1
|
Ronchetti D, Traini V, Silvestris I, Fabbiano G, Passamonti F, Bolli N, Taiana E. The pleiotropic nature of NONO, a master regulator of essential biological pathways in cancers. Cancer Gene Ther 2024; 31:984-994. [PMID: 38493226 PMCID: PMC11257950 DOI: 10.1038/s41417-024-00763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
NONO is a member of the Drosophila behavior/human splicing (DBHS) family of proteins. NONO is a multifunctional protein that acts as a "molecular scaffold" to carry out versatile biological activities in many aspects of gene regulation, cell proliferation, apoptosis, migration, DNA damage repair, and maintaining cellular circadian rhythm coupled to the cell cycle. Besides these physiological activities, emerging evidence strongly indicates that NONO-altered expression levels promote tumorigenesis. In addition, NONO can undergo various post-transcriptional or post-translational modifications, including alternative splicing, phosphorylation, methylation, and acetylation, whose impact on cancer remains largely to be elucidated. Overall, altered NONO expression and/or activities are a common feature in cancer. This review provides an integrated scenario of the current understanding of the molecular mechanisms and the biological processes affected by NONO in different tumor contexts, suggesting that a better elucidation of the pleiotropic functions of NONO in physiology and tumorigenesis will make it a potential therapeutic target in cancer. In this respect, due to the complex landscape of NONO activities and interactions, we highlight caveats that must be considered during experimental planning and data interpretation of NONO studies.
Collapse
Affiliation(s)
- Domenica Ronchetti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Valentina Traini
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Ilaria Silvestris
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppina Fabbiano
- Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Passamonti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Niccolò Bolli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Taiana
- Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
2
|
Li Z, Mao K, Liu L, Xu S, Zeng M, Fu Y, Huang J, Li T, Gao G, Teng ZQ, Sun Q, Chen D, Cheng Y. Nuclear microRNA-mediated transcriptional control determines adult microglial homeostasis and brain function. Cell Rep 2024; 43:113964. [PMID: 38489263 DOI: 10.1016/j.celrep.2024.113964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Microglia are versatile regulators in brain development and disorders. Emerging evidence links microRNA (miRNA)-mediated regulation to microglial function; however, the exact underlying mechanism remains largely unknown. Here, we uncover the enrichment of miR-137, a neuropsychiatric-disorder-associated miRNA, in the microglial nucleus, and reveal its unexpected nuclear functions in maintaining the microglial global transcriptomic state, phagocytosis, and inflammatory response. Mechanistically, microglial Mir137 deletion increases chromatin accessibility, which contains binding motifs for the microglial master transcription factor Pu.1. Through biochemical and bioinformatics analyses, we propose that miR-137 modulates Pu.1-mediated gene expression by suppressing Pu.1 binding to chromatin. Importantly, we find that increased Pu.1 binding upregulates the target gene Jdp2 (Jun dimerization protein 2) and that knockdown of Jdp2 significantly suppresses the impaired phagocytosis and pro-inflammatory response in Mir137 knockout microglia. Collectively, our study provides evidence supporting the notion that nuclear miR-137 acts as a transcriptional modulator and that this microglia-specific function is essential for maintaining normal adult brain function.
Collapse
Affiliation(s)
- Zhu Li
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Kexin Mao
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China; Southwest United Graduate School, Kunming 650500, China
| | - Lin Liu
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Shengyun Xu
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Min Zeng
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Yu Fu
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Jintao Huang
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Tingting Li
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Guoan Gao
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Zhao-Qian Teng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinmiao Sun
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China; Southwest United Graduate School, Kunming 650500, China.
| | - Ying Cheng
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China; Southwest United Graduate School, Kunming 650500, China.
| |
Collapse
|
3
|
Ralvenius WT, Mungenast AE, Woolf H, Huston MM, Gillingham TZ, Godin SK, Penney J, Cam HP, Gao F, Fernandez CG, Czako B, Lightfoot Y, Ray WJ, Beckmann A, Goate AM, Marcora E, Romero-Molina C, Ayata P, Schaefer A, Gjoneska E, Tsai LH. A novel molecular class that recruits HDAC/MECP2 complexes to PU.1 motifs reduces neuroinflammation. J Exp Med 2023; 220:e20222105. [PMID: 37642942 PMCID: PMC10465325 DOI: 10.1084/jem.20222105] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/26/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023] Open
Abstract
Pervasive neuroinflammation occurs in many neurodegenerative diseases, including Alzheimer's disease (AD). SPI1/PU.1 is a transcription factor located at a genome-wide significant AD-risk locus and its reduced expression is associated with delayed onset of AD. We analyzed single-cell transcriptomic datasets from microglia of human AD patients and found an enrichment of PU.1-binding motifs in the differentially expressed genes. In hippocampal tissues from transgenic mice with neurodegeneration, we found vastly increased genomic PU.1 binding. We then screened for PU.1 inhibitors using a PU.1 reporter cell line and discovered A11, a molecule with anti-inflammatory efficacy and nanomolar potency. A11 regulated genes putatively by recruiting a repressive complex containing MECP2, HDAC1, SIN3A, and DNMT3A to PU.1 motifs, thus representing a novel mechanism and class of molecules. In mouse models of AD, A11 ameliorated neuroinflammation, loss of neuronal integrity, AD pathology, and improved cognitive performance. This study uncovers a novel class of anti-inflammatory molecules with therapeutic potential for neurodegenerative disorders.
Collapse
Affiliation(s)
- William T. Ralvenius
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alison E. Mungenast
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hannah Woolf
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Margaret M. Huston
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler Z. Gillingham
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stephen K. Godin
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jay Penney
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hugh P. Cam
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fan Gao
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Celia G. Fernandez
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Barbara Czako
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yaima Lightfoot
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William J. Ray
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adrian Beckmann
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alison M. Goate
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edoardo Marcora
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen Romero-Molina
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pinar Ayata
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University of New York, New York, NY, USA
| | - Anne Schaefer
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Elizabeta Gjoneska
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
4
|
Chen Y, Lu Y, Yang L, Ma W, Dong Y, Zhou S, Liu N, Gan W, Li D. LncRNA like NMRK2 mRNA functions as a key molecular scaffold to enhance mitochondrial respiration of NONO-TFE3 rearranged renal cell carcinoma in an NAD + kinase-independent manner. J Exp Clin Cancer Res 2023; 42:252. [PMID: 37770905 PMCID: PMC10537463 DOI: 10.1186/s13046-023-02837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND NONO-TFE3 rearranged renal cell carcinoma (NONO-TFE3 rRCC) is one of a subtype of TFE3 rRCCs with high malignancy and poor prognosis. Compared with clear cell RCC, NONO-TFE3 rRCC shows a preference for mitochondrial respiration. We recently identified that the upregulation of nicotinamide ribokinase 2 (NMRK2) was associated with enhanced mitochondrial respiration and tumor progression in TFE3 rRCC. METHODS A tumor-bearing mouse model was established to verify the pro-oncogenic effect of NMRK2 on NONO-TFE3 rRCC. Then the expression of NMRK2 RNA and protein was detected in cell lines and patient specimens. The NMRK2 transcripts were Sanger-sequenced and blasted at NCBI website. We constructed dCas13b-HA system to investigate the factors binding with NMRK2 RNA. We also used molecular experiments like RIP-seq, IP-MS, FISH and fluorescence techniques to explore the mechanisms that long non-coding RNA (lncRNA) like NMRK2 mRNA promoted the mitochondrial respiration of NONO-TFE3 rRCC. The efficacy of the combination of shRNA (NMRK2)-lentivirus and metformin on NONO-TFE3 rRCC was assessed by CCK-8 assay. RESULTS In this study, we confirmed that NMRK2 showed transcriptional-translational conflict and functioned as lncRNA like mRNA in the NONO-TFE3 rRCC. Furthermore, we revealed the molecular mechanism that NONO-TFE3 fusion suppressed the translation of NMRK2 mRNA. Most importantly, three major pathways were shown to explain the facilitation effects of lncRNA like NMRK2 mRNA on the mitochondrial respiration of NONO-TFE3 rRCC in an NAD+ kinase-independent manner. Finally, the efficacy of combination of shRNA (NMRK2)-lentivirus and metformin on NONO-TFE3 rRCC was demonstrated to be superior than either agent alone. CONCLUSIONS Overall, our data comprehensively demonstrated the mechanisms for the enhanced mitochondrial respiration in NONO-TFE3 rRCC and proposed lncRNA like NMRK2 mRNA as a therapy target for NONO-TFE3 rRCC.
Collapse
Affiliation(s)
- Yi Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yanwen Lu
- Department of Urology, Affiliated Drum Tower Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Lei Yang
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China
| | - Wenliang Ma
- Department of Urology, Affiliated Drum Tower Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yuhan Dong
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Shuoming Zhou
- Department of Urology, Affiliated Drum Tower Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Ning Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210001, China.
| | - Weidong Gan
- Department of Urology, Affiliated Drum Tower Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
5
|
Feng Y, Tan B, Dong H, Zheng L. FoxA2 represses ERβ-mediated pyroptosis in endometriosis by transcriptionally inhibiting IGF2BP1. Exp Cell Res 2023; 426:113539. [PMID: 36889571 DOI: 10.1016/j.yexcr.2023.113539] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/12/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Endometriosis is a severe disease which is associated with excessive activation of pyroptosis. Our present research aimed to investigate the function of Forkhead Box A2 (FoxA2) in regulating pyroptosis in endometriosis. METHODS IL-1β and IL-18 concentrations were assessed using ELISA. Cell pyroptosis was analyzed using flow cytometry. TUNEL staining was performed to determine human endometrial stromal cells (HESC) death. Moreover, ERβ mRNA stability was assessed using RNA degradation assay. Finally, the binding relationships between FoxA2, IGF2BP1 and ERβ were verified by dual-luciferase reporter system, ChIP, RIP and RNA pull-down assays. RESULTS Our results revealed that IGF2BP1 and ERβ were significantly upregulated in ectopic endometrium (EC) tissues of endometriosis patients compared to that in eutopic endometrium (EU) tissues as well as IL-18 and IL-1β levels. Loss-of-function experiments subsequently demonstrated that either IGF2BP1 knockdown or ERβ knockdown could repress HESC pyroptosis. In addition, IGF2BP1 upregulation promoted the pyroptosis in endometriosis by binding to ERβ and promoting ERβ mRNA stability. Our further research displayed that FoxA2 upregulation suppressed HESC pyroptosis by interacting with IGF2BP1 promoter. CONCLUSION Our research proved that FoxA2 upregulation downregulated ERβ by transcriptionally inhibiting IGF2BP1, thereby repressing pyroptosis in endometriosis.
Collapse
Affiliation(s)
- Ying Feng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, PR China.
| | - Buzhen Tan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, PR China
| | - Han Dong
- Department of Obstetrics and Gynecology, Gynecology Women and Children's Hospital of Jinzhou, Jinzhou, 121000, Liaoning Province, PR China
| | - Liyan Zheng
- Department of Obstetrics and Gynecology, ShangRao Guangxin District Traditional Chinese Medicine Hospital, Shangrao, 334100, Jiangxi Province, PR China
| |
Collapse
|
6
|
Boumpas P, Merabet S, Carnesecchi J. Integrating transcription and splicing into cell fate: Transcription factors on the block. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1752. [PMID: 35899407 DOI: 10.1002/wrna.1752] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022]
Abstract
Transcription factors (TFs) are present in all life forms and conserved across great evolutionary distances in eukaryotes. From yeast to complex multicellular organisms, they are pivotal players of cell fate decision by orchestrating gene expression at diverse molecular layers. Notably, TFs fine-tune gene expression by coordinating RNA fate at both the expression and splicing levels. They regulate alternative splicing, an essential mechanism for cell plasticity, allowing the production of many mRNA and protein isoforms in precise cell and tissue contexts. Despite this apparent role in splicing, how TFs integrate transcription and splicing to ultimately orchestrate diverse cell functions and cell fate decisions remains puzzling. We depict substantial studies in various model organisms underlining the key role of TFs in alternative splicing for promoting tissue-specific functions and cell fate. Furthermore, we emphasize recent advances describing the molecular link between the transcriptional and splicing activities of TFs. As TFs can bind both DNA and/or RNA to regulate transcription and splicing, we further discuss their flexibility and compatibility for DNA and RNA substrates. Finally, we propose several models integrating transcription and splicing activities of TFs in the coordination and diversification of cell and tissue identities. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Splicing Mechanisms.
