1
|
Nikolovska K, Seidler UE, Stock C. The Role of Plasma Membrane Sodium/Hydrogen Exchangers in Gastrointestinal Functions: Proliferation and Differentiation, Fluid/Electrolyte Transport and Barrier Integrity. Front Physiol 2022; 13:899286. [PMID: 35665228 PMCID: PMC9159811 DOI: 10.3389/fphys.2022.899286] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
The five plasma membrane Na+/H+ exchanger (NHE) isoforms in the gastrointestinal tract are characterized by distinct cellular localization, tissue distribution, inhibitor sensitivities, and physiological regulation. NHE1 (Slc9a1) is ubiquitously expressed along the gastrointestinal tract in the basolateral membrane of enterocytes, but so far, an exclusive role for NHE1 in enterocyte physiology has remained elusive. NHE2 (Slc9a2) and NHE8 (Slc9a8) are apically expressed isoforms with ubiquitous distribution along the colonic crypt axis. They are involved in pHi regulation of intestinal epithelial cells. Combined use of a knockout mouse model, intestinal organoid technology, and specific inhibitors revealed previously unrecognized actions of NHE2 and NHE8 in enterocyte proliferation and differentiation. NHE3 (Slc9a3), expressed in the apical membrane of differentiated intestinal epithelial cells, functions as the predominant nutrient-independent Na+ absorptive mechanism in the gut. The new selective NHE3 inhibitor (Tenapanor) allowed discovery of novel pathophysiological and drug-targetable NHE3 functions in cystic-fibrosis associated intestinal obstructions. NHE4, expressed in the basolateral membrane of parietal cells, is essential for parietal cell integrity and acid secretory function, through its role in cell volume regulation. This review focuses on the expression, regulation and activity of the five plasma membrane Na+/H+ exchangers in the gastrointestinal tract, emphasizing their role in maintaining intestinal homeostasis, or their impact on disease pathogenesis. We point to major open questions in identifying NHE interacting partners in central cellular pathways and processes and the necessity of determining their physiological role in a system where their endogenous expression/activity is maintained, such as organoids derived from different parts of the gastrointestinal tract.
Collapse
|
2
|
Wang JL, Zhao L, Zhu J, Wang DK, Ren MJ, Wang M, Liu Y, Boron WF, Chen LM. Expression, Localization, and Effect of High Salt Intake on Electroneutral Na +/HCO 3 - Cotransporter NBCn2 in Rat Small Intestine: Implication in Intestinal NaCl Absorption. Front Physiol 2019; 10:1334. [PMID: 31736772 PMCID: PMC6828735 DOI: 10.3389/fphys.2019.01334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022] Open
Abstract
The electroneutral Na+/HCO3 - cotransporter NBCn2 (SLC4A10) of solute carrier family 4 (SLC4) plays important physiological and pathological roles in the body. Our previous study showed that NBCn2 is expressed on the protein level in the small intestine of rat. Here, by reverse-transcription polymerase chain reaction (PCR), we identified a novel full-length NBCn2 variant, i.e., NBCn2-K, from rat small intestine. By pHi measurement with Xenopus oocytes, the activity of NBCn2-K is not significantly different from NBCn2-G. By western blotting, NBCn2 and the Na+/H+ exchanger NHE3 (SLC9A3) are predominantly expressed in the jejunum of rat small intestine. By immunofluorescence, NBCn2 and NHE3 are localized at the apical domain of the jejunum. NaCl overload decreases the expression of NBCn2 by 56% and that of NHE3 by 40% in the small intestine. We propose that NBCn2 is involved in the transepithelial NaCl absorption in the small intestine, and that the down-regulation of NBCn2 by NaCl represents an adaptive response to high salt intake in rat.
Collapse
Affiliation(s)
- Jin-Lin Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Jun Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Deng-Ke Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Mei-Juan Ren
- Key Laboratory of Molecular Biophysics of the Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Walter F. Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Pedersen SF, Counillon L. The SLC9A-C Mammalian Na +/H + Exchanger Family: Molecules, Mechanisms, and Physiology. Physiol Rev 2019; 99:2015-2113. [PMID: 31507243 DOI: 10.1152/physrev.00028.2018] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers play pivotal roles in the control of cell and tissue pH by mediating the electroneutral exchange of Na+ and H+ across cellular membranes. They belong to an ancient family of highly evolutionarily conserved proteins, and they play essential physiological roles in all phyla. In this review, we focus on the mammalian Na+/H+ exchangers (NHEs), the solute carrier (SLC) 9 family. This family of electroneutral transporters constitutes three branches: SLC9A, -B, and -C. Within these, each isoform exhibits distinct tissue expression profiles, regulation, and physiological roles. Some of these transporters are highly studied, with hundreds of original articles, and some are still only rudimentarily understood. In this review, we present and discuss the pioneering original work as well as the current state-of-the-art research on mammalian NHEs. We aim to provide the reader with a comprehensive view of core knowledge and recent insights into each family member, from gene organization over protein structure and regulation to physiological and pathophysiological roles. Particular attention is given to the integrated physiology of NHEs in the main organ systems. We provide several novel analyses and useful overviews, and we pinpoint main remaining enigmas, which we hope will inspire novel research on these highly versatile proteins.
Collapse
Affiliation(s)
- S F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - L Counillon
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
4
|
Crajoinas RO, Polidoro JZ, Girardi ACC. The potential role of myosin motor proteins in mediating the subcellular distribution of NHE3 in the renal proximal tubule. Am J Physiol Renal Physiol 2019; 316:F986-F992. [PMID: 30864843 DOI: 10.1152/ajprenal.00577.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Isoform 3 of the Na+/H+ exchanger (NHE3) is responsible for the majority of the reabsorption of NaCl, NaHCO3, and, consequently, water in the renal proximal tubule. As such, this transporter plays an essential role in acid-base balance and extracellular fluid volume homeostasis and determining systemic arterial blood pressure levels. NHE3 activity is modulated by a number of mechanisms, including the redistribution of the transporter between the body of the microvilli (where NHE3 is active) and the base of the microvilli (where NHE3 is less active). Although the physiological, pathophysiological, and pharmacological importance of the subcellular distribution of NHE3 has been well established, the exact mechanism whereby NHE3 is translocated along microvilli microdomains of the proximal tubule apical membrane is unknown. Nonmuscle myosin IIA and unconventional myosin VI move cargoes in anterograde and retrograde directions, respectively, and are known to redistribute along with NHE3 in the proximal tubule in response to a variety of natriuretic and antinatriuretic stimuli, including stimulation or inhibition of the renin-angiotensin system, high dietary Na+ intake, and high blood pressure. Therefore, this review aims to discuss the current evidence that suggests a potential role of myosin IIA and myosin VI in mediating the subcellular distribution of NHE3 along the kidney proximal tubule microvilli and their possible contribution in modifying NHE3-mediated Na+ reabsorption under both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Renato O Crajoinas
- Heart Institute (InCor), University of São Paulo Medical School , São Paulo , Brazil
| | - Juliano Z Polidoro
- Heart Institute (InCor), University of São Paulo Medical School , São Paulo , Brazil
| | - Adriana C C Girardi
- Heart Institute (InCor), University of São Paulo Medical School , São Paulo , Brazil
| |
Collapse
|
5
|
Xu H, Ghishan FK, Kiela PR. SLC9 Gene Family: Function, Expression, and Regulation. Compr Physiol 2018; 8:555-583. [PMID: 29687889 DOI: 10.1002/cphy.c170027] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Slc9 family of Na+ /H+ exchangers (NHEs) plays a critical role in electroneutral exchange of Na+ and H+ in the mammalian intestine as well as other absorptive and secretory epithelia of digestive organs. These transport proteins contribute to the transepithelial Na+ and water absorption, intracellular pH and cellular volume regulation as well as the electrolyte, acid-base, and fluid volume homeostasis at the systemic level. They also influence the function of other membrane transport mechanisms, affect cellular proliferation and apoptosis as well as cell migration, adherence to the extracellular matrix, and tissue repair. Additionally, they modulate the extracellular milieu to facilitate other nutrient absorption and to regulate the intestinal microbial microenvironment. Na+ /H+ exchange is inhibited in selected gastrointestinal diseases, either by intrinsic factors (e.g., bile acids, inflammatory mediators) or infectious agents and associated bacterial toxins. Disrupted NHE activity may contribute not only to local and systemic electrolyte imbalance but also to the disease severity via multiple mechanisms. In this review, we describe the cation proton antiporter superfamily of Na+ /H+ exchangers with a particular emphasis on the eight SLC9A isoforms found in the digestive tract, followed by a more integrative description in their roles in each of the digestive organs. We discuss regulatory mechanisms that determine the function of Na+ /H+ exchangers as pertinent to the digestive tract, their regulation in pathological states of the digestive organs, and reciprocally, the contribution of dysregulated Na+ /H+ exchange to the disease pathogenesis and progression. © 2018 American Physiological Society. Compr Physiol 8:555-583, 2018.
Collapse
Affiliation(s)
- Hua Xu
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA
| | - Fayez K Ghishan
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA
| | - Pawel R Kiela
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA.,Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
6
|
Parathyroid hormone inhibition of Na+/H+ exchanger 3 transcription: Intracellular signaling pathways and transcription factor expression. Biochem Biophys Res Commun 2015; 461:582-8. [DOI: 10.1016/j.bbrc.2015.04.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/07/2015] [Indexed: 11/18/2022]
|
7
|
Mészáros K, Pruess L, Szabó AJ, Gondan M, Ritz E, Schaefer F. Development of the circadian clockwork in the kidney. Kidney Int 2014; 86:915-22. [DOI: 10.1038/ki.2014.199] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/03/2014] [Accepted: 04/10/2014] [Indexed: 11/09/2022]
|
8
|
Abstract
Tightly coupled exchange of Na(+) for H(+) occurs across the surface membrane of virtually all living cells. For years, the underlying molecular entity was unknown and the full physiological significance of the exchange process was not appreciated, but much knowledge has been gained in the last two decades. We now realize that, unlike most of the other transporters that specialize in supporting one specific function, Na(+)/H(+) exchangers (NHE) participate in a remarkable assortment of physiological processes, ranging from pH homeostasis and epithelial salt transport, to systemic and cellular volume regulation. In parallel, we have learned a great deal about the biochemistry and molecular biology of Na(+)/H(+) exchange. Indeed, it has now become apparent that exchange is mediated not by one, but by a diverse family of related yet distinct carriers (antiporters) sometimes present in different cell types and located in various intracellular compartments. Each one of these has unique structural features that dictate its functional role and mode of regulation. The biological relevance of Na(+)/H(+) exchange is emphasized by its evolutionary conservation; analogous exchangers are present from bacteria to man. Because of its wide distribution and versatile function, Na(+)/H(+) exchange has attracted an enormous amount of interest and therefore generated a vast literature. The vastness and complexity of the field has been compounded by the multiplicity of NHE isoforms. For reasons of space and in the spirit of this series, this overview is restricted to the family of mammalian NHEs.
