1
|
Acharya P, Parkins S, Tranter M. RNA binding proteins as mediators of pathological cardiac remodeling. Front Cell Dev Biol 2024; 12:1368097. [PMID: 38818408 PMCID: PMC11137256 DOI: 10.3389/fcell.2024.1368097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
RNA binding proteins (RBPs) play a central in the post-transcriptional regulation of gene expression, which can account for up to 50% of all variations in protein expression within a cell. Following their binding to target RNAs, RBPs most typically confer changes in gene expression through modulation of alternative spicing, RNA stabilization/degradation, or ribosome loading/translation rate. All of these post-transcriptional regulatory processes have been shown to play a functional role in pathological cardiac remodeling, and a growing body of evidence is beginning to identify the mechanistic contribution of individual RBPs and their cardiac RNA targets. This review highlights the mechanisms of RBP-dependent post-transcriptional gene regulation in cardiomyocytes and fibroblasts and our current understanding of how RNA binding proteins functionally contribute to pathological cardiac remodeling.
Collapse
Affiliation(s)
- Pooja Acharya
- Department of Molecular Medicine and Therapeutics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Sharon Parkins
- Department of Molecular Medicine and Therapeutics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Michael Tranter
- Department of Molecular Medicine and Therapeutics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
2
|
Li ML, Ragupathi A, Patel N, Hernandez T, Magsino J, Werlen G, Brewer G, Jacinto E. The RNA-binding protein AUF1 facilitates Akt phosphorylation at the membrane. J Biol Chem 2022; 298:102437. [PMID: 36041631 PMCID: PMC9513781 DOI: 10.1016/j.jbc.2022.102437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Mammalian target of rapamycin (mTOR), which is part of mTOR complex 1 (mTORC1) and mTORC2, controls cellular metabolism in response to levels of nutrients and other growth signals. A hallmark of mTORC2 activation is the phosphorylation of Akt, which becomes upregulated in cancer. How mTORC2 modulates Akt phosphorylation remains poorly understood. Here, we found that the RNA-binding protein, AUF1 (ARE/poly(U)-binding/degradation factor 1), modulates mTORC2/Akt signaling. We determined that AUF1 is required for phosphorylation of Akt at Thr308, Thr450, and Ser473 and that AUF1 also mediates phosphorylation of the mTORC2-modulated metabolic enzyme glutamine fructose-6-phosphate amidotransferase 1 at Ser243. In addition, AUF1 immunoprecipitation followed by quantitative RT–PCR revealed that the mRNAs of Akt, glutamine fructose-6-phosphate amidotransferase 1, and the mTORC2 component SIN1 associate with AUF1. Furthermore, expression of the p40 and p45, but not the p37 or p42, isoforms of AUF1 specifically mediate Akt phosphorylation. In the absence of AUF1, subcellular fractionation indicated that Akt fails to localize to the membrane. However, ectopic expression of a membrane-targeted allele of Akt is sufficient to allow Akt-Ser473 phosphorylation despite AUF1 depletion. Finally, conditions that enhance mTORC2 signaling, such as acute glutamine withdrawal, augment AUF1 phosphorylation, whereas mTOR inhibition abolishes AUF1 phosphorylation. Our findings unravel a role for AUF1 in promoting membrane localization of Akt to facilitate its phosphorylation on this cellular compartment. Targeting AUF1 could have therapeutic benefit for cancers with upregulated mTORC2/Akt signaling.
Collapse
Affiliation(s)
- Mei-Ling Li
- From the Department of Biochemistry and Molecular Biology, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854
| | - Aparna Ragupathi
- From the Department of Biochemistry and Molecular Biology, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854
| | - Nikhil Patel
- From the Department of Biochemistry and Molecular Biology, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854
| | - Tatiana Hernandez
- From the Department of Biochemistry and Molecular Biology, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854
| | - Jedrick Magsino
- From the Department of Biochemistry and Molecular Biology, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854
| | - Guy Werlen
- From the Department of Biochemistry and Molecular Biology, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854
| | - Gary Brewer
- From the Department of Biochemistry and Molecular Biology, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854.
| | - Estela Jacinto
- From the Department of Biochemistry and Molecular Biology, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854.
| |
Collapse
|
3
|
A Novel Strategy for Regulating mRNA's Degradation via Interfering the AUF1's Binding to mRNA. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103182. [PMID: 35630659 PMCID: PMC9143527 DOI: 10.3390/molecules27103182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
The study on the mechanism and kinetics of mRNA degradation provides a new vision for chemical intervention on protein expression. The AU enrichment element (ARE) in mRNA 3′-UTR can be recognized and bound by the ARE binding protein (AU-rich Element factor (AUF1) to recruit RNase for degradation. In the present study, we proposed a novel strategy for expression regulation that interferes with the AUF1-RNA binding. A small-molecule compound, JNJ-7706621, was found to bind AUF1 protein and inhibit mRNA degradation by screening the commercial compound library. We discovered that JNJ-7706621 could inhibit the expression of AUF1 targeted gene IL8, an essential pro-inflammatory factor, by interfering with the mRNA homeostatic state. These studies provide innovative drug design strategies to regulate mRNA homeostasis.
Collapse
|
4
|
Galley JC, Durgin BG, Miller MP, Hahn SA, Yuan S, Wood KC, Straub AC. Antagonism of Forkhead Box Subclass O Transcription Factors Elicits Loss of Soluble Guanylyl Cyclase Expression. Mol Pharmacol 2019; 95:629-637. [PMID: 30988014 PMCID: PMC6527398 DOI: 10.1124/mol.118.115386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/31/2019] [Indexed: 01/12/2023] Open
Abstract
Nitric oxide (NO) stimulates soluble guanylyl cyclase (sGC) activity, leading to elevated intracellular cyclic guanosine 3',5'-monophosphate (cGMP) and subsequent vascular smooth muscle relaxation. It is known that downregulation of sGC expression attenuates vascular dilation and contributes to the pathogenesis of cardiovascular disease. However, it is not well understood how sGC transcription is regulated. Here, we demonstrate that pharmacological inhibition of Forkhead box subclass O (FoxO) transcription factors using the small-molecule inhibitor AS1842856 significantly blunts sGC α and β mRNA expression by more than 90%. These effects are concentration-dependent and concomitant with greater than 90% reduced expression of the known FoxO transcriptional targets, glucose-6-phosphatase and growth arrest and DNA damage protein 45 α (Gadd45α). Similarly, sGC α and sGC β protein expression showed a concentration-dependent downregulation. Consistent with the loss of sGC α and β mRNA and protein expression, pretreatment of vascular smooth muscle cells with the FoxO inhibitor decreased sGC activity measured by cGMP production following stimulation with an NO donor. To determine if FoxO inhibition resulted in a functional impairment in vascular relaxation, we cultured mouse thoracic aortas with the FoxO inhibitor and conducted ex vivo two-pin myography studies. Results showed that aortas have significantly blunted sodium nitroprusside-induced (NO-dependent) vasorelaxation and a 42% decrease in sGC expression after 48-hour FoxO inhibitor treatment. Taken together, these data are the first to identify that FoxO transcription factor activity is necessary for sGC expression and NO-dependent relaxation.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/cytology
- Aorta, Thoracic/drug effects
- Cell Cycle Proteins/genetics
- Cells, Cultured
- Dose-Response Relationship, Drug
- Down-Regulation
- Forkhead Transcription Factors/antagonists & inhibitors
- Gene Expression Regulation/drug effects
- Mice
- Muscle Relaxation/drug effects
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nitric Oxide/metabolism
- Quinolones/pharmacology
- Rats
- Soluble Guanylyl Cyclase/deficiency
- Soluble Guanylyl Cyclase/genetics
- Soluble Guanylyl Cyclase/metabolism
Collapse
Affiliation(s)
- Joseph C Galley
- Heart, Lung, Blood and Vascular Medicine Institute (J.C.G., B.G.D., M.P.M., S.A.H., S.Y., K.C.W., A.C.S.) and Department of Pharmacology and Chemical Biology (J.C.G., A.C.S.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brittany G Durgin
- Heart, Lung, Blood and Vascular Medicine Institute (J.C.G., B.G.D., M.P.M., S.A.H., S.Y., K.C.W., A.C.S.) and Department of Pharmacology and Chemical Biology (J.C.G., A.C.S.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Megan P Miller
- Heart, Lung, Blood and Vascular Medicine Institute (J.C.G., B.G.D., M.P.M., S.A.H., S.Y., K.C.W., A.C.S.) and Department of Pharmacology and Chemical Biology (J.C.G., A.C.S.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Scott A Hahn
- Heart, Lung, Blood and Vascular Medicine Institute (J.C.G., B.G.D., M.P.M., S.A.H., S.Y., K.C.W., A.C.S.) and Department of Pharmacology and Chemical Biology (J.C.G., A.C.S.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shuai Yuan
- Heart, Lung, Blood and Vascular Medicine Institute (J.C.G., B.G.D., M.P.M., S.A.H., S.Y., K.C.W., A.C.S.) and Department of Pharmacology and Chemical Biology (J.C.G., A.C.S.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Katherine C Wood
- Heart, Lung, Blood and Vascular Medicine Institute (J.C.G., B.G.D., M.P.M., S.A.H., S.Y., K.C.W., A.C.S.) and Department of Pharmacology and Chemical Biology (J.C.G., A.C.S.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute (J.C.G., B.G.D., M.P.M., S.A.H., S.Y., K.C.W., A.C.S.) and Department of Pharmacology and Chemical Biology (J.C.G., A.C.S.), University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Benzo(a)pyrene triggers desensitization of β2-adrenergic pathway. Sci Rep 2017; 7:3262. [PMID: 28607424 PMCID: PMC5468268 DOI: 10.1038/s41598-017-03646-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/02/2017] [Indexed: 12/14/2022] Open
Abstract
Exposure to environmental polycyclic aromatic hydrocarbons (PAHs), such as benzo(a)pyrene (B(a)P), has been linked to several health-threatening risks. PAHs were also shown to hinder adrenergic receptor (ADR) responses. As we previously demonstrated that B(a)P can directly interact with the β2ADR, we investigated here whether B(a)P could decrease β2ADR responsiveness by triggering receptor desensitization phenomena. We firstly showed that exposure to B(a)P reduced β2ADR-mediated epinephrine-induced induction of NR4A gene mRNAs and of intracellular cAMP. Analysis of β2ADR protein expression demonstrated that B(a)P rapidly decreased membrane expression of β2ADR with a subsequent degradation of receptor protein. B(a)P exposure concomitantly rapidly increased the β2ADR mRNA levels. The use of the β-blockers, propranolol and ICI 118.551, demonstrated the involvement of β2ADR itself in this increase. However, sustained exposure to B(a)P induced a diminution of β2ADR mRNA steady-state as a result of the acceleration of its degradation. Together, these results show that, beside the well-known activation of the aryl hydrocarbon receptor, PAH deleterious effects may involve the dysfunction of adrenergic responses through, in part, the desensitization of β2ADR. This may be taken in consideration when β2-agonists/antagonists are administered in patients exposed to important concentrations of PAHs, e.g. in cigarette smokers.