Collapse
Affiliation(s)
- Panagiotis Boumpas
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, Lyon, France
| | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, Lyon, France
| | - Julie Carnesecchi
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, Lyon, France
| |
Collapse
|
7
|
The Epstein-Barr virus noncoding RNA EBER2 transactivates the UCHL1 deubiquitinase to accelerate cell growth. Proc Natl Acad Sci U S A 2021; 118:2115508118. [PMID: 34686609 DOI: 10.1073/pnas.2115508118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 12/23/2022] Open
Abstract
The Epstein-Barr virus (EBV) transforms resting B cells and is involved in the development of B cell lymphomas. We report here that the viral noncoding RNA EBER2 accelerates B cell growth by potentiating expression of the UCHL1 deubiquitinase that itself increased expression of the Aurora kinases and of cyclin B1. Importantly, this effect was also visible in Burkitt's lymphoma cells that express none of the virus's known oncogenes. Mechanistically, EBER2 bound the UCHL1 messenger RNA (mRNA), thereby bringing a protein complex that includes PU.1, a UCHL1 transactivator, to the vicinity of its promoter. Although the EBV oncogene LMP1 has been suggested to induce UCHL1, we show here that EBER2 plays a much more important role to reach significant levels of the deubiquitinase in infected cells. However, some viruses that carried a polymorphic LMP1 had an increased ability to achieve full UCHL1 expression. This work identifies a direct cellular target of a viral noncoding RNA that is likely to be central to EBV's oncogenic properties.
Collapse
|
8
|
Scheenstra MR, Martínez-Botía P, Acebes-Huerta A, Brouwer RWW, Caballero-Sánchez N, Gillemans N, De Bleser P, Nota B, De Cuyper IM, Salunkhe V, Woltman AM, van de Laar L, Rijkers E, Demmers JAA, van IJcken WFJ, Philipsen S, van den Berg TK, Kuijpers TW, Gutiérrez L. Comparison of the PU.1 transcriptional regulome and interactome in human and mouse inflammatory dendritic cells. J Leukoc Biol 2020; 110:735-751. [PMID: 33289106 DOI: 10.1002/jlb.6a1219-711rrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
Dendritic cells (DCs) are key immune modulators and are able to mount immune responses or tolerance. DC differentiation and activation imply a plethora of molecular and cellular responses, including transcriptional changes. PU.1 is a highly expressed transcription factor in DCs and coordinates relevant aspects of DC biology. Due to their role as immune regulators, DCs pose as a promising immunotherapy tool. However, some of their functional features, such as survival, activation, or migration, are compromised due to the limitations to simulate in vitro the physiologic DC differentiation process. A better knowledge of transcriptional programs would allow the identification of potential targets for manipulation with the aim of obtaining "qualified" DCs for immunotherapy purposes. Most of the current knowledge regarding DC biology derives from studies using mouse models, which not always find a parallel in human. In the present study, we dissect the PU.1 transcriptional regulome and interactome in mouse and human DCs, in the steady state or LPS activated. The PU.1 transcriptional regulome was identified by performing PU.1 chromatin immunoprecipitation followed by high-throughput sequencing and pairing these data with RNAsequencing data. The PU.1 interactome was identified by performing PU.1 immunoprecipitation followed by mass spectrometry analysis. Our results portray PU.1 as a pivotal factor that plays an important role in the regulation of genes required for proper DC activation and function, and assures the repression of nonlineage genes. The interspecies differences between human and mouse DCs are surprisingly substantial, highlighting the need to study the biology of human DCs.
Collapse
Affiliation(s)
- Maaike R Scheenstra
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Andrea Acebes-Huerta
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Rutger W W Brouwer
- Center for Biomics, Erasmus MC, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Nynke Gillemans
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Pieter De Bleser
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Data Mining and Modeling for Biomedicine, Ghent, Belgium
| | - Benjamin Nota
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Iris M De Cuyper
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Vishal Salunkhe
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Andrea M Woltman
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
- Current Address: Institute of Medical Education Research Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Lianne van de Laar
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Wilfred F J van IJcken
- Center for Biomics, Erasmus MC, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Immunotherapy, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Vrije University, Amsterdam, The Netherlands
| | - Laura Gutiérrez
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- University of Oviedo, Oviedo, Spain
| |
Collapse
|
9
|
Meydan C, Madrer N, Soreq H. The Neat Dance of COVID-19: NEAT1, DANCR, and Co-Modulated Cholinergic RNAs Link to Inflammation. Front Immunol 2020; 11:590870. [PMID: 33163005 PMCID: PMC7581732 DOI: 10.3389/fimmu.2020.590870] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic exerts inflammation-related parasympathetic complications and post-infection manifestations with major inter-individual variability. To seek the corresponding transcriptomic origins for the impact of COVID-19 infection and its aftermath consequences, we sought the relevance of long and short non-coding RNAs (ncRNAs) for susceptibility to COVID-19 infection. We selected inflammation-prone men and women of diverse ages among the cohort of Genome Tissue expression (GTEx) by mining RNA-seq datasets from their lung, and blood tissues, followed by quantitative qRT-PCR, bioinformatics-based network analyses and thorough statistics compared to brain cell culture and infection tests with COVID-19 and H1N1 viruses. In lung tissues from 57 inflammation-prone, but not other GTEx donors, we discovered sharp declines of the lung pathology-associated ncRNA DANCR and the nuclear paraspeckles forming neuroprotective ncRNA NEAT1. Accompanying increases in the acetylcholine-regulating transcripts capable of controlling inflammation co-appeared in SARS-CoV-2 infected but not H1N1 influenza infected lung cells. The lung cells-characteristic DANCR and NEAT1 association with inflammation-controlling transcripts could not be observed in blood cells, weakened with age and presented sex-dependent links in GTEx lung RNA-seq dataset. Supporting active involvement in the inflammatory risks accompanying COVID-19, DANCR's decline associated with decrease of the COVID-19-related cellular transcript ACE2 and with sex-related increases in coding transcripts potentiating acetylcholine signaling. Furthermore, transcription factors (TFs) in lung, brain and cultured infected cells created networks with the candidate transcripts, indicating tissue-specific expression patterns. Supporting links of post-infection inflammatory and cognitive damages with cholinergic mal-functioning, man and woman-originated cultured cholinergic neurons presented differentiation-related increases of DANCR and NEAT1 targeting microRNAs. Briefly, changes in ncRNAs and TFs from inflammation-prone human lung tissues, SARS-CoV-2-infected lung cells and man and woman-derived differentiated cholinergic neurons reflected the inflammatory pathobiology related to COVID-19. By shifting ncRNA differences into comparative diagnostic and therapeutic profiles, our RNA-sequencing based Resource can identify ncRNA regulating candidates for COVID-19 and its associated immediate and predicted long-term inflammation and neurological complications, and sex-related therapeutics thereof. Our findings encourage diagnostics of involved tissue, and further investigation of NEAT1-inducing statins and anti-cholinergic medications in the COVID-19 context.
Collapse
Affiliation(s)
- Chanan Meydan
- Department of Internal Medicine, Mayanei Hayeshua Medical Center, Bnei Brak, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Central District, Leumit Health Services, Tel Aviv, Israel
| | - Nimrod Madrer
- The Department of Biological Chemistry and The Edmond and Lilly Safra Center for Brain Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hermona Soreq
- The Department of Biological Chemistry and The Edmond and Lilly Safra Center for Brain Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Simko EAJ, Liu H, Zhang T, Velasquez A, Teli S, Haeusler AR, Wang J. G-quadruplexes offer a conserved structural motif for NONO recruitment to NEAT1 architectural lncRNA. Nucleic Acids Res 2020; 48:7421-7438. [PMID: 32496517 PMCID: PMC7367201 DOI: 10.1093/nar/gkaa475] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
The long non-coding RNA NEAT1 serves as a scaffold for the assembly of paraspeckles, membraneless nuclear organelles involved in gene regulation. Paraspeckle assembly requires NEAT1 recruitment of the RNA-binding protein NONO, however the NEAT1 elements responsible for recruitment are unknown. Herein we present evidence that previously unrecognized structural features of NEAT1 serve an important role in these interactions. Led by the initial observation that NONO preferentially binds the G-quadruplex conformation of G-rich C9orf72 repeat RNA, we find that G-quadruplex motifs are abundant and conserved features of NEAT1. Furthermore, we determine that NONO binds NEAT1 G-quadruplexes with structural specificity and provide evidence that G-quadruplex motifs mediate NONO-NEAT1 association, with NONO binding sites on NEAT1 corresponding largely to G-quadruplex motifs, and treatment with a G-quadruplex-disrupting small molecule causing dissociation of native NONO-NEAT1 complexes. Together, these findings position G-quadruplexes as a primary candidate for the NONO-recruiting elements of NEAT1 and provide a framework for further investigation into the role of G-quadruplexes in paraspeckle formation and function.
Collapse
Affiliation(s)
- Eric A J Simko
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Honghe Liu
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tao Zhang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Adan Velasquez
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shraddha Teli
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aaron R Haeusler
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Lee K, Jang SH, Tian H, Kim SJ. NonO Is a Novel Co-factor of PRDM1 and Regulates Inflammatory Response in Monocyte Derived-Dendritic Cells. Front Immunol 2020; 11:1436. [PMID: 32765503 PMCID: PMC7378894 DOI: 10.3389/fimmu.2020.01436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022] Open
Abstract
Proper expression of the transcription factor, Positive regulatory domain 1 (PRDM1), is required for maintaining homeostasis of human monocyte derived-dendritic cells (MO-DCs). The molecular mechanisms and gene targets of PRDM1 in B and T lymphocytes have been identified. However, the function of PRDM1 in dendritic cells (DCs) remains unclear. We investigate co-regulators of PRDM1 in MO-DCs identified by mass spectrometry (MS) and co-immunoprecipitation (Co-IP). Notably, non-POU domain-containing octamer-binding protein (NonO) was found to be a PRDM1 binding protein in the nucleus of MO-DCs. NonO is recruited to the PRDM1 binding site in the promoter region of IL-6. Knockdown of NonO expression by siRNA lessened suppression of IL-6 promoter activity by PRMD1 following LPS stimulation. While NonO binding to PRDM1 was observed in human myeloma cell lines, an effect of NonO on IL-6 expression was not observed. Thus, loss of NonO interrupted the inhibitory effect of PRDM1 on IL-6 expression in MO-DCs, but not plasma cells. Moreover, MO-DCs with low expression of PRDM1 or NonO induce an increased number of IL-21-producing TFH-like cells in vitro. These data suggest that low level of PRDM1 and NonO lead to enhanced activation of MO-DCs and the regulation of MO-DC function by PRDM1 is mediated through cell lineage-specific mechanisms.