Collapse
Affiliation(s)
- John Orlowski
- Department of Physiology, McGill University, Montreal, Canada
| | | |
Collapse
|
9
|
Li S, Kato A, Takabe S, Chen AP, Romero MF, Umezawa T, Nakada T, Hyodo S, Hirose S. Expression of a novel isoform of Na(+)/H(+) exchanger 3 in the kidney and intestine of banded houndshark, Triakis scyllium. Am J Physiol Regul Integr Comp Physiol 2013; 304:R865-76. [PMID: 23485868 DOI: 10.1152/ajpregu.00417.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Na(+)/H(+) exchanger 3 (NHE3) provides one of the major Na(+) absorptive pathways of the intestine and kidney in mammals, and recent studies of aquatic vertebrates (teleosts and elasmobranchs) have demonstrated that NHE3 is expressed in the gill and plays important roles in ion and acid-base regulation. To understand the role of NHE3 in elasmobranch osmoregulatory organs, we analyzed renal and intestinal expressions and localizations of NHE3 in a marine elasmobranch, Japanese banded houndshark (Triakis scyllium). mRNA for Triakis NHE3 was most highly expressed in the gill, kidney, spiral intestine, and rectum. The kidney and intestine expressed a transcriptional isoform of NHE3 (NHE3k/i), which has a different amino terminus compared with that of NHE3 isolated from the gill (NHE3g), suggesting that NHE3k/i and NHE3g arise from a single gene by alternative promoter usage. Immunohistochemical analyses of the Triakis kidney demonstrated that NHE3k/i is expressed in the apical membrane of a part of the proximal and late distal tubules in the sinus zone. In the bundle zone of the kidney, NHE3k/i was expressed in the apical membrane of the early distal tubules known as the diluting segment. In the spiral intestine and rectum, NHE3k/i was localized toward the apical membrane of the epithelial cells. The transcriptional levels of NHE3k/i were increased in the kidney when Triakis was acclimated in 130% seawater, whereas those in the spiral intestine were increased in fish acclimated in diluted seawater. These results suggest that NHE3 is involved in renal Na(+) reabsorption, urine acidification, and intestinal Na(+) absorption in elasmobranchs.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Biological Sciences, Tokyo Institute of Technology, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Reichardt SD, Föller M, Rexhepaj R, Pathare G, Minnich K, Tuckermann JP, Lang F, Reichardt HM. Glucocorticoids enhance intestinal glucose uptake via the dimerized glucocorticoid receptor in enterocytes. Endocrinology 2012; 153:1783-94. [PMID: 22294744 DOI: 10.1210/en.2011-1747] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucocorticoid (GC) treatment of inflammatory disorders, such as inflammatory bowel disease, causes deranged metabolism, in part by enhanced intestinal resorption of glucose. However, the underlying molecular mechanism is poorly understood. Hence, we investigated transcriptional control of genes reported to be involved in glucose uptake in the small intestine after GC treatment and determined effects of GC on electrogenic glucose transport from transepithelial currents. GR(villinCre) mice lacking the GC receptor (GR) in enterocytes served to identify the target cell of GC treatment and the requirement of the GR itself; GR(dim) mice impaired in dimerization and DNA binding of the GR were used to determine the underlying molecular mechanism. Our findings revealed that oral administration of dexamethasone to wild-type mice for 3 d increased mRNA expression of serum- and GC-inducible kinase 1, sodium-coupled glucose transporter 1, and Na(+)/H(+) exchanger 3, as well as electrogenic glucose transport in the small intestine. In contrast, GR(villinCre) mice did not respond to GC treatment, neither with regard to gene activation nor to glucose transport. GR(dim) mice were also refractory to GC, because dexamethasone treatment failed to increase both, gene expression and electrogenic glucose transport. In addition, the rise in blood glucose levels normally observed after GC administration was attenuated in both mutant mouse strains. We conclude that enhanced glucose transport in vivo primarily depends on gene regulation by the dimerized GR in enterocytes, and that this mechanism contributes to GC-induced hyperglycemia.
Collapse
Affiliation(s)
- Sybille D Reichardt
- Department of Cellular and Molecular Immunology, University of Göttingen Medical School, Göttingen 37073, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Silva PHI, Girardi ACC, Neri EA, Rebouças NA. Distinct mechanisms underlie adaptation of proximal tubule Na+/H+ exchanger isoform 3 in response to chronic metabolic and respiratory acidosis. Pflugers Arch 2012; 463:703-14. [PMID: 22419175 DOI: 10.1007/s00424-012-1092-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/03/2012] [Accepted: 02/22/2012] [Indexed: 12/11/2022]
Abstract
The Na(+/)H(+) exchanger isoform 3 (NHE3) is essential for HCO(3)(-) reabsorption in renal proximal tubules. The expression and function of NHE3 must adapt to acid-base conditions. The goal of this study was to elucidate the mechanisms responsible for higher proton secretion in proximal tubules during acidosis and to evaluate whether there are differences between metabolic and respiratory acidosis with regard to NHE3 modulation and, if so, to identify the relevant parameters that may trigger these distinct adaptive responses. We achieved metabolic acidosis by lowering HCO(3)(-) concentration in the cell culture medium and respiratory acidosis by increasing CO(2) tension in the incubator chamber. We found that cell-surface NHE3 expression was increased in response to both forms of acidosis. Mild (pH 7.21 ± 0.02) and severe (6.95 ± 0.07) metabolic acidosis increased mRNA levels, at least in part due to up-regulation of transcription, whilst mild (7.11 ± 0.03) and severe (6.86 ± 0.01) respiratory acidosis did not up-regulate NHE3 expression. Analyses of the Nhe3 promoter region suggested that the regulatory elements sensitive to metabolic acidosis are located between -466 and -153 bp, where two consensus binding sites for SP1, a transcription factor up-regulated in metabolic acidosis, were localised. We conclude that metabolic acidosis induces Nhe3 promoter activation, which results in higher mRNA and total protein level. At the plasma membrane surface, NHE3 expression was increased in metabolic and respiratory acidosis alike, suggesting that low pH is responsible for NHE3 displacement to the cell surface.
Collapse
Affiliation(s)
- Pedro Henrique Imenez Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 1524, sala 222, Cidade Universitária, São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
12
|
Abstract
The epithelial apical membrane Na+/H+ exchangers [NHE (sodium hydrogen exchanger)2 and NHE3] and Cl-/HCO3- exchangers [DRA (down-regulated in adenoma) and PAT-1 (putative anion transporter 1)] are key luminal membrane transporters involved in electroneutral NaCl absorption in the mammalian intestine. During the last decade, there has been a surge of studies focusing on the short-term regulation of these electrolyte transporters, particularly for NHE3 regulation. However, the long-term regulation of the electrolyte transporters, involving transcriptional mechanisms and transcription factors that govern their basal regulation or dysregulation in diseased states, has only now started to unfold with the cloning and characterization of their gene promoters. The present review provides a detailed analysis of the core promoters of NHE2, NHE3, DRA and PAT-1 and outlines the transcription factors involved in their basal regulation as well as in response to both physiological (butyrate, protein kinases and probiotics) and pathophysiological (cytokines and high levels of serotonin) stimuli. The information available on the transcriptional regulation of the recently identified NHE8 isoform is also highlighted. Therefore the present review bridges a gap in our knowledge of the transcriptional mechanisms underlying the alterations in the gene expression of intestinal epithelial luminal membrane Na+ and Cl- transporters involved in electroneutral NaCl absorption. An understanding of the mechanisms of the modulation of gene expression of these transporters is important for a better assessment of the pathophysiology of diarrhoea associated with inflammatory and infectious diseases and may aid in designing better management protocols.
Collapse
|
13
|
Abstract
Na(+) and Cl(-) movement across the intestinal epithelium occurs by several interconnected mechanisms: (a) nutrient-coupled Na(+) absorption, (b) electroneutral NaCl absorption, (c) electrogenic Cl(-) secretion by CFTR, and (d) electrogenic Na(+) absorption by ENaC. All these transport modes require a favorable electrochemical gradient maintained by the basolateral Na(+)/K(+)-ATPase, a Cl(-) channel, and K(+) channels. Electroneutral NaCl absorption is observed from the small intestine to the distal colon. This transport is mediated by apical Na(+)/H(+) (NHE2/3) and Cl(-)/HCO(3)(-) (Slc26a3/a6 and others) exchangers that provide the major route of NaCl absorption. Electroneutral NaCl absorption and Cl(-) secretion by CFTR are oppositely regulated by the autonomic nerve system, the immune system, and the endocrine system via PKAα, PKCα, cGKII, and/or SGK1. This integrated regulation requires the formation of macromolecular complexes, which are mediated by the NHERF family of scaffold proteins and involve internalization of NHE3. Through use of knockout mice and human mutations, a more detailed understanding of the integrated as well as subtle regulation of electroneutral NaCl absorption by the mammalian intestine has emerged.
Collapse
Affiliation(s)
- Akira Kato
- Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan.
| | | |
Collapse
|
14
|
Neri EA, Bezerra CNA, Rebouças NA. Essential regulatory elements for NHE3 gene transcription in renal proximal tubule cells. Braz J Med Biol Res 2011; 44:514-23. [PMID: 21537610 DOI: 10.1590/s0100-879x2011007500054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 04/11/2011] [Indexed: 11/21/2022] Open
Abstract
The objectives of the present study were to identify the cis-elements of the promoter absolutely required for the efficient rat NHE3 gene transcription and to locate positive and negative regulatory elements in the 5'-flanking sequence (5'FS), which might modulate the gene expression in proximal tubules, and to compare this result to those reported for intestinal cell lines. We analyzed the promoter activity of different 5'FS segments of the rat NHE3 gene, in the OKP renal proximal tubule cell line by measuring the activity of the reporter gene luciferase. Because the segment spanning the first 157 bp of 5'FS was the most active it was studied in more detail by sequential deletions, point mutations, and gel shift assays. The essential elements for gene transcription are in the region -85 to -33, where we can identify consensual binding sites for Sp1 and EGR-1, which are relevant to NHE3 gene basal transcription. Although a low level of transcription is still possible when the first 25 bp of the 5'FS are used as promoter, efficient transcription only occurs with 44 bp of 5'FS. There are negative regulatory elements in the segments spanning -1196 to -889 and -467 to -152, and positive enhancers between -889 and -479 bp of 5'FS. Transcription factors in the OKP cell nuclear extract efficiently bound to DNA elements of rat NHE3 promoter as demonstrated by gel shift assays, suggesting a high level of similarity between transcription factors of both species, including Sp1 and EGR-1.