Collapse
|
6
|
Hu X, Chen X, Wu B, Soler IM, Chen S, Shen Y. Further defining the critical genes for the 4q21 microdeletion disorder. Am J Med Genet A 2016; 173:120-125. [PMID: 27604828 DOI: 10.1002/ajmg.a.37965] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/22/2016] [Indexed: 11/09/2022]
Abstract
4q21 microdeletion syndrome (MIM: 613509) is a new genomic disorder characterized by intellectual disability, absent or severely delayed speech, growth retardation, hypotonia, variable brain malformation, and facial dysmorphism. The critical genes had been proposed based on an overlapping 1.37 Mb genomic region. No further refinement has been done since year 2010. Here, we present three cases with 4q21 deletion identified by clinical chromosomal microarray analysis. One of the cases have a de novo 761 kb deletion which is the smallest deletion ever reported at this locus. It provides an opportunity to further define the critical regions/genes associated with specific features of the 4q21 microdeletion syndrome. The evidence support the notion that PRKG2 and RASGEF1B are critical genes for intellectual disability and speech defect, and the heterogeneous nuclear ribonucleoprotein HNRNPD and HNRNPDL (previously known as HNRPDL) genes are associated with growth retardation and hypotonia. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xuyun Hu
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Nanning, Guangxi, P.R. China
| | - Xiaoli Chen
- Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, P.R. China
| | - Bingbing Wu
- Molecular Genetic Diagnosis Center, Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, P.R. China
| | | | - Shaoke Chen
- Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Nanning, Guangxi, P.R. China
| | - Yiping Shen
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Nanning, Guangxi, P.R. China.,Departments of Laboratory Medicine and Pathology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
Ladd AN. New Insights Into the Role of RNA-Binding Proteins in the Regulation of Heart Development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 324:125-85. [PMID: 27017008 DOI: 10.1016/bs.ircmb.2015.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The regulation of gene expression during development takes place both at the transcriptional and posttranscriptional levels. RNA-binding proteins (RBPs) regulate pre-mRNA processing, mRNA localization, stability, and translation. Many RBPs are expressed in the heart and have been implicated in heart development, function, or disease. This chapter will review the current knowledge about RBPs in the developing heart, focusing on those that regulate posttranscriptional gene expression. The involvement of RBPs at each stage of heart development will be considered in turn, including the establishment of specific cardiac cell types and formation of the primitive heart tube, cardiac morphogenesis, and postnatal maturation and aging. The contributions of RBPs to cardiac birth defects and heart disease will also be considered in these contexts. Finally, the interplay between RBPs and other regulatory factors in the developing heart, such as transcription factors and miRNAs, will be discussed.
Collapse
Affiliation(s)
- A N Ladd
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America.
| |
Collapse
|
8
|
Suresh Babu S, Joladarashi D, Jeyabal P, Thandavarayan RA, Krishnamurthy P. RNA-stabilizing proteins as molecular targets in cardiovascular pathologies. Trends Cardiovasc Med 2015; 25:676-83. [PMID: 25801788 DOI: 10.1016/j.tcm.2015.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/31/2015] [Accepted: 02/13/2015] [Indexed: 01/08/2023]
Abstract
The stability of mRNA has emerged as a key step in the regulation of eukaryotic gene expression and function. RNA stabilizing proteins (RSPs) contain several RNA recognition motifs, and selectively bind to adenylate-uridylate-rich elements in the 3' untranslated region of several mRNAs leading to altered processing, stability, and translation. These post-transcriptional gene regulations play a critical role in cellular homeostasis; therefore act as molecular switch between 'normal cell' and 'disease state.' Many mRNA binding proteins have been discovered to date, which either stabilize (HuR/HuA, HuB, HuC, HuD) or destabilize (AUF1, tristetraprolin, KSRP) the target transcripts. Although the function of RSPs has been widely studied in cancer biology, its role in cardiovascular pathologies is only beginning to evolve. The current review provides an overall understanding of the potential role of RSPs, specifically HuR-mediated mRNA stability in myocardial infarction, hypertension and hypertrophy. Also, the effect of RSPs on various cellular processes including inflammation, fibrosis, angiogenesis, cell-death, and proliferation and its relevance to cardiovascular pathophysiological processes is presented. We also discuss the potential clinical implications of RSPs as therapeutic targets in cardiovascular diseases.
Collapse
Affiliation(s)
- Sahana Suresh Babu
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX
| | - Darukeshwara Joladarashi
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX
| | - Prince Jeyabal
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX
| | - Rajarajan A Thandavarayan
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX
| | - Prasanna Krishnamurthy
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX.
| |
Collapse
|
9
|
Moore AE, Chenette DM, Larkin LC, Schneider RJ. Physiological networks and disease functions of RNA-binding protein AUF1. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:549-64. [PMID: 24687816 DOI: 10.1002/wrna.1230] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 11/09/2022]
Abstract
Regulated messenger RNA (mRNA) decay is an essential mechanism that governs proper control of gene expression. In fact, many of the most physiologically potent proteins are encoded by short-lived mRNAs, many of which contain AU-rich elements (AREs) in their 3'-untranslated region (3'-UTR). AREs target mRNAs for post-transcriptional regulation, generally rapid decay, but also stabilization and translation inhibition. AREs control mRNA turnover and translation activities through association with trans-acting RNA-binding proteins that display high affinity for these AU-rich regulatory elements. AU-rich element RNA-binding protein (AUF1), also known as heterogeneous nuclear ribonucleoprotein D (HNRNPD), is an extensively studied AU-rich binding protein (AUBP). AUF1 has been shown to regulate ARE-mRNA turnover, primarily functioning to promote rapid ARE-mRNA degradation. In certain cellular contexts, AUF1 has also been shown to regulate gene expression at the translational and even the transcriptional level. AUF1 comprises a family of four related protein isoforms derived from a common pre-mRNA by differential exon splicing. AUF1 isoforms have been shown to display multiple and distinct functions that include the ability to target ARE-mRNA stability or decay, and transcriptional activation of certain genes that is controlled by their differential subcellular locations, expression levels, and post-translational modifications. AUF1 has been implicated in controlling a variety of physiological functions through its ability to regulate the expression of numerous mRNAs containing 3'-UTR AREs, thereby coordinating functionally related pathways. This review highlights the physiological functions of AUF1-mediated regulation of mRNA and gene expression, and the consequences of deficient AUF1 levels in different physiological settings.
Collapse
Affiliation(s)
- Ashleigh E Moore
- Alexandria Center for Life Sciences, New York University School of Medicine, New York, NY, USA
| | | | | | | |
Collapse
|
10
|
Blech-Hermoni Y, Ladd AN. RNA binding proteins in the regulation of heart development. Int J Biochem Cell Biol 2013; 45:2467-78. [PMID: 23973289 DOI: 10.1016/j.biocel.2013.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/09/2013] [Accepted: 08/13/2013] [Indexed: 11/28/2022]
Abstract
In vivo, RNA molecules are constantly accompanied by RNA binding proteins (RBPs), which are intimately involved in every step of RNA biology, including transcription, editing, splicing, transport and localization, stability, and translation. RBPs therefore have opportunities to shape gene expression at multiple levels. This capacity is particularly important during development, when dynamic chemical and physical changes give rise to complex organs and tissues. This review discusses RBPs in the context of heart development. Since the targets and functions of most RBPs--in the heart and at large--are not fully understood, this review focuses on the expression and roles of RBPs that have been implicated in specific stages of heart development or developmental pathology. RBPs are involved in nearly every stage of cardiogenesis, including the formation, morphogenesis, and maturation of the heart. A fuller understanding of the roles and substrates of these proteins could ultimately provide attractive targets for the design of therapies for congenital heart defects, cardiovascular disease, or cardiac tissue repair.
Collapse
Affiliation(s)
- Yotam Blech-Hermoni
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Program in Cell Biology, Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
11
|
Post-transcriptional control of gene expression by AUF1: mechanisms, physiological targets, and regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:680-8. [PMID: 23246978 DOI: 10.1016/j.bbagrm.2012.12.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 11/30/2012] [Accepted: 12/06/2012] [Indexed: 12/30/2022]
Abstract
AUF1 is a family of four proteins generated by alternative pre-mRNA splicing that form high affinity complexes with AU-rich, mRNA-destabilizing sequences located within the 3' untranslated regions of many labile mRNAs. While AUF1 binding is most frequently associated with accelerated mRNA decay, emerging examples have demonstrated roles as a mRNA stabilizer or even translational regulator for specific transcripts. In this review, we summarize recent advances in our understanding of mRNA recognition by AUF1 and the biochemical and functional consequences of these interactions. In addition, unique properties of individual AUF1 isoforms and the roles of these proteins in modulating expression of genes associated with inflammatory, neoplastic, and cardiac diseases are discussed. Finally, we describe mechanisms that regulate AUF1 expression in cells, and current knowledge of regulatory switches that modulate the cellular levels and/or activities of AUF1 isoforms through distinct protein post-translational modifications. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
12
|
Oh-hashi K, Hirata Y, Kiuchi K. Characterization of 3'-untranslated region of the mouse GDNF gene. BMC Mol Biol 2012; 13:2. [PMID: 22248285 PMCID: PMC3314560 DOI: 10.1186/1471-2199-13-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 01/17/2012] [Indexed: 11/17/2022] Open
Abstract
Background Glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor for many cell types, and its expression is widespread both within and outside of the nervous system. The regulation of GDNF expression has been extensively investigated but is not fully understood. Results Using a luciferase reporter assay, we identified the role of the 3'-untranslated region (3'-UTR) of the mouse GDNF gene in the regulation of gene expression. We focused on a well-conserved A- and T-rich region (approximately 200 bp in length), which is located approximately 1000 bp downstream of the stop codon in exon 4 of the gene and contains three typical AU-rich elements (AREs), AUUUA. Interestingly, these AREs are well conserved in several GDNF genes. By testing reporter constructs containing various regions and lengths of the 3'-UTR fused to the end of the luciferase gene, we demonstrated that the ARE-induced decrease in luciferase activity correlates with the attenuation of the mRNA stability. Furthermore, we found that several regions around the AREs in the 3'-UTR suppressed the luciferase activity. Moreover, the expression level of the GDNF protein was negligible in C6 glioma cells transfected with the ARE-containing GDNF expression vector. Conclusions Our study is the first characterization of the possible role of AREs and other suppressive regions in the 3'-UTR in regulating the amounts of GDNF mRNA in C6 cells.
Collapse
Affiliation(s)
- Kentaro Oh-hashi
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | | | | |
Collapse
|
13
|
Muscle plasticity and β₂-adrenergic receptors: adaptive responses of β₂-adrenergic receptor expression to muscle hypertrophy and atrophy. J Biomed Biotechnol 2011; 2011:729598. [PMID: 22190857 PMCID: PMC3228688 DOI: 10.1155/2011/729598] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 08/23/2011] [Indexed: 02/04/2023] Open
Abstract
We discuss the functional roles of β2-adrenergic receptors in skeletal
muscle hypertrophy and atrophy as well as
the adaptive responses of β2-adrenergic receptor expression to anabolic and catabolic conditions. β2-Adrenergic receptor stimulation using
anabolic drugs increases muscle mass by promoting
muscle protein synthesis and/or attenuating
protein degradation. These effects are prevented
by the downregulation of the receptor. Endurance
training improves oxidative performance partly
by increasing β2-adrenergic receptor density in
exercise-recruited slow-twitch muscles. However,
excessive stimulation of β2-adrenergic receptors negates their beneficial effects. Although the preventive effects of β2-adrenergic receptor stimulation on
atrophy induced by muscle disuse and catabolic
hormones or drugs are observed, these catabolic
conditions decrease β2-adrenergic receptor expression in
slow-twitch muscles. These findings present
evidence against the use of β2-adrenergic agonists in therapy for muscle wasting and weakness. Thus, β2-adrenergic receptors in the skeletal
muscles play an important physiological role in
the regulation of protein and energy balance.
