amino-N-(4-chlorocinnamyl)-methylbenzylamine attenuated cPLA(2) at S515 and S505, whereas the ERK1/2 inhibitor U0126 reduced phosphorylation at S505 but not at S515. NE in cells transduced with adenovirus carrying enhanced cyan fluorescent protein cPLA(2) wild type caused phosphorylation at S515 and S505 and increased AA release. Expression of the S515A mutant in VSMCs reduced the phosphorylation of S505, ERK1/2, and AA release in response to NE. Transduction with a double mutant (S515A/S505A) blocked the phosphorylation of cPLA(2) and AA release. These data suggest that the NE-stimulated phosphorylation of cPLA(2) at S515 is required for the phosphorylation of S505 by ERK1/2 and that both sites of phosphorylation are important for AA release in VSMCs.
Collapse
Affiliation(s)
- Zoran Pavicevic
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | |
Collapse
|
25
|
Shimizu M, Nakamura H, Hirabayashi T, Suganami A, Tamura Y, Murayama T. Ser515 phosphorylation-independent regulation of cytosolic phospholipase A2alpha (cPLA2alpha) by calmodulin-dependent protein kinase: possible interaction with catalytic domain A of cPLA2alpha. Cell Signal 2008; 20:815-24. [PMID: 18280113 DOI: 10.1016/j.cellsig.2007.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/18/2007] [Accepted: 12/18/2007] [Indexed: 10/22/2022]
Abstract
Calmodulin (CaM)-dependent protein kinase (CaM kinase) is proposed to regulate the type alpha of cytosolic phospholipase A(2) (cPLA(2)alpha), which has a dominant role in the release of arachidonic acid (AA), via phosphorylation of Ser515 of the enzyme. However, the exact role of CaM kinase in the activation of cPLA(2)alpha has not been well established. We investigated the effects induced by transfection with mutant cPLA(2)alpha and inhibitors for CaM and CaM kinase on the Ca(2+)-stimulated release of AA and translocation of cPLA(2)alpha. The mutation of Ser515 to Ala (S515A) did not change cPLA(2)alpha activity, although S228A and S505A completely and partially decreased the activity, respectively. Stimulation with hydrogen peroxide (H(2)O(2), 1 mM) and A23187 (10 microM) markedly released AA in C12 cells expressing S515A and wild-type cPLA(2)alpha, but the responses in C12-S505A, C12-S727A, and C12-S505A/S515A/S727A (AAA) cells were reduced. In HEK293T cells expressing cPLA(2)alpha, A23187 caused the translocation of the wild-type, the every mutants, cPLA(2)alpha-C2 domain, and cPLA(2)alpha-Delta397-749 lacking proposed phosphorylation sites such as Ser505 and Ser515. Treatment with inhibitors of CaM (W-7) and CaM kinase (KN-93) at 10 microM significantly decreased the release of AA in C12-cPLA(2)alpha cells and C12-S515A cells. KN-93 inhibited the A23187-induced translocation of the wild-type, S515A, AAA and cPLA(2)alpha-Delta397-749, but not cPLA(2)alpha-C2 domain. Our findings show a possible effect of CaM kinase on cPLA(2)alpha in a catalytic domain A-dependent and Ser515-independent manner.
Collapse
Affiliation(s)
- Masaya Shimizu
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Tian W, Wijewickrama GT, Kim JH, Das S, Tun MP, Gokhale N, Jung JW, Kim KP, Cho W. Mechanism of regulation of group IVA phospholipase A2 activity by Ser727 phosphorylation. J Biol Chem 2007; 283:3960-71. [PMID: 18065419 DOI: 10.1074/jbc.m707345200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although group IVA cytosolic phospholipase A(2) (cPLA(2)alpha) has been reported to be phosphorylated at multiple Ser residues, the mechanisms by which phosphorylation at different sites regulates cPLA(2)alpha activities are not fully understood. To explore the possibility that phosphorylation of Ser(727) modulates cellular protein-protein interactions, we measured the effect of Ser(727) mutations on the interaction of cPLA(2)alpha with a reported cPLA(2)alpha-binding protein, p11. In vitro activity assays and membrane binding measurements by surface plasmon resonance analysis showed that a heterotetramer (A2t) of p11 and annexin A2, but not p11 or annexin A2 alone, directly binds cPLA(2)alpha via Ser(727), which keeps the enzyme from binding the membrane and catalyzing the phospholipid hydrolysis. Phosphorylation of Ser(727) disrupts this inhibitory cPLA(2)alpha-A2t interaction, thereby activating cPLA(2)alpha. Subcellular translocation and activity measurements in HEK293 cells cotransfected with cPLA(2)alpha and p11 also showed that p11, in the form of A2t, inhibits cPLA(2)alpha by the same mechanism and that phosphorylation of Ser(727) activates cPLA(2)alpha by interfering with the inhibitory cPLA(2)alpha-A2t interaction. Collectively, these studies provide new insight into the regulatory mechanism of cPLA(2)alpha through Ser(727) phosphorylation.