Collapse
Affiliation(s)
- E A Neri
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
15
|
|
16
|
Xu H, Zhang B, Li J, Chen H, Wang C, Ghishan FK. Transcriptional inhibition of intestinal NHE8 expression by glucocorticoids involves Pax5. Am J Physiol Gastrointest Liver Physiol 2010; 299:G921-7. [PMID: 20671194 PMCID: PMC2957336 DOI: 10.1152/ajpgi.00227.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sodium/hydrogen exchangers (NHEs) are a family of proteins that transport sodium ions into the cells by moving protons out of the cells. They play a major role in sodium absorption, cell volume regulation, and intracellular pH regulation. Three out of nine identified NHEs (NHE2, NHE3, and NHE8) are expressed on the apical membrane of intestinal epithelial cells. Glucocorticoids have been found to regulate NHE3 function in the intestine, but it is unknown if they have a similar function on NHE8 expression. Interestingly, high glucocorticoid levels in the intestine coincide chronologically with the change from high expression of NHE8 to high expression of NHE3. Studies were performed to explore the role of glucocorticoids on NHE8 expression during intestinal maturation. Brush-border membrane vesicles were isolated from intestinal epithelia, and Western blotting was performed to determine NHE8 protein expression of suckling male rats treated with methylpredisolone. Real-time PCR was used to quantitate NHE8 mRNA expression in rats and Caco-2 cells. Human NHE8 promoter activity was characterized through transfection of Caco-2 cells. Gel mobility shift assays (GMSAs) were used to identify the promoter sequences and the transcription factors involved in glucocorticoid-mediated regulation. Our results showed that the expression of NHE8 mRNA and protein was decreased in glucocorticoid-treated rats and human intestinal epithelial cells (Caco-2). The activity of the human NHE8 gene promoter transfected in Caco-2 cells was also reduced by glucocorticoid treatment. GMSAs suggested that the reduction in promoter activity in the presence of glucocorticoids was due to enhanced transcription factor Pax5 binding on the NHE8 proximal promoter region. In conclusion, this study showed that glucocorticoids inhibit NHE8 gene expression by increasing Pax5 binding on NHE8 gene promoter, suggesting an important role for Pax5 during intestinal maturation.
Collapse
Affiliation(s)
- Hua Xu
- 1University of Arizona Health Sciences Center, Tucson, Arizona; and
| | - Bo Zhang
- 1University of Arizona Health Sciences Center, Tucson, Arizona; and
| | - Jing Li
- 1University of Arizona Health Sciences Center, Tucson, Arizona; and
| | - Huacong Chen
- 1University of Arizona Health Sciences Center, Tucson, Arizona; and
| | - Chunhui Wang
- 1University of Arizona Health Sciences Center, Tucson, Arizona; and ,2West China Medical School, Sichuan University, Sichuan, China
| | - Fayez K. Ghishan
- 1University of Arizona Health Sciences Center, Tucson, Arizona; and
| |
Collapse
|
17
|
Alexander RT, Grinstein S. Tethering, recycling and activation of the epithelial sodium–proton exchanger, NHE3. J Exp Biol 2009; 212:1630-7. [DOI: 10.1242/jeb.027375] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
NHE3 is a sodium–proton exchanger expressed predominantly in the apical membrane of renal and intestinal epithelia, where it plays a key role in salt and fluid absorption and pH homeostasis. It performs these functions through the exchange of luminal sodium for cytosolic protons. Acute regulation of NHE3 function is mediated by altering the total number of exchangers in the plasma membrane as well as their individual activity. Traffic between endomembrane and plasmalemmal pools of NHE3 dictates the density of exchangers available at the cell surface. The activity of the plasmalemmal pool, however,is not fixed and can be altered by the association with modifier proteins, by post-translational alterations (such as cAMP-mediated phosphorylation) and possibly also via interaction with specific plasmalemmal phospholipids. Interestingly, association with cytoskeletal components affects both levels of regulation, tethering NHE3 molecules at the surface and altering their intrinsic activity. This paper reviews the role of proteins and lipids in the modulation of NHE3 function.
Collapse
Affiliation(s)
- R. Todd Alexander
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada,T6G 2R7
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada,M5G 1X8
- Department of Biochemistry, University of Toronto, Ontario, Canada
| |
Collapse
|
18
|
Bobulescu IA, Moe OW. Luminal Na(+)/H (+) exchange in the proximal tubule. Pflugers Arch 2009; 458:5-21. [PMID: 18853182 PMCID: PMC2878283 DOI: 10.1007/s00424-008-0595-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 09/26/2008] [Indexed: 12/11/2022]
Abstract
The proximal tubule is critical for whole-organism volume and acid-base homeostasis by reabsorbing filtered water, NaCl, bicarbonate, and citrate, as well as by excreting acid in the form of hydrogen and ammonium ions and producing new bicarbonate in the process. Filtered organic solutes such as amino acids, oligopeptides, and proteins are also retrieved by the proximal tubule. Luminal membrane Na(+)/H(+) exchangers either directly mediate or indirectly contribute to each of these processes. Na(+)/H(+) exchangers are a family of secondary active transporters with diverse tissue and subcellular distributions. Two isoforms, NHE3 and NHE8, are expressed at the luminal membrane of the proximal tubule. NHE3 is the prevalent isoform in adults, is the most extensively studied, and is tightly regulated by a large number of agonists and physiological conditions acting via partially defined molecular mechanisms. Comparatively little is known about NHE8, which is highly expressed at the lumen of the neonatal proximal tubule and is mostly intracellular in adults. This article discusses the physiology of proximal Na(+)/H(+) exchange, the multiple mechanisms of NHE3 regulation, and the reciprocal relationship between NHE3 and NHE8 at the lumen of the proximal tubule.
Collapse
Affiliation(s)
- I. Alexandru Bobulescu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8856, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8856, USA
| | - Orson W. Moe
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8856, USA,
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8856, USA
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8856, USA
| |
Collapse
|
19
|
Su HW, Wang SW, Ghishan FK, Kiela PR, Tang MJ. Cell confluency-induced Stat3 activation regulates NHE3 expression by recruiting Sp1 and Sp3 to the proximal NHE3 promoter region during epithelial dome formation. Am J Physiol Cell Physiol 2008; 296:C13-24. [PMID: 19064501 DOI: 10.1152/ajpcell.00263.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Activation of signal transducer and activator of transcription-3 (Stat3) during cell confluency is related to its regulatory roles in cell growth arrest- or survival-related physiological or developmental processes. We previously demonstrated that this signaling event triggers epithelial dome formation by transcriptional augmentation of sodium hydrogen exchanger-3 (NHE3) expression. However, the detailed molecular mechanism remained unclear. By using serial deletions, site-directed mutagenesis, and EMSA analysis, we now demonstrate Stat3 binding to an atypical Stat3-response element in the rat proximal NHE3 promoter, located adjacent to a cluster of Sp cis-elements (SpA/B/C), within -77/-36 nt of the gene. SpB (-58/-55 nt) site was more effective than SpA (-72/-69 nt) site for cooperative binding of Sp1/Sp3. Increasing cell density had no effect on Sp1/Sp3 expression but resulted in their increased binding to the SpA/B/C probe along with Stat3 and concurrently with enhanced nuclear pTyr705-Stat3 level. Immunoprecipitation performed with the nuclear extracts demonstrated physical interaction of Stat3 and Sp1/Sp3 triggered by cell confluency. Stat3 inhibition by overexpression of dominant-negative Stat3-D mutant in MDCK cells or by small interfering RNA-mediated knockdown in Caco-2 cells resulted in inhibition of the cell density-induced NHE3 expression, Sp1/Sp3 binding, and NHE3 promoter activity and in decreased dome formation. Thus, during confluency, ligand-independent Stat3 activation leads to its interaction with Sp1/Sp3, their recruitment to the SpA/B/C cluster in a Stat3 DNA-binding domain-dependent fashion, increased transcription, and expression of NHE3, to coordinate cell density-mediated epithelial dome formation.
Collapse
Affiliation(s)
- Hsiao-Wen Su
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 Univ. Road, Tainan 70101, Taiwan
| | | | | | | | | |
Collapse
|
20
|
Pedersen SF. A novel NHE1 from red blood cells of the winter flounder: regulation by multiple signaling pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 559:89-98. [PMID: 18727230 DOI: 10.1007/0-387-23752-6_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Affiliation(s)
- Stine Falsig Pedersen
- Dept. of Biochemistry, August Krogh Institute, 13, Universitetsparken, DK-2100 Copenhagen O, Denmark.
| |
Collapse
|
21
|
Ivanis G, Braun M, Perry SF. Renal expression and localization of SLC9A3 sodium/hydrogen exchanger and its possible role in acid-base regulation in freshwater rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 2008; 295:R971-8. [PMID: 18667717 DOI: 10.1152/ajpregu.90328.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experiments were performed to assess the possible involvement of the Na(+)/H(+) exchanger isoform 3 (NHE3; SLC9A3) in renal acid-base regulation in adult rainbow trout (Oncorhynchus mykiss). NHE3 mRNA was expressed at high levels in the kidney relative to its paralog, NHE2. The results of in situ hybridization demonstrated an abundance of NHE3 mRNA in renal tubules. The combination of immunocytochemistry and histological staining revealed that NHE3 was confined to the apical membrane of proximal tubules, where it was colocalized with the vacuolar-type H(+)-ATPase. Levels of NHE3 protein (assessed by Western blotting) were increased during hypercapnia, likely as a result of increased transcription, as indicated by increasing levels of NHE3 mRNA (as determined by real-time PCR). Plasma cortisol concentration was increased during hypercapnia, and administration of exogenous cortisol caused a marked increase in NHE3 mRNA and protein. Thus we speculate that the elevation of plasma cortisol during hypercapnia contributes to transcriptional activation of NHE3 that ultimately promotes acid-base regulation by stimulating H(+) secretion and HCO(3)(-) reabsorption.
Collapse
Affiliation(s)
- Goran Ivanis
- Dept. of Biology, Univ. of Ottawa, 30 Marie Curie, Ottawa, ONT K1N 6N5, Canada
| | | | | |
Collapse
|
22
|
Bezerra CNA, Girardi ACC, Carraro-Lacroix LR, Rebouças NA. Mechanisms underlying the long-term regulation of NHE3 by parathyroid hormone. Am J Physiol Renal Physiol 2008; 294:F1232-7. [DOI: 10.1152/ajprenal.00025.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The activity of the Na+/H+ exchanger NHE3 is regulated by a number of factors including parathyroid hormone (PTH). In the current study, we used a renal epithelial cell line, the opossum kidney (OKP) cell, to elucidate the mechanisms underlying the long-term effects of PTH on NHE3 transport activity and expression. We observed that NHE3 activity was reduced 6 h after addition of PTH, and this reduction persisted almost unaltered after 24 h. The decrease in activity was associated with diminished NHE3 cell surface expression at 6, 16, and 24 h after PTH addition, total cellular NHE3 protein at 16 and 24 h, and NHE3 mRNA abundance at 24 h. The lower levels of NHE3 mRNA were associated to a small, but significant, decrease in mRNA stability. Additionally, by analyzing the rat NHE3 gene promoter activity in OKP cells, we verified that the regulatory region spanning the segment −152 to +55 was mildly reduced under the influence of PTH. This effect was completely abolished by the presence of the PKA inhibitor KT 5720. In conclusion, long-term exposure to PTH results in reduction of NHE3 mRNA levels due to a PKA-dependent inhibitory effect on the NHE3 promoter and a small reduction of mRNA half-life, and decrease in the total amount of protein which is preceded by endocytosis of the apical surface NHE3. The decreased NHE3 expression is likely to be responsible for the reduction of sodium, bicarbonate, and fluid reabsorption in the proximal tubule consistently perceived in experimental models of PTH disorders.