Collapse
Affiliation(s)
- Kyungwoo Lee
- Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Su Hwa Jang
- Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Department of Biomedical Science, Graduate School of Biomedical Sciences and Engineering, Hanyang University, Seoul, South Korea
| | - Hong Tian
- Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Sun Jung Kim
- Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| |
Collapse
|
12
|
Feng P, Li L, Deng T, Liu Y, Ling N, Qiu S, Zhang L, Peng B, Xiong W, Cao L, Zhang L, Ye M. NONO and tumorigenesis: More than splicing. J Cell Mol Med 2020; 24:4368-4376. [PMID: 32168434 PMCID: PMC7176863 DOI: 10.1111/jcmm.15141] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/05/2020] [Accepted: 02/19/2020] [Indexed: 12/24/2022] Open
Abstract
The non-POU domain-containing octamer-binding protein NONO/p54nrb , which belongs to the Drosophila behaviour/human splicing (DBHS) family, is a multifunctional nuclear protein rarely functioning alone. Emerging solid evidences showed that NONO engages in almost every step of gene regulation, including but not limited to mRNA splicing, DNA unwinding, transcriptional regulation, nuclear retention of defective RNA and DNA repair. NONO is involved in many biological processes including cell proliferation, apoptosis, migration and DNA damage repair. Dysregulation of NONO has been found in many types of cancer. In this review, we summarize the current and fast-growing knowledge about the regulation of NONO, its biological function and implications in tumorigenesis and cancer progression. Overall, significant findings about the roles of NONO have been made, which might make NONO to be a new biomarker or/and a possible therapeutic target for cancers.
Collapse
Affiliation(s)
- Peifu Feng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Ling Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Tanggang Deng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Yan Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Neng Ling
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Siyuan Qiu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Lin Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Bo Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Wei Xiong
- Ophthalmology and Eye Research Center, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Lanqin Cao
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhang
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| |
Collapse
|
13
|
Spriano F, Chung EYL, Gaudio E, Tarantelli C, Cascione L, Napoli S, Jessen K, Carrassa L, Priebe V, Sartori G, Graham G, Selvanathan SP, Cavalli A, Rinaldi A, Kwee I, Testoni M, Genini D, Ye BH, Zucca E, Stathis A, Lannutti B, Toretsky JA, Bertoni F. The ETS Inhibitors YK-4-279 and TK-216 Are Novel Antilymphoma Agents. Clin Cancer Res 2019; 25:5167-5176. [PMID: 31182435 DOI: 10.1158/1078-0432.ccr-18-2718] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/18/2019] [Accepted: 05/31/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Transcription factors are commonly deregulated in cancer, and they have been widely considered as difficult to target due to their nonenzymatic mechanism of action. Altered expression levels of members of the ETS-transcription factors are often observed in many different tumors, including lymphomas. Here, we characterized two small molecules, YK-4-279 and its clinical derivative, TK-216, targeting ETS factors via blocking the protein-protein interaction with RNA helicases, for their antilymphoma activity. EXPERIMENTAL DESIGN The study included preclinical in vitro activity screening on a large panel of cell lines, both as single agent and in combination; validation experiments on in vivo models; and transcriptome and coimmunoprecipitation experiments. RESULTS YK-4-279 and TK-216 demonstrated an antitumor activity across several lymphoma cell lines, which we validated in vivo. We observed synergistic activity when YK-4-279 and TK-216 were combined with the BCL2 inhibitor venetoclax and with the immunomodulatory drug lenalidomide. YK-4-279 and TK-216 interfere with protein interactions of ETS family members SPIB, in activated B-cell-like type diffuse large B-cell lymphomas, and SPI1, in germinal center B-cell-type diffuse large B-cell lymphomas. CONCLUSIONS The ETS inhibitor YK-4-279 and its clinical derivative TK-216 represent a new class of agents with in vitro and in vivo antitumor activity in lymphomas. Although their detailed mechanism of action needs to be fully defined, in DLBCL they might act by targeting subtype-specific essential transcription factors.
Collapse
Affiliation(s)
- Filippo Spriano
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Elaine Yee Lin Chung
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Eugenio Gaudio
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Chiara Tarantelli
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Luciano Cascione
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sara Napoli
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | | | - Laura Carrassa
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Valdemar Priebe
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Giulio Sartori
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Garrett Graham
- Departments of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Saravana P Selvanathan
- Departments of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Andrea Cavalli
- Università della Svizzera italiana, Institute of Biomedical Research, Bellinzona, Switzerland
| | - Andrea Rinaldi
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Ivo Kwee
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Dalle Molle Institute for Artificial Intelligence, Manno, Switzerland
| | - Monica Testoni
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Davide Genini
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - B Hilda Ye
- Department of Cell Biology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, New York
| | - Emanuele Zucca
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | | | | | - Jeffrey A Toretsky
- Departments of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Francesco Bertoni
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland.
| |
Collapse
|
14
|
Roos-Weil D, Decaudin C, Armand M, Della-Valle V, Diop MK, Ghamlouch H, Ropars V, Hérate C, Lara D, Durot E, Haddad R, Mylonas E, Damm F, Pflumio F, Stoilova B, Metzner M, Elemento O, Dessen P, Camara-Clayette V, Cosset FL, Verhoeyen E, Leblond V, Ribrag V, Cornillet-Lefebvre P, Rameau P, Azar N, Charlotte F, Morel P, Charbonnier JB, Vyas P, Mercher T, Aoufouchi S, Droin N, Guillouf C, Nguyen-Khac F, Bernard OA. A Recurrent Activating Missense Mutation in Waldenström Macroglobulinemia Affects the DNA Binding of the ETS Transcription Factor SPI1 and Enhances Proliferation. Cancer Discov 2019; 9:796-811. [PMID: 31018969 DOI: 10.1158/2159-8290.cd-18-0873] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 03/28/2019] [Accepted: 04/18/2019] [Indexed: 11/16/2022]
Abstract
The ETS-domain transcription factors divide into subfamilies based on protein similarities, DNA-binding sequences, and interaction with cofactors. They are regulated by extracellular clues and contribute to cellular processes, including proliferation and transformation. ETS genes are targeted through genomic rearrangements in oncogenesis. The PU.1/SPI1 gene is inactivated by point mutations in human myeloid malignancies. We identified a recurrent somatic mutation (Q226E) in PU.1/SPI1 in Waldenström macroglobulinemia, a B-cell lymphoproliferative disorder. It affects the DNA-binding affinity of the protein and allows the mutant protein to more frequently bind and activate promoter regions with respect to wild-type protein. Mutant SPI1 binding at promoters activates gene sets typically promoted by other ETS factors, resulting in enhanced proliferation and decreased terminal B-cell differentiation in model cell lines and primary samples. In summary, we describe oncogenic subversion of transcription factor function through subtle alteration of DNA binding leading to cellular proliferation and differentiation arrest. SIGNIFICANCE: The demonstration that a somatic point mutation tips the balance of genome-binding pattern provides a mechanistic paradigm for how missense mutations in transcription factor genes may be oncogenic in human tumors.This article is highlighted in the In This Issue feature, p. 681.
Collapse
Affiliation(s)
- Damien Roos-Weil
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Camille Decaudin
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Marine Armand
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Véronique Della-Valle
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - M'boyba K Diop
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,AMMICa, INSERM US23/CNRS UMS3655, Gustave Roussy, Villejuif, France
| | - Hussein Ghamlouch
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Cécile Hérate
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Diane Lara
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,Sorbonne Université, INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Eric Durot
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Rima Haddad
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) DSV-IRCM-SCSR-LSHL, Université Paris Diderot Sorbonne Paris Cité, Fontenay-aux-Roses, France
| | - Elena Mylonas
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Frederik Damm
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Francoise Pflumio
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) DSV-IRCM-SCSR-LSHL, Université Paris Diderot Sorbonne Paris Cité, Fontenay-aux-Roses, France
| | - Bilyana Stoilova
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine,NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine and Department of Haematology, Oxford University and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Marlen Metzner
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine,NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine and Department of Haematology, Oxford University and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
| | - Philippe Dessen
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,AMMICa, INSERM US23/CNRS UMS3655, Gustave Roussy, Villejuif, France
| | - Valérie Camara-Clayette
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,AMMICa, INSERM US23/CNRS UMS3655, Gustave Roussy, Villejuif, France
| | - François-Loïc Cosset
- CIRI-InternationalCenter for Infectiology Research, Team EVIR, Université de Lyon; INSERM, U1111; Ecole Normale Supérieure de Lyon; Université Lyon 1; CNRS, UMR5308, Lyon, France
| | - Els Verhoeyen
- CIRI-InternationalCenter for Infectiology Research, Team EVIR, Université de Lyon; INSERM, U1111; Ecole Normale Supérieure de Lyon; Université Lyon 1; CNRS, UMR5308, Lyon, France.,Université Côte d'Azur, INSERM, C3M, Nice, France
| | | | - Vincent Ribrag
- INSERM U1170, Gustave Roussy, Villejuif, France.,DITEP Gustave Roussy, Villejuif, Paris, France
| | - Pascale Cornillet-Lefebvre
- Laboratoire d'hématologie, Pôle de biologie, CHU de Reims-Hôpital Robert Debré, Avenuedu Général Koenig, Reims, France
| | - Philippe Rameau
- AMMICa, INSERM US23/CNRS UMS3655, Gustave Roussy, Villejuif, France
| | - Nabih Azar
- Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | | | - Pierre Morel
- Centre Hospitalier Dr. Schaffner,Lens; Service d'Hématologie Clinique et Thérapie Cellulaire, CHU Amiens Picardie, Amiens cedex, France
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine,NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine and Department of Haematology, Oxford University and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Thomas Mercher
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Said Aoufouchi
- Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,CNRS UMR8200, Gustave Roussy, Villejuif, France
| | - Nathalie Droin
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,AMMICa, INSERM US23/CNRS UMS3655, Gustave Roussy, Villejuif, France
| | - Christel Guillouf
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Florence Nguyen-Khac
- Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France. .,Sorbonne Université, INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Olivier A Bernard
- INSERM U1170, Gustave Roussy, Villejuif, France. .,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
15
|
Albihlal WS, Gerber AP. Unconventional
RNA
‐binding proteins: an uncharted zone in
RNA
biology. FEBS Lett 2018; 592:2917-2931. [DOI: 10.1002/1873-3468.13161] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Waleed S. Albihlal
- Department of Microbial Sciences School of Biosciences and Medicine Faculty of Health and Medical Sciences University of Surrey Guildford UK
| | - André P. Gerber
- Department of Microbial Sciences School of Biosciences and Medicine Faculty of Health and Medical Sciences University of Surrey Guildford UK
| |
Collapse
|
16
|
Li D, Chen Y, Mei H, Jiao W, Song H, Ye L, Fang E, Wang X, Yang F, Huang K, Zheng L, Tong Q. Ets-1 promoter-associated noncoding RNA regulates the NONO/ERG/Ets-1 axis to drive gastric cancer progression. Oncogene 2018; 37:4871-4886. [PMID: 29773901 PMCID: PMC6117270 DOI: 10.1038/s41388-018-0302-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 03/20/2018] [Accepted: 04/16/2018] [Indexed: 01/12/2023]
Abstract
Emerging studies have indicated the essential functions of long noncoding RNAs (lncRNAs) during cancer progression. However, whether lncRNAs contribute to the upregulation of v-ets erythroblastosis virus E26 oncogene homolog 1 (Ets-1), an established oncogenic protein facilitating tumor invasion and metastasis, in gastric cancer remains elusive. Herein, we identified Ets-1 promoter-associated noncoding RNA (pancEts-1) as a novel lncRNA associated with the gastric cancer progression via mining of publicly available datasets and rapid amplification of cDNA ends. RNA pull-down, RNA immunoprecipitation, in vitro binding, and RNA electrophoretic mobility shift assays indicated the binding of pancEts-1 to non-POU domain containing octamer binding (NONO) protein. Mechanistically, pancEts-1 facilitated the physical interaction between NONO and Ets related gene (ERG), resulting in increased ERG transactivation and transcription of Ets-1 associated with gastric cancer progression. In addition, pancEts-1 facilitated the growth and aggressiveness of gastric cancer cells via interacting with NONO. In gastric cancer tissues, pancEts-1, NONO, and ERG were upregulated and significantly correlated with Ets-1 levels. High levels of pancEts-1, NONO, ERG, or Ets-1 were respectively associated with poor survival of gastric cancer patients, whereas simultaneous expression of all of them (HR = 3.012, P = 0.105) was not an independent prognostic factor for predicting clinical outcome. Overall, these results demonstrate that lncRNA pancEts-1 exhibits oncogenic properties that drive the progression of gastric cancer via regulating the NONO/ERG/Ets-1 axis.