Collapse
|
14
|
Gratacós FM, Brewer G. The role of AUF1 in regulated mRNA decay. WILEY INTERDISCIPLINARY REVIEWS. RNA 2010; 1:457-73. [PMID: 21956942 PMCID: PMC3608466 DOI: 10.1002/wrna.26] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Messenger ribonucleic acid (mRNA) turnover is a major control point in gene expression. In mammals, many mRNAs encoding inflammatory cytokines, oncoproteins, and G-protein-coupled receptors are destabilized by the presence of AU-rich elements (AREs) in their 3'-untranslated regions. Association of ARE-binding proteins (AUBPs) with these mRNAs promotes rapid mRNA degradation. ARE/poly(U)-binding/degradation factor 1 (AUF1), one of the best-characterized AUBPs, binds to many ARE-mRNAs and assembles other factors necessary to recruit the mRNA degradation machinery. These factors include translation initiation factor eIF4G, chaperones hsp27 and hsp70, heat-shock cognate protein hsc70, lactate dehydrogenase, poly(A)-binding protein, and other unidentified proteins. Numerous signaling pathways alter the composition of this AUF1 complex of proteins to effect changes in ARE-mRNA degradation rates. This review briefly describes the roles of mRNA decay in gene expression in general and ARE-mediated decay (AMD) in particular, with a focus on AUF1 and the different modes of regulation that govern AUF1 involvement in AMD.
Collapse
Affiliation(s)
- Frances M Gratacós
- Department of Molecular Genetics, Microbiology and Immunology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635, USA
| | | |
Collapse
|
15
|
Ing NH. Estradiol up-regulates expression of the A + U-rich binding factor 1 (AUF1) gene in the sheep uterus. J Steroid Biochem Mol Biol 2010; 122:172-9. [PMID: 20621185 DOI: 10.1016/j.jsbmb.2010.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 06/21/2010] [Accepted: 07/03/2010] [Indexed: 10/19/2022]
Abstract
The A+U-rich binding factor 1 (AUF1 or HNRPD) gene produces predominant RNA binding proteins. The AUF1 transcript is alternatively spliced to produce four protein isoforms that stabilize or destabilize hundreds of mRNAs. Previously, we discovered that estradiol (E2) treatment of ovariectomized sheep increased concentrations of AUF1p45 protein which stabilized estrogen receptor alpha (ER) mRNA in the uterus. This study examined E2 regulation of AUF1 mRNAs in the sheep uterus. Northern analysis determined that E2 treatment increased concentrations of total AUF1 mRNAs twofold in endometrial and myometrial tissue compartments. In situ hybridization indicated that the increase was most intense in the glandular epithelium of endometrium. In a well characterized in vitro RNA stability assay, AUF1 3'UTR sequences were much more stable in uterine extracts from E2-treated ewes compared to extracts from control ewes. AUF1 mRNAs with alternative splicing of exons 2 and 7 (in the coding sequence) and exon 9 (in the 3'UTR) were identified. The only effect of E2 treatment on alternative splicing was that it reduced the percentage of AUF1 mRNAs containing exon 9-derived sequences. These data indicate that E2 up-regulates AUF1 and ER genes coordinately by a post-transcriptional mechanism.
Collapse
Affiliation(s)
- Nancy H Ing
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX 77843-2471, United States
| |
Collapse
|
16
|
Sato S, Nomura S, Kawano F, Tanihata J, Tachiyashiki K, Imaizumi K. Adaptive effects of the beta2-agonist clenbuterol on expression of beta2-adrenoceptor mRNA in rat fast-twitch fiber-rich muscles. J Physiol Sci 2010; 60:119-27. [PMID: 20033361 PMCID: PMC10716947 DOI: 10.1007/s12576-009-0075-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 11/23/2009] [Indexed: 10/20/2022]
Abstract
Administration of the beta(2)-agonist clenbuterol has been shown to reduce the expression of beta(2)-adrenoceptor (AR) mRNA in fast-twitch fiber-rich (extensor digitorum longus, EDL) muscle without changing that in slow-twitch fiber-rich (soleus, SOL) muscle in rats. However, the regulatory mechanism for muscle fiber type-dependent down-regulation of the expression of beta(2)-AR mRNA induced by clenbuterol is still unclear. Therefore, mRNA expression of transcriptional and post-transcriptional regulatory factors for beta(2)-AR mRNA levels in fast-twitch fiber-rich (EDL and plantaris, PLA) and slow-twitch fiber-rich (SOL) muscles in clenbuterol-administered (1.0 mg/kg body weight/day for 10 days, subcutaneous) rats was studied by real-time reverse transcription-polymerase chain reaction. Administration of clenbuterol significantly reduced expression of beta(2)-AR mRNA in EDL and PLA muscles without changing that in SOL muscle. Administration of clenbuterol also significantly reduced the mRNA expression of transcriptional regulatory factor (glucocorticoid receptor) and mRNA stabilizing factor (Hu antigen R) in EDL and PLA muscles without changing those in SOL muscle. These results suggest that muscle fiber type-dependent effects of clenbuterol on expression of beta(2)-AR mRNA are closely related to the down-regulation of mRNA expression of transcriptional and post-transcriptional regulatory factors for beta(2)-AR mRNA levels.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/physiology
- Adrenergic beta-Agonists/pharmacology
- Animals
- Cells, Cultured
- Clenbuterol/pharmacology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Male
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Fast-Twitch/physiology
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta-3/genetics
- Receptors, Adrenergic, beta-3/metabolism
Collapse
Affiliation(s)
- Shogo Sato
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192 Japan
| | - Sachiko Nomura
- Graduate School of Medicine, Osaka University, 1-17 Machikaneyama, Toyonaka, Osaka 560-0043 Japan
| | - Fuuun Kawano
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902 Japan
| | - Jun Tanihata
- Laboratory of Rehabilitation Biomedical Sciences, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192 Japan
| | - Kaoru Tachiyashiki
- Department of Living and Health Sciences, Graduate School of Joetsu University of Education, 1 Yamayashiki, Joetsu, Niigata 943-8512 Japan
| | - Kazuhiko Imaizumi
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192 Japan
| |
Collapse
|
17
|
Misquitta C, Ghosh P, Mwanjewe J, Grover A. Role of cis-acting elements in the control of SERCA2b Ca2+ pump mRNA decay by nuclear proteins. Biochem J 2009; 388:291-7. [PMID: 15656788 PMCID: PMC1186718 DOI: 10.1042/bj20041568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alternative splicing at position 3495 b yields SERCA2 (sarco/endoplasmic reticulum Ca2+ pump 2) RNA species, namely SERCA2a and SERCA2b which differ in 3'-end regions. This results in SERCA2b RNA being less stable. In vitro decay experiments show that, in the presence of protein extracts from nuclei of LVMs (left ventricular myocytes), the rate of decay of both SERCA2b RNA and synthetic RNA from its 3'-region is greater than that of the corresponding SERCA2a RNA. To search for cis-acting instability elements in the 3'-region of SERCA2b, we examined the effects of LVM nuclear protein extracts on the in vitro decay of six short overlapping capped [m7G(5')ppp(5')Gm] and polyadenylated (A40) RNA fragments from the 3'-end region (3444-4472) of SERCA2b. The proximal fragment 2B1 (3444-3753) was the most unstable. 2B1 RNA without a cap or a polyadenylated tail was analysed further in electrophoretic mobility-shift assays, and was observed to bind to protein(s) in the nuclear extracts. Based on competition for binding to nuclear proteins between radiolabelled 2B1 RNA and short unlabelled RNA fragments, the cis-acting element involved in this binding was the sequence 2B1-4. 2B1-4 is a 35-base (3521-3555, CCAGUCCUGCUCGUUGUGGGCGUGCACCGAGGGGG) GC-rich region just past the splice site (3495). Nuclear extracts decreased the electrophoretic mobility of the radiolabelled 2B1-4 RNA which bound to two proteins (19 and 21 kDa) in cross-linking experiments. Excess 2B1-4 RNA decreased the decay of the 2B1 RNA by the nuclear protein extract. 2B1-del 4 RNA (2B1 with the 2B1-4 domain deleted) also decayed more slowly than the control 2B1 RNA. Thus SERCA2b contains a novel GC-rich cis-acting element involved in its decay by nuclear proteins.
Collapse
Affiliation(s)
- Christine M. Misquitta
- *Department of Biology, HSC 4N41 McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
| | - Paromita Ghosh
- †Department of Medicine, HSC 4N41 McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
| | - James Mwanjewe
- †Department of Medicine, HSC 4N41 McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
| | - Ashok K. Grover
- *Department of Biology, HSC 4N41 McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
- †Department of Medicine, HSC 4N41 McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
- To whom correspondence should be addressed (email )
| |
Collapse
|
18
|
Kageyama K, Suda T. Role and action in the pituitary corticotroph of corticotropin-releasing factor (CRF) in the hypothalamus. Peptides 2009; 30:810-6. [PMID: 19124055 DOI: 10.1016/j.peptides.2008.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/04/2008] [Accepted: 12/04/2008] [Indexed: 11/16/2022]
Abstract
Corticotropin-releasing factor (CRF), produced in the hypothalamic paraventricular nucleus (PVN) in response to stress, stimulates the synthesis and secretion of adrenocorticotropin (ACTH) via CRF receptor type 1 (CRF(1) receptor) in the anterior pituitary (AP) of mammals. CRF is critical for the circadian rhythmicity of the hypothalamic-pituitary-adrenal axis and the augmented release of ACTH from the pituitary in response to the stress. A higher molecular weight form of immunoreactive beta-endorphin, putative proopiomelanocortin (POMC), is increased in CRF-knockout mice (CRF KO), suggesting the important role of CRF in the processing of POMC. In fact, CRF is able to modulate the processing of POMC through changes in prohormone convertase (PC)-1 expression levels. Multiple forms of ACTH-related peptides containing unprocessed ones are present in some cases of ACTH-producing tumors, presumably without action of PC-1 under the control of CRF. Following CRF-activated stimulation of the receptor signaling, CRF(1) receptor is down-regulated and desensitized. In fact, CRF facilitates the degradation of CRF(1) receptor mRNA via the protein kinase A pathway. Prolonged agonist activation of CRF(1) receptor leads to a loss of responsiveness, or desensitization of the receptor. G protein-coupled receptor kinase 2 is involved in desensitization of CRF(1) receptor by CRF in the corticotroph.
Collapse
Affiliation(s)
- Kazunori Kageyama
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Zaifu-cho, Aomori, Japan.
| | | |
Collapse
|
19
|
Sarkar S, Sinsimer KS, Foster RL, Brewer G, Pestka S. AUF1 isoform-specific regulation of anti-inflammatory IL10 expression in monocytes. J Interferon Cytokine Res 2009; 28:679-91. [PMID: 18844578 DOI: 10.1089/jir.2008.0028] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
IL-10 is an immunomodulatory cytokine that regulates inflammatory responses of mononuclear phagocytes (monocytes and macrophages). Mononuclear cells exposed to microbes or microbial products secrete a host of proinflammatory cytokines followed by delayed onset of anti-inflammatory IL-10. IL-10 suppresses immune responses by inhibiting cytokine production by mononuclear phagocytes. Using THP-1, a human promonocytic leukemia cell line, we show that endotoxin/lipopolysaccharide (LPS) exposure induces IL10 expression while IFN-gamma blocks this LPS-mediated effect. IFN-gamma is an important modulator of IL-10 production during infectious diseases. We show that LPS and IFN-gamma regulate IL10 expression in THP-1 cells in part through posttranscriptional mechanisms. Our results demonstrate that 3'-untranslated region (3'-UTR) AU-rich elements (AREs) decrease expression of a chimeric luciferase reporter gene in THP-1 cells. The ARE-binding protein AUF1 binds the IL10 3'-UTR. Depletion of AUF1 by RNAi suppresses LPS-mediated induction of IL10 mRNA and protein without affecting LPS-mediated stabilization of IL10 mRNA. Upon complementation with either RNAi-refractory p37 or p40 AUF1 plasmids, only p40 restores LPS-mediated induction of IL10 mRNA and protein to near normal levels. Thus, the p40 AUF1 isoform selectively plays a critical, positive role in IL10 expression upon LPS exposure.