Collapse
|
23
|
Pearse I, Zhu Y, Murray E, Dudeja P, Ramaswamy K, Malakooti J. Sp1 and Sp3 control constitutive expression of the human NHE2 promoter by interactions with the proximal promoter and the transcription initiation site. Biochem J 2007; 407:101-11. [PMID: 17561809 PMCID: PMC2267401 DOI: 10.1042/bj20070364] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have previously cloned the human Na+/H+ exchanger NHE2 gene and its promoter region. In the present study, the regulatory elements responsible for the constitutive expression of NHE2 were studied. Transient transfection assays revealed that the -40/+150 promoter region contains the core promoter responsible for the optimal promoter activity. A smaller fragment, -10/+40, containing the TIS (transcription initiation site) showed minimal activity. We identified a palindrome that overlaps the TIS and binds to the transcription factors Sp1 and Sp3. Mutations in the 5' flank of the palindrome abolished the Sp1/Sp3 interaction and reduced promoter activity by approx. 45%. In addition, a conserved GC-box centered at -25 was found to play a critical role in basal promoter activity and also interacted with Sp1 and Sp3. An internal deletion in the GC-box severely reduced the promoter activity. Sp1/Sp3 binding to these elements was established using gel-mobility shift assays, confirmed by chromatin immunoprecipitation and co-transfections in Drosophila SL2 cells. Furthermore, we identified two positive regulatory elements in the DNA region corresponding to the 5'-UTR (5'-untranslated region). The results in the present study indicate that Sp1 and Sp3 are required for constitutive NHE2 expression and that the positive regulatory elements of the 5'-UTR may co-operate with the 5'-flanking region to achieve the optimal promoter activity.
Collapse
Affiliation(s)
- Ian Pearse
- *Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, U.S.A
| | - Ying X. Zhu
- *Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, U.S.A
| | - Eleanor J. Murray
- *Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, U.S.A
| | - Pradeep K. Dudeja
- *Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, U.S.A
- †Jesse Brown VA Medical Center, 820 South Damen Avenue, Chicago, IL 60612, U.S.A
| | - Krishnamurthy Ramaswamy
- *Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, U.S.A
- †Jesse Brown VA Medical Center, 820 South Damen Avenue, Chicago, IL 60612, U.S.A
| | - Jaleh Malakooti
- *Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
24
|
Abstract
NHE3 is the brush-border (BB) Na+/H+exchanger of small intestine, colon, and renal proximal tubule which is involved in large amounts of neutral Na+absorption. NHE3 is a highly regulated transporter, being both stimulated and inhibited by signaling that mimics the postprandial state. It also undergoes downregulation in diarrheal diseases as well as changes in renal disorders. For this regulation, NHE3 exists in large, multiprotein complexes in which it associates with at least nine other proteins. This review deals with short-term regulation of NHE3 and the identity and function of its recognized interacting partners and the multiprotein complexes in which NHE3 functions.
Collapse
Affiliation(s)
- Mark Donowitz
- Department of Medicine, GI Division, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
25
|
Driller K, Pagenstecher A, Uhl M, Omran H, Berlis A, Gründer A, Sippel AE. Nuclear factor I X deficiency causes brain malformation and severe skeletal defects. Mol Cell Biol 2007; 27:3855-3867. [PMID: 17353270 PMCID: PMC1899988 DOI: 10.1128/mcb.02293-06] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor family of nuclear factor I (NFI) proteins is encoded by four closely related genes: Nfia, Nfib, Nfic, and Nfix. A potential role for NFI proteins in regulating developmental processes has been implicated by their specific expression pattern during embryonic development and by analysis of NFI-deficient mice. It was shown that loss of NFIA results in hydrocephalus and agenesis of the corpus callosum and that NFIB deficiency leads to neurological defects and to severe lung hypoplasia, whereas Nfic knockout mice exhibit specific tooth defects. Here we report the knockout analysis of the fourth and last member of this gene family, Nfix. Loss of NFIX is postnatally lethal and leads to hydrocephalus and to a partial agenesis of the corpus callosum. Furthermore, NFIX-deficient mice develop a deformation of the spine, which is due to a delay in ossification of vertebral bodies and a progressive degeneration of intervertebral disks. Impaired endochondral ossification and decreased mineralization were also observed in femoral sections of Nfix-/- mice. Consistent with the defects in bone ossification we could show that the expression level of tetranectin, a plasminogen-binding protein involved in mineralization, is specifically downregulated in bones of NFIX-deficient mice.
Collapse
Affiliation(s)
- Katrin Driller
- Institut für Biologie III, Fakultät für Biologie, Albert-Ludwigs Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Pepe GJ, Burch MG, Albrecht ED. Regulation of expression and localisation of the Na+/H+ exchanger (NHE) 3 and the NHE regulatory factor 2 in baboon placental syncytiotrophoblast by oestrogen. Placenta 2007; 28:878-88. [PMID: 17336377 PMCID: PMC1994787 DOI: 10.1016/j.placenta.2007.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 12/21/2006] [Accepted: 01/03/2007] [Indexed: 10/23/2022]
Abstract
Our understanding of the regulation of the expression of the sodium hydrogen exchangers (NHE) and their regulatory factors (NHERF), which play important roles in fetal-placental homeostasis, is incomplete. We previously showed that the expression and localisation of NHE3 and NHERF2 in the juxtanuclear compartment of the placental syncytiotrophoblast were markedly decreased between mid and late baboon pregnancy. In the current study, immunocytochemical fluorescence localisation and level of NHE3/NHE1 and NHERF1/NHERF2 proteins were determined in late gestation in baboons untreated or treated throughout the second half of gestation with an aromatase inhibitor CGS 20267 alone (reduced oestrogen levels by >95%) or with oestradiol to determine whether oestrogen regulated antiporter developmental expression. The immunocytochemical expression of NHE3 and NHERF2 in the juxtanuclear compartment was minimal in baboons untreated or treated with CGS 20267 plus oestradiol (i.e. oestrogen-replete) but extensive in oestrogen-suppressed animals. Moreover, the abundant expression of NHERF2 in fetal vascular endothelium of oestrogen-replete baboons was decreased in oestrogen-suppressed animals. In contrast, expression and localisation of NHE1 and NHERF1 in the placental syncytiotrophoblast were not altered by oestrogen deprivation in baboons. Based on our current and previous findings, we propose that oestrogen plays an important role in regulating localisation and expression of components of the NHE system within and consequently development and function of the primate placental syncytiotrophoblast.
Collapse
Affiliation(s)
- G J Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA 23501-1980, USA.
| | | | | |
Collapse
|
27
|
Su HW, Yeh HH, Wang SW, Shen MR, Chen TL, Kiela PR, Ghishan FK, Tang MJ. Cell confluence-induced activation of signal transducer and activator of transcription-3 (Stat3) triggers epithelial dome formation via augmentation of sodium hydrogen exchanger-3 (NHE3) expression. J Biol Chem 2007; 282:9883-9894. [PMID: 17276988 DOI: 10.1074/jbc.m606754200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell confluence induces the activation of signal transducer and activator of transcription-3 (Stat3) in various cancer and epithelial cells, yet the biological implications and the associated regulatory mechanisms remain unclear. Because confluent polarized epithelia demonstrate dome formation and sodium influx that mimic the onset of differentiation, we sought to elucidate the role of Stat3 in association with the regulation of selective epithelial transporters in this biological phenomenon. This study established the correlation between Stat3 activation and cell confluence-induced dome formation in Madin-Darby canine kidney cells (MDCK) by following Stat3 activation events in dome-forming cells. Epifluorescent and confocal microscopy provided evidence showing specific localization of phosphorylated Stat3 Tyr(705) in the nuclei of dome-forming cells at initial stages. The relationship was further elucidated by the establishment of tetracycline-inducible expression of constitutive Stat3 mutant (Stat3-C) in MDCK cells or expression of dominant negative Stat3 (Stat3-D) stable cell lines (MDCK and NMuMG). Dome formation was promoted by the expression of Stat3-C but inhibited by Stat3-D. Two trans-epithelial transporters, NHE3 and ENaC alpha-subunit, were found to be increased during cell confluence. Interestingly, NHE3 expression could be specifically up-regulated by Stat3-C but inhibited by Stat3-D through promoter regulation, whereas NHE1 and ENaC alpha-subunit were not affected by Stat3 expression. Application of NHE3 shRNA, NHE3 inhibitors (EIPA and S3226) suppressed confluence-induced dome formation in MDCK or NMuMG cells. These results demonstrate a cell confluence-induced Stat3 signaling pathway in epithelial cells in triggering dome formation through NHE3 augmentation.