Collapse
Affiliation(s)
- Wen Tian
- Department of Chemistry, University of Illinois, Chicago, Illinois 60607, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Runarsson G, Feltenmark S, Forsell PKA, Sjöberg J, Björkholm M, Claesson HE. The expression of cytosolic phospholipase A2and biosynthesis of leukotriene B4in acute myeloid leukemia cells. Eur J Haematol 2007; 79:468-76. [DOI: 10.1111/j.1600-0609.2007.00967.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Ghosh M, Loper R, Ghomashchi F, Tucker DE, Bonventre JV, Gelb MH, Leslie CC. Function, activity, and membrane targeting of cytosolic phospholipase A(2)zeta in mouse lung fibroblasts. J Biol Chem 2007; 282:11676-86. [PMID: 17293613 PMCID: PMC2678067 DOI: 10.1074/jbc.m608458200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Group IVA cytosolic phospholipase A(2) (cPLA(2)alpha) initiates eicosanoid production; however, this pathway is not completely ablated in cPLA(2)alpha(-/-) lung fibroblasts stimulated with A23187 or serum. cPLA(2)alpha(+/+) fibroblasts preferentially released arachidonic acid, but A23187-stimulated cPLA(2)alpha(-/-) fibroblasts nonspecifically released multiple fatty acids. Arachidonic acid release from cPLA(2) alpha(-/-) fibroblasts was inhibited by the cPLA(2)alpha inhibitors pyrrolidine-2 (IC(50), 0.03 microM) and Wyeth-1 (IC(50), 0.1 microM), implicating another C2 domain-containing group IV PLA(2). cPLA(2) alpha(-/-) fibroblasts contain cPLA(2)beta and cPLA(2)zeta but not cPLA(2)epsilon or cPLA(2)delta. Purified cPLA(2)zeta exhibited much higher lysophospholipase and PLA(2) activity than cPLA(2)beta and was potently inhibited by pyrrolidine-2 and Wyeth-1, which did not inhibit cPLA(2)beta. In contrast to cPLA(2)beta, cPLA(2)zeta expressed in Sf9 cells mediated A23187-induced arachidonic acid release, which was inhibited by pyrrolidine-2 and Wyeth-1. cPLA(2)zeta exhibits specific activity, inhibitor sensitivity, and low micromolar calcium dependence similar to cPLA(2)alpha and has been identified as the PLA(2) responsible for calcium-induced fatty acid release and prostaglandin E(2) production from cPLA(2) alpha(-/-) lung fibroblasts. In response to ionomycin, EGFP-cPLA(2)zeta translocated to ruffles and dynamic vesicular structures, whereas EGFP-cPLA(2)alpha translocated to the Golgi and endoplasmic reticulum, suggesting distinct mechanisms of regulation for the two enzymes.
Collapse
Affiliation(s)
- Moumita Ghosh
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206
| | - Robyn Loper
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206
| | - Farideh Ghomashchi
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195
| | - Dawn E. Tucker
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206
| | | | - Michael H. Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195
| | - Christina C. Leslie
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206
- Departments of Pathology and Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| |
Collapse
|
29
|
Kita Y, Ohto T, Uozumi N, Shimizu T. Biochemical properties and pathophysiological roles of cytosolic phospholipase A2s. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1317-22. [PMID: 16962823 DOI: 10.1016/j.bbalip.2006.08.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 07/25/2006] [Accepted: 08/01/2006] [Indexed: 10/24/2022]
Abstract
Phospholipase A(2) (PLA(2)) (EC 3.1.1.4) catalyzes hydrolysis of the sn-2 ester bond of glycerophospholipids. The enzyme is essential for the production of two classes of lipid mediators, fatty acid metabolites and lysophospholipid-related lipids, as well as being involved in the remodeling of membrane phospholipids. Among many mammalian PLA(2)s, cytosolic PLA(2)alpha (cPLA(2)alpha) plays a critical role in various physiological and pathophysiological conditions through generating lipid mediators. Here, we summarize the in vivo significance of cPLA(2)alpha, revealed from the phenotypes of cPLA(2)alpha-null mice, and properties of newly discovered cPLA(2) family enzymes. We also briefly introduce a quantitative lipidomics strategy using liquid chromatography-mass spectrometry, a powerful tool for the comprehensive analysis of lipid mediators.
Collapse
Affiliation(s)
- Yoshihiro Kita
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
30
|
Chang WC, Nelson C, Parekh AB. Ca2+ influx through CRAC channels activates cytosolic phospholipase A2, leukotriene C4secretion, and expression of c‐fos through ERK‐dependent and independent pathways in mast cells. FASEB J 2006; 20:2381-3. [PMID: 17023391 DOI: 10.1096/fj.06-6016fje] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cytosolic phospholipase A2 (cPLA2) is a Ca2+-dependent enzyme that mediates agonist-dependent arachidonic acid release in most cell types. Arachidonic acid can then be metabolized by the 5-lipoxygenase enzyme to generate the proinflammatory signal leukotriene C4 (LTC4). Here we report that Ca2+ entry through store-operated CRAC (Ca2+ release-activated Ca2+) channels activates the extracellular signal-regulated kinases (ERKs), members of the mitogen-activated protein kinase family, within minutes and this is necessary for stimulation of cPLA2. Ca2+ entry activates ERK indirectly, via recruitment of Ca2+-dependent protein kinase C alpha and betaI. Ca2+ influx also promotes translocation of cytosolic 5-lipoxygenase to the nuclear membrane, a key step in the activation of this enzyme. Translocation is dependent on ERK activation. A role for gene activation is shown by the finding that CRAC channel opening results in increased transcription and translation of c-fos. Inhibition of ERK activation failed to prevent c-fos expression. Our results show that CRAC channel activation elicits short-term effects through the co-coordinated regulation of two metabolic pathways (cPLA2 and 5-lipoxygenase), which results in the generation of both intra- and intercellular messengers within minutes, as well as longer term changes involving gene activation. These short-term effects are mediated via ERK, whereas, paradoxically, c-fos expression is not. Ca2+ influx through CRAC channels can therefore activate different signaling pathways at the same time, culminating in a range of temporally diverse responses.
Collapse
Affiliation(s)
- Wei-Chiao Chang
- Department of Physiology, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | | | | |
Collapse
|
31
|
Schaloske RH, Dennis EA. The phospholipase A2 superfamily and its group numbering system. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1246-59. [PMID: 16973413 DOI: 10.1016/j.bbalip.2006.07.011] [Citation(s) in RCA: 637] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 07/05/2006] [Accepted: 07/29/2006] [Indexed: 01/07/2023]
Abstract
The superfamily of phospholipase A(2) (PLA(2)) enzymes currently consists of 15 Groups and many subgroups and includes five distinct types of enzymes, namely the secreted PLA(2)s (sPLA(2)), the cytosolic PLA(2)s (cPLA(2)), the Ca(2+) independent PLA(2)s (iPLA(2)), the platelet-activating factor acetylhydrolases (PAF-AH), and the lysosomal PLA(2)s. In 1994, we established the systematic Group numbering system for these enzymes. Since then, the PLA(2) superfamily has grown continuously and over the intervening years has required several updates of this Group numbering system. Since our last update, a number of new PLA(2)s have been discovered and are now included. Additionally, tools for the investigation of PLA(2)s and approaches for distinguishing between the different Groups are described.