Collapse
Affiliation(s)
- Srijata Sarkar
- Department of Molecular Genetics, Microbiology, and Immunology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | | | | | | | |
Collapse
|
20
|
Zhou C, Vignere CZ, Levitan ES. AUF1 is upregulated by angiotensin II to destabilize cardiac Kv4.3 channel mRNA. J Mol Cell Cardiol 2008; 45:832-8. [PMID: 18789946 DOI: 10.1016/j.yjmcc.2008.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 07/24/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
Abstract
Expression of cardiac myocyte Kv4 channels (Kv4.3 for human, Kv4.2 and Kv4.3 for rodents) is downregulated with hypertrophy in vivo leading to a decrease in the transient outward current (Ito). This effect is recapitulated in vitro with rat neonatal cardiac myocytes treated with angiotensin II (Ang II), which acts via AT(1) receptors, NADPH oxidase and p38 MAP kinase to destabilize the 3' untranslated region (3'UTR) of the Kv4.3 channel messenger RNA (mRNA). Here deletion analysis and mutagenesis identify an AU-rich element (ARE) in the Kv4.3 3'UTR that is required for Ang II-induced destabilization. Overexpression of AUF1 (ARE/poly-(U)-binding/degradation factor 1), an RNA destabilizing protein, mimics and occludes the Ang II effect, while RNA interference targeted against AUF1 blocks the Ang II effect on the Kv4.3 3'UTR. Ang II upregulates AUF1 by activating AT(1) receptors, NADPH oxidase and p38 MAP kinase. Finally, pull-down assays establish that Ang II increases AUF1 binding to the ARE required for destabilization, while binding of the mRNA stabilizing protein HuR is unaffected. Hence, Ang II acts via AT(1) receptors, NADPH oxidase and p38 MAP kinase to upregulate AUF1, which in turn binds to an ARE in the Kv4.3 3'UTR to destabilize the channel mRNA.
Collapse
Affiliation(s)
- Chaoming Zhou
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
21
|
Sato S, Nomura S, Kawano F, Tanihata J, Tachiyashiki K, Imaizumi K. Effects of the beta2-agonist clenbuterol on beta1- and beta2-adrenoceptor mRNA expressions of rat skeletal and left ventricle muscles. J Pharmacol Sci 2008; 107:393-400. [PMID: 18678986 DOI: 10.1254/jphs.08097fp] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The beta2-agonist clenbuterol [4-amino-alpha(t-butyl-amino)methyl-3,5-dichlorobenzyl alcohol] is used as a non-steroidal anabolic drug for sports doping. The effects of clenbuterol on the transcriptional process and mRNA stability of beta-adrenoceptor (beta-AR) in skeletal and cardiac muscles are still unknown. Therefore, we investigated the effects of clenbuterol on beta1- and beta2-AR mRNA expressions of fast-twitch fiber-rich extensor digitorum longus (EDL), slow-twitch fiber-rich soleus (SOL), and left ventricle (LV) muscles by real-time RT-PCR. Adult male Sprague Dawley rats were divided into the clenbuterol-administered group and control group. The administration (dose = 1.0 mg/kg body weight/day, s.c.) of clenbuterol was maintained for 10 days. The administration of clenbuterol significantly increased the weight, RNA concentration, and total RNA content of EDL muscle. No effects of clenbuterol on those of SOL and LV muscles, however, were observed. The administration of clenbuterol significantly decreased beta1-AR mRNA expression of LV muscle. Furthermore, the administration of clenbuterol significantly decreased beta2-AR mRNA expression of EDL and LV muscles. No effect of clenbuterol on beta2-AR mRNA expression of SOL muscle, however, was observed. These results suggest that the effects of clenbuterol on beta1- and beta2-AR mRNA expressions and muscle hypertrophy depend on muscle fiber types.
Collapse
Affiliation(s)
- Shogo Sato
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Kaiming X, Qide H, Bin T, Youyi Z. Agonist-induced down-regulation of alpha(1B)-adrenergic receptor in HEK293 cells transfected with alpha(1B) cDNA. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2008; 41:309-14. [PMID: 18425638 DOI: 10.1007/bf02895107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/1997] [Indexed: 10/22/2022]
Abstract
HEK293 cells stably expressing hamster alpha(1B)-adrenergic receptor (alpha(1B)-AR) were used to observe the effect of nonepinephrine (NE) on alpha(1B)-AR gene expression. Radioligand binding assys and RNase protection assays were used to determine alpha(1B)-AR number and the mRNA level, respectively. Exposure (2-24 h) of HEK293 cella to NE (10 mumol) caused a decrease in alpha(1B)-AR mRNA with maximum change found at the 4th hour. and in alpha(1B)-AR density at the 24th hour. NE-induced decrease in alpha(1B)-AR mRNA was inhibited by protein kinase C (PKC) inhibitor calphostin C (0.1. mumol) and mimicked by PKC activator PMA (1 mumol). Nuclear run-off transcription assay showed that treatment of the cells with NE (10 mumol) exerted no effect on the transcription rate of alpha(1B)-AR, After the synthesis of new RNAs was inhibited by actinomycin D, NE muld not accelerate the degradation of alpha(1B)-AR mRNA. The results suggested that in the HEK293 cells NE muld induce the down-regulation of alpha(1B)-AR, and the effects were mediated by PKC pathway. NE could not alter the transcription rate of alpha(1B)-AR mRNA, but it might induce the synthesis of some factors and indirectly accelerate the degradation.
Collapse
Affiliation(s)
- X Kaiming
- Institute of Vascular Medicine, Third Hospital, Beijing Medical University, 100083, Beijing, China
| | | | | | | |
Collapse
|
23
|
Pende A, Contini L, Sallo R, Passalacqua M, Tanveer R, Port JD, Lotti G. Characterization of RNA-binding proteins possibly involved in modulating human AT1 receptor mRNA stability. Cell Biochem Funct 2008; 26:493-501. [DOI: 10.1002/cbf.1472] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Smith N, Browning CA, Duroudier N, Stewart C, Peel S, Swan C, Hall IP, Sayers I. Salmeterol and cytokines modulate inositol-phosphate signalling in human airway smooth muscle cells via regulation at the receptor locus. Respir Res 2007; 8:68. [PMID: 17903241 PMCID: PMC2117012 DOI: 10.1186/1465-9921-8-68] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 09/28/2007] [Indexed: 12/19/2022] Open
Abstract
Background Airway hyper-responsiveness (AHR) is a key feature of asthma and a causal relationship between airway inflammation and AHR has been identified. The aim of the current study was to clarify the effect of proinflammatory cytokines and asthma medication on primary human airway smooth muscle (ASM) inositol phosphate (IPx) signalling and define the regulatory loci involved. Methods Primary Human ASM cells were isolated from explants of trachealis muscle from individuals with no history of respiratory disease. The effect of cytokine or asthma medication on histamine or bradykinin induced IPx signalling was assessed by [3H] inositol incorporation. Quantitative Real Time PCR was used to measure mRNA levels of receptors and downstream signalling components. Transcriptional mechanisms were explored using a combination of 5'Rapid Amplification of cDNA Ends (5'RACE) and promoter-reporter techniques. Results Treatment of Human ASM cells with IL-13, IFNγ or salmeterol for 24 hours lead to a modest augmentation of histamine induced IPx responses (144.3 +/- 9.3, 126.4 +/- 7.5 and 117.7 +/- 5.2%, p < 0.05). Similarly, TNFα, IFNγ or salmeterol treatment augmented bradykinin induced IPx responses (127.4 +/- 8.3, 128.0 +/- 8.4 and 111.7 +/- 5.0%, P < 0.05). No treatment significantly influenced sodium fluoride induced IPx responses suggesting regulation occurs at the receptor locus. Analyses of mRNA expression of components of the IPx pathway i.e. H1 Histamine Receptor (HRH1), B2 Bradykinin Receptor (BDKRB2), Gαq/11 and PLC-β1 identified that a significant induction of receptor mRNA (>2 fold) was a feature of these responses explaining the cytokine and spasmogen specificity. The HRH1 and BDKRB2 promoter regions were mapped in ASM and promoter-reporter analyses identified that salmeterol can induce HRH1 (>2 fold) and BDKRB2 (2–5 fold) transcription. The effect of cytokines on HRH1 and BDKRB2 promoter-reporter expression suggested a more complex regulation of mRNA expression involving additional loci to the core promoter. Conclusion Our results indicate that the spasmogen specific receptor locus may be a key site of regulation determining the magnitude of spasmogen mediated ASM IPx responses during airway inflammation or following asthma medication. These data provide further insight into the molecular basis of AHR and extend our understanding of potentially detrimental effects associated with existing therapies used in the treatment of asthma.
Collapse
Affiliation(s)
- Natalie Smith
- Division of Therapeutics & Molecular Medicine, University Hospital of Nottingham, Nottingham, UK
| | - Claudia A Browning
- Division of Therapeutics & Molecular Medicine, University Hospital of Nottingham, Nottingham, UK
| | - Nathalie Duroudier
- Division of Therapeutics & Molecular Medicine, University Hospital of Nottingham, Nottingham, UK
| | - Ceri Stewart
- Division of Therapeutics & Molecular Medicine, University Hospital of Nottingham, Nottingham, UK
| | - Samantha Peel
- Division of Therapeutics & Molecular Medicine, University Hospital of Nottingham, Nottingham, UK
| | - Caroline Swan
- Division of Therapeutics & Molecular Medicine, University Hospital of Nottingham, Nottingham, UK
| | - Ian P Hall
- Division of Therapeutics & Molecular Medicine, University Hospital of Nottingham, Nottingham, UK
| | - Ian Sayers
- Division of Therapeutics & Molecular Medicine, University Hospital of Nottingham, Nottingham, UK
| |
Collapse
|
25
|
David PS, Tanveer R, Port JD. FRET-detectable interactions between the ARE binding proteins, HuR and p37AUF1. RNA (NEW YORK, N.Y.) 2007; 13:1453-68. [PMID: 17626845 PMCID: PMC1950754 DOI: 10.1261/rna.501707] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A number of highly regulated gene classes are regulated post-transcriptionally at the level of mRNA stability. A central feature in these mRNAs is the presence of A+U-rich elements (ARE) within their 3' UTRs. Two ARE binding proteins, HuR and AUF1, are associated with mRNA stabilization and destabilization, respectively. Previous studies have demonstrated homomultimerization of each protein and the capacity to bind simultaneous or competitively to a single ARE. To investigate this possibility further, cell biological and biophysical approaches were undertaken. Protein-protein interaction was monitored by fluorescence resonance energy transfer (FRET) and by immunocytochemistry in live and fixed cells using fluorescently labeled CFP/YFP fusion proteins of HuR and p37AUF1. Strong nuclear FRET between HuR/HuR and AUF1/AUF1 homodimers as well as HuR/AUF1 heterodimers was observed. Treatment with the MAP kinase activator, anisomycin, which commonly stabilizes ARE-containing mRNAs, caused rapid nuclear to cytoplasmic shuttling of HuR. AUF1 also underwent shuttling, but on a longer time scale. After shuttling, HuR/HuR, AUF1/AUF1, and HuR/AUF1, FRET was also observed in the cytoplasm. In further studies, arsenite rapidly induced the formation of stress granules containing HuR and TIA-1 but not AUF1. The current studies demonstrate that two mRNA binding proteins, HuR and AUF1, are colocalized and are capable of functional interaction in both the nucleus and cytoplasm. FRET-based detection of AUF1/HuR interaction may serve as a basis of opening up new dimensions in delineating the functional interaction of mRNA binding proteins with RNA turnover.