Collapse
Affiliation(s)
- Hsiao-Wen Su
- Institute of Basic Medical Sciences, University of Arizona Health Sciences Center, Tucson, Arizona 85724
| | - Hsuan-Heng Yeh
- Institute of Basic Medical Sciences, University of Arizona Health Sciences Center, Tucson, Arizona 85724
| | - Shainn-Wei Wang
- Institute of Basic Medical Sciences, University of Arizona Health Sciences Center, Tucson, Arizona 85724; Institute of Molecular Medicine, University of Arizona Health Sciences Center, Tucson, Arizona 85724
| | - Meng-Ru Shen
- Institute of Basic Medical Sciences, University of Arizona Health Sciences Center, Tucson, Arizona 85724; Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, Arizona 85724
| | - Tsu-Ling Chen
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, Arizona 85724
| | - Pawel R Kiela
- Departments of Pediatrics and Physiology, Steele Children's Research Center, University of Arizona Health Sciences Center, Tucson, Arizona 85724
| | - Fayez K Ghishan
- Departments of Pediatrics and Physiology, Steele Children's Research Center, University of Arizona Health Sciences Center, Tucson, Arizona 85724
| | - Ming-Jer Tang
- Institute of Basic Medical Sciences, University of Arizona Health Sciences Center, Tucson, Arizona 85724; Department of Physiology, University of Arizona Health Sciences Center, Tucson, Arizona 85724; Center for Gene Regulation and Signal Transduction Research, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
28
|
Sandu C, Artunc F, Palmada M, Rexhepaj R, Grahammer F, Hussain A, Yun C, Alessi DR, Lang F. Impaired intestinal NHE3 activity in the PDK1 hypomorphic mouse. Am J Physiol Gastrointest Liver Physiol 2006; 291:G868-76. [PMID: 16825708 DOI: 10.1152/ajpgi.00023.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In vitro experiments have demonstrated the stimulating effect of serum- and glucocorticoid-inducible kinase (SGK)1 on the activity of the Na+/H+ exchanger (NHE3). SGK1 requires activation by phosphoinositide-dependent kinase (PDK)1, which may thus similarly play a role in the regulation of NHE3-dependent epithelial electrolyte transport. The present study was performed to explore the role of PDK1 in the regulation of NHE3 activity. Because mice completely lacking functional PDK1 are not viable, hypomorphic mice expressing approximately 20% of PDK1 (pdk1(hm)) were compared with their wild-type littermates (pdk1(wt)). NHE3 activity in the intestine and PDK1-overexpressing HEK-293 cells was estimated by utilizing 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein fluorescence for the determination of intracellular pH. NHE activity was reflected by the Na+-dependent pH recovery from an ammonium prepulse (DeltapH(NHE)). The pH changes after an ammonium pulse allowed the calculation of cellular buffer capacity, which was not significantly different between pdk1(hm) and pdk1(wt) mice. DeltapH(NHE) was in pdk1(hm) mice, only 30 +/- 6% of the value obtained in pdk1(wt) mice. Conversely, DeltapH(NHE) was 32 +/- 7% larger in PDK1-overexpressing HEK-293 cells than in HEK-293 cells expressing the empty vector. The difference between pdk1(hm) and pdk1(wt) mice and between PDK1-overexpressing and empty vector-transfected HEK cells, respectively, was completely abolished in the presence of the NHE3 inhibitor S3226 (10 microM). In conclusion, defective PDK1 expression leads to significant impairment of NHE3 activity in the intestine, pointing to a role of PDK1-dependent signaling in the regulation of NHE-mediated electrolyte transport.
Collapse
Affiliation(s)
- Ciprian Sandu
- Department of Physiology I, University of Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Karinch AM, Lin CM, Meng Q, Pan M, Souba WW. Glucocorticoids have a role in renal cortical expression of the SNAT3 glutamine transporter during chronic metabolic acidosis. Am J Physiol Renal Physiol 2006; 292:F448-55. [PMID: 16954343 DOI: 10.1152/ajprenal.00168.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glucocorticoids are involved in many aspects of regulation of acid-base homeostasis, including the stimulation of renal ammoniagenesis during chronic metabolic acidosis. Plasma glutamine is the principal substrate for ammoniagenesis under these conditions. Expression of the System N glutamine transporter SNAT3 is increased in the renal proximal tubules during acidosis. In vivo studies in rats using 1) sham and adrenalectomized rats, 2) the glucocorticoid receptor antagonist RU486, and 3) dexamethasone treatment demonstrated involvement of glucocorticoids in regulation of SNAT3 expression. Adrenalectomy attenuated the acidosis-induced increase in renal cortical SNAT3 mRNA approximately 40%, and treatment with dexamethasone (1 mg x kg(-1) x day(-1) sc) partially reversed this effect. RU486 also blunted the acidosis-induced increase in SNAT3 expression approximately 50%. Chronic dexamethasone treatment (0.1 mg x kg(-1) x day(-1) sc, 6 days) of normal rats slightly increased SNAT3 expression. In all cases, renal glutamine arteriovenous difference mirrored SNAT3 expression and activity in the proximal tubules, suggesting that SNAT3 regulates glutamine uptake during acidosis. These studies indicate that glucocorticoids regulate acid-base homeostasis during metabolic acidosis in part by regulating expression of the System N transporter SNAT3.
Collapse
Affiliation(s)
- Anne M Karinch
- Department of Surgery, Milton S. Hershey Medical Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
30
|
Malakooti J, Sandoval R, Amin MR, Clark J, Dudeja PK, Ramaswamy K. Transcriptional stimulation of the human NHE3 promoter activity by PMA: PKC independence and involvement of the transcription factor EGR-1. Biochem J 2006; 396:327-36. [PMID: 16464174 PMCID: PMC1462713 DOI: 10.1042/bj20051391] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NHE3 (Na+/H+ exchanger 3) is essential for Na+ absorption in the ileum and is expressed in a cell-specific manner in the apical membrane of the intestinal epithelial cells. In the present study, we report the stimulatory effect of PMA on the hNHE3 (human NHE3) transcription. Pretreatment with actinomycin D or cycloheximide blocked the up-regulation of the NHE3 mRNA by PMA, indicating that the increased level of NHE3 mRNA expression is regulated by transcriptional activation and is dependent on de novo protein synthesis. 5'-Deletion of the promoter region and transfection analysis in C2BBe1 cells revealed that the PMA effect is mediated through a GC-rich DNA region between nt -88 and -69. Gel mobility-shift assays demonstrated that in nuclear extracts from C2BBe1 cells grown under the basal growth conditions, Sp1 (stimulating protein-1) and Sp3 interact with this GC-rich DNA region, while, in PMA-treated nuclear extracts, PMA-induced EGR-1 (early growth response gene product 1) transcription factor binds to the same site. Binding of EGR-1 diminished the Sp1 and Sp3 interactions with this promoter region significantly. Co-transfection of Sp1 or Sp3 into SL2 cells activated the NHE3-reporter constructs, suggesting that Sp1 and Sp3 act as positive regulators of the NHE3 expression. In addition, overexpression of EGR-1 was sufficient to transactivate the NHE3-reporter gene activity, and knockdown of EGR-1 with gene-specific small interfering RNA resulted in inhibition of the PMA-induced up-regulation of the endogenous NHE3 mRNA expression. Furthermore, the PKC (protein kinase C) inhibitor chelerythrine chloride did not affect PMA-induced NHE3 promoter activity, suggesting that PMA stimulation of the hNHE3 gene expression may be PKC-independent.
Collapse
Affiliation(s)
- Jaleh Malakooti
- Section of Digestive and Liver Diseases, Department of Medicine, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Grahammer F, Henke G, Sandu C, Rexhepaj R, Hussain A, Friedrich B, Risler T, Metzger M, Just L, Skutella T, Wulff P, Kuhl D, Lang F. Intestinal function of gene-targeted mice lacking serum- and glucocorticoid-inducible kinase 1. Am J Physiol Gastrointest Liver Physiol 2006; 290:G1114-23. [PMID: 16410368 DOI: 10.1152/ajpgi.00231.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In vitro experiments have revealed the ability of serum- and glucocorticoid-inducible kinase 1 (SGK1) to stimulate intestinal Na(+)-coupled glucose cotransporter 1 (SGLT1) and intestinal Na(+)/H(+) exchanger 3 (NHE3). The present study explored the contribution of SGK1 to the regulation of intestinal transport in vivo. SGK1 transcript levels were determined by real-time PCR and glucose-induced currents (I(g)) reflecting SGLT1 activity by Ussing chamber experiments. BCECF fluorescence was utilized for the determination of Na(+)-dependent pH recovery from an ammonium pulse (DeltapH(NHE)) reflecting NHE activity. As a result, intestinal SGK1 transcript levels were significantly enhanced by a 4-day treatment with 10 microg.mg body wt(-1).day(-1) dexamethasone (Dex). I(g) was, under control conditions, virtually identical in sgk1 knockout mice (sgk1(-/-)) and their wild type littermates (sgk1(+/+)). A 4-day treatment with Dex, however, increased I(g) approximately threefold in sgk1(+/+) mice but not in sgk1(-/-) mice. DeltapH(NHE) was similar in sgk1(-/-) and sgk1(+/+) mice before treatment. Dex increased DeltapH(NHE) approximately threefold in sgk1(+/+) mice and approximately twofold in sgk1(-/-)mice, an effect significantly blunted in the presence of the specific NHE3 blocker S-3226 (10 microM). According to Western blot analysis, Dex significantly enhanced SGLT1 and NHE3 protein abundance in brush-border membranes of sgk1(+/+) mice but not of sgk1(-/-)mice. In conclusion, basic functions of SGLT1 and NHE3 in the intestine do not require stimulation by SGK1. However, the effects of glucocorticoids on SGLT1 are fully, and on NHE3 partially, dependent on SGK1.
Collapse
|
32
|
Abstract
The regulation of volume is fundamental to life. There exist numerous conditions that can produce perturbations of cell volume. The cell has developed mechanisms to directly counteract these perturbations so as to maintain its physiological volume. Directed influx of the major extracellular cation, sodium, serves to counteract a decreased cell volume through the subsequent osmotically coupled movement of water to the intracellular space. This process, termed regulatory volume increase is often mediated by the ubiquitous sodium/hydrogen ion exchanger, NHE1. Similarly, the maintenance of intravascular volume is essential for the maintenance of blood pressure and consequently the proper perfusion of vital organs. Numerous mechanisms exist to counterbalance alterations in intravascular volume, not the least of which is the renal absorption of sodium filtered at the glomerulus. Two-thirds of filtered sodium and water are absorbed in the renal proximal tubule, a mechanism that intimately involves the apical sodium/hydrogen ion exchanger, NHE3. This isoform is fundamental to the maintenance and regulation of intravascular volume and blood pressure. In this article, the effects of cell volume on the activity of these different isoforms, NHE1 and NHE3, will be described and the consequences of their activity on intracellular and intravascular volume will be explored.
Collapse
Affiliation(s)
- R T Alexander
- Department of Pediatrics, Hospital for Sick Children, and Department of Biochemistry, University of Toronto, ON, Canada
| | | |
Collapse
|
33
|
Oweis S, Wu L, Kiela PR, Zhao H, Malhotra D, Ghishan FK, Xie Z, Shapiro JI, Liu J. Cardiac glycoside downregulates NHE3 activity and expression in LLC-PK1 cells. Am J Physiol Renal Physiol 2005; 290:F997-1008. [PMID: 16352745 DOI: 10.1152/ajprenal.00322.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ouabain, a cardiotonic steroid and a specific inhibitor of the Na(+)-K(+)-ATPase, has been shown to significantly inhibit transcellular Na(+) transport without altering the intracellular Na(+) concentration ([Na(+)](i)) in the epithelial cells derived from the renal proximal tubules. We therefore studied whether ouabain affects the activity and expression of Na(+)/H(+) exchanger isoform 3 (NHE3) representing the major route of apical Na(+) reabsorption in LLC-PK(1) cells. Chronic basolateral, but not apical, exposure to low-concentration ouabain (50 and 100 nM) did not change [Na(+)](i) but significantly reduced NHE3 activity, NHE3 protein, and mRNA expression. Inhibition of c-Src or phosphoinositide 3-kinase (PI3K) with PP2 or wortmannin, respectively, abolished ouabain-induced downregulation of NHE3 activity and mRNA expression. In caveolin-1 knockdown LLC-PK(1) cells, ouabain failed to downregulate NHE3 mRNA expression and NHE3 promoter activity. Ouabain response elements were mapped to a region between -450 and -1,194 nt, where decreased binding of thyroid hormone receptor (TR) and Sp1 to their cognate cis-elements was documented in vitro and in vivo by protein/DNA array analysis, EMSA, supershift, and chromatin immunoprecipitation. These data suggest that, in LLC-PK(1) cells, ouabain-induced signaling through the Na(+)-K(+)-ATPase-Src pathway results in decreased Sp1 and TR DNA binding activity and consequently in decreased expression and activity of NHE3. These novel findings may represent the underlying mechanism of cardiotonic steroid-mediated renal compensatory response to volume expansion and/or hypertension.