Collapse
Affiliation(s)
- Ralph H Schaloske
- Department of Pharmacology, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0601, USA
| | | |
Collapse
|
32
|
Li Q, Subbulakshmi V, Oldfield CM, Aamir R, Weyman CM, Wolfman A, Cathcart MK. PKCalpha regulates phosphorylation and enzymatic activity of cPLA2 in vitro and in activated human monocytes. Cell Signal 2006; 19:359-66. [PMID: 16963226 DOI: 10.1016/j.cellsig.2006.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 07/18/2006] [Indexed: 11/19/2022]
Abstract
Phospholipases A(2) (PLA(2)) are potent regulators of the inflammatory response. We have observed that Group IV cPLA(2) activity is required for the production of superoxide anion (O(2)(-)) in human monocytes [Li Q., Cathcart M.K. J. Biol. Chem. 272 (4) (1997) 2404-2411.]. We have previously identified PKCalpha as a kinase pathway required for monocyte O(2)(-) production [Li Q., Cathcart M.K. J. Biol. Chem. 269 (26) (1994) 17508-17515.]. We therefore investigated the potential interaction between PKCalpha and cPLA(2) by evaluating the requirement for specific PKC isoenzymes in the process of activating cPLA(2) enzymatic activity and protein phosphorylation upon monocyte activation. We first showed that general PKC inhibitors and antisense oligodeoxyribonucleotides (ODN) to the cPKC group of PKC enzymes inhibited cPLA(2) activity. To distinguish between PKCalpha and PKCbeta isoenzymes in regulating cPLA(2) protein phosphorylation and enzymatic activity, we employed our previously characterized PKCalpha or PKCbeta isoenzyme-specific antisense ODN [Li Q., Subbulakshmi V., Fields A.P., Murray, N.R., Cathcart M.K., J. Biol. Chem. 274 (6) (1999) 3764-3771]. Suppression of PKCalpha expression, but not PKCbeta expression, inhibited cPLA(2) protein phosphorylation and enzymatic activity. Additional studies ruled out a contribution by Erk1/2 to cPLA(2) phosphorylation and activation. We also found that cPLA(2) co-immunoprecipitated with PKCalpha and vice versa. In vitro studies demonstrated that PKCalpha could directly phosphorylate cPLA(2).and enhance enzymatic activity. Finally, we showed that addition of arachidonic acid restored the production of O(2)(-) in monocytes defective in either PKCalpha or cPLA(2) expression. Taken together, our data suggest that PKCalpha, but not PKCbeta, is the predominant cPKC isoenzyme required for cPLA(2) protein phosphorylation and maximal induction of cPLA(2) enzymatic activity upon activation of human monocytes. Our data also support the concept that the requirements for PKCalpha and cPLA(2) in O(2)(-) generation are solely due to their seminal role in generating arachidonic acid.
Collapse
Affiliation(s)
- Qing Li
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Meyer AM, Dwyer-Nield LD, Hurteau G, Keith RL, Ouyang Y, Freed BM, Kisley LR, Geraci MW, Bonventre JV, Nemenoff RA, Malkinson AM. Attenuation of the pulmonary inflammatory response following butylated hydroxytoluene treatment of cytosolic phospholipase A2 null mice. Am J Physiol Lung Cell Mol Physiol 2006; 290:L1260-6. [PMID: 16443645 DOI: 10.1152/ajplung.00182.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Administration of butylated hydroxytoluene (BHT) to mice causes lung damage characterized by the death of alveolar type I pneumocytes and the proliferation and subsequent differentiation of type II cells to replace them. Herein, we demonstrate this injury elicits an inflammatory response marked by chemokine secretion, alveolar macrophage recruitment, and elevated expression of enzymes in the eicosanoid pathway. Cytosolic phospholipase A(2) (cPLA(2)) catalyzes release of arachidonic acid from membrane phospholipids to initiate the synthesis of prostaglandins and other inflammatory mediators. A role for cPLA(2) in this response was examined by determining cPLA(2) expression and enzymatic activity in distal respiratory epithelia and macrophages and by assessing the consequences of cPLA(2) genetic ablation. BHT-induced lung inflammation, particularly monocyte infiltration, was depressed in cPLA(2) null mice. Monocyte chemotactic protein-1 (MCP-1) content in bronchoalveolar lavage fluid increases after BHT treatment but before monocyte influx, suggesting a causative role. Bronchiolar Clara cells isolated from cPLA(2) null mice secrete less MCP-1 than Clara cells from wild-type mice, consistent with the hypothesis that cPLA(2) is required to secrete sufficient MCP-1 to induce an inflammatory monocytic response.
Collapse
Affiliation(s)
- Amy M Meyer
- University of Colorado Health Sciences Center, School of Pharmacy, Box C238, 4200 E. 9th Avenue, Denver, CO 80262, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tucker DE, Stewart A, Nallan L, Bendale P, Ghomashchi F, Gelb MH, Leslie CC. Group IVC cytosolic phospholipase A2gamma is farnesylated and palmitoylated in mammalian cells. J Lipid Res 2005; 46:2122-33. [PMID: 16061942 PMCID: PMC2405939 DOI: 10.1194/jlr.m500230-jlr200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytosolic phospholipase A(2)gamma (cPLA(2)gamma) is a member of the group IV family of intracellular phospholipase A(2) enzymes, but unlike the well-studied cPLA(2)alpha, it is constitutively bound to membrane and is calcium independent. cPLA(2)gamma contains a C-terminal CaaX sequence and is radiolabeled by mevalonic acid when expressed in cPLA(2)alpha-deficient immortalized lung fibroblasts (IMLF(-/-)). The radiolabel associated with cPLA(2)gamma was identified as the farnesyl group. The protein farnesyltransferase inhibitor BMS-214662 prevented the incorporation of [(3)H]mevalonic acid into cPLA(2)gamma and partially suppressed serum-stimulated arachidonic acid release from IMLF(-/-) and undifferentiated human skeletal muscle (SkMc) cells overexpressing cPLA(2)gamma, but not from cells overexpressing cPLA(2)alpha. However, BMS-214662 did not alter the amount of cPLA(2)gamma associated with membrane. These results were consistent in COS cells expressing the C538S cPLA(2)gamma prenylation mutant. cPLA(2)gamma also contains a classic myristoylation site and several potential palmitoylation sites and was found to be acylated with oleic and palmitic acids but not myristoylated. Immunofluorescence microscopy revealed that cPLA(2)gamma is associated with mitochondria in IMLF(-/-), SkMc cells, and COS cells.