Collapse
Affiliation(s)
- Pamela S David
- Department of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | |
Collapse
|
26
|
Tang Z, Diamond MA, Chen JM, Holly TA, Bonow RO, Dasgupta A, Hyslop T, Purzycki A, Wagner J, McNamara DM, Kukulski T, Wos S, Velazquez EJ, Ardlie K, Feldman AM. Polymorphisms in Adenosine Receptor Genes are Associated with Infarct Size in Patients with Ischemic Cardiomyopathy. Clin Pharmacol Ther 2007; 82:435-40. [PMID: 17728764 DOI: 10.1038/sj.clpt.6100331] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The goal of this experiment was to identify the presence of genetic variants in the adenosine receptor genes and assess their relationship to infarct size in a population of patients with ischemic cardiomyopathy. Adenosine receptors play an important role in protecting the heart during ischemia and in mediating the effects of ischemic preconditioning. We sequenced DNA samples from 273 individuals with ischemic cardiomyopathy and from 203 normal controls to identify the presence of genetic variants in the adenosine receptor genes. Subsequently, we analyzed the relationship between the identified genetic variants and infarct size, left ventricular size, and left ventricular function. Three variants in the 3'-untranslated region of the A(1)-adenosine gene (nt 1689 C/A, nt 2206 Tdel, nt 2683del36) and an informative polymorphism in the coding region of the A3-adenosine gene (nt 1509 A/C I248L) were associated with changes in infarct size. These results suggest that genetic variants in the adenosine receptor genes may predict the heart's response to ischemia or injury and might also influence an individual's response to adenosine therapy.
Collapse
Affiliation(s)
- Z Tang
- Department of Medicine, The Center for Translational Medicine, The Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Eberhardt W, Doller A, Akool ES, Pfeilschifter J. Modulation of mRNA stability as a novel therapeutic approach. Pharmacol Ther 2007; 114:56-73. [PMID: 17320967 DOI: 10.1016/j.pharmthera.2007.01.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 01/10/2007] [Accepted: 01/10/2007] [Indexed: 12/21/2022]
Abstract
During the last decade evidence has accumulated that modulation of mRNA stability plays a central role in cellular homeostasis, including cell differentiation, proliferation and adaptation to external stimuli. The functional relevance of posttranscriptional gene regulation is highlighted by many pathologies, wherein occurrence tightly correlates with a dysregulation in mRNA stability, including chronic inflammation, cardiovascular diseases and cancer. Most commonly, the cis-regulatory elements of mRNA decay are represented by the adenylate- and uridylate (AU)-rich elements (ARE) which are specifically bound by trans-acting RNA binding proteins, which finally determine whether mRNA decay is delayed or facilitated. Regulation of mRNA decay by RNA stabilizing and RNA destabilizing factors is furthermore controlled by different intrinsic and environmental stimuli. The modulation of mRNA binding proteins, therefore, illuminates a promising approach for the pharmacotherapy of those key pathologies mentioned above and characterized by a posttranscriptional dysregulation. Most promisingly, intracellular trafficking of many of the mRNA stability regulating factors is, in turn, regulated by some major signaling pathways, including the mitogen-activated protein kinase (MAPK) cascade, the AMP-activated kinase (AMPK) and the protein kinase (PK) C (PKC) family. In this review, we present timely examples of genes regulated by mRNA stability with a special focus on signaling pathways involved in the ARE-dependent mRNA decay. A better understanding of these processes may form the basis for the development of novel therapeutics to treat major human diseases.
Collapse
Affiliation(s)
- Wolfgang Eberhardt
- Pharmazentrum frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
28
|
Lu JY, Sadri N, Schneider RJ. Endotoxic shock in AUF1 knockout mice mediated by failure to degrade proinflammatory cytokine mRNAs. Genes Dev 2006; 20:3174-84. [PMID: 17085481 PMCID: PMC1635151 DOI: 10.1101/gad.1467606] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Excessive production of proinflammatory cytokines, particularly tumor necrosis factor-alpha (TNFalpha) and interleukin-1beta (IL-1beta), plays a critical role in septic shock induced by bacterial endotoxin (endotoxemia). Precise control of cytokine expression depends on rapid degradation of cytokine mRNAs, mediated by an AU-rich element (ARE) in the 3' noncoding region and by interacting ARE-binding proteins, which control the systemic inflammatory response. To understand the function of the ARE-binding protein AUF1, we developed an AUF1 knockout mouse. We show that AUF1 normally functions to protect against the lethal progression of endotoxemia. Upon endotoxin challenge, AUF1 knockout mice display symptoms of severe endotoxic shock, including vascular hemorrhage, intravascular coagulation, and high mortality, resulting from overproduction of TNFalpha and IL-1beta. Overexpression of these two cytokines is specific, and shown to result from an inability to rapidly degrade these mRNAs in macrophages following induction. Neutralizing antibodies to TNFalpha and IL-1beta protect AUF1 knockout mice against lethal endotoxic shock. These and other data describe a novel post-transcriptional mechanism whereby AUF1 acts as a crucial attenuator of the inflammatory response, promoting the rapid decay of selective proinflammatory cytokine mRNAs following endotoxin activation. Defects in the AUF1 post-transcriptionally controlled pathway may be involved in human inflammatory disease.
Collapse
Affiliation(s)
- Jin-Yu Lu
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
29
|
Bai Y, Lu H, Machida CA. CRM 1-mediated degradation and agonist-induced down-regulation of beta-adrenergic receptor mRNAs. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1076-89. [PMID: 16997396 PMCID: PMC1896136 DOI: 10.1016/j.bbamcr.2006.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 08/11/2006] [Accepted: 08/14/2006] [Indexed: 10/24/2022]
Abstract
The beta1-adrenergic receptor (beta1-AR) mRNAs are post-transcriptionally regulated at the level of mRNA stability and undergo accelerated agonist-mediated degradation via interaction of its 3' untranslated region (UTR) with RNA binding proteins, including the HuR nuclear protein. In a previous report [Kirigiti et al. (2001). Mol. Pharmacol. 60:1308-1324], we examined the agonist-mediated down-regulation of the rat beta1-AR mRNAs, endogenously expressed in the rat C6 cell line and ectopically expressed in transfectant hamster DDT1MF2 and rat L6 cells. In this report, we determined that isoproterenol treatment of neonatal rat cortical neurons, an important cell type expressing beta1-ARs in the brain, results in significant decreases in beta1-AR mRNA stability, while treatment with leptomycin B, an inhibitor of the nuclear export receptor CRM 1, results in significant increases in beta1-AR mRNA stability and nuclear retention. UV-crosslinking/immunoprecipitation and glycerol gradient fractionation analyses indicate that the beta1-AR 3' UTR recognize complexes composed of HuR and multiple proteins, including CRM 1. Cell-permeable peptides containing the leucine-rich nuclear export signal (NES) were used as inhibitors of CRM 1-mediated nuclear export. When DDT1MF2 transfectants were treated with isoproterenol and peptide inhibitors, only the co-addition of the NES inhibitor reversed the isoproterenol-induced reduction of beta1-AR mRNA levels. Our results suggest that CRM 1-dependent NES-mediated mechanisms influence the degradation and agonist-mediated down-regulation of the beta1-AR mRNAs.
Collapse
MESH Headings
- 3' Untranslated Regions
- Adrenergic beta-1 Receptor Agonists
- Animals
- Animals, Newborn
- Antigens, Surface/metabolism
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cells, Cultured
- Cricetinae
- Down-Regulation
- ELAV Proteins
- ELAV-Like Protein 1
- Fatty Acids, Unsaturated/pharmacology
- Isoproterenol/pharmacology
- Models, Biological
- Neurons/metabolism
- Nuclear Export Signals
- RNA Stability
- RNA, Messenger/metabolism
- RNA-Binding Proteins/metabolism
- Rats
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/physiology
- Transfection
Collapse
Affiliation(s)
- Ying Bai
- Department of Integrative Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
30
|
Misquitta CM, Chen T, Grover AK. Control of protein expression through mRNA stability in calcium signalling. Cell Calcium 2006; 40:329-46. [PMID: 16765440 DOI: 10.1016/j.ceca.2006.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2006] [Revised: 03/22/2006] [Accepted: 04/12/2006] [Indexed: 01/14/2023]
Abstract
Specific sequences (cis-acting elements) in the 3'-untranslated region (UTR) of RNA, together with stabilizing and destabilizing proteins (trans-acting factors), determine the mRNA stability, and consequently, the level of expression of several proteins. Such interactions were discovered initially for short-lived mRNAs encoding cytokines and early genes like c-jun and c-myc. However, they may also determine the fate of more stable mRNAs in a tissue and disease-dependent manner. The interactions between the cis-acting elements and the trans-acting factors may also be modulated by Ca(2+) either directly or via a control of the phosphorylation status of the trans-acting factors. We focus initially on the basic concepts in mRNA stability with the trans-acting factors AUF1 (destabilizing) and HuR (stabilizing). Sarco/endoplasmic reticulum Ca(2+) pumps, SERCA2a (cardiac and slow twitch muscles) and SERCA2b (most cells including smooth muscle cells), are pivotal in Ca(2+) mobilization during signal transduction. SERCA2a and SERCA2b proteins are encoded by relatively stable mRNAs that contain cis-acting stability determinants in their 3'-regions. We present several pathways where 3'-UTR mediated mRNA decay is key to Ca(2+) signalling: SERCA2a and beta-adrenergic receptors in heart failure, renin-angiotensin system, and parathyroid hormones. Other examples discussed include cytokines vascular endothelial growth factor, endothelin and endothelial nitric oxide synthase. Roles of Ca(2+) and Ca(2+)-binding proteins in mRNA stability are also discussed. We anticipate that these novel modes of control of protein expression will form an emerging area of research that may explore the central role of Ca(2+) in cell function during development and in disease.
Collapse
Affiliation(s)
- Christine M Misquitta
- Banting and Best Department of Medical Research, 10th floor Donnelly CCBR, University of Toronto, 160 College Street, Toronto, Ont., Canada M5S 3E1
| | | | | |
Collapse
|
31
|
Affiliation(s)
- A.J. Marian
- Section of Cardiology, Department of Medicine, Baylor College of Medicine and Texas Heart Institute, One Baylor Plaza, 519D, Houston, TX 77030, USA, Tel.: +1 713 798 7454; fax: +1 713 798 3147
| |
Collapse
|
32
|
Glaser ND, Lukyanenko YO, Wang Y, Wilson GM, Rogers TB. JNK activation decreases PP2A regulatory subunit B56alpha expression and mRNA stability and increases AUF1 expression in cardiomyocytes. Am J Physiol Heart Circ Physiol 2006; 291:H1183-92. [PMID: 16603688 PMCID: PMC1564198 DOI: 10.1152/ajpheart.01162.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A central feature of heart disease is a molecular remodeling of signaling pathways in cardiac myocytes. This study focused on novel molecular elements of MAPK-mediated alterations in the pattern of gene expression of the protein phosphatase 2A (PP2A). In an established model of sustained JNK activation, a 70% decrease in expression of the targeting subunit of PP2A, B56alpha, was observed in either neonatal or adult cardiomyocytes. This loss in protein abundance was accompanied by a decrease of 69% in B56alpha mRNA steady-state levels. Given that the 3'-untranslated region of this transcript contains adenylate-uridylate-rich elements known to regulate mRNA degradation, experiments explored the notion that instability of B56alpha mRNA accounts for the response. mRNA time-course analyses with real-time PCR methods showed that B56alpha transcript was transformed from a stable (no significant decay over 1 h) to a labile form that rapidly degraded within minutes. These results were supported by complementary experiments that revealed that the RNA-binding protein AUF1, known to destabilize target mRNA, was increased fourfold in JNK-activated cells. A variety of other stress-related stimuli, such as p38 MAPK activation and phorbol ester, upregulated AUF1 expression in cultured cardiac cells as well. In addition, gel mobility shift assays demonstrated that p37AUF1 binds with nanomolar affinity to segments of the B56alpha 3'-untranslated region. Thus these studies provide new evidence that signaling-induced mRNA instability is an important mechanism that underlies the changes in the pattern of gene expression evoked by stress-activated pathways in cardiac cells.