Collapse
Affiliation(s)
- Shadi Oweis
- Dept. of Medicine, Medical Univ. of Ohio, 3120 Glendale Ave., Toledo, OH 43614-5089, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Malakooti J, Sandoval R, Memark VC, Dudeja PK, Ramaswamy K. Zinc finger transcription factor Egr-1 is involved in stimulation of NHE2 gene expression by phorbol 12-myristate 13-acetate. Am J Physiol Gastrointest Liver Physiol 2005; 289:G653-63. [PMID: 15976391 DOI: 10.1152/ajpgi.00010.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The apical membrane Na(+)/H(+) exchanger isoforms NHE2 and NHE3 are involved in transepithelial Na(+) absorption in the intestine. However, they exhibit differences in their pattern of tissue expression and regulation of their activity by various molecular signals. To study the mechanisms involved in the transcriptional regulation of these genes, we characterized cis-acting elements within the human NHE2 promoter that regulate NHE2 promoter expression in C2BBe1 cells. A small DNA region (-85/+249) was involved in the regulation of basal transcriptional activity of the NHE2 promoter as determined by transient transfection assays. RT-PCR analysis showed that NHE2 mRNA was upregulated in response to phorbol 12-myristate 13-acetate (PMA). Results from actinomycin D-treated cells indicated that the regulation of the NHE2 gene by PMA occurs in part at the transcriptional level. Furthermore, PMA treatment led to a 100% increase in promoter activity through elements located on the -415/+249 DNA fragment. A PMA-induced nuclear factor that bound to the NHE2 promoter was identified as the transcription factor Egr-1. We identified two PMA response elements in the -415/+1 promoter region that bind to Sp1 and Sp3 in untreated nuclear extracts and to Egr-1 in PMA-treated nuclear extracts. In cotransfection experiments, Egr-1 was able to transactivate the NHE2 promoter. Our data indicate that Egr-1 may play a key role in regulated expression of the human NHE2 gene.
Collapse
Affiliation(s)
- Jaleh Malakooti
- Dept. of Medicine, Section of Digestive and Liver Diseases, University of Illinois, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
35
|
Choe KP, Kato A, Hirose S, Plata C, Sindic A, Romero MF, Claiborne JB, Evans DH. NHE3 in an ancestral vertebrate: primary sequence, distribution, localization, and function in gills. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1520-34. [PMID: 15994375 DOI: 10.1152/ajpregu.00048.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In mammals, the Na+/H+ exchanger 3 (NHE3) is expressed with Na+/K+-ATPase in renal proximal tubules, where it secretes H+ and absorbs Na+ to maintain blood pH and volume. In elasmobranchs (sharks, skates, and stingrays), the gills are the dominant site of pH and osmoregulation. This study was conducted to determine whether epithelial NHE homologs exist in elasmobranchs and, if so, to localize their expression in gills and determine whether their expression is altered by environmental salinity or hypercapnia. Degenerate primers and RT-PCR were used to deduce partial sequences of mammalian NHE2 and NHE3 homologs from the gills of the euryhaline Atlantic stingray (Dasyatis sabina). Real-time PCR was then used to demonstrate that mRNA expression of the NHE3 homolog increased when stingrays were transferred to low salinities but not during hypercapnia. Expression of the NHE2 homolog did not change with either treatment. Rapid amplification of cDNA was then used to deduce the complete sequence of a putative NHE3. The 2,744-base pair cDNA includes a coding region for a 2,511-amino acid protein that is 70% identical to human NHE3 (SLC9A3). Antisera generated against the carboxyl tail of the putative stingray NHE3 labeled the apical membranes of Na+/K+-ATPase-rich epithelial cells, and acclimation to freshwater caused a redistribution of labeling in the gills. This study provides the first NHE3 cloned from an elasmobranch and is the first to demonstrate an increase in gill NHE3 expression during acclimation to low salinities, suggesting that NHE3 can absorb Na+ from ion-poor environments.
Collapse
Affiliation(s)
- Keith P Choe
- Department of Zoology, University of Florida, Gainesville, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bobulescu IA, Dwarakanath V, Zou L, Zhang J, Baum M, Moe OW. Glucocorticoids acutely increase cell surface Na+/H+ exchanger-3 (NHE3) by activation of NHE3 exocytosis. Am J Physiol Renal Physiol 2005; 289:F685-91. [PMID: 15942046 PMCID: PMC2861571 DOI: 10.1152/ajprenal.00447.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glucocorticoids have important effects on renal function, including the modulation of renal acidification by the major proximal tubular Na(+)/H(+) exchanger, NHE3. While the chronic effect of glucocorticoids is considered to be primarily at the transcriptional level, with increases in NHE3 mRNA and protein expression driving increased transport activity, the mechanisms by which glucocorticoids activate NHE3 in an acute setting have not been investigated. Previous studies have shown that a glucocorticoid-stimulated increase in NHE3 activity can occur before any detectable change in NHE3 mRNA. The present study examines the acute effects of glucocorticoids on NHE3 using opossum kidney (OKP) cells as a cell model. In OKP cells, total NHE3 protein abundance was not changed by 3 h of treatment with dexamethasone (10(-6) M). However, the biotin-accessible fraction representing NHE3 at the apical membrane as well as Na(+)/H(+) exchange activity measured fluorimetrically using the pH-sensitive dye BCECF-AM were significantly increased. These effects were not prevented by the protein synthesis inhibitor cycloheximide. NHE3 insertion (biotinylatable NHE3 after sulfo-NHS-acetate blockade) was stimulated by dexamethasone incubation, with or without cycloheximide. The rate of NHE3 endocytic retrieval, assessed either by the avidin protection assay (early endocytosis) or by the sodium 2-mercaptoethane sulfonate (MesNa) cleavage assay (early and late endocytosis), was not affected by dexamethasone. These findings suggest that trafficking plays a key role in the acute stimulation of NHE3 by glucocorticoids, with exocytosis being the major contributor to the glucocorticoid-induced rapid increase in cell surface NHE3 protein abundance and Na(+)/H(+) exchange activity.
Collapse
Affiliation(s)
- I Alexandru Bobulescu
- Univ. of Texas Southwestern Medical Ctr., 5323 Harry Hines Blvd., Dallas, TX 75390-8856, USA
| | | | | | | | | | | |
Collapse
|
37
|
Gupta N, Dwarakanath V, Baum M. Maturation of the Na+/H+ antiporter (NHE3) in the proximal tubule of the hypothyroid adrenalectomized rat. Am J Physiol Renal Physiol 2004; 287:F521-7. [PMID: 15113742 PMCID: PMC4129228 DOI: 10.1152/ajprenal.00005.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In previous studies examining the role of glucocorticoids and thyroid hormone on the maturation of the Na(+)/H(+) antiporter (NHE3), we found attenuation in the maturational increase in proximal tubule apical Na(+)/H(+) antiporter activity but no change in NHE3 mRNA abundance in either glucocorticoid-deficient or hypothyroid rats. In addition, prevention of the maturational increase in either hormone failed to totally prevent the maturational increase in Na(+)/H(+) antiporter activity. We hypothesized that one hormone played a compensatory role when the other was deficient. The present study examined whether combined deficiency of thyroid and glucocorticoid hormones would completely prevent the maturation of the Na(+)/H(+) antiporter. Adrenalectomy was performed in 9-day-old hypothyroid Sprague-Dawley rats, a time before the normal postnatal maturational increase in these hormones occurs. Nine- and 30-day-old adrenalectomized (ADX), hypothyroid rats had comparable NHE3 mRNA abundance, which was 5- to 10-fold less than 30-day-old ADX, hypothyroid rats that received corticosterone-thyroxine replacement and 30-day-old sham control rats (P < 0.05). Brush-border membrane NHE3 protein abundance was comparable in 9- and 30-day-old ADX, hypothyroid groups and approximately 20-fold lower than both the 30-day replacement and 30-day sham groups (P < 0.05). Similarly, the replacement and sham groups had higher sodium-dependent proton secretion than 9- and 30-day-old ADX, hypothyroid groups (P < 0.05). We conclude that combined deficiency of both hormones totally prevents the maturational increase in NHE3 mRNA and protein abundance and Na(+)/H(+) antiporter activity.
Collapse
Affiliation(s)
- Neena Gupta
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9063, USA
| | | | | |
Collapse
|
38
|
Alrefai WA, Tyagi S, Gill R, Saksena S, Hadjiagapiou C, Mansour F, Ramaswamy K, Dudeja PK. Regulation of butyrate uptake in Caco-2 cells by phorbol 12-myristate 13-acetate. Am J Physiol Gastrointest Liver Physiol 2004; 286:G197-203. [PMID: 14525727 DOI: 10.1152/ajpgi.00144.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Butyrate and the other short-chain fatty acids (SCFAs) are the most abundant anions in the colonic lumen. Also, butyrate is the preferred energy source for colonocytes and has been shown to regulate colonic electrolyte and fluid absorption. Previous studies from our group have demonstrated that the HCO(3)(-)/SCFA(-) anion exchange process is one of the major mechanisms of butyrate transport across the purified human colonic apical membrane vesicles and the apical membrane of human colonic adenocarcinoma cell line Caco-2 and have suggested that it is mainly mediated via monocarboxylate transporter-1 (MCT-1) isoform. However, little is known regarding the regulation of SCFA transport by various hormones and signal transduction pathways. Therefore, the present studies were undertaken to examine whether hydrocortisone and phorbol 12-myristate 13-acetate (PMA) are involved in a possible regulation of the butyrate/anion exchange process in Caco-2 cells. The butyrate/anion exchange process was assessed by measuring a pH-driven [(14)C]butyrate uptake in Caco-2 cells. Our results demonstrated that 24-h incubation with PMA (1 microM) significantly increased [(14)C]butyrate uptake compared with incubation with 4alphaPMA (inactive form). In contrast, incubation with hydrocortisone had no significant effect on butyrate uptake in Caco-2 cells compared with vehicle (ethanol) alone. Induction of butyrate uptake by PMA appeared to be via an increase in the maximum velocity (V(max)) of the transport process with no significant changes in the K(m) of the transporter for butyrate. Parallel to the increase in the V(max) of [(14)C]butyrate uptake, the MCT-1 protein level was also increased in response to PMA incubation. Our studies demonstrated that the butyrate/anion exchange was increased in response to PMA treatment along with the induction in the level of MCT-1 expression in Caco-2 cells.