Collapse
Affiliation(s)
- Dawn E. Tucker
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206
| | - Allison Stewart
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206
| | - Laxman Nallan
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA 98195
| | - Pravine Bendale
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA 98195
| | - Farideh Ghomashchi
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA 98195
| | - Michael H. Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA 98195
- To whom correspondence should be addressed. e-mail: (M.H.G.); (C.C.L.)
| | - Christina C. Leslie
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206
- Departments of Pathology and Pharmacology, University of Colorado School of Medicine, Denver, CO 80206
- To whom correspondence should be addressed. e-mail: (M.H.G.); (C.C.L.)
| |
Collapse
|
35
|
Hirabayashi T, Murayama T, Shimizu T. Regulatory mechanism and physiological role of cytosolic phospholipase A2. Biol Pharm Bull 2005; 27:1168-73. [PMID: 15305015 DOI: 10.1248/bpb.27.1168] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytosolic phospholipase A2alpha (cPLA2alpha) preferentially hydrolyzes phospholipids containing arachidonic acid and plays a key role in the biosynthesis of eicosanoids. This review discusses the essential features of cPLA2alpha regulation and addresses new insights into the functional properties of this enzyme. Full activation of the enzyme requires Ca2+ binding to an N-terminal C2 domain and phosphorylation on serine residues. Ca2+ binding induces translocation of cPLA2alpha from the cytosol to the perinuclear membranes. Serine phosphorylation is mediated by mitogen-activated protein kinases (MAPKs), Ca2+/calmodulin-dependent protein kinase II, and MAPK-interacting kinase Mnk1. Interaction with proteins and lipids, which include vimentin, annexins, NADPH oxidase, phosphatidylcholine, phosphatidylinositol 4,5-bisphosphate (PIP2), and ceramide-1-phosphate, can also modulate the activity of cPLA2alpha. Recent evidence has established the physiological and pathological roles of cPLA2alpha using cPLA2alpha knockout mice. This enzyme has been implicated in fertility, striated muscle growth, renal concentration, postischemic brain injury, arthritis, inflammatory bone resorption, intestinal polyposis, pulmonary fibrosis, acute respiratory distress syndrome, and autoimmune encephalomyelitis. Now novel three paralogs, cPLA2beta, cPLA2gamma, and cPLA2delta, have been identified in humans. cPLA2gamma is distinct from others in that it is farnesylated and lacks the C2 domain. Biological roles for these new enzymes have not yet been defined.
Collapse
Affiliation(s)
- Tetsuya Hirabayashi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | | | | |
Collapse
|
36
|
Fatima S, Yaghini FA, Pavicevic Z, Kalyankrishna S, Jafari N, Luong E, Estes A, Malik KU. Intact actin filaments are required for cytosolic phospholipase A2 translocation but not for its activation by norepinephrine in vascular smooth muscle cells. J Pharmacol Exp Ther 2005; 313:1017-26. [PMID: 15705737 DOI: 10.1124/jpet.104.081992] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytosolic phospholipase A(2) (cPLA(2)) is activated and translocated to the nuclear envelope by various vasoactive agents, including norepinephrine (NE), and releases arachidonic acid (AA) from tissue phospholipids. We previously demonstrated that NE-induced cPLA(2) translocation to the nuclear envelope is mediated via its phosphorylation by calcium/calmodulin-dependent kinase-II in rabbit vascular smooth muscle cells (VSMCs). Cytoskeletal structures actin and microtubule filaments have been implicated in the trafficking of proteins to various cellular sites. This study was conducted to investigate the contribution of actin and microtubule filaments to cPLA(2) translocation to the nuclear envelope and its activation by NE in rabbit VSMCs. NE (10 microM) caused cPLA(2) translocation to the nuclear envelope as determined by immunofluorescence. Cytochalasin D (CD; 0.5 microM) and latrunculin A (LA; 0.5 microM) that disrupted actin filaments, blocked cPLA(2) translocation elicited by NE. On the other hand, disruption of microtubule filaments by 10 microM colchicine did not block NE-induced cPLA(2) translocation to the nuclear envelope. CD and LA did not inhibit NE-induced increase in cytosolic calcium and cPLA(2) activity, determined from the hydrolysis of l-1-[(14)C]arachidonyl phosphatidylcholine and release of AA. Coimmunoprecipitation studies showed an association of actin with cPLA(2), which was not altered by CD or LA. Far-Western analysis showed that cPLA(2) interacts directly with actin. Our data suggest that NE-induced cPLA(2) translocation to the nuclear envelope requires an intact actin but not microtubule filaments and that cPLA(2) phosphorylation and activation and AA release are independent of its translocation to the nuclear envelope in rabbit VSMCs.
Collapse
Affiliation(s)
- Soghra Fatima
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Schaloske RH, Provins JW, Kessen UA, Dennis EA. Molecular characterization of the lipopolysaccharide/platelet activating factor- and zymosan-induced pathways leading to prostaglandin production in P388D1 macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1687:64-75. [PMID: 15708354 DOI: 10.1016/j.bbalip.2004.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Revised: 10/28/2004] [Accepted: 11/08/2004] [Indexed: 11/28/2022]
Abstract
P388D1 cells release free arachidonic acid (AA) and prostaglandin E2 (PGE2) upon stimulation with platelet-activating factor (PAF) and zymosan. The response to PAF is dependent on priming of the cells with bacterial lipopolysaccharide (LPS). In the LPS/PAF pathway, both AA and PGE2 release are dependent on transcription and translation, whereas in the zymosan pathway the release of these compounds appears to be largely independent of these processes. Using quantitative real-time PCR, we analyzed the expression of mRNAs that encode proteins potentially responsible for the dependency of the LPS/PAF pathway on gene expression. These include all the phospholipases A2 (PLA2) that we detected in P388D1 cells, cyclooxygenases (COX), COX-1 and COX-2, the membrane-associated prostaglandin E synthase-1 (mPGES-1), the lipocalin-type prostaglandin D2 synthase (PGDS), hematopoietic PGDS and the subunit G(alpha i2) of heterotrimeric G-proteins. None of the mRNAs encoding PLA2s, PGDSs, or G(alpha i2) are substantially altered during LPS priming. However, cyclooxygenase-2 is up-regulated during LPS priming and after stimulation of the cells with zymosan. A modest but significant increase of mPGES-1 mRNA was also detected upon stimulation with zymosan. Thus, the dependency of the LPS/PAF-induced PGE2 production on gene expression can be attributed to the production of cyclooxygenase-2. The dependency of AA release on gene expression is not due to altered expression of any of the PLA2s. We suggest that an accessory regulatory protein affecting the release of AA must be responsible. Using HPLC we separated lipids that are secreted upon stimulation with LPS/PAF and zymosan and found that in both pathways PGD2 is the dominant prostaglandin produced and also detected PGE2, PGF(2alpha) and AA besides several unidentified compounds.