Collapse
Affiliation(s)
- Nicole D. Glaser
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland and
| | - Yevgeniya O. Lukyanenko
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland and
| | - Yibin Wang
- Departments of Anesthesiology and Medicine, University of California at Los Angeles, Los Angeles, California
| | - Gerald M. Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland and
| | - Terry B. Rogers
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland and
- Institute of Molecular Cardiology, Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, Maryland
- To whom correspondence should be addressed: Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201. Tel: 410-706-3169; Fax: 410-706-6676;
| |
Collapse
|
33
|
Jurado S, Rodríguez-Pascual F, Sánchez-Prieto J, Reimunde FM, Lamas S, Torres M. NMDA induces post-transcriptional regulation of alpha2-guanylyl-cyclase-subunit expression in cerebellar granule cells. J Cell Sci 2006; 119:1622-31. [PMID: 16569663 DOI: 10.1242/jcs.02867] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activation of N-methyl-D-aspartate (NMDA) glutamate receptors commonly affects gene expression in different neurons. We reported previously that chronic treatment of rat cerebellar granule cells with NMDA (24 hours) upregulates the expression of mRNA encoding the alpha2 subunit of the nitric-oxide-sensitive guanylyl cyclase. However, the molecular mechanisms involved in this process remained to be elucidated. Here, we have performed mRNA-decay experiments using the transcriptional inhibitor actinomycin D, providing evidence that the half-life of alpha2 mRNA is significantly prolonged in cells exposed to NMDA. The role of the 3' untranslated region of the alpha2 transcripts in NMDA-induced mRNA stabilisation was examined and an association between the RNA-binding proteins AUF1 and ELAV-like protein 1 (HuR/HuA), and endogenous alpha2 mRNA was demonstrated in vivo, as revealed by coimmunoprecipitation experiments with specific antibodies against AUF1 and HuR. Further studies indicated that stimulation of the NMDA receptor induces a downregulation in AUF1 levels stabilising the alpha2 mRNA transcripts. These events are triggered through a mechanism that depends on formation of nitric oxide, and on the subsequent activation of guanylyl cyclase and cGMP dependent protein kinases.
Collapse
Affiliation(s)
- Sandra Jurado
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, E-28040 Spain
| | | | | | | | | | | |
Collapse
|
34
|
Barreau C, Paillard L, Osborne HB. AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res 2006; 33:7138-50. [PMID: 16391004 PMCID: PMC1325018 DOI: 10.1093/nar/gki1012] [Citation(s) in RCA: 770] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The control of mRNA stability is an important process that allows cells to not only limit, but also rapidly adjust, the expression of regulatory factors whose over expression may be detrimental to the host organism. Sequence elements rich in A and U nucleotides or AU-rich elements (AREs) have been known for many years to target mRNAs for rapid degradation. In this survey, after briefly summarizing the data on the sequence characteristics of AREs, we present an analysis of the known ARE-binding proteins (ARE-BP) with respect to their mRNA targets and the consequences of their binding to the mRNA. In this analysis, both the changes in mRNA stability and the lesser studied effects on translation are considered. This analysis highlights the multitude of mRNAs bound by one ARE-BP and conversely the large number of ARE-BP that associate with any particular ARE-containing mRNA. This situation is discussed with respect to functional redundancies or antagonisms. The potential relationship between mRNA stability and translation is also discussed. Finally, we present several hypotheses that could unify the published data and suggest avenues for future research.
Collapse
Affiliation(s)
| | | | - H. Beverley Osborne
- To whom correspondence should be addressed. Tel: +33 223 23 4523; Fax: +33 223 23 4478;
| |
Collapse
|
35
|
Moriyama T, Kageyama K, Kasagi Y, Iwasaki Y, Nigawara T, Sakihara S, Suda T. Differential regulation of corticotropin-releasing factor receptor type 1 (CRF1 receptor) mRNA via protein kinase A and mitogen-activated protein kinase pathways in rat anterior pituitary cells. Mol Cell Endocrinol 2005; 243:74-9. [PMID: 16253420 DOI: 10.1016/j.mce.2005.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Accepted: 09/13/2005] [Indexed: 12/30/2022]
Abstract
Corticotropin-releasing factor (CRF) receptor type 1 (CRF(1) receptor) mRNA levels are down-regulated by CRF via the cyclic AMP-protein kinase A (PKA) pathway. In this study, we focused on the involvement of both the mitogen-activated protein (MAP) kinase pathway and PKA in this regulation. Real-time PCR (RT-PCR) revealed that a MAP kinase, extracellular signal-regulated kinases 1/2, pathway was also involved in the down-regulation of CRF(1) receptor mRNA levels by CRF in the rat anterior pituitary (AP). Down-regulation of CRF(1) receptor mRNA levels was caused by a post-transcriptional system such as mRNA degradation, as incubation with CRF significantly decreased the half-life of CRF(1) receptor mRNA. Furthermore, pre-treatment with a PKA inhibitor completely blocked CRF-induced CRF(1) receptor mRNA destabilization, while pre-treatment with an extracellular signal-regulated kinases 1/2 inhibitor had no inhibitory effect. These results suggested that in the rat AP, down-regulation of CRF(1) receptor mRNA levels is caused by mRNA degradation via PKA, but not by the MAP kinase pathway.
Collapse
Affiliation(s)
- Takako Moriyama
- The Third Department of Internal Medicine, Hirosaki University School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
In the failing heart, several changes occur in cardiac adrenergic receptor-signal transduction pathways. The most striking of these changes occur in beta-ARs, and of the changes in beta-adrenergic receptors, beta1-receptor down-regulation is the most prominent. Other changes include uncoupling of beta2-adrenergic receptors and increased activity of the inhibitory G-protein, Gi. Most of these changes appear to be related to increased activity of the adrenergic nervous system, i.e. increased exposure to norepinephrine. Antagonists of the adrenergic nervous system improve left ventricular function and outcome in patients with heart failure. This fact supports the notion that activation of these neurohormonal systems exerts a net long-term detrimental effect on the natural history of chronic heart failure and that myocardial adrenergic desensitization phenomena are at least partially adaptive in the setting of left ventricular dysfunction.
Collapse
MESH Headings
- Animals
- Down-Regulation
- Female
- Heart Failure/physiopathology
- Humans
- Male
- Mice
- Norepinephrine/metabolism
- Receptors, Adrenergic/metabolism
- Receptors, Adrenergic/physiology
- Receptors, Adrenergic, alpha/metabolism
- Receptors, Adrenergic, alpha/physiology
- Receptors, Adrenergic, beta/metabolism
- Receptors, Adrenergic, beta/physiology
- Sensitivity and Specificity
- Signal Transduction/physiology
Collapse
Affiliation(s)
- S Lamba
- University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0542, USA
| | | |
Collapse
|
37
|
Jungmann RA, Kiryukhina O. Cyclic AMP and AKAP-mediated targeting of protein kinase A regulates lactate dehydrogenase subunit A mRNA stability. J Biol Chem 2005; 280:25170-7. [PMID: 15878851 DOI: 10.1074/jbc.m502514200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the lactate dehydrogenase A subunit (ldh-A) gene is controlled through transcriptional as well as post-transcriptional mechanisms. Both mechanisms involve activation of protein kinase A (PKA) into its subunits and subsequent phosphorylation and activation of several key regulatory factors. In rat C6 glioma cells, post-transcriptional gene regulation occurs through PKA-mediated stabilization of LDH-A mRNA and subsequent increase of intracellular LDH-A mRNA levels. Previous studies have demonstrated a cAMP-stabilizing region (CSR) located in the LDH-A 3'-untranslated region which, in combination with several phosphorylated CSR-binding proteins (CSR-BP), regulates the PKA-mediated stabilization of LDH-A mRNA. However, the mechanistic details of interaction of CSR with proteins as they pertain to mRNA stabilization by PKA are so far largely unknown. In this study we tested the hypothesis that ribosomal protein extracts (RSW) from glioma cells contain PKA regulatory (RII) and catalytic (C) subunits that, in combination with a protein kinase A anchoring protein (AKAP 95) and CSR-BPs participate in forming CSR-protein complexes that are responsible for mRNA stability regulation. To demonstrate the importance of CSR-protein complex formation, the PKA subunits and AKAP 95 were removed from the RSW by immunoprecipitation, and the antigen-deleted RSW were subjected to CSR binding analysis using gel mobility shift and UV cross-linking. It was shown that AKAP 95 as well as RII formed a direct linkage with CSR during CSR-protein complex formation. In contrast, the catalytic subunit formed part of the CSR-protein complex but did not bind to CSR directly in a covalent linkage. To determine whether formation of CSR complexes that included C, RII, and AKAP 95 constituted a functional event and was necessary for mRNA stabilization, cell-free decay reactions were carried out with RSW extracts, and the kinetics of decay of LDH-A mRNA was determined. Depletion of PKA subunits and AKAP 95 from RSW extracts by immunoprecipitation resulted in a marked loss of mRNA stabilization activity indicating that the presence of the PKA regulatory and catalytic subunits as well as AKAP 95 in the CSR-protein complexes was absolutely necessary to achieve LDH-A mRNA stabilization.
Collapse
Affiliation(s)
- Richard A Jungmann
- Department of Cellular and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611-3008, USA.
| | | |
Collapse
|
38
|
Fialcowitz EJ, Brewer BY, Keenan BP, Wilson GM. A hairpin-like structure within an AU-rich mRNA-destabilizing element regulates trans-factor binding selectivity and mRNA decay kinetics. J Biol Chem 2005; 280:22406-17. [PMID: 15809297 PMCID: PMC1553220 DOI: 10.1074/jbc.m500618200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In mammals, rapid mRNA turnover directed by AU-rich elements (AREs) is mediated by selective association of cellular ARE-binding proteins. These trans-acting factors display overlapping RNA substrate specificities and may act to either stabilize or destabilize targeted transcripts; however, the mechanistic features of AREs that promote preferential binding of one trans-factor over another are not well understood. Here, we describe a hairpin-like structure adopted by the ARE from tumor necrosis factor alpha (TNFalpha) mRNA that modulates its affinity for selected ARE-binding proteins. In particular, association of the mRNA-destabilizing factor p37(AUF1) was strongly inhibited by adoption of the higher order ARE structure, whereas binding of the inducible heat shock protein Hsp70 was less severely compromised. By contrast, association of the mRNA-stabilizing protein HuR was only minimally affected by changes in ARE folding. Consistent with the inverse relationship between p37(AUF1) binding affinity and the stability of ARE folding, mutations that stabilized the ARE hairpin also inhibited its ability to direct rapid mRNA turnover in transfected cells. Finally, phylogenetic analyses and structural modeling indicate that TNFalpha mRNA sequences flanking the ARE are highly conserved and may stabilize the hairpin fold in vivo. Taken together, these data suggest that local higher order structures involving AREs may function as potent regulators of mRNA turnover in mammalian cells by modulating trans-factor binding selectivity.