Collapse
Affiliation(s)
- W A Alrefai
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Slepkov E, Fliegel L. Regulation of Expression of the Na+/H+ Exchanger by Thyroid Hormone. VITAMINS AND HORMONES 2004; 69:249-69. [PMID: 15196885 DOI: 10.1016/s0083-6729(04)69009-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The Na+/H+ exchanger is a pH regulatory protein with a ubiquitous distribution in eukaryotic cells. Several isoforms of the Na+/H+ exchanger are known. The first isoform to be characterized and cloned, NHE1, is present on the plasma membrane of cells and functions to remove one intracellular proton in exchange for one extracellular sodium ion. It is involved in pH regulation, cell growth, differentiation, and cell migration. NHE1 is also involved in the cycle of damage that occurs in the heart with ischemic heart disease. Recent studies have shown that the Na+/H+ exchanger is regulated in response to thyroid hormone. Reduction in circulating thyroid hormone levels reduces the amount of both protein and mRNA of NHE1. Conversely, an elevation of thyroid hormone levels has the opposite effects. Transcriptional regulation of NHE1 expression has been demonstrated. The NHE1 promoter contains a TR alpha(1) binding site located between -841 to -800 bp. This element responds positively to TR alpha(1). This regulation of the NHE1 promoter by thyroid hormone is proposed to be responsible for postnatal changes in expression of the Na+/H+ exchanger.
Collapse
Affiliation(s)
- Emily Slepkov
- Department of Biochemistry, University of Alberta, Edmonton, Canada T6G 2H7
| | | |
Collapse
|
40
|
Amlal H, Wilke C. Resistance of mTAL Na+-dependent transporters and collecting duct aquaporins to dehydration in 7-month-old rats. Kidney Int 2003; 64:544-54. [PMID: 12846749 DOI: 10.1046/j.1523-1755.2003.00110.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Aging is associated with a defect in urinary concentration in both human and experimental animals. The purpose of these studies was to examine the urinary concentrating ability, the expression of kidney water channels [aquaporins (AQP1 to AQP3)], and medullary thick ascending limb (mTAL) Na+-dependent transporters in old but not senescent versus young animals in response to water deprivation. METHODS Two-month-old and 7-month-old rats were placed in metabolic cages and deprived of water for 72 hours. Kidney tissues were isolated and examined for the expression of AQP1 to AQP3 and mTAL, peptide-derived polyclonal antibody specific to kidney apical Na+-K+-2 Cl- cotransporter (BSC1), Na+/H+ exchanger isoform 3 (NHE3), and Na+ pump using semiquantitative immunoblotting and Northern hybridization. RESULTS After 72 hours of water deprivation, urine osmolality increased from 1269 to 3830 mOsm/kg H2O in 2-month-old rats, but only from 1027 to 2588 mOsm/kg H2O in 7-month-old rats. In response to water deprivation, AQP2 and AQP3 expression increased significantly in the cortex and medulla of 2-month-old rats but remained unchanged in the medulla or slightly increase in the cortex of 7-month-old animals. AQP1 expression was not altered by dehydration in both groups. The protein abundance of mTAL BSC1, NHE3, and Na+ pump increased significantly in young but remained unchanged in 7-month-old rats subjected to water deprivation. CONCLUSION Age-related decrease in urinary concentrating ability is an early event, developed before the onset of senescence. This defect results from reduced responsiveness of cortical AQP2 and AQP3 and a blunted response of medullary AQP2 and mTAL BSC1, NHE3, and Na+ pump to dehydration in aging kidneys.
Collapse
Affiliation(s)
- Hassane Amlal
- Department of Internal Medicine, University of Cincinnati School of Medicine, Cincinnati, Ohio 45267-0585, USA.
| | | |
Collapse
|
41
|
Kiela PR, LeSueur J, Collins JF, Ghishan FK. Transcriptional regulation of the rat NHE3 gene. Functional interactions between GATA-5 and Sp family transcription factors. J Biol Chem 2003; 278:5659-68. [PMID: 12464626 DOI: 10.1074/jbc.m209473200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of sodium-hydrogen exchanger isoform 3 (NHE3) in the intestinal and renal epithelium plays a critical role in sodium absorption and acid/base homeostasis. To decipher rat NHE3 gene regulation, its cis-acting regulatory elements and associated transcription factors were characterized by transient transfection of Caco-2, IEC-6, Qt6, and Drosophila SL2 cells. Deletion and mutational analyses demonstrated that the atypical TATA box located at bp -26/-31 was not necessary for promoter activity, and that a -20/+8-bp fragment represents a functional initiator. Within the 81-bp upstream region, three Sp transcription factor binding sites were critical because their mutation drastically reduced promoter activity. The roles of Sp1 and Sp3 were further demonstrated by electromobility shift assay and by transactivation of the NHE3 promoter in SL2 cells by forced expression of Sp1 and Sp3. Both of these transcription factors were found to act synergistically with GATA-5 bound to a GATA box in exon 1 (+20/+23 bp). These studies demonstrate that rat NHE3 promoter is initiator-driven and controlled mainly by Sp1 and Sp3, which functionally interact with GATA-5. This interaction represents a novel regulatory mechanism, which is likely to participate in a gradient of intestinal gene expression along the crypt-villus axis.
Collapse
Affiliation(s)
- Pawel R Kiela
- Departmentf Pediatrics and Physiology, Steele Memorial Children's Research Center, University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | | | | | | |
Collapse
|
42
|
Yun CC. Concerted roles of SGK1 and the Na+/H+ exchanger regulatory factor 2 (NHERF2) in regulation of NHE3. Cell Physiol Biochem 2003; 13:29-40. [PMID: 12649600 PMCID: PMC1474050 DOI: 10.1159/000070247] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2002] [Indexed: 01/01/2023] Open
Abstract
Na+/H+ exchanger regulatory factors, NHERF1 and NHERF2, are structurally related proteins and highly expressed in epithelial cells. These proteins are initially identified as accessory proteins in the regulation of Na+/H+ exchanger isoform 3, NHE3. In addition to regulation of NHE3, recent studies demonstrate the importance of NHERF1 and NHERF2 in recycling and localization of membrane receptors, ion channels and transporters. Recent studies show that serum- and glucocorticoid-induced kinase 1 (SGK1) specifically interacts with NHERF2 but not with NHERF1, adding to the growing number of differences between the two proteins. The association of SGK1 with NHERF2 is necessary for stimulation of NHE3 activity by glucocorticoids. In addition, SGK1 together with NHERF2 stimulates the K+ channel ROMK1, suggesting a broader role of SGK1 in regulation of ion transport.
Collapse
Affiliation(s)
- C Chris Yun
- Division of Digestive Disease, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
43
|
Abstract
Mammalian Na(+)/H(+) exchangers (NHE) mediate electroneutral countertransport of H(+) for Na(+) across the plasmalemmal and organellar membranes. They contribute to cellular and organellar pH and volume regulation and transepithelial Na(+) transport. The aim of this review is to illustrate the complex regulation of these transporters by focusing on the multiple mechanisms controlling the epithelial isoform, NHE3. A variety of agents and conditions (e.g., hormones, growth factors, cellular pH, and medium osmolarity) act in concert to achieve short-term and long-term regulation of this isoform. The underlying mechanism involves changes in the number of transporters on the cell surface and/or altered activity of the individual exchangers due to allosteric activation by intracellular protons, phosphorylation and interaction with accessory proteins and the cytoskeleton. A similar regulatory versatility probably applies to other NHE isoforms, and the lessons learned from studying members of the NHE family could serve as a useful reference when exploring the modes and levels of regulation of other transporters.
Collapse
Affiliation(s)
- Hisayoshi Hayashi
- Cell Biology Programme, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | | | | |
Collapse
|
44
|
Klisic J, Hu MC, Nief V, Reyes L, Fuster D, Moe OW, Ambühl PM. Insulin activates Na(+)/H(+) exchanger 3: biphasic response and glucocorticoid dependence. Am J Physiol Renal Physiol 2002; 283:F532-9. [PMID: 12167605 DOI: 10.1152/ajprenal.00365.2001] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insulin is an important regulator of renal salt and water excretion, and hyperinsulinemia has been implicated to play a role in hypertension. One of the target proteins of insulin action in the kidney is Na(+)/H(+) exchanger 3 (NHE3), a principal Na(+) transporter responsible for salt absorption in the mammalian proximal tubule. The molecular mechanisms involved in activation of NHE3 by insulin have not been studied so far. In opossum kidney (OK) cells, insulin increased Na(+)/H(+) exchange activity in a time- and concentration-dependent manner. This effect is due to activation of NHE3 as it persisted after pharmacological inhibition of NHE1 and NHE2. In the early phase of stimulation (2-12 h), NHE3 activity was increased without changes in NHE3 protein and mRNA. At 24 h, enhanced NHE3 activity was accompanied by an increase in total and cell surface NHE3 protein and NHE3 mRNA abundance. All the effects of insulin on NHE3 activity, protein, and mRNA were amplified in the presence of hydrocortisone. These results suggest that insulin stimulates renal tubular NHE3 activity via a biphasic mechanism involving posttranslational factors and an increase in NHE3 gene expression and the effects are dependent on the permissive action of hydrocortisone.
Collapse
Affiliation(s)
- Jelena Klisic
- Department of Physiology, University of Zurich-Irchel, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
45
|
Putney LK, Denker SP, Barber DL. The changing face of the Na+/H+ exchanger, NHE1: structure, regulation, and cellular actions. Annu Rev Pharmacol Toxicol 2002; 42:527-52. [PMID: 11807182 DOI: 10.1146/annurev.pharmtox.42.092001.143801] [Citation(s) in RCA: 351] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The NHE family of ion exchangers includes six isoforms (NHE1-NHE6) that function in an electroneutral exchange of intracellular H(+) for extracellular Na(+). This review focuses on the only ubiquitously expressed isoform, NHE1, which is localized at the plasma membrane where it plays a critical role in intracellular pH (pHi) and cell volume homeostasis. All NHE isoforms share a similar topology: an N-terminus of 12 transmembrane (TM) alpha-helices that collectively function in ion exchange, and a C-terminal cytoplasmic regulatory domain that modulates transport activity by the TM domain. Extracellular signals, mediated by diverse classes of cell-surface receptors, regulate NHE1 activity through distinct signaling networks that converge to directly modify the C-terminal regulatory domain. Modifications in the C-terminus, including phosphorylation and the binding of regulatory proteins, control transport activity by altering the affinity of the TM domain for intracellular H(+). Recently, it was determined that NHE1 also functions as a membrane anchor for the actin-based cytoskeleton, independently of its role in ion translocation. Through its effects on pHi homeostasis, cell volume, and the actin cortical network, NHE1 regulates a number of cell behaviors, including adhesion, shape determination, migration, and proliferation.