Collapse
Affiliation(s)
- Ralph H Schaloske
- Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, CA 92093-0601, USA.
| | | | | | | |
Collapse
|
38
|
Han HJ, Lee YJ, Park JY, Kim EJ, Lee JH, Taub ML. Effect of EGF on H2O2-induced inhibition of ?-MG uptake in renal proximal tubule cells: Involvement of MAPK and AA release. J Cell Physiol 2005; 203:217-25. [PMID: 15368538 DOI: 10.1002/jcp.20214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Both oxidative stress and epidermal growth factor (EGF) contribute to the initiation and progression of renal proximal tubular dysfunction under pathophysiologic conditions. Thus, this study was performed (1) to examine both the individual, and the combined effects of H2O2 and EGF on alpha-methyl-D-glucopyranoside uptake (alpha-MG uptake) in the primary cultured renal proximal tubule cells (PTCs), and (2) to elucidate the involvement of p44/42 mitogen activated protein kinase (MAPK) and phospholipase A2 in mediating these actions. Both H2O2 and EGF inhibited alpha-MG uptake individually, while the combination of H2O2 and EGF further potentiated the inhibitory effect on alpha-MG uptake, which was elicited by each agent. H2O2 not only caused a rapid increase in the phosphorylation of p44/42 MAPK, but also promoted the translocation of cytosolic phospholipase A2 (cPLA2) from the cytosolic to particulate fraction, and stimulated cellular [3H]-arachidonic acid (AA) release. EGF similarly activates phosphorylation of p44/42 MAPK and stimulates [3H]-AA release. When PTCs were exposed to 100 microM H2O2 and 50 ng/ml EGF simultaneously, a further increase in the phosphorylation of p44/42 MAPK, of [3H]-AA release, and of prostaglandin E2 (PGE2) production was elicited as compared with the effects of each individual agonist alone. Moreover, the additive phosphorylation of p44/42 MAPK, [3H]-AA release, and PGE2 production by H2O2 and EGF was almost completely inhibited by the p44/42 MAPK inhibitor, PD 98059. In conclusion, these results are consistent with the hypothesis that under conditions of oxidative stress, the H2O2-induced inhibition of alpha-MG uptake in the renal proximal tubule is mediated through a modulation of the EGF signaling pathway, promoting further phosphorylation of p44/42 MAPK, activation of PLA2.
Collapse
Affiliation(s)
- Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea.
| | | | | | | | | | | |
Collapse
|
39
|
Cowan MJ, Yao XL, Pawliczak R, Huang X, Logun C, Madara P, Alsaaty S, Wu T, Shelhamer JH. The role of TFIID, the initiator element and a novel 5' TFIID binding site in the transcriptional control of the TATA-less human cytosolic phospholipase A2-alpha promoter. ACTA ACUST UNITED AC 2004; 1680:145-57. [PMID: 15507318 DOI: 10.1016/j.bbaexp.2004.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 09/20/2004] [Accepted: 09/20/2004] [Indexed: 12/17/2022]
Abstract
Human cytosolic phospholipase A2-alpha (cPLA2-alpha) is a critical enzyme in the liberation of arachidonic acid (AA) from cellular membranes and the subsequent formation of prostaglandins (PGs), leukotrienes (LTs), hydroxyeicosatetraenoic acids (HETEs) and platelet activating factor in many different cell types. Much is known of the effect of posttranslational phosphorylation and calcium binding events on the enzymatic activity of cPLA2-alpha, but to date little is known about its specific transcriptional control. Through the use of reporter gene constructs and eletrophoretic mobility shift assays (EMSAs), this study determined the minimal promoter required for basal transcriptional activity of the human cPLA2-alpha promoter to include base pairs -40 through the transcription start site (TSS). In addition, it confirms the importance of an initiator (Inr) element at the TSS by deletion reporter gene analysis, and further identifies bases -3 (C) and -2 (T) as critical bases in the Inr function by mutation reporter gene analysis. Finally, this study describes a novel AAGGAG motif at -30 to -35 which is bound by TATA-box binding protein (TBP) and is critical for basal transcriptional activity.
Collapse
Affiliation(s)
- Mark J Cowan
- Division of Pulmonary and Critical Care Medicine, The University of Maryland, 10 North Greene Street, Room 3D-127, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hogan JM, Pitteri SJ, McLuckey SA. Phosphorylation site identification via ion trap tandem mass spectrometry of whole protein and peptide ions: bovine alpha-crystallin A chain. Anal Chem 2004; 75:6509-16. [PMID: 14640721 DOI: 10.1021/ac034410s] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tandem mass spectrometry was applied both to ions of a tryptic fragment and intact protein of bovine alpha-crystallin A chain to localize the single site of phosphorylation. The [M + 19H](19+) to [M + 11H](11+) charge states of both phosphorylated and unphosphorylated bovine alpha-crystallin A chain whole protein ions were subjected to collisional activation in a quadrupole ion trap. Ion parking was used to increase the number of parent ions over that yielded by electrospray. Ion-ion proton-transfer reactions were used to reduce the product ion charge states largely to +1 to simplify spectral interpretation. In agreement with previous studies on whole protein ion fragmentation, both protein forms showed backbone cleavages C-terminal to aspartic acid residues at lower charge states. The phosphorylated protein showed competitive fragmentation between backbone cleavage and the neutral loss of phosphoric acid. Analysis of which backbone cleavage products did or did not contain the phosphate was used to localize the site of phosphorylation to one of two possible serine residues. A tryptic digest of the bovine alpha-crystallin A chain yielded a phosphopeptide containing one missed cleavage site. The peptide provided information complementary to that obtained from the intact protein and localized the modified serine to residue 122. Fragmentation of the triply charged phosphopeptide yielded five possible serine phosphorylation sites. Fragmentation of the doubly charged phosphopeptide, formed by ion/ion proton-transfer reactions, positively identified the phosphorylation site as serine-122.