Collapse
Affiliation(s)
- Dan Li
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Hong Mei
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Wanju Jiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Huajie Song
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Lin Ye
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Erhu Fang
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Xiaojing Wang
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Feng Yang
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China.
| | - Qiangsong Tong
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China.
| |
Collapse
|
17
|
Rambout X, Dequiedt F, Maquat LE. Beyond Transcription: Roles of Transcription Factors in Pre-mRNA Splicing. Chem Rev 2017; 118:4339-4364. [PMID: 29251915 DOI: 10.1021/acs.chemrev.7b00470] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Whereas individual steps of protein-coding gene expression in eukaryotes can be studied in isolation in vitro, it has become clear that these steps are intimately connected within cells. Connections not only ensure quality control but also fine-tune the gene expression process, which must adapt to environmental changes while remaining robust. In this review, we systematically present proven and potential mechanisms by which sequence-specific DNA-binding transcription factors can alter gene expression beyond transcription initiation and regulate pre-mRNA splicing, and thereby mRNA isoform production, by (i) influencing transcription elongation rates, (ii) binding to pre-mRNA to recruit splicing factors, and/or (iii) blocking the association of splicing factors with pre-mRNA. We propose various mechanistic models throughout the review, in some cases without explicit supportive evidence, in hopes of providing fertile ground for future studies.
Collapse
|
18
|
Rivera Vargas T, Cai Z, Shen Y, Dosset M, Benoit-Lizon I, Martin T, Roussey A, Flavell RA, Ghiringhelli F, Apetoh L. Selective degradation of PU.1 during autophagy represses the differentiation and antitumour activity of T H9 cells. Nat Commun 2017; 8:559. [PMID: 28916785 PMCID: PMC5602674 DOI: 10.1038/s41467-017-00468-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 07/02/2017] [Indexed: 12/22/2022] Open
Abstract
Autophagy, a catabolic mechanism that involves degradation of cellular components, is essential for cell homeostasis. Although autophagy favours the lineage stability of regulatory T cells, the contribution of autophagy to the differentiation of effector CD4 T cells remains unclear. Here we show that autophagy selectively represses T helper 9 (TH9) cell differentiation. CD4 T cells lacking Atg3 or Atg5 have increased interleukin-9 (IL-9) expression upon differentiation into TH9 cells relative to Atg3- or Atg5-expressing control cells. In addition, the TH9 cell transcription factor, PU.1, undergoes K63 ubiquitination and degradation through p62-dependent selective autophagy. Finally, the blockade of autophagy enhances TH9 cell anticancer functions in vivo, and mice with T cell-specific deletion of Atg5 have reduced tumour outgrowth in an IL-9-dependent manner. Overall, our findings reveal an unexpected function of autophagy in the modulation of TH9 cell differentiation and antitumour activity, and prompt potential autophagy-dependent modulations of TH9 activity for cancer immunotherapy. Autophagy is a cellular process for recycling cell constituents, and is essential for T cell activation, but its function in T cell polarization is still unclear. Here the authors show that autophagy induces the degradation of transcription factor PU.1 to negatively modulate TH9 homeostasis and antitumour immunity.
Collapse
Affiliation(s)
- Thaiz Rivera Vargas
- INSERM, U1231, Dijon, 21000, France.,Université de Bourgogne Franche Comté, Dijon, 21000, France
| | - Zhijian Cai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yingying Shen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Magalie Dosset
- INSERM, U1231, Dijon, 21000, France.,Université de Bourgogne Franche Comté, Dijon, 21000, France.,Etablissement Français du Sang, Besançon, 25000, France
| | - Isis Benoit-Lizon
- INSERM, U1231, Dijon, 21000, France.,Université de Bourgogne Franche Comté, Dijon, 21000, France
| | - Tiffany Martin
- INSERM, U1231, Dijon, 21000, France.,Université de Bourgogne Franche Comté, Dijon, 21000, France
| | - Aurélie Roussey
- INSERM, U1231, Dijon, 21000, France.,Université de Bourgogne Franche Comté, Dijon, 21000, France
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, 06520, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
| | - François Ghiringhelli
- INSERM, U1231, Dijon, 21000, France. .,Université de Bourgogne Franche Comté, Dijon, 21000, France. .,Centre Georges François Leclerc, Dijon, 21000, France.
| | - Lionel Apetoh
- INSERM, U1231, Dijon, 21000, France. .,Université de Bourgogne Franche Comté, Dijon, 21000, France. .,Centre Georges François Leclerc, Dijon, 21000, France.
| |
Collapse
|
19
|
Epstein-Barr virus super-enhancer eRNAs are essential for MYC oncogene expression and lymphoblast proliferation. Proc Natl Acad Sci U S A 2016; 113:14121-14126. [PMID: 27864512 DOI: 10.1073/pnas.1616697113] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr virus (EBV) super-enhancers (ESEs) are essential for lymphoblastoid cell (LCL) growth and survival. Reanalyses of LCL global run-on sequencing (Gro-seq) data found abundant enhancer RNAs (eRNAs) being transcribed at ESEs. Inactivation of ESE components, EBV nuclear antigen 2 (EBNA2) and bromodomain-containing protein 4 (BRD4), significantly decreased eRNAs at ESEs -428 and -525 kb upstream of the MYC oncogene transcription start site (TSS). shRNA knockdown of the MYC -428 and -525 ESE eRNA caused LCL growth arrest and reduced cell growth. Furthermore, MYC ESE eRNA knockdown also significantly reduced MYC expression, ESE H3K27ac signals, and MYC ESEs looping to MYC TSS. These data indicate that ESE eRNAs strongly affect cell gene expression and enable LCL growth.
Collapse
|
20
|
Duvignaud JB, Bédard M, Nagata T, Muto Y, Yokoyama S, Gagné SM, Vincent M. Structure, Dynamics, and Interaction of p54(nrb)/NonO RRM1 with 5' Splice Site RNA Sequence. Biochemistry 2016; 55:2553-66. [PMID: 27064654 DOI: 10.1021/acs.biochem.5b01240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
p54(nrb)/NonO is a nuclear RNA-binding protein involved in many cellular events such as pre-mRNA processing, transcription, and nuclear retention of hyper-edited RNAs. In particular, it participates in the splicing process by directly binding the 5' splice site of pre-mRNAs. The protein also concentrates in a nuclear body called paraspeckle by binding a G-rich segment of the ncRNA NEAT1. The N-terminal section of p54(nrb)/NonO contains tandem RNA recognition motifs (RRMs) preceded by an HQ-rich region including a threonine residue (Thr15) whose phosphorylation inhibits its RNA binding ability, except for G-rich RNAs. In this work, our goal was to understand the rules that characterize the binding of the p54(nrb)/NonO RRMs to their RNA target. We have done in vitro RNA binding experiments which revealed that only the first RRM of p54(nrb)/NonO binds to the 5' splice site RNA. We have then determined the structure of the p54(nrb)/NonO RRM1 by liquid-state NMR which revealed the presence of a canonical fold (β1α1β2β3α2β4) and the conservation of aromatic amino acids at the protein surface. We also investigated the dynamics of this domain by NMR. The p54(nrb)/NonO RRM1 displays some motional properties that are typical of a well-folded protein with some regions exhibiting more flexibility (loops and β-strands). Furthermore, we determined the affinity of p54(nrb)/NonO RRM1 interaction to the 5' splice site RNA by NMR and fluorescence quenching and mapped its binding interface by NMR, concluding in a classical nucleic acid interaction. This study provides an improved understanding of the molecular basis (structure and dynamics) that governs the binding of the p54(nrb)/NonO RRM1 to one of its target RNAs.
Collapse
Affiliation(s)
| | | | - Takashi Nagata
- RIKEN Center for Life Science Technologies , Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yutaka Muto
- RIKEN Center for Life Science Technologies , Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,Faculty of Pharmacy and Research Institute of Pharmaceutical Science, Musashino University , Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center , 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,RIKEN Structural Biology Laboratory , 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | |
Collapse
|
21
|
ZHANG XIUJUAN, WU CHANGLI, XIONG WEI, CHEN CHUNLING, LI RONG, ZHOU GUANGJI. Knockdown of p54nrb inhibits migration, invasion and TNF-α release of human acute monocytic leukemia THP1 cells. Oncol Rep 2016; 35:3742-8. [DOI: 10.3892/or.2016.4756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/22/2016] [Indexed: 11/06/2022] Open
|
22
|
Knott GJ, Bond CS, Fox AH. The DBHS proteins SFPQ, NONO and PSPC1: a multipurpose molecular scaffold. Nucleic Acids Res 2016; 44:3989-4004. [PMID: 27084935 PMCID: PMC4872119 DOI: 10.1093/nar/gkw271] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/05/2016] [Indexed: 12/23/2022] Open
Abstract
Nuclear proteins are often given a concise title that captures their function, such as 'transcription factor,' 'polymerase' or 'nuclear-receptor.' However, for members of the Drosophila behavior/human splicing (DBHS) protein family, no such clean-cut title exists. DBHS proteins are frequently identified engaging in almost every step of gene regulation, including but not limited to, transcriptional regulation, RNA processing and transport, and DNA repair. Herein, we present a coherent picture of DBHS proteins, integrating recent structural insights on dimerization, nucleic acid binding modalities and oligomerization propensity with biological function. The emerging paradigm describes a family of dynamic proteins mediating a wide range of protein-protein and protein-nucleic acid interactions, on the whole acting as a multipurpose molecular scaffold. Overall, significant steps toward appreciating the role of DBHS proteins have been made, but we are only beginning to understand the complexity and broader importance of this family in cellular biology.
Collapse
Affiliation(s)
- Gavin J Knott
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia
| | - Charles S Bond
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia
| | - Archa H Fox
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia
| |
Collapse
|
23
|
Hahn CN, Venugopal P, Scott HS, Hiwase DK. Splice factor mutations and alternative splicing as drivers of hematopoietic malignancy. Immunol Rev 2015; 263:257-78. [PMID: 25510282 DOI: 10.1111/imr.12241] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Differential splicing contributes to the vast complexity of mRNA transcripts and protein isoforms that are necessary for cellular homeostasis and response to developmental cues and external signals. The hematopoietic system provides an exquisite example of this. Recently, discovery of mutations in components of the spliceosome in various hematopoietic malignancies (HMs) has led to an explosion in knowledge of the role of splicing and splice factors in HMs and other cancers. A better understanding of the mechanisms by which alternative splicing and aberrant splicing contributes to the leukemogenic process will enable more efficacious targeted approaches to tackle these often difficult to treat diseases. The clinical implications are only just starting to be realized with novel drug targets and therapeutic strategies open to exploitation for patient benefit.