Collapse
Affiliation(s)
- Elizabeth J. Fialcowitz
- Department of Biochemistry and Molecular Biology and Center for Fluorescence Spectroscopy, and
| | - Brandy Y. Brewer
- Department of Biochemistry and Molecular Biology and Center for Fluorescence Spectroscopy, and
| | - Bridget P. Keenan
- Department of Biochemistry and Molecular Biology and Center for Fluorescence Spectroscopy, and
| | - Gerald M. Wilson
- Department of Biochemistry and Molecular Biology and Center for Fluorescence Spectroscopy, and
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Address correspondence to: Gerald M. Wilson, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201; Tel: (410)706-8904; Fax: (410)706-8297; e-mail:
| |
Collapse
|
39
|
Stasinopoulos S, Tran H, Chen E, Sachchithananthan M, Nagamine Y, Medcalf RL. Regulation of protease and protease inhibitor gene expression: the role of the 3'-UTR and lessons from the plasminogen activating system. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 80:169-215. [PMID: 16164975 DOI: 10.1016/s0079-6603(05)80005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Stan Stasinopoulos
- Friedrich Miescher Institute, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
40
|
Misquitta CM, Ghosh P, Mwanjewe J, Grover AK. Control of SERCA2a Ca2+ pump mRNA stability by nuclear proteins: role of domains in the 3′-untranslated region. Cell Calcium 2005; 37:17-24. [PMID: 15541460 DOI: 10.1016/j.ceca.2004.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2004] [Revised: 06/07/2004] [Accepted: 06/15/2004] [Indexed: 10/26/2022]
Abstract
Alternative splicing of the sarco/endoplasmic reticulum (SERCA2) Ca2+ pump transcript generates the two isoforms: SERCA2a in left ventricular myocytes (LVM) and SERCA2b in most tissues. Nuclear protein extracts from left ventricular myocytes can cause a decay of the 3'-region of the SERCA2a. To determine if all the domains in the 800 b SERCA2a 3'-end region (3344-4243) are equally stable, we examined in vitro decay of synthetically capped, polyadenylated overlapping RNA fragments 2A1-2A6 from the 3'-end region of SERCA2a. Whereas 2A1-2A5 RNAs were stable, the distal fragment 2A6 (4135-4243 b) decayed rapidly. Deleting the 2A6 sequence from the 800-b 3'-end region increased its stability. In mobility shift assays, 2A6 bound to protein(s) in the LVM nuclear extracts in a specific manner: unlabelled 2A6 or the 800 b 3'-region RNA competed for binding but poly A, poly U, and poly C RNA did not. Secondary structure analysis revealed three hairpin loops in 2A6. Experiments using small synthetic RNA fragments for competition with 2A6 binding to nuclear proteins were consistent with a model involving the three hairpin loops. Thus, the secondary structure of the distal domain of SERCA2a RNA may be important in regulating its stability.
Collapse
|
41
|
Headley VV, Tanveer R, Greene SM, Zweifach A, Port JD. Reciprocal regulation of beta-adrenergic receptor mRNA stability by mitogen activated protein kinase activation and inhibition. Mol Cell Biochem 2004; 258:109-19. [PMID: 15030175 DOI: 10.1023/b:mcbi.0000012841.03400.42] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Genes encoding numerous proto-oncogenes and cytokines, as well as a number of G-protein coupled receptors, are regulated post-transcriptionally at the level of mRNA stability. A common feature of all of these genes is the presence of A + U-rich elements (AREs) within their 3' untranslated regions. We, and others, have demonstrated previously that mRNAs encoding beta-adrenergic receptors (beta-ARs) are destabilized by agonist stimulation of the beta-AR/Galphas/adenylylcyclase pathway. However, in addition to PK-A, beta-ARs can also activate or inhibit mitogen activated kinase (MAPK) cascades, in a cell-type dependent basis. Recent evidence points to an important role for MAPKs in regulating the turnover of cytokine mRNAs, such as TNFalpha. We hypothesized that activation of MAPK's may also regulate beta-AR mRNA stability. The studies conducted herein demonstrate that generalized stimulation of MAPKs (JNK, p38) with anisomycin resulted in marked stabilization of beta-AR mRNA. Reciprocally, selective inhibition of JNK with SP600125 significantly decreased beta-AR mRNA half-life. Similarly, inhibition of the MEK/ERK pathway with either PD98059 or U0126 decreased beta-AR mRNA stability substantially. However, inhibition of p38 MAPK with SB203580 produced destabilization of beta-AR mRNA only at higher, non pharmacologically selective concentrations. In contrast to their effects on several other ARE containing mRNAs, inhibition of tyrosine kinases by genistein or PI3K by wortmannin, had no detectable effect on beta-AR mRNA stability. In summary, these results demonstrate for the first time that modulation of MAPK pathways can bi-directionally influence beta-AR mRNA stability.
Collapse
Affiliation(s)
- Violetta V Headley
- Department of Medicine, Division of Cardiology, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
42
|
Thiele BJ, Doller A, Kähne T, Pregla R, Hetzer R, Regitz-Zagrosek V. RNA-binding proteins heterogeneous nuclear ribonucleoprotein A1, E1, and K are involved in post-transcriptional control of collagen I and III synthesis. Circ Res 2004; 95:1058-66. [PMID: 15514164 DOI: 10.1161/01.res.0000149166.33833.08] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Collagen types I and III, coded by COL1A1/COL1A2 and COL3A1 genes, are the major fibrillar collagens produced by fibroblasts, including cardiac fibroblasts of the adult heart. Characteristic for different cardiomyopathies is a remodeling process associated with an upregulation of collagen synthesis, which leads to fibrosis. We report identification of three mRNA-binding proteins, heterogeneous nuclear ribonucleoprote (hnRNP) A1, E1, and K, as positive effectors of collagen synthesis acting at the post-transcriptional level by interaction with the 3'-untranslated regions (3'-UTRs) of COL1A1, 1A2, and 3A1 mRNAs. In vitro, binding experiments (electromobility shift assay and UV cross-linking) reveal significant differences in binding to CU- and AU-rich binding motifs. Reporter gene cell transfection experiments and RNA stability assays show that hnRNPs A1, E1, and K stimulate collagen expression by stabilizing mRNAs. Collagen synthesis is activated via the angiotensin II type 1 (AT1) receptor. We demonstrate that transforming growth factor-beta1, a major product of stimulated AT1 receptor, does not activate solely collagen synthesis but synergistically the synthesis of hnRNP A1, E1, and K as well. Thus, post-transcriptional control of collagen synthesis at the mRNA level may substantially be caused by alteration of the expression of RNA-binding proteins. The pathophysiological impact of this finding was demonstrated by screening the expression of hnRNP E1 and K in cardiovascular diseases. In the heart muscle of patients experiencing aortic stenosis, ischemic cardiomyopathy, or dilatative cardiomyopathy, a significant increase in the expression of hnRNP E1, A1, and K was found between 1.5- and 4.5-fold relative to controls.
Collapse
|
43
|
Arao Y, Kikuchi A, Kishida M, Yonekura M, Inoue A, Yasuda S, Wada S, Ikeda K, Kayama F. Stability of A+U-Rich Element Binding Factor 1 (AUF1)-Binding Messenger Ribonucleic Acid Correlates with the Subcellular Relocalization of AUF1 in the Rat Uterus upon Estrogen Treatment. Mol Endocrinol 2004; 18:2255-67. [PMID: 15192077 DOI: 10.1210/me.2004-0103] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The nucleocytoplasmic shuttling protein, A+U-rich element binding factor 1 (AUF1), is one of the RNA-binding proteins that specifically bind adenylate-uridylate rich elements (AREs) in mRNA 3'-untranslated regions (UTRs), and acts as a regulator of ARE-mediated mRNA degradation in the cytoplasm. We previously reported that in the female rat uterus, the levels of specific AUF1 isoform mRNAs (p40/p45) were increased by 17 beta-estradiol (E2) treatment. Therefore, we examined the role of AUF1 in the regulation of E2-mediated mRNA turnover in the rat uterus. We identified ABIN2 and Ier2/pip92 mRNAs as candidate targets of AUF1 in the rat uterus. We found that AUF1-binding elements were present in the 3'-UTR of both mRNAs and that the 3'-UTRs functioned as mRNA turnover regulatory elements. In the ovariectomized rat uterus, the nucleocytoplasmic localization of AUF1p40/p37 isoform proteins was regulated by E2. We also found that cytoplasmic AUF1-bound mRNA levels changed coincidentally with the cytoplasmic levels of AUF1p40/p37. Finally, we confirmed that the subcellular localization of AUF1p40 controlled the stability of target mRNAs in vitro, such that cytoplasmically localized AUF1p40 led to marked mRNA stabilization, whereas nuclear-localized AUF1p40 stabilized target mRNA only slightly. These results suggested that E2-inducible ARE-containing gene transcripts are regulated, at least in part, via mRNA stabilization through the nucleocytoplasmic relocalization of AUF1.
Collapse
Affiliation(s)
- Yukitomo Arao
- Department of Environmental Medicine, Center for Community Medicine, Jichi Medical School, Tochigi 329-0498, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Brewer G, Saccani S, Sarkar S, Lewis A, Pestka S. Increased interleukin-10 mRNA stability in melanoma cells is associated with decreased levels of A + U-rich element binding factor AUF1. J Interferon Cytokine Res 2004; 23:553-64. [PMID: 14585195 DOI: 10.1089/107999003322485053] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abnormal production of interleukin-10 (IL-10) is observed in some pathologic conditions. For example, compared with normal melanocytes, IL-10 expression is elevated in melanoma cells. IL-10 overexpression could inhibit both immune surveillance and tumor rejection. We investigated a potential posttranscriptional mechanism for IL-10 overexpression in melanoma cells. In normal melanocytes, the half-life of IL-10 mRNA is 7 min, whereas in the melanoma cell line MNT1, the half-life is 75 min. This 10-fold difference could account, at least in part, for IL-10 overexpression in MNT1 cells. Examination of the 3'-untranslated region (3'-UTR) of IL-10 mRNA revealed a suspected A + U-rich element (ARE) that might target the mRNA for rapid degradation. Transfection experiments confirmed that these sequences promote rapid degradation when inserted into a normally stable mRNA, indicating ARE functionality. As AREs act via their interactions with ARE-binding proteins, we examined cytoplasmic proteins from normal melanocytes and MNT1 cells for IL-10 ARE-binding activity. Compared with cytoplasmic extracts of normal melanocytes, cytoplasmic extracts of MNT1 cells possess substantially less ARE-binding activity, consistent with the extended half-life of IL-10 mRNA in MNT1 cells. Finally, we find that the ARE-binding protein AUF1 comprises the major ARE-binding activity in cytoplasmic extracts of normal melanocytes. By contrast, AUF1 is not detectable in cytoplasmic extracts of MNT1 cells but appears restricted to the nuclear fraction. Together, these data suggest a mechanism whereby reduced cytoplasmic levels of AUF1 in MNT1 melanoma cells may lead to IL-10 overexpression, with deleterious consequences for tumor surveillance and rejection.