Collapse
Affiliation(s)
- L K Putney
- Department of Stomatology, University of California, San Francisco, HSW 604, San Francisco, California 94143-0512, USA.
| | | | | |
Collapse
|
46
|
Alvaro D, Gigliozzi A, Marucci L, Alpini G, Barbaro B, Monterubbianesi R, Minetola L, Mancino MG, Medina JF, Attili AF, Benedetti A. Corticosteroids modulate the secretory processes of the rat intrahepatic biliary epithelium. Gastroenterology 2002; 122:1058-69. [PMID: 11910357 DOI: 10.1053/gast.2002.32374] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS We investigated the expression of glucocorticoid receptors (GcRs) in the intrahepatic biliary epithelium and the role of corticosteroids in the regulation of cholangiocyte secretion. METHODS GcR was studied by immunohistochemistry, reverse-transcription polymerase chain reaction, and Western blots. The effects of dexamethasone and budesonide on biliary bicarbonate excretion and H+/HCO3- transport processes were investigated in bile fistula rats, isolated intrahepatic bile duct units (IBDUs), and purified cholangiocytes. RESULTS GcRs were expressed by rat cholangiocytes. Although acute administration of corticosteroids showed no effect, treatment for 2 days with dexamethasone or budesonide increased (P < 0.05) biliary bicarbonate concentration and secretion, which were blocked by the specific GcR antagonist, RU-486. IBDUs isolated from rats treated with dexamethasone or budesonide showed an increased (P < 0.05) activity of the Na+/H+ exchanger (NHE1 isoform) and Cl-/HCO3- exchanger (AE2 member), which was blocked by RU-486. Protein expression of NHE1 and AE2 and messenger RNA for NH1 but not AE2 were increased (P < 0.05) in isolated cholangiocytes by dexamethasone treatment. CONCLUSIONS The intrahepatic biliary epithelium expresses GcR and responds to corticosteroids by increasing bicarbonate excretion in bile. This is caused by corticosteroid-induced enhanced activities and protein expression of transport processes driving bicarbonate excretion in the biliary epithelium.
Collapse
Affiliation(s)
- Domenico Alvaro
- Division of Gastroenterology, Department of Clinical Medicine, University La Sapienza, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Malakooti J, Memark VC, Dudeja PK, Ramaswamy K. Molecular cloning and functional analysis of the human Na(+)/H(+) exchanger NHE3 promoter. Am J Physiol Gastrointest Liver Physiol 2002; 282:G491-500. [PMID: 11841999 DOI: 10.1152/ajpgi.00273.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Na(+)/H(+) exchanger (NHE) isoforms NHE2 and NHE3, colocalized to the brush border membrane of the epithelial cells, exhibit differences in their pattern of tissue expression and regulation by various molecular signals. To investigate the mechanisms involved in regulation of NHE3 gene expression, the human NHE3 promoter region was cloned and characterized. Primer extension experiments located the transcription start site to a position 116 nucleotides upstream from the translation start codon. The 5'-flanking region lacked a CCAAT box but contained a TATA-like sequence. Nucleotide sequencing of the 5'-flanking region revealed the presence of a number of cis elements including Sp1, AP-2, MZF-1, CdxA, Cdx-2, steroid and nonsteroid hormone receptor half sites, and a phorbol 12-myristate 13-acetate-response element. Transient transfection experiments using C2/bbe cell line defined a maximal promoter activity in -95/+5 region. The regulatory response elements clustered within this region include a potential transcription factor IID (TF IID), a CACCC, two Sp1, and two AP-2 motifs. Deletion of a fragment containing the AP-2 and Sp1 motifs resulted in a drastic decrease in promoter activity. In gel mobility shift assays, an oligonucleotide spanning from -78 to -56 bp bound a recombinant AP-2, and the corresponding binding activity in nuclear extracts was supershifted with anti-AP2alpha antibody. Our studies suggest that the NHE3 expression is regulated by a combination of cis elements and their cognate transcription factors that include the AP-2 and Sp1 family members.
Collapse
Affiliation(s)
- Jaleh Malakooti
- Department of Medicine, Section of Digestive and Liver Diseases, University of Illinois at Chicago and Chicago Veterans Affairs Westside Division, Chicago, Illinois 60612, USA.
| | | | | | | |
Collapse
|
48
|
Bannwarth S, Talakoub L, Letourneur F, Duarte M, Purcell DF, Hiscott J, Gatignol A. Organization of the human tarbp2 gene reveals two promoters that are repressed in an astrocytic cell line. J Biol Chem 2001; 276:48803-13. [PMID: 11641396 DOI: 10.1074/jbc.m104645200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRBP1 and TRBP2 are isoforms of a double-stranded RNA-binding protein that differ in their N-terminal end and were each identified by binding to human immunodeficiency virus type 1 (HIV-1) trans-activation-responsive RNA. TRBP1 and TRBP2 also bind and modulate the function of the double-stranded RNA-activated protein kinase, protein kinase R. Both proteins increase long terminal repeat expression in human and murine cells, and their gene has been mapped to human chromosome 12. We have isolated and characterized the complete tarbp2 gene (5493 bp) coding for the two TRBP proteins. Two adjacent promoters initiate transcription of alternative first exons for TRBP1 and TRBP2 mRNAs that are spliced onto common downstream exons. TRBP2 transcription and translation start sites are localized within the first intron of TRBP1. TRBP promoters are TATA-less but have CCAAT boxes, a CpG island, and several potential binding sites for transcriptional factors. Promoter deletion analysis identified two regions from position -1397 to -330 for TRBP1 and from position -330 to +38 for TRBP2 that are important for promoter function. TRBP2 promoter activity was expressed at a higher level compared with TRBP1 promoter. In addition, a specific down-regulation of TRBP1 and TRBP2 promoter activity was identified in human astrocytic cell line U251MG compared with HeLa cells. This minimal TRBP promoter activity may account for minimal HIV-1 replication in astrocytes.
Collapse
Affiliation(s)
- S Bannwarth
- Molecular Oncology Group, McGill AIDS Centre, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | | | | | |
Collapse
|
49
|
Kiela PR, Hines ER, Collins JF, Ghishan FK. Regulation of the rat NHE3 gene promoter by sodium butyrate. Am J Physiol Gastrointest Liver Physiol 2001; 281:G947-56. [PMID: 11557515 DOI: 10.1152/ajpgi.2001.281.4.g947] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Short-chain fatty acids, and especially butyrate (NaB), stimulate sodium and water absorption by inducing colonic Na+/H+ exchange (NHE). NaB induces NHE3 activity and protein and mRNA expression both in vivo and in vitro. NaB, as a histone deacetylase (HDAC) inhibitor, regulates gene transcription. We therefore studied whether NaB regulates transcription of the rat NHE3 promoter in transiently transfected Caco-2 cells. NaB (5 mM) strongly stimulated reporter gene activity, and this stimulation was prevented with actinomycin D, indicating transcriptional activation. NaB effects on the NHE3 promoter depended on the activity of Ser/Thr kinases, in particular, protein kinase A (PKA). However, PKA stimulation alone did not have an effect on promoter activity, and it did not act synergistically with NaB. Another HDAC inhibitor, Trichostatin A (TSA), stimulated NHE3 promoter in a Ser/Thr kinase-independent fashion. The putative NaB-responsive elements were localized within -320/-34 bp of the NHE3 promoter. These findings suggest that PKA mediates NaB effects on NHE3 gene transcription and that the mechanism of NaB action is different from that of TSA.
Collapse
Affiliation(s)
- P R Kiela
- Department of Pediatrics, Steele Memorial Children's Research Center, University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | | | | | | |
Collapse
|
50
|
Pepe GJ, Burch MG, Sibley CP, Davies WA, Albrecht ED. Expression of the mRNAs and Proteins for the Na(+)/H(+) exchangers and their regulatory factors in baboon and human placental syncytiotrophoblast. Endocrinology 2001; 142:3685-92. [PMID: 11459818 DOI: 10.1210/endo.142.8.8343] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In polarized epithelial cells of several organ systems, e.g. the kidney, a family of Na(+)/H(+) exchangers (e.g. Na(+)/H(+) exchanger-1 and -3) and their regulatory proteins, Na(+)/H(+) exchanger regulatory factor and Na(+)/H(+) exchanger-3 kinase A regulatory protein play a major role in regulating Na(+)/H(+) exchange integral to cellular homeostasis. Because the primate placenta regulates exchange of Na(+) and H(+) between the mother and fetus critical to fetal-placental homeostasis, the current study determined whether Na(+)/H(+) exchanger-1 and -3 were compartmentalized and associated with expression of Na(+)/H(+) exchanger regulatory factor and Na(+)/H(+) exchanger-3 kinase A regulatory protein in baboon and human syncytiotrophoblast. Using RT-PCR, single 413-bp Na(+)/H(+) exchanger-1 and 190-bp Na(+)/H(+) exchanger-3 products were expressed by baboon and human syncytiotrophoblasts. The 104-kDa Na(+)/H(+) exchanger-1 protein was detected by Western blot in microvillus membranes and to a much lesser extent in the basal membranes of the baboon and human syncytiotrophoblasts. In contrast, the 85-kDa Na(+)/H(+) exchanger-3 protein was detected primarily in membranes contiguous with the basal membranes of the syncytiotrophoblast of both species. Differential localization of Na(+)/H(+) exchanger-1 and -3 was confirmed by immunocytochemistry. The Na(+)/H(+) exchanger-3 regulatory protein, Na(+)/H(+) exchanger-3 kinase A regulatory protein, resided almost exclusively in the basal membranes, whereas Na(+)/H(+) exchanger regulatory factor was localized primarily to the microvillus membranes in the baboon and human syncytiotrophoblast. Collectively, these results are the first to show that the baboon and human term placental syncytiotrophoblast expressed the mRNAs and proteins for Na(+)/H(+) exchanger-1 and -3 and their regulatory factors and that Na(+)/H(+) exchanger-1 and Na(+)/H(+) exchanger regulatory factor resided primarily in the microvillus membranes, whereas Na(+)/H(+) exchanger-3 and Na(+)/H(+) exchanger-3 kinase A regulatory protein were localized to membranes contiguous with the basal membranes and to the basal membranes, respectively. We conclude that a complete Na(+)/H(+) exchange system is present in the baboon and human term placental syncytiotrophoblast and suggest that the primate placenta exhibits polarity with respect to the capacity for regulation of Na(+)/H(+) exchange between the placenta and the maternal and fetal circulations.
Collapse
Affiliation(s)
- G J Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA.
| | | | | | | | | |
Collapse
|