Collapse
Affiliation(s)
- Christopher N Hahn
- Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia; Department of Molecular Pathology, SA Pathology, Adelaide, SA, Australia; School of Medicine, University of Adelaide, Adelaide, SA, Australia; Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
24
|
St. Gelais C, Roger J, Wu L. Non-POU Domain-Containing Octamer-Binding Protein Negatively Regulates HIV-1 Infection in CD4(+) T Cells. AIDS Res Hum Retroviruses 2015; 31:806-16. [PMID: 25769457 DOI: 10.1089/aid.2014.0313] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
HIV-1 interacts with numerous cellular proteins during viral replication. Identifying such host proteins and characterizing their roles in HIV-1 infection can deepen our understanding of the dynamic interplay between host and pathogen. We previously identified non-POU domain-containing octamer-binding protein (NonO or p54nrb) as one of host factors associated with catalytically active preintegration complexes (PIC) of HIV-1 in infected CD4(+) T cells. NonO is involved in nuclear processes including transcriptional regulation and RNA splicing. Although NonO has been identified as an HIV-1 interactant in several recent studies, its role in HIV-1 replication has not been characterized. We investigated the effect of NonO on the HIV-1 life cycle in CD4(+) T cell lines and primary CD4(+) T cells using single-cycle and replication-competent HIV-1 infection assays. We observed that short hairpin RNA (shRNA)-mediated stable NonO knockdown in a CD4(+) Jurkat T cell line and primary CD4(+) T cells did not affect cell viability or proliferation, but enhanced HIV-1 infection. The enhancement of HIV-1 infection in Jurkat T cells correlated with increased viral reverse transcription and gene expression. Knockdown of NonO expression in Jurkat T cells modestly enhanced HIV-1 gag mRNA expression and Gag protein synthesis, suggesting that viral gene expression and RNA regulation are the predominantly affected events causing enhanced HIV-1 replication in NonO knockdown (KD) cells. Furthermore, overexpression of NonO in Jurkat T cells reduced HIV-1 single-cycle infection by 41% compared to control cells. Our data suggest that NonO negatively regulates HIV-1 infection in CD4(+) T cells, albeit it has modest effects on early and late stages of the viral life cycle, highlighting the importance of host proteins associated with HIV-1 PIC in regulating viral replication.
Collapse
Affiliation(s)
- Corine St. Gelais
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Jonathan Roger
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Li Wu
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
25
|
González-Vallinas J, Pagès A, Singh B, Eyras E. A semi-supervised approach uncovers thousands of intragenic enhancers differentially activated in human cells. BMC Genomics 2015; 16:523. [PMID: 26169177 PMCID: PMC4501197 DOI: 10.1186/s12864-015-1704-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 06/15/2015] [Indexed: 02/06/2023] Open
Abstract
Background Transcriptional enhancers are generally known to regulate gene transcription from afar. Their activation involves a series of changes in chromatin marks and recruitment of protein factors. These enhancers may also occur inside genes, but how many may be active in human cells and their effects on the regulation of the host gene remains unclear. Results We describe a novel semi-supervised method based on the relative enrichment of chromatin signals between 2 conditions to predict active enhancers. We applied this method to the tumoral K562 and the normal GM12878 cell lines to predict enhancers that are differentially active in one cell type. These predictions show enhancer-like properties according to positional distribution, correlation with gene expression and production of enhancer RNAs. Using this model, we predict 10,365 and 9777 intragenic active enhancers in K562 and GM12878, respectively, and relate the differential activation of these enhancers to expression and splicing differences of the host genes. Conclusions We propose that the activation or silencing of intragenic transcriptional enhancers modulate the regulation of the host gene by means of a local change of the chromatin and the recruitment of enhancer-related factors that may interact with the RNA directly or through the interaction with RNA binding proteins. Predicted enhancers are available at http://regulatorygenomics.upf.edu/Projects/enhancers.html. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1704-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Amadís Pagès
- Universitat Pompeu Fabra, Dr Aiguader 88, E08003, Barcelona, Spain.
| | - Babita Singh
- Universitat Pompeu Fabra, Dr Aiguader 88, E08003, Barcelona, Spain.
| | - Eduardo Eyras
- Universitat Pompeu Fabra, Dr Aiguader 88, E08003, Barcelona, Spain. .,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, E08010, Barcelona, Spain.
| |
Collapse
|
26
|
p54nrb/NONO regulates cyclic AMP-dependent glucocorticoid production by modulating phosphodiesterase mRNA splicing and degradation. Mol Cell Biol 2015; 35:1223-37. [PMID: 25605330 DOI: 10.1128/mcb.00993-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucocorticoid production in the adrenal cortex is activated in response to an increase in cyclic AMP (cAMP) signaling. The nuclear protein p54(nrb)/NONO belongs to the Drosophila behavior/human splicing (DBHS) family and has been implicated in several nuclear processes, including transcription, splicing, and RNA export. We previously identified p54(nrb)/NONO as a component of a protein complex that regulates the transcription of CYP17A1, a gene required for glucocorticoid production. Based on the multiple mechanisms by which p54(nrb)/NONO has been shown to control gene expression and the ability of the protein to be recruited to the CYP17A1 promoter, we sought to further define the molecular mechanism by which p54(nrb)/NONO confers optimal cortisol production. We show here that silencing p54(nrb)/NONO expression in H295R human adrenocortical cells decreases the ability of the cells to increase intracellular cAMP production and subsequent cortisol biosynthesis in response to adrenocorticotropin hormone (ACTH) stimulation. Interestingly, the expression of multiple phosphodiesterase (PDE) isoforms, including PDE2A, PDE3A, PDE3B, PDE4A, PDE4D, and PDE11A, was induced in p54(nrb)/NONO knockdown cells. Investigation of the mechanism by which silencing of p54(nrb)/NONO led to increased expression of select PDE isoforms revealed that p54(nrb)/NONO regulates the splicing of a subset of PDE isoforms. Importantly, we also identify a role for p54(nrb)/NONO in regulating the stability of PDE transcripts by facilitating the interaction between the exoribonuclease XRN2 and select PDE transcripts. In summary, we report that p54(nrb)/NONO modulates cAMP-dependent signaling, and ultimately cAMP-stimulated glucocorticoid biosynthesis by regulating the splicing and degradation of PDE transcripts.
Collapse
|
27
|
Ren Z, Wang Z, Hu Z, Hu X, Zhang H, Wu H, Hu R, Liu H. Decreased expression of P54(nrb) /NonO correlates with collagen deposition and fibrosis in human aortic dissection. Histopathology 2014; 65:570-80. [PMID: 24720418 DOI: 10.1111/his.12434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 04/09/2014] [Indexed: 12/29/2022]
Abstract
AIMS Aortic dissection (AD) is characterized by changes in the extracellular matrix, including fibrosis with collagen production. P54(nrb) /NonO is known to be involved in collagen formation. In this study, we examined whether AD is associated with abnormal P54(nrb) /NonO expression. METHODS AND RESULTS Aortic specimens and serum were obtained from 10 patients with AD and 10 controls. In-vitro cultures of vascular smooth muscle cells (VSMCs) and adventitial fibroblasts (AFs) were obtained from organ donors. P54(nrb) /NonO protein and mRNA levels were determined by Western blot, immunohistochemistry and quantitative real-time reverse transcription-polymerase chain reaction (quantitative real-time RT-PCR). To evaluate collagen expression, we stained tissue sections with Masson's trichrome. Serum concentration of TNF-α was determined by enzyme-linked immunosorbent assay (ELISA). Aortic P54(nrb) /NonO protein and mRNA were decreased in AD patients, compared with controls. Decreased P54(nrb) /NonO mRNA correlated significantly with increased collagen deposition and fibrosis in AD aortas. In VSMCs and AFs from normal human aortas, P54(nrb) /NonO was expressed strongly and localized to the nucleus. CONCLUSIONS Patients with AD exhibited significantly decreased expression of P54(nrb) /NonO. The significant correlation between P54(nrb) /NonO and collagen may point to novel thinking about collagen metabolism research in AD aorta.
Collapse
Affiliation(s)
- Zongli Ren
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Hubei, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Kupfer DM, White VL, Strayer DL, Crouch DJ, Burian D. Microarray characterization of gene expression changes in blood during acute ethanol exposure. BMC Med Genomics 2013; 6:26. [PMID: 23883607 PMCID: PMC3750403 DOI: 10.1186/1755-8794-6-26] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 07/17/2013] [Indexed: 11/29/2022] Open
Abstract
Background As part of the civil aviation safety program to define the adverse effects of ethanol on flying performance, we performed a DNA microarray analysis of human whole blood samples from a five-time point study of subjects administered ethanol orally, followed by breathalyzer analysis, to monitor blood alcohol concentration (BAC) to discover significant gene expression changes in response to the ethanol exposure. Methods Subjects were administered either orange juice or orange juice with ethanol. Blood samples were taken based on BAC and total RNA was isolated from PaxGene™ blood tubes. The amplified cDNA was used in microarray and quantitative real-time polymerase chain reaction (RT-qPCR) analyses to evaluate differential gene expression. Microarray data was analyzed in a pipeline fashion to summarize and normalize and the results evaluated for relative expression across time points with multiple methods. Candidate genes showing distinctive expression patterns in response to ethanol were clustered by pattern and further analyzed for related function, pathway membership and common transcription factor binding within and across clusters. RT-qPCR was used with representative genes to confirm relative transcript levels across time to those detected in microarrays. Results Microarray analysis of samples representing 0%, 0.04%, 0.08%, return to 0.04%, and 0.02% wt/vol BAC showed that changes in gene expression could be detected across the time course. The expression changes were verified by qRT-PCR. The candidate genes of interest (GOI) identified from the microarray analysis and clustered by expression pattern across the five BAC points showed seven coordinately expressed groups. Analysis showed function-based networks, shared transcription factor binding sites and signaling pathways for members of the clusters. These include hematological functions, innate immunity and inflammation functions, metabolic functions expected of ethanol metabolism, and pancreatic and hepatic function. Five of the seven clusters showed links to the p38 MAPK pathway. Conclusions The results of this study provide a first look at changing gene expression patterns in human blood during an acute rise in blood ethanol concentration and its depletion because of metabolism and excretion, and demonstrate that it is possible to detect changes in gene expression using total RNA isolated from whole blood. The analysis approach for this study serves as a workflow to investigate the biology linked to expression changes across a time course and from these changes, to identify target genes that could serve as biomarkers linked to pilot performance.
Collapse
Affiliation(s)
- Doris M Kupfer
- Civil Aerospace Medical Institute, AAM 610, Federal Aviation Administration, Bioaeronautical Sciences Research Laboratory, Oklahoma City, OK 73169, USA.
| | | | | | | | | |
Collapse
|
29
|
Epigenetic silencing of Bim transcription by Spi-1/PU.1 promotes apoptosis resistance in leukaemia. Cell Death Differ 2013; 20:1268-78. [PMID: 23852375 DOI: 10.1038/cdd.2013.88] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/14/2013] [Accepted: 06/07/2013] [Indexed: 12/17/2022] Open
Abstract
Deregulation of transcriptional networks contributes to haematopoietic malignancies. The transcription factor Spi-1/PU.1 is a master regulator of haematopoiesis and its alteration leads to leukaemia. Spi-1 overexpression inhibits differentiation and promotes resistance to apoptosis in erythroleukaemia. Here, we show that Spi-1 inhibits mitochondrial apoptosis in vitro and in vivo through the transcriptional repression of Bim, a proapoptotic factor. BIM interacts with MCL-1 that behaves as a major player in the survival of the preleukaemic cells. The repression of BIM expression reduces the amount of BIM-MCL-1 complexes, thus increasing the fraction of potentially active antiapoptotic MCL-1. We then demonstrate that Spi-1 represses Bim transcription by binding to the Bim promoter and by promoting the trimethylation of histone 3 on lysine 27 (H3K27me3, a repressive histone mark) on the Bim promoter. The PRC2 repressive complex of Polycomb is directly responsible for the deposit of H3K27me3 mark at the Bim promoter. SUZ12 and the histone methyltransferase EZH2, two PRC2 subunits bind to the Bim promoter at the same location than H3K27me3, distinct of the Spi-1 DNA binding site. As Spi-1 interacts with SUZ12 and EZH2, these results indicate that Spi-1 modulates the activity of PRC2 without directly recruiting the complex to the site of its activity on the chromatin. Our results identify a new mechanism whereby Spi-1 represses transcription and provide mechanistic insights on the antiapoptotic function of a transcription factor mediated by the epigenetic control of gene expression.