Collapse
Affiliation(s)
- Gary Brewer
- Department of Molecular Genetics, Microbiology, and Immunology, Robert Wood Johnson Medical School-UMDNJ, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
45
|
Klöss S, Srivastava R, Mülsch A. Down-regulation of soluble guanylyl cyclase expression by cyclic AMP is mediated by mRNA-stabilizing protein HuR. Mol Pharmacol 2004; 65:1440-51. [PMID: 15155837 DOI: 10.1124/mol.65.6.1440] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We analyzed whether the cyclic AMP induced down-regulation of the nitric oxide (NO) receptor soluble guanylyl cyclase (sGC) is mediated by the mRNA-protecting protein HuR. Exposure (up to 24 h) of isolated rat aortic segments to the activator of adenylyl cyclase, forskolin (10 microM), and to both activators of cAMP-stimulated protein kinase (PKA), 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole-3',5'-cyclic monophosphorothioate, Spisomer (Sp-5,6-DCl-cBIMPS; 400 nM), and N6-phenyl-cAMP (10 microM), strongly reduced sGCalpha1beta1 and HuR protein and mRNA expression in a time-dependent and actinomycin D (10 microM)-sensitive fashion. In vitro degradation of sGCalpha1 and beta1 poly(A)+ mRNA by native rat aortic protein was markedly increased by pretreatment of intact aortas with forskolin. Native protein extract from rat aorta shifted the electrophoretic mobility of biotin-labeled riboprobes from the 3'-untranslated region of sGCalpha1 and beta1 mRNA, and these bands was supershifted by a monoclonal antibody directed against the mRNA-stabilizing protein HuR. Forskolin decreased the HuR-sGCalpha1 and beta1 mRNA interaction and HuR protein expression in rat aorta, and this was prevented by the PKA inhibitory cAMP analog 3',5'-cyclic monophosphorothioate, Rp-isomer (Rp-cAMPS). In cultured smooth muscle cells from rat aorta, forskolin induced a rapid increase in Fos/p-Fos protein levels and activator protein 1 (AP-1) binding activity. Inhibition of this transcription factor by an AP-1 decoy prevented the forskolin-induced down-regulation of HuR. We conclude that forskolin/cAMP decrease the expression of heterodimeric sGC in rat aortic smooth muscle cells via activation of Fos/AP-1, which decreases the expression of HuR and thus destabilizes the sGCalpha1 and beta1 mRNA.
Collapse
Affiliation(s)
- Stephan Klöss
- Institut für Kardiovaskuläre Physiologie, Johann Wolfgang v. Goethe-Universität, Frankfurt/Main, Germany.
| | | | | |
Collapse
|
46
|
Raineri I, Wegmueller D, Gross B, Certa U, Moroni C. Roles of AUF1 isoforms, HuR and BRF1 in ARE-dependent mRNA turnover studied by RNA interference. Nucleic Acids Res 2004; 32:1279-88. [PMID: 14976220 PMCID: PMC390274 DOI: 10.1093/nar/gkh282] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HT1080 cells stably expressing green fluorescent protein (GFP) linked to a 3' terminal AU-rich element (ARE) proved to be a convenient system to study the dynamics of mRNA stability, as changes in mRNA levels are reflected in increased or decreased fluorescence intensity. This study examined whether mRNA stability can be regulated by small interfering RNAs (siRNAs) targeted to AU-binding proteins (AUBPs), which in turn should reveal their intrinsic role as stabilizers or destabilizers of ARE-mRNAs. Indeed, siRNAs targeting HuR or BRF1 decreased or increased fluorescence, respectively. This effect was abolished if cells were treated with both siRNAs, thus indicating antagonistic control of ARE-mRNA stability. Unexpectedly, downregulation of all four AUF1 isoforms by targeting common exons did not affect fluorescence whereas selective downregulation of p40AUF1/p45AUF1 strongly increased fluorescence by stabilizing the GFP-ARE reporter mRNA. This observation was fully confirmed by the finding that only selective reduction of p40AUF1/p45AUF1 induced the production of GM-CSF, an endogenous target of AUF1. These data suggest that the relative levels of individual isoforms, rather than the absolute amount of AUF1, determine the net mRNA stability of ARE-containing transcripts, consistent with the differing ARE-binding capacities of the isoforms.
Collapse
Affiliation(s)
- Ines Raineri
- Institute for Medical Microbiology, University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | | | | | | | | |
Collapse
|
47
|
Lu JY, Schneider RJ. Tissue distribution of AU-rich mRNA-binding proteins involved in regulation of mRNA decay. J Biol Chem 2004; 279:12974-9. [PMID: 14711832 DOI: 10.1074/jbc.m310433200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Short lived cytokine and proto-oncogene mRNAs are destabilized by an A+U-rich element (ARE) in the 3'-untranslated region. Several regulatory proteins bind to AREs in cytokine and proto-oncogene mRNAs, participate in inhibiting or promoting their rapid degradation of ARE mRNAs, and influence cytokine expression and cellular transformation in experimental models. The tissue distribution and cellular localization of the different AU-rich binding proteins (AUBPs), however, have not been uniformly characterized in the mouse, a model for ARE mRNA decay. We therefore carried out immunoblot and immunohistochemical analyses of the different AUBPs using the same mouse tissues. We show that HuR protein, a major AUBP that stabilizes the ARE mRNAs, is most strongly expressed in the thymus, spleen (predominantly in lymphocytic cells), intestine, and testes. AUF1 protein, a negative regulator of ARE mRNA stability, displayed strong expression in thymus and spleen cells within lymphocytic cells, moderate expression in the epithelial linings of lungs, gonadal tissues, and nuclei of most neurons in the brain, and little expression in the other tissues. Tristetraprolin, a negative regulator of ARE mRNA stability, displayed a largely non-overlapping tissue distribution with AUF1 and was predominantly expressed in the liver and testis. KH-type splicing regulatory protein, a presumptive negative regulator of ARE mRNA stability, was distributed widely in murine organs. These results indicate that HuR and AUF1, which functionally oppose each other, have generally similar distributions, suggesting that the balance between HuR and AUF1 is likely important in control of short lived mRNA degradation, lymphocyte development, and/or cytokine production, and possibly in certain aspects of neurological function.
Collapse
Affiliation(s)
- Jin-Yu Lu
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
48
|
Sarkar B, Xi Q, He C, Schneider RJ. Selective degradation of AU-rich mRNAs promoted by the p37 AUF1 protein isoform. Mol Cell Biol 2003; 23:6685-93. [PMID: 12944492 PMCID: PMC193711 DOI: 10.1128/mcb.23.18.6685-6693.2003] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An AU-rich element (ARE) consisting of repeated canonical AUUUA motifs confers rapid degradation to many cytokine mRNAs when present in the 3' untranslated region. Destabilization of mRNAs with AREs (ARE-mRNAs) is consistent with the interaction of ARE-binding proteins such as tristetraprolin and the four AUF1 isoforms. However, the association of the AUF1-mRNA interaction with decreased ARE-mRNA stability is correlative and has not been directly tested. We therefore determined whether overexpression of AUF1 isoforms promotes ARE-mRNA destabilization and whether AUF1 isoforms are limiting components for ARE-mRNA decay. We show that the p37 AUF1 isoform and, to a lesser extent, the p40 isoform possess ARE-mRNA-destabilizing activity when overexpressed. Surprisingly, overexpressed p37 AUF1 also destabilized reporter mRNAs containing a noncanonical but AU-rich 3' untranslated region. Since overexpressed p37 AUF1 could interact in vivo with the AU-rich reporter mRNA, AUF1 may be involved in rapid turnover of mRNAs that lack canonical AREs. Moreover, overexpression of p37 AUF1 restored the ability of cells to rapidly degrade ARE-mRNAs when that ability was saturated and inhibited by overexpression of ARE-mRNAs. Finally, activation of ARE-mRNA decay often involves a translation-dependent step, which was eliminated by overexpression of p37 AUF1. These data indicate that the p37 AUF1 isoform and, to some extent, the p40 isoform are limiting factors that facilitate rapid decay of AU-rich mRNAs.
Collapse
Affiliation(s)
- Bedabrata Sarkar
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|
49
|
Wilson GM, Lu J, Sutphen K, Sun Y, Huynh Y, Brewer G. Regulation of A + U-rich element-directed mRNA turnover involving reversible phosphorylation of AUF1. J Biol Chem 2003; 278:33029-38. [PMID: 12819195 DOI: 10.1074/jbc.m305772200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Proteins binding A + U-rich elements (AREs) contribute to the rapid cytoplasmic turnover of mRNAs containing these sequences. However, this process is a regulated event and may be accelerated or inhibited by myriad signal transduction systems. For example, monocyte adherence at sites of inflammation or tissue injury is associated with inhibition of ARE-directed mRNA decay, which contributes to rapid increases in cytokine and inflammatory mediator production. Here, we show that acute exposure of THP-1 monocytic leukemia cells to the phorbol ester 12-O-tetradecanoylphorbol-13-acetate mimics several features of monocyte adherence, including rapid induction and stabilization of ARE-containing mRNAs encoding interleukin-1 beta and tumor necrosis factor alpha. Additionally, TPA treatment alters the activity of cytoplasmic complexes that bind AREs, including complexes containing the ARE-specific, mRNA-destabilizing factor, AUF1. Analyses of AUF1 from control and TPA-treated cells indicated that post-translational modifications of the major cytoplasmic isoform, p40AUF1, are altered concomitant with changes in RNA binding activity and stabilization of ARE-containing mRNAs. In particular, p40AUF1 recovered from polysomes was phosphorylated on Ser83 and Ser87 in untreated cells but lost these modifications following TPA treatment. We propose that selected signal transduction pathways may regulate ARE-directed mRNA turnover by reversible phosphorylation of polysome-associated p40AUF1.
Collapse
Affiliation(s)
- Gerald M Wilson
- Department of Biochemistry and Molecular Biology and Center for Fluorescence Spectroscopy, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Cui H, Green RD. Regulation of the cAMP-elevating effects of isoproterenol and forskolin in cardiac myocytes by treatments that cause increases in cAMP. Biochem Biophys Res Commun 2003; 307:119-26. [PMID: 12849990 DOI: 10.1016/s0006-291x(03)01130-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Regulation of the cAMP-elevating effects of isoproterenol and forskolin in cardiac myocytes by treatments that cause increases in cAMP. We have found that elevations in cyclic AMP (cAMP) have long-term effects on both the beta-adrenergic receptor and adenylyl cyclase in cultured chick ventricular myocytes. Pretreatment with isoproterenol for 15min markedly reduced the cAMP-elevating effect of a subsequent treatment with isoproterenol 18h later. Responses to isoproterenol were similarly reduced after overnight treatments with forskolin or phosphodiesterase inhibitors. Furthermore, these same treatments also markedly blunted the cAMP-elevating effect of forskolin, a direct activator of adenylyl cyclase. The blunting of the isoproterenol effect was greater than that of the forskolin effect, at least partially because the pretreatments caused a decrease in the number of beta-adrenergic receptors as well as a net decrease in adenylyl cyclase activity. Experiments with a recombinant adenovirus to express luciferase under the control of cAMP responsive elements (CREs) showed that the same treatments elevated cAMP sufficiently to drive the transcription of a gene with CREs in its promoter. The blunting of both the isoproterenol and forskolin responses was blocked by the inhibition of protein synthesis or by infecting cells with a recombinant adenovirus that expresses rabbit muscle cAMP-dependent protein kinase inhibitor (PKI). It is hypothesized that one or more adenylyl cyclase isozymes responsible for the generation of cAMP in the myocytes, along with other proteins previously reported to regulate beta-adrenergic receptors and perhaps adenylyl cyclase, are negatively regulated by cAMP, most likely at the level of gene expression, and that this regulation may have therapeutic consequences in the treatment of cardiac diseases.
Collapse
Affiliation(s)
- Hong Cui
- Department of Pharmacology (MC 868), School of Medicine, University of Illinois at Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA.
| | | |
Collapse
|