Collapse
Affiliation(s)
- Jason M Hogan
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | | | | |
Collapse
|
41
|
Mancuso P, Canetti C, Gottschalk A, Tithof PK, Peters-Golden M. Leptin augments alveolar macrophage leukotriene synthesis by increasing phospholipase activity and enhancing group IVC iPLA2 (cPLA2gamma) protein expression. Am J Physiol Lung Cell Mol Physiol 2004; 287:L497-502. [PMID: 15145787 DOI: 10.1152/ajplung.00010.2004] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Leptin is a hormone secreted by adipocytes in correlation with total body fat mass. In addition to regulating energy homeostasis, leptin modulates immune functions such as macrophage phagocytosis and cytokine synthesis. Previously, we reported defective leukotriene synthesis in macrophages from leptin-deficient mice that could be restored with exogenous leptin. In the present study, we utilized macrophages from normal rodents to explore the mechanism by which leptin could enhance cellular leukotriene synthesis. Leptin pretreatment of either rat alveolar or murine peritoneal macrophages for 16 h dose dependently increased the synthesis of leukotriene B4 and cysteinyl leukotrienes in response to calcium ionophore or the particulate zymosan. Leptin also enhanced calcium ionophore-stimulated release of free arachidonic acid. Calcium-dependent and -independent arachidonoyl-selective phospholipase activities in macrophage lysates were likewise increased following leptin treatment. Immunoblot analysis of leptin-treated cells revealed that group IVC iPLA2 (cPLA2gamma) protein expression increased approximately 80%. These data demonstrate for the first time that phospholipase A2 activity and cPLA2gamma protein levels in alveolar macrophages represent targets for upregulation by leptin and provide previously unrecognized mechanisms by which this hormone can promote inflammatory responses.
Collapse
Affiliation(s)
- Peter Mancuso
- Dept. of Environmental Health Sciences, Univ. of Michigan, 1420 Washington Hts., SPH II, Ann Arbor, MI 48109-2029, USA.
| | | | | | | | | |
Collapse
|
42
|
Medzihradszky KF, Darula Z, Perlson E, Fainzilber M, Chalkley RJ, Ball H, Greenbaum D, Bogyo M, Tyson DR, Bradshaw RA, Burlingame AL. O-Sulfonation of Serine and Threonine. Mol Cell Proteomics 2004; 3:429-40. [PMID: 14752058 DOI: 10.1074/mcp.m300140-mcp200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein sulfonation on serine and threonine residues is described for the first time. This post-translational modification is shown to occur in proteins isolated from organisms representing a broad span of eukaryote evolution, including the invertebrate mollusk Lymnaea stagnalis, the unicellular malaria parasite Plasmodium falciparum, and humans. Detection and structural characterization of this novel post-translational modification was carried out using liquid chromatography coupled to electrospray tandem mass spectrometry on proteins including a neuronal intermediate filament and a myosin light chain from the snail, a cathepsin-C-like enzyme from the parasite, and the cytoplasmic domain of the human orphan receptor tyrosine kinase Ror-2. These findings suggest that sulfonation of serine and threonine may be involved in multiple functions including protein assembly and signal transduction.
Collapse
Affiliation(s)
- K F Medzihradszky
- Department of Pharmaceutical Chemistry and Mass Spectrometry Facility, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gentili C, Morelli S, de Boland AR. 1alpha,25(OH)2D3 and parathyroid hormone (PTH) signaling in rat intestinal cells: activation of cytosolic PLA2. J Steroid Biochem Mol Biol 2004; 89-90:297-301. [PMID: 15225789 DOI: 10.1016/j.jsbmb.2004.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the current study, we have probed the role of cytosolic phospholipase A2 (cPLA2) activity in the cellular response to the calciotropic hormones, 1alpha,25,dihydroxy-vitamin D(3) [1alpha,25(OH)(2)D(3)] and PTH. Stimulation of rat enterocytes with either hormone, increased release of arachidonic acid (AA) 3H-AA] one-two fold in a concentration and time-dependent manner. The effect of either hormone on enterocytes was totally reduced by preincubation with the intracellular Ca(2+) chelator BAPTA-AM (5 microM), suggesting that the release of AA following cell exposure to the calciotropic hormones occurs mainly through a Ca(2+)-dependent mechanism involving activation of Ca(2+)-dependent cPLA2. Calciotropic homone stimulation of rat intestinal cells increases cPLA2 phosphorylation (three to four fold). This effect was decreased by PD 98059 (20 microM), a MAP kinase inhibitor, indicating that this action is, in part, mediated through activation of the MAP kinases ERK 1 and ERK2. Enterocytes exposure to 1alpha,25(OH)(2)D(3) (1nM) or PTH (10 nM) also resulted in P-cPLA2 translocation from cytosol to nuclei and membrane fractions, where phospholipase subtrates reside. Collectively, these data suggest that PTH and 1alpha,25(OH)(2)D(3) activate in duodenal cells, a Ca(2+)-dependent cytosolic PLA2 and attendant arachidonic acid release and that this activation requieres prior stimulation of intracellular ERK1/2. 1alpha,25(OH)(2)D(3) and PTH modulation of cPLA2 activity may change membrane fluidity and permeability and thereby affecting intestinal cell membrane function.
Collapse
Affiliation(s)
- Claudia Gentili
- Department of Biologia, Bioquimica and Farmacia, Universidad Nacional del Sur, San Juan 670, Bahia Blanca 8000, Argentina
| | | | | |
Collapse
|
44
|
Leslie CC. Regulation of the specific release of arachidonic acid by cytosolic phospholipase A2. Prostaglandins Leukot Essent Fatty Acids 2004; 70:373-6. [PMID: 15041029 DOI: 10.1016/j.plefa.2003.12.012] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2003] [Indexed: 11/21/2022]
Abstract
Cytosolic phospholipase A(2) alpha (cPLA(2)alpha) is the only PLA(2) that exhibits specificity for sn-2 arachidonic acid consistent with its primary role in mediating the agonist-induced release of arachidonic acid for eicosanoid production. It is subject to complex mechanisms of regulation that ensure that levels of free arachidonic acid are tightly controlled. The calcium-induced translocation of cPLA(2)alpha from the cytosol to membrane regulates its interaction with phospholipid substrate. cPLA(2)alpha is additionally regulated by phosphorylation on sites in the catalytic domain. Because of its central position as the upstream regulatory enzyme for initiating production of several classes of bioactive lipid mediators (leukotrienes, prostaglandins and platelet-activating factor), it is a potentially important pharmacological target for the control of inflammatory diseases.