Collapse
|
30
|
Bruelle C, Bédard M, Blier S, Gauthier M, Traish AM, Vincent M. The mitotic phosphorylation of p54nrb modulates its RNA binding activity. Biochem Cell Biol 2011; 89:423-33. [DOI: 10.1139/o11-030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The RNA-binding protein p54nrb is involved in many nuclear processes including transcription, RNA processing, and retention of hyperedited RNAs. In interphase cells, p54nrb localizes to the nucleoplasm and concentrates with protein partners in the paraspeckles via an interaction with the non-coding RNA Neat1. During mitosis, p54nrb becomes multiphosphorylated and the effects of this modification are not known. In the present study, we show that p54nrb phosphorylation does not affect the interactions with its protein partners but rather diminishes its general RNA-binding ability. Biochemical assays indicate that in vitro phosphorylation of a GST-p54nrb construct by CDK1 abolishes the interaction with 5′ splice site RNA sequence. Site-directed mutagenesis shows that the threonine 15 residue, located N-terminal to the RRM tandem domains of p54nrb, is involved in this inhibition. In vivo analysis reveals that Neat1 ncRNA co-immunoprecipitates with p54nrb in either interphase or mitotic cells, suggesting that p54nrb–Neat1 interaction is not modulated by phosphorylation. Accordingly, in vitro phosphorylated GST-p54nrb still interacts with PIR-1 RNA, a G-rich Neat1 sequence known to interact with p54nrb. In vitro RNA binding assays show that CDK1-phosphorylation of a GST-p54nrb construct abolishes its interaction with homoribopolymers poly(A), poly(C), and poly(U) but not with poly(G). These data suggest that p54nrb interaction with RNA could be selectively modulated by phosphorylation during mitosis.
Collapse
Affiliation(s)
- Céline Bruelle
- PROTEO Research Center and Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Mikaël Bédard
- PROTEO Research Center and Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Stéphanie Blier
- PROTEO Research Center and Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Martin Gauthier
- PROTEO Research Center and Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Abdulmaged M. Traish
- Department of Biochemistry, Boston University School of Medicine, Center for Advanced Biomedical Research, 700 Albany Street, W607, Boston, MA 02118, USA
| | - Michel Vincent
- PROTEO Research Center and Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
31
|
Liu L, Xie N, Rennie P, Challis JRG, Gleave M, Lye SJ, Dong X. Consensus PP1 binding motifs regulate transcriptional corepression and alternative RNA splicing activities of the steroid receptor coregulators, p54nrb and PSF. Mol Endocrinol 2011; 25:1197-210. [PMID: 21566083 DOI: 10.1210/me.2010-0517] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Originally identified as essential pre-mRNA splicing factors, non-POU-domain-containing, octamer binding protein (p54nrb) and PTB-associated RNA splicing factor (PSF) are also steroid receptor corepressors. The mechanisms by which p54nrb and PSF regulate gene transcription remain unclear. Both p54nrb and PSF contain protein phosphatase 1 (PP1) consensus binding RVxF motifs, suggesting that PP1 may regulate phosphorylation status of p54nrb and PSF and thus their function in gene transcription. In this report, we demonstrated that PP1 forms a protein complex with both p54nrb and PSF. PP1 interacts directly with the RVxF motif only in p54nrb, but not in PSF. Association with PP1 results in dephosphorylation of both p54nrb and PSF in vivo and the loss of their transcriptional corepressor activities. Using the CD44 minigene as a reporter, we showed that PP1 regulates p54nrb and PSF alternative splicing activities that determine exon skipping vs. inclusion in the final mature RNA for translation. In addition, changes in transcriptional corepression and RNA splicing activities of p54nrb and PSF are correlated with alterations in protein interactions of p54nrb and PSF with transcriptional corepressors such as Sin3A and histone deacetylase 1, and RNA splicing factors such as U1A and U2AF. Furthermore, we demonstrated a novel function of the RVxF motif within PSF that enhances its corepression and RNA splicing activities independent of PP1. We conclude that the RVxF motifs play an important role in controlling the multifunctional properties of p54nrb and PSF in the regulation of gene transcription.
Collapse
Affiliation(s)
- Liangliang Liu
- Vancouver Prostate Center, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Dong X, Yu C, Shynlova O, Challis JRG, Rennie PS, Lye SJ. p54nrb is a transcriptional corepressor of the progesterone receptor that modulates transcription of the labor-associated gene, connexin 43 (Gja1). Mol Endocrinol 2009; 23:1147-60. [PMID: 19423654 DOI: 10.1210/me.2008-0357] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The progesterone receptor (PR) plays important roles in the establishment and maintenance of pregnancy. By dynamic interactions with coregulators, PR represses the expression of genes that increase the contractile activity of myometrium and contribute to the initiation of labor. We have previously shown that PTB-associated RNA splicing factor (PSF) can function as a PR corepressor. In this report, we demonstrated that the PSF heterodimer partner, p54nrb (non-POU-domain-containing, octamer binding protein), can also function as a transcription corepressor, independent of PSF. p54nrb Interacts directly with PR independent of progesterone. In contrast to PSF, p54nrb neither enhances PR protein degradation nor blocks PR binding to DNA. Rather, p54nrb recruits mSin3A through its N terminus to the PR-DNA complex, resulting in an inhibition of PR-mediated transactivation of the progesterone-response element-luciferase reporter gene. PR also repressed transcription of the connexin 43 gene (Gja1), an effect dependent on the presence of an activator protein 1 site within the proximal Gja1 promoter. Mutation of this site abolished PR-mediated repression and decreased the recruitment of PR and p54nrb onto the Gja1 promoter. Furthermore, knockdown p54nrb expression by small interfering RNA alleviated PR-mediated repression on Gja1 transcription, whereas overexpression of p54nrb enhanced it. In the physiological context of pregnancy, p54nrb protein levels decrease with the approach of labor in the rat myometrium. We conclude that p54nrb is a transcriptional corepressor of PR. Decreased expression of p54nrb at the time of labor may act to derepress PR-mediated inhibition on connexin 43 expression and contribute to the initiation of labor.
Collapse
Affiliation(s)
- Xuesen Dong
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada M5G 1X5.
| | | | | | | | | | | |
Collapse
|
33
|
Ahlander J, Bosco G. The RB/E2F pathway and regulation of RNA processing. Biochem Biophys Res Commun 2009; 384:280-3. [PMID: 19401190 DOI: 10.1016/j.bbrc.2009.04.107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 04/19/2009] [Indexed: 12/11/2022]
Abstract
The retinoblastoma tumor suppressor protein (RB) is inactivated in a majority of cancers. RB restricts cell proliferation by inhibiting the E2F family of transcription factors. The current model for RB/E2F function describes its role in regulating transcription at gene promoters. Whether the RB or E2F proteins might play a role in gene expression beyond transcription initiation is not well known. This review describes evidence that points to a novel role for the RB/E2F network in the regulation of RNA processing, and we propose a model as a framework for future research. The elucidation of a novel role of RB in RNA processing will have a profound impact on our understanding of the role of this tumor suppressor family in cell and developmental biology.
Collapse
Affiliation(s)
- Joseph Ahlander
- Department of Molecular and Cellular Biology, 1007 East Lowell Street, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
34
|
Downregulation of the Spi-1/PU.1 oncogene induces the expression of TRIM10/HERF1, a key factor required for terminal erythroid cell differentiation and survival. Cell Res 2008; 18:834-45. [PMID: 18560381 DOI: 10.1038/cr.2008.68] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Sustained expression of the Spi-1/PU.1 and Fli-1 oncoproteins blocks globin gene activation in mouse erythroleukemia cells; however, only Spi-1/PU.1 expression inhibits the inclusion of exon 16 in the mature 4.1R mRNA. This splicing event is crucial for a functional 4.1R protein and, therefore, for red blood cell membrane integrity. This report demonstrates that Spi-1/PU.1 downregulation induces the activation of TRIM10/hematopoietic RING finger 1 (HERF1), a member of the tripartite motif (TRIM)/RBCC protein family needed for globin gene transcription. Additionally, we demonstrate that TRIM10/HERF1 is required for the regulated splicing of exon 16 during late erythroid differentiation. Using inducible overexpression and silencing approaches, we found that: (1) TRIM10/HERF1 knockdown inhibits hemoglobin production and exon splicing and triggers cell apoptosis in dimethylsulfoxide (DMSO)-induced cells; (2) TRIM10/HERF1 upregulation is required but is insufficient on its own to activate exon retention; (3) Fli-1 has no effect on TRIM10/HERF1 expression, whereas either DMSO-induced downregulation or shRNA-knockdown of Spi-1/PU.1 expression is sufficient to activate TRIM10/HERF1 expression; and (4) Spi-1/PU.1 knockdown triggers both the transcription and the splicing events independently of the chemical induction. Altogether, these data indicate that primary Spi-1/PU.1 downregulation acts on late erythroid differentiation through at least two pathways, one of which requires TRIM10/HERF1 upregulation and parallels the Spi-1/PU.1-induced Fli-1 shutoff regulatory cascade.
Collapse
|
35
|
Hata K, Nishimura R, Muramatsu S, Matsuda A, Matsubara T, Amano K, Ikeda F, Harley VR, Yoneda T. Paraspeckle protein p54nrb links Sox9-mediated transcription with RNA processing during chondrogenesis in mice. J Clin Invest 2008; 118:3098-108. [PMID: 18677406 DOI: 10.1172/jci31373] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 06/11/2008] [Indexed: 11/17/2022] Open
Abstract
The Sox9 transcription factor plays an essential role in promoting chondrogenesis and regulating expression of chondrocyte extracellular-matrix genes. To identify genes that interact with Sox9 in promoting chondrocyte differentiation, we screened a cDNA library generated from the murine chondrogenic ATDC5 cell line to identify activators of the collagen, type II, alpha 1 (Col2a1) promoter. Here we have shown that paraspeckle regulatory protein 54-kDa nuclear RNA-binding protein (p54nrb) is an essential link between Sox9-regulated transcription and maturation of Sox9-target gene mRNA. We found that p54nrb physically interacted with Sox9 and enhanced Sox9-dependent transcriptional activation of the Col2a1 promoter. In ATDC5 cells, p54nrb colocalized with Sox9 protein in nuclear paraspeckle bodies, and knockdown of p54(nrb) suppressed Sox9-dependent Col2a1 expression and promoter activity. We generated a p54nrb mutant construct lacking RNA recognition motifs, and overexpression of mutant p54nrb in ATDC5 cells markedly altered the appearance of paraspeckle bodies and inhibited the maturation of Col2a1 mRNA. The mutant p54nrb inhibited chondrocyte differentiation of mesenchymal cells and mouse metatarsal explants. Furthermore, transgenic mice expressing the mutant p54nrb in the chondrocyte lineage exhibited dwarfism associated with impairment of chondrogenesis. These data suggest that p54nrb plays an important role in the regulation of Sox9 function and the formation of paraspeckle bodies during chondrogenesis.
Collapse
Affiliation(s)
- Kenji Hata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang F, Tong Q. Transcription factor PU.1 is expressed in white adipose and inhibits adipocyte differentiation. Am J Physiol Cell Physiol 2008; 295:C213-20. [PMID: 18463231 DOI: 10.1152/ajpcell.00422.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PU.1 transcription factor is a critical regulator of hematopoiesis and leukemogenesis. Because PU.1 interacts with transcription factors GATA-2 and C/EBPalpha, and both are involved in the regulation of adipogenesis, we investigated whether PU.1 plays a role in the regulation of adipocyte differentiation. Our data indicate that PU.1 is expressed in white adipose tissue. PU.1 protein can also be detected in cultured 3T3-L1 adipocytes. Forced expression of PU.1 in 3T3-L1 cells inhibits adipocyte differentiation, whereas deletion of the transactivation domain of PU.1 abolishes this effect. The inhibition of adipocyte differentiation by PU.1 is achieved, at least in part, through repression of the transcriptional activity of C/EBPalpha and C/EBPbeta. Furthermore, GATA-2 and PU.1 have an additive inhibitory effect on C/EBP transactivation and adipogenesis. Finally, the expression of PU.1 is increased in white adipose of obese mice.
Collapse
Affiliation(s)
- Fei Wang
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
37
|
Schmidt F, Hustoft HK, Strozynski M, Dimmler C, Rudel T, Thiede B. Quantitative proteome analysis of cisplatin-induced apoptotic Jurkat T cells by stable isotope labeling with amino acids in cell culture, SDS-PAGE, and LC-MALDI-TOF/TOF MS. Electrophoresis 2008; 28:4359-68. [PMID: 17987630 DOI: 10.1002/elps.200700119] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Quantitative proteome analysis of cisplatin-induced apoptosis in total Jurkat T cell lysates was performed in order to identify modified proteins. Proteins were labeled in cell culture with stable isotopes of arginines, and fractionated by SDS-PAGE. Subsequently, tryptic peptides were analyzed by nano-LC coupled offline to MALDI-TOF/TOF-MS as an alternative to commonly used online LC-ESI-MS. As a result, 26 proteins were found with a relative abundance higher than 1.5, thereof 19 already known and seven unknown to be involved in apoptosis (adenine phosphoribosyltransferase, microsomal signal peptidase 25 kDa subunit, phosphomevalonate kinase, probable rRNA processing protein EBP2, RNA-binding protein 4, transmembrane protein 33, and tetratricopeptide repeat domain 9C). Immunoblotting of core-binding factor beta and elongation factor 2 revealed similar quantitative changes as detected by the SILAC-based proteomics approach. Strikingly, 8 of 26 identified apoptosis-modified proteins contained at least one RNA-binding motif. Three caspase cleavage sites of the 54 kDa nuclear RNA-binding protein (p54nrb) were mapped at DQLD(231) (downward arrow)D, DQVD(286) (downward arrow)R, and MMPD(422) (downward arrow)G by applying caspase-3 to the in vitro translated protein and mutation analysis. The determined caspase cleavage sites were located C-terminal to the two RNA-binding motifs and one (DQLD(231) (downward arrow)D) within the NOPS domain of p54nrb. Concisely, quantitative protein data generated by offline LC-MALDI-MS were shown to be particularly accurate. Furthermore, only regulated peptides were selected in a result-dependent manner for MS/MS analyses and revealed novel apoptosis-modified proteins.
Collapse
Affiliation(s)
- Frank Schmidt
- The Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
38
|
A coactivator trap identifies NONO (p54nrb) as a component of the cAMP-signaling pathway. Proc Natl Acad Sci U S A 2007; 104:20314-9. [PMID: 18077367 DOI: 10.1073/pnas.0707999105] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Signal transduction pathways often use a transcriptional component to mediate adaptive cellular responses. Coactivator proteins function prominently in these pathways as the conduit to the basic transcriptional machinery. Here we present a high-throughput cell-based screening strategy, termed the "coactivator trap," to study the functional interactions of coactivators with transcription factors. We applied this strategy to the cAMP signaling pathway, which utilizes two families of coactivators, the cAMP response element binding protein (CREB) binding protein (CBP)/p300 family and the recently identified transducers of regulated CREB activity family (TORCs1-3). In addition to identifying numerous known interactions of these coactivators, this analysis identified NONO (p54(nrb)) as a TORC-interacting protein. RNA interference experiments demonstrate that NONO is necessary for cAMP-dependent activation of CREB target genes in vivo. Furthermore, TORC2 and NONO complex on cAMP-responsive promoters, and NONO acts as a bridge between the CREB/TORC complex and RNA polymerase II. These data demonstrate the utility of the coactivator trap by identification of a component of cAMP-mediated transcription.
Collapse
|
39
|
Zhang C, Zhang MX, Shen YH, Burks JK, Zhang Y, Wang J, LeMaire SA, Yoshimura K, Aoki H, Coselli JS, Wang XL. TNF-alpha suppresses prolyl-4-hydroxylase alpha1 expression via the ASK1-JNK-NonO pathway. Arterioscler Thromb Vasc Biol 2007; 27:1760-7. [PMID: 17478756 PMCID: PMC2597036 DOI: 10.1161/atvbaha.107.144881] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Inflammation is known to contribute to the pathogenesis of vascular diseases in which arterial wall extracellular matrix (ECM) homeostasis is disrupted. Tumor necrosis factor-alpha (TNF-alpha), a pivotal cytokine that regulates ECM metabolism by increasing degradation and decreasing production of arterial collagens, is associated with vulnerable plaques and aortic aneurysms. METHODS AND RESULTS In the current study, we showed that, when administered in doses of 1 to 100 ng/mL, TNF-alpha dose-dependently downregulated the expression of prolyl-4-hydroxylase alphaI [P4H alpha(I)]-the rate-limiting subunit for the P4H enzyme essential for procollagen hydroxylation, secretion, and deposition in primary human aortic smooth muscle cells (HASMCs). Using a progressive deletion cloning approach, we characterized the TNF-alpha-responsive element (TaRE) in the human P4H alpha(I) promoter and found that a negative regulatory region at the position of -32 to +18 bp is responsible for approximately 80% of TNF-alpha-mediated suppression. Using oligonucleotide-based transcription factor pull-down method in which proteins were resolved in 1-D gel electrophoresis and identified using LC-MS/MS, we identified the NonO protein binds this region. When NonO expression silenced with specific siRNA, we found that 70% of the TNF-alpha-mediated P4H alpha suppression was abolished, which appeared to be mediated by the ASK1-JNK pathway. CONCLUSIONS Our findings define a novel molecular pathway for inflammation associated extracellular matrix dysregulation, which may account for atherosclerotic plaque rupture and aortic aneurysm formation. Further understanding of this pathway may facilitate development of novel therapeutics for vascular diseases.
Collapse
Affiliation(s)
- Cheng Zhang
- Division of Cardiovascular Surgery, Texas Heart Institute at St. Luke's Episcopal Hospital, and Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Guillouf C, Gallais I, Moreau-Gachelin F. Spi-1/PU.1 Oncoprotein Affects Splicing Decisions in a Promoter Binding-dependent Manner. J Biol Chem 2006; 281:19145-55. [PMID: 16698794 DOI: 10.1074/jbc.m512049200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of the Spi-1/PU.1 transcription factor is tightly regulated as a function of the hematopoietic lineage. It is required for myeloid and B lymphoid differentiation. When overexpressed in mice, Spi-1 is associated with the emergence of transformed proerythroblasts unable to differentiate. In the course of a project undertaken to characterize the oncogenic function of Spi-1, we found that Spi-1 interacts with proteins of the spliceosome in Spi-1-transformed proerythroblasts and participates in alternative splice site selection. Because Spi-1 is a transcription factor, it could be hypothesized that these two functions are coordinated. Here, we have developed a system allowing the characterization of transcription and splicing from a single target. It is shown that Spi-1 is able to regulate alternative splicing of a pre-mRNA for a gene whose transcription it regulates. Using a combination of Spi-1 mutants and Spi-1-dependent promoters, we demonstrate that Spi-1 must bind and transactivate a given promoter to favor the use of the proximal 5' alternative site. This establishes that Spi-1 affects splicing decisions in a promoter binding-dependent manner. These results provide new insight into how Spi-1 may act in the blockage of differentiation by demonstrating that it can deregulate gene expression and also modify the nature of the products generated from target genes.
Collapse
|
41
|
Proteau A, Blier S, Albert AL, Lavoie SB, Traish AM, Vincent M. The Multifunctional Nuclear Protein p54nrb is Multiphosphorylated in Mitosis and Interacts with the Mitotic Regulator Pin1. J Mol Biol 2005; 346:1163-72. [PMID: 15701524 DOI: 10.1016/j.jmb.2004.12.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 12/14/2004] [Accepted: 12/15/2004] [Indexed: 10/26/2022]
Abstract
The human protein p54nrb and its mouse homolog NonO have been implicated in a variety of nuclear processes including transcription, pre-mRNA processing, nuclear retention of edited RNA and DNA relaxation. We have identified p54nrb as an antigen of the phosphodependent monoclonal antibodies CC-3 and MPM-2 and shown that this protein is phosphorylated on multiple sites during mitosis. The use of the cyclin-dependent protein kinase inhibitor roscovitine and immunodepletion studies with an anti-cyclin B1 antibody established that Cdk1 was responsible for the phosphorylation of the carboxy-terminal extremity of p54nrb whereas a different kinase appeared to be involved in the generation of CC-3 epitope(s) in the amino-terminal moiety of the protein. Like many CC-3 and MPM-2 antigens, we show that p54nrb is a target of the peptidylprolyl isomerase Pin1, suggesting that it may be regulated by phosphorylation-dependent conformational changes as many other nuclear proteins upon entry into mitosis. In addition, site-directed mutagenesis indicated that the interaction of Pin1 with p54nrb was mediated by three threonine residues located in the proline-rich carboxy-terminal extremity of the protein. Our results also showed that Pin1 binding was favored when at least two of the three threonine residues were phosphorylated, suggesting a regulation mechanism based on multisite phosphorylation.
Collapse
Affiliation(s)
- Ariane Proteau
- CREFSIP and Département de Médecine, Laval University, Pavillon C.-E.-Marchand, Room 4263 Laval University, Que., Canada, G1K 7P4
| | | | | | | | | | | |
Collapse
|
42
|
Houseley JM, Wang Z, Brock GJR, Soloway J, Artero R, Perez-Alonso M, O'Dell KMC, Monckton DG. Myotonic dystrophy associated expanded CUG repeat muscleblind positive ribonuclear foci are not toxic to Drosophila. Hum Mol Genet 2005; 14:873-83. [PMID: 15703191 DOI: 10.1093/hmg/ddi080] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Myotonic dystrophy type 1 is an autosomal dominant disorder associated with the expansion of a CTG repeat in the 3' untranslated region (UTR) of the DMPK gene. Recent data suggest that pathogenesis is predominantly mediated by a gain of function of the mutant transcript. In patients, these expanded CUG repeat-containing transcripts are sequestered into ribonuclear foci that also contain the muscleblind-like proteins. To provide further insights into muscleblind function and the pathogenesis of myotonic dystrophy, we generated Drosophila incorporating CTG repeats in the 3'-UTR of a reporter gene. As in patients, expanded CUG repeats form discrete ribonuclear foci in Drosophila muscle cells that co-localize with muscleblind. Unexpectedly, however, foci are not observed in all cell types and muscleblind is neither necessary nor sufficient for their formation. The foci are dynamic transient structures with short half-lifes that do not co-localize with the proteasome, suggesting they are unlikely to contain mis-folded proteins. However, they do co-localize with non-A, the human orthologs of which are implicated in both RNA splicing and attachment of dsRNA to the nuclear matrix. Muscleblind is also revealed as having a previously unrecognized role in stabilizing CUG transcripts. Most interestingly, Drosophila expressing (CUG)162 repeats has no detectable pathological phenotype suggesting that in contrast to expanded polyglutamine-containing proteins, neither the expanded CUG repeat RNA nor the ribonuclear foci are directly toxic.