Collapse
Affiliation(s)
- Christina C Leslie
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson St., Denver, CO 80206, USA.
| |
Collapse
|
45
|
Girotti M, Evans JH, Burke D, Leslie CC. Cytosolic Phospholipase A2 Translocates to Forming Phagosomes during Phagocytosis of Zymosan in Macrophages. J Biol Chem 2004; 279:19113-21. [PMID: 14963030 DOI: 10.1074/jbc.m313867200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Resident tissue macrophages mediate early innate immune responses to microbial infection. Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) is activated in macrophages during phagocytosis of non-opsonized yeast (zymosan) triggering arachidonic acid release and eicosanoid production. cPLA(2)alpha translocates from cytosol to membrane in response to intracellular calcium concentration ([Ca(2+)](i)) increases. Enhanced green fluorescent protein (EGFP)-cPLA(2)alpha translocated to forming phagosomes, surrounding the zymosan particle by 5 min and completely overlapping with early endosome (Rab5) and plasma membrane (F4/80) markers but only partially overlapping with resident endoplasmic reticulum proteins (GRP78 and cyclooxygenase 2). EGFP-cPLA(2)alpha also localized to membrane ruffles during phagocytosis. Zymosan induced an initial high amplitude calcium transient that preceded particle uptake followed by a low amplitude sustained calcium increase. Both phases were required for optimal phagocytosis. Extracellular calcium chelation prevented only the sustained phase but allowed a limited number of phagocytic events, which were accompanied by translocation of cPLA(2)alpha to the phagosome although [Ca(2+)](i) remained at resting levels. The results demonstrate that cPLA(2)alpha targets the phagosome membrane, which may serve as a source of arachidonic acid for eicosanoid production.
Collapse
Affiliation(s)
- Milena Girotti
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | | | |
Collapse
|
46
|
Ramanadham S, Song H, Hsu FF, Zhang S, Crankshaw M, Grant GA, Newgard CB, Bao S, Ma Z, Turk J. Pancreatic islets and insulinoma cells express a novel isoform of group VIA phospholipase A2 (iPLA2 beta) that participates in glucose-stimulated insulin secretion and is not produced by alternate splicing of the iPLA2 beta transcript. Biochemistry 2004; 42:13929-40. [PMID: 14636061 PMCID: PMC3716001 DOI: 10.1021/bi034843p] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Many cells express a group VIA 84 kDa phospholipase A(2) (iPLA(2)beta) that is sensitive to inhibition by a bromoenol lactone (BEL) suicide substrate. Inhibition of iPLA(2)beta in pancreatic islets and insulinoma cells suppresses, and overexpression of iPLA(2)beta in INS-1 insulinoma cells amplifies, glucose-stimulated insulin secretion, suggesting that iPLA(2)beta participates in secretion. Western blotting analyses reveal that glucose-responsive 832/13 INS-1 cells express essentially no 84 kDa iPLA(2)beta-immunoreactive protein but predominantly express a previously unrecognized immunoreactive iPLA(2)beta protein in the 70 kDa region that is not generated by a mechanism of alternate splicing of the iPLA(2)beta transcript. To determine if the 70 kDa-immunoreactive protein is a short isoform of iPLA(2)beta, protein from the 70 kDa region was digested with trypsin and analyzed by mass spectrometry. Such analyses reveal several peptides with masses and amino acid sequences that exactly match iPLA(2)beta tryptic peptides. Peptide sequences identified in the 70 kDa tryptic digest include iPLA(2)beta residues 7-53, suggesting that the N-terminus is preserved. We also report here that the 832/13 INS-1 cells express iPLA(2)beta catalytic activity and that BEL inhibits secretagogue-stimulated insulin secretion from these cells but not the incorporation of arachidonic acid into membrane PC pools of these cells. These observations suggest that the catalytic iPLA(2)beta activity expressed in 832/13 INS-1 cells is attributable to a short isoform of iPLA(2)beta and that this isoform participates in insulin secretory but not in membrane phospholipid remodeling pathways. Further, the finding that pancreatic islets also express predominantly a 70 kDa iPLA(2)beta-immunoreactive protein suggests that a signal transduction role of iPLA(2)beta in the native beta-cell might be attributable to a 70 kDa isoform of iPLA(2)beta.
Collapse
Affiliation(s)
- Sasanka Ramanadham
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, and Metabolism, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Upmacis RK, Deeb RS, Resnick MJ, Lindenbaum R, Gamss C, Mittar D, Hajjar DP. Involvement of the mitogen-activated protein kinase cascade in peroxynitrite-mediated arachidonic acid release in vascular smooth muscle cells. Am J Physiol Cell Physiol 2004; 286:C1271-80. [PMID: 14749211 DOI: 10.1152/ajpcell.00143.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Eicosanoid production is reduced when the nitric oxide (NO.) pathway is inhibited or when the inducible NO synthase gene is deleted, indicating that the NO. and arachidonic acid pathways are linked. We hypothesized that peroxynitrite, formed by the reaction of NO. and superoxide anion, may cause signaling events leading to arachidonic acid release and subsequent eicosanoid generation. Western blot analysis of rat arterial smooth muscle cells demonstrated that peroxynitrite (100-500 microM) and 3-morpholinosydnonimine (SIN-1; 200 microM) stimulate phosphorylation of extracellular signal-regulated kinase (ERK), p38, and cytosolic phospholipase A(2) (cPLA(2)). We found that peroxynitrite-induced arachidonic acid release was completely abrogated by the mitogen-activated protein/ERK kinase (MEK) inhibitor U0126 and by calcium chelators. With the p38 inhibitor SB-20219, we demonstrated that peroxynitrite-induced p38 phosphorylation led to minor arachidonic acid release, whereas U0126 completely blocked p38 phosphorylation. Addition of arachidonic acid caused p38 phosphorylation, suggesting that arachidonic acid or its metabolites are responsible for p38 activation. KN-93, a specific inhibitor of Ca(2+)/calmodulin-dependent kinase II (CaMKII), revealed no role for this kinase in peroxynitrite-induced arachidonic acid release in our cell system. Together, these results show that in response to peroxynitrite the cell initiates the MEK/ERK cascade leading to cPLA(2) activation and arachidonic acid release. Thus studies investigating the role of the NO. pathway on eicosanoid production must consider the contribution of signaling pathways initiated by reactive nitrogen species. These findings may provide evidence for a new role of peroxynitrite as an important reactive nitrogen species in vascular disease.
Collapse
Affiliation(s)
- Rita K Upmacis
- Deptartment of Biochemistry, Center of Vascular Biology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Das S, Rafter JD, Kim KP, Gygi SP, Cho W. Mechanism of group IVA cytosolic phospholipase A(2) activation by phosphorylation. J Biol Chem 2003; 278:41431-42. [PMID: 12885780 DOI: 10.1074/jbc.m304897200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Group IVA cytosolic phospholipase A2 (cPLA2) has been shown to play a critical role in the agonist-induced release of arachidonic acid. To understand the mechanism by which phosphorylation of Ser505 and Ser727 activates cPLA2, we systematically analyzed the effects of S505A, S505E, S727A, S727E, S505A/S727A, S505A/S727E, and S505E/S727E mutations on its enzyme activity and membrane affinity. In vitro membrane binding measurements showed that S505A has lower affinity than the wild type or S505E for phosphatidylcholine membranes, which is exclusively due to faster desorption of the membrane-bound S505A. In contrast, neither S727A nor S727E mutation had a significant effect on the phosphatidylcholine vesicle binding affinity of cPLA2. The difference in in vitro membrane affinity between wild type (or S505E) and S505A increased with the decrease in Ca2+ concentration, reaching >60-fold at 2.5 microm Ca2+. When HEK293 cells transfected with cPLA2 and mutants were stimulated with ionomycin, the wild type and S505E translocated to the perinuclear region and caused the arachidonic acid release at 0.4 microm Ca2+, whereas S505A showed no membrane translocation and little activity to release arachidonic acid. Further mutational analysis of hydrophobic residues in the active site rim (Ile399, Leu400, and Leu552) indicate that a main role of the Ser505 phosphorylation is to promote membrane penetration of these residues, presumably by inducing a conformational change of the protein. These enhanced hydrophobic interactions allow the sustained membrane interaction of cPLA2 in response to transient calcium increases. On the basis of these results, we propose a mechanism for cPLA2 activation by calcium and phosphorylation.
Collapse
Affiliation(s)
- Sudipto Das
- Department of Chemistry, University of Illinois, Chicago, Illinois 60607, USA
| | | | | | | | | |
Collapse
|
49
|
Pettus BJ, Bielawska A, Spiegel S, Roddy P, Hannun YA, Chalfant CE. Ceramide kinase mediates cytokine- and calcium ionophore-induced arachidonic acid release. J Biol Chem 2003; 278:38206-13. [PMID: 12855693 DOI: 10.1074/jbc.m304816200] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite the importance of prostaglandins, little is known about the regulation of prostanoid synthesis proximal to the activation of cytosolic phospholipase A2, the initial rate-limiting step. In this study, ceramide-1-phosphate (C-1-P) was shown to be a specific and potent inducer of arachidonic acid (AA) and prostanoid synthesis in cells. This study also demonstrates that two well established activators of AA release and prostanoid synthesis, the cytokine, interleukin-1beta (IL-1beta), and the calcium ionophore, A23187, induce an increase in C-1-P levels within the relevant time-frame of AA release. Furthermore, the enzyme responsible for the production of C-1-P in mammalian cells, ceramide kinase, was activated in response to IL-1beta and A23187. RNA interference targeted to ceramide kinase specifically down-regulated ceramide kinase mRNA and activity with a concomitant decrease of AA release in response to IL-1beta and A23187. Down-regulation of ceramide kinase had no effect on AA release induced by exogenous C-1-P. Collectively, these results indicate that ceramide kinase, via the formation of C-1-P, is an upstream modulator of phospholipase A2 activation. This study identifies previously unknown roles for ceramide kinase and its product, C-1-P, in AA release and production of eicosanoids and provides clues for potential new targets to block inflammatory responses.
Collapse
Affiliation(s)
- Benjamin J Pettus
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Several new PLA(2)s have been identified based on their nucleotide gene sequences. They were classified mainly into three groups: cytosolic PLA(2) (cPLA(2)), secretary PLA(2) (sPLA(2)), and intracellular PLA(2) (iPLA(2)). They differ from each other in terms of substrate specificity, Ca(2+) requirement and lipid modification. The questions that still remain to be addressed are the subcellular localization and differential regulation of the isoforms in various cell types and under different physiological conditions. It is required to identify the downstream events that occur upon PLA(2) activation, particularly target protein or metabolic pathway for liberated arachidonic acid or other fatty acids. Understanding the same will greatly help in the development of potent and specific pharmacological modulators that can be used for basic research and clinical applications. The information of the human and other genomes of PLA(2)s, combined with the use of proteomics and genetically manipulated mouse models of different diseases, will illuminate us about the specific and potentially overlapping roles of individual phospholipases as mediators of physiological and pathological processes. Hopefully, such understanding will enable the development of specific agents aimed at decreasing the potential contribution of individual secretary phospholipases to vascular diseases. The signaling cascades involved in the activation of cPLA(2) by mitogen activated protein kinases (MAPKs) is now evident. It has been demonstrated that p44 MAPK phosphorylates cPLA(2) and increases its activity in cells and tissues. The phosphorylation of cPLA(2) at ser505 occurs before the increase in intracellular Ca(2+) that facilitate the binding of the lipid binding domain of cPLA(2) to phospholipids, promoting its translocation to cellular membranes and AA release. Recently, a negative feed back loop for cPLA(2) activation by MAPK has been proposed. If PLA(2) activation in a given model depends on PKC, PKA, cAMP, or MAPK then inhibition of these phosphorylating enzymes may alter activities of PLA(2) isoforms during cellular injury. Understanding the signaling pathways involved in the activation/deactivation of PLA(2) during cellular injury will point to key events that can be used to prevent the cellular injury. Furthermore, to date, there is limited information available regarding the regulation of iPLA(2) or sPLA(2) by these pathways.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|