Collapse
|
43
|
Dowhan DH, Hong EP, Auboeuf D, Dennis AP, Wilson MM, Berget SM, O'Malley BW. Steroid Hormone Receptor Coactivation and Alternative RNA Splicing by U2AF65-Related Proteins CAPERα and CAPERβ. Mol Cell 2005; 17:429-39. [PMID: 15694343 DOI: 10.1016/j.molcel.2004.12.025] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 09/17/2004] [Accepted: 12/03/2004] [Indexed: 11/30/2022]
Abstract
Increasing evidence indicates that transcription and pre-mRNA processing are functionally coupled to modulate gene expression. Here, we report that two members of the U2AF65 family of proteins, hCC1.3, which we call CAPERalpha, and a related protein, CAPERbeta, regulate both steroid hormone receptor-mediated transcription and alternative splicing. The CAPER proteins coactivate the progesterone receptor in luciferase transcription reporter assays and alter alternative splicing of a calcitonin/calcitonin gene-related peptide minigene in a hormone-dependent manner. The importance of CAPER coactivators in the regulation of alternative RNA splicing of an endogenous cellular gene (VEGF) was substantiated by siRNA knockdown of CAPERalpha. Mutational analysis of CAPERbeta indicates that the transcriptional and splicing functions are located in distinct and separable domains of the protein. These results indicate that steroid hormone receptor-regulated transcription and pre-mRNA splicing can be directly linked through dual function coactivator molecules such as CAPERalpha and CAPERbeta.
Collapse
Affiliation(s)
- Dennis H Dowhan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Oncogene activity ranges from transduction signals to transcription factors. Altered expression of oncogenes, either by chromosomal translocation, proviral insertion or point mutations, can lead to tumor formation. More specifically, data accumulated through the last two decades have shown that disregulation of oncogenic transcription factors can interfere with regulatory cascades that control the growth, differentiation, and survival of normal cells. There is also evidence that alterations of oncogene activity are associated with pre-mRNA splicing defects. The insights gained from the pivotal role of RNA polymerase II in coupling transcription and splicing have instigated a new line of research regarding the possible role of oncogenic transcription factors in pre-mRNA splicing regulation. This review focuses on recent advances addressing this question. Understanding the impact of alterations in the expression and/or function of oncogenes have important prognostic implications that can guide the design of new therapeutic drugs to promote differentiation and/or apoptosis over cell proliferation.
Collapse
Affiliation(s)
- Orianne Théoleyre
- Equipe épissage alternatif et différenciation cellulaire, Centre de Génétique moléculaire et cellulaire, CNRS UMR 5534, Université Lyon 1, Bâtiment Gregor Mendel, 16, rue R. Dubois, 69622 Villeurbanne, France
| | | |
Collapse
|
45
|
Selective inhibition of c-Myb DNA-binding by RNA polymers. BMC BIOCHEMISTRY 2004; 5:15. [PMID: 15527501 PMCID: PMC533864 DOI: 10.1186/1471-2091-5-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 11/04/2004] [Indexed: 12/26/2022]
Abstract
Background The transcription factor c-Myb is expressed in hematopoietic progenitor cells and other rapidly proliferating tissues, regulating genes important for proliferation, differentiation and survival. The DNA-binding domain (DBD) of c-Myb contains three tandemly arranged imperfect repeats, designated Myb domain R1, R2 and R3. The three-dimensional structure of the DBD shows that only the second and third Myb domains are directly involved in sequence-specific DNA-binding, while the R1 repeat does not contact DNA and only marginally affects DNA-binding properties. No structural information is available on the N-terminal 30 residues. Since deletion of the N-terminal region including R1 plays an important role in oncogenic activation of c-Myb, we asked whether this region confers properties beyond DNA-binding to the neighbouring c-Myb DBD. Results Analysis of a putative RNA-binding function of c-Myb DBD revealed that poly(G) preferentially inhibited c-Myb DNA-binding. A strong sequence-selectivity was observed when different RNA polymers were compared. Most interesting, the poly(G) sensitivity was significantly larger for a protein containing the N-terminus and the R1-repeat than for the minimal DNA-binding domain. Conclusion Preferential inhibition of c-Myb DNA binding by poly(G) RNA suggests that c-Myb is able to interact with RNA in a sequence-selective manner. While R2 and R3, but not R1, are necessary for DNA-binding, R1 seems to have a distinct role in enhancing the RNA-sensitivity of c-Myb.
Collapse
|
46
|
Delva L, Gallais I, Guillouf C, Denis N, Orvain C, Moreau-Gachelin F. Multiple functional domains of the oncoproteins Spi-1/PU.1 and TLS are involved in their opposite splicing effects in erythroleukemic cells. Oncogene 2004; 23:4389-99. [PMID: 15064749 DOI: 10.1038/sj.onc.1207578] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The hematopoietic transcription factor Spi-1/PU.1 is an oncoprotein participating to the malignant transformation of proerythroblasts in the Friend erythroleukemia or in the erythroleukemic process developed in spi-1 transgenic mice. Overexpression of Spi-1 in proerythroblasts blocks their differentiation. We have shown that Spi-1 promotes the use of the proximal 5'-splice site during the E1A pre-mRNA splicing and interferes with the effect of TLS (Translocated in LipoSarcoma) in this splicing assay. TLS was identified from chromosomal translocations in human liposarcoma and acute myeloid leukemia. Here, we determine the function of Spi-1 domains in splicing and in the interference with TLS. In transient transfection assays in erythroid cells, we show that the DNA binding domain cooperates with the transactivation domain or the PEST region of Spi-1 to modify the function of TLS in splicing. Interestingly, the 27 C-terminal amino acids, which determine the DNA binding activity of Spi-1, are necessary for the splicing function of Spi-1 as well as for its ability to interfere with TLS. Finally, we demonstrate that in leukemic proerythroblasts overexpressing Spi-1, TLS has lost its splicing effect. Thus, we hypothesize that oncogenic pathways in proerythroblasts may involve the ability of Spi-1 to alter splicing.
Collapse
Affiliation(s)
- Laurent Delva
- Inserm U528, Section de recherche, Institut Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
47
|
Myojin R, Kuwahara S, Yasaki T, Matsunaga T, Sakurai T, Kimura M, Uesugi S, Kurihara Y. Expression and functional significance of mouse paraspeckle protein 1 on spermatogenesis. Biol Reprod 2004; 71:926-32. [PMID: 15140795 DOI: 10.1095/biolreprod.104.028159] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Paraspeckle protein 1 (PSP1) in humans is a recently identified component protein of a novel nuclear body, paraspeckle. The protein has a DBHS (Drosophila behavior, human splicing) motif that is found in PSF and p54(nrb)/NonO proteins. These DBHS-containing proteins have been reported to be involved in various nuclear events such as DNA replication, transcription, and mRNA processing. Here we show that mouse paraspeckle protein 1 (mPSP1; encoded by the Pspc1 gene) has two isoforms with different C-termini lengths. Abundant expression of the longer isoform (mPSP1-alpha) and the shorter one (mPSP1-beta) were observed in testis and kidney, respectively. Transiently expressed mPSP1-alpha was localized in nuclei, but mPSP1-beta was localized in both nuclei and cytoplasm. These observations suggest that alternative splicing regulates tissue distribution and subcellular localization. Like other DBHS-containing proteins, mPSP1 has RNA-binding activity. In mouse testis, mPSP1-alpha was found in the nuclear matrix fraction. Furthermore, by coimmunoprecipitation, we confirmed that mPSP1 interacts with other DBHS-containing proteins, PSF and p54(nrb)/NonO. Therefore, we conclude that mPSP1 may regulate multiple phases of important nuclear events during spermatogenesis.
Collapse
Affiliation(s)
- Reiko Myojin
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Yokohama National University, Yokohama 240-0851, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Théoleyre O, Deguillien M, Morinière M, Starck J, Moreau-Gachelin F, Morlé F, Baklouti F. Spi-1/PU.1 but not Fli-1 inhibits erythroid-specific alternative splicing of 4.1R pre-mRNA in murine erythroleukemia cells. Oncogene 2004; 23:920-7. [PMID: 14647452 DOI: 10.1038/sj.onc.1207206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The inclusion of exon 16 in mature protein 4.1R mRNA arises from a stage-specific splicing event that occurs during late erythroid development. We have shown that mouse erythroleukemia (MEL) cells reproduce this erythroid-specific splicing event upon induction of differentiation. We here found that this splicing event is regulated specifically in erythroleukemic cells that have the potential to differentiate and produce hemoglobin, regardless of the nature of the differentiation inducer. Knowing that dysregulated expression of spi-1/pu.1 and fli-1 oncogenes is involved in MEL cell differentiation arrest, we looked at their effect on exon 16 erythroid splicing. We found that exon 16 inclusion requires Spi-1/PU.1 shutdown in MEL cells, and that enforced expression of Spi-1/PU.1 inhibits exon selection, regardless of the presence or absence of a chemical inducer. By contrast, endogenous overexpression or enforced expression of Fli-1 has no effect on exon selection. We further showed that Spi-1/PU.1 acts similarly on the endogenous and on a transfected exon 16, suggesting a promoter-independent effect of Spi-1/PU.1 on splicing regulation. This study provides the first evidence that Spi-1/PU.1 displays the unique property, not shared with Fli-1, to inhibit erythroid-specific pre-mRNA splicing in erythroleukemia cell context.
Collapse
Affiliation(s)
- Orianne Théoleyre
- Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Université Lyon 1, Villeurbanne, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Hirose S, Nishizumi H, Sakano H. Pub, a novel PU.1 binding protein, regulates the transcriptional activity of PU.1. Biochem Biophys Res Commun 2004; 311:351-60. [PMID: 14592421 DOI: 10.1016/j.bbrc.2003.09.212] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PU.1 is a member of the Ets family of transcription factors and plays critical roles in the development of hematopoietic cells such as macrophages and B cells. To elucidate the molecular mechanism(s) underlying the regulation of PU.1 function, we screened for PU.1 interacting proteins using a yeast two-hybrid approach. As a result, a novel PU.1 binding factor, which we termed Pub, was isolated. The Pub protein has one B-box zinc finger domain, followed by a coiled-coil region and a B30.2-like domain, these features being characteristic of the tripartite motif (TRIM) family of protein. The PEST domain of PU.1 was found to interact with the N-terminal portion of Pub, a region that includes the TRIM which is considered to mediate protein-protein interactions. Northern blot and RT-PCR analyses demonstrated that Pub is predominantly expressed in hematopoietic tissues and cells where PU.1 is also expressed. Using a luciferase-based assay, we showed that Pub inhibited the transcriptional activity of PU.1. Moreover, the B-box zinc finger domain of Pub was critical for this inhibitory activity. These data suggest that Pub may be important in regulating the transcriptional activity of PU.1.
Collapse
Affiliation(s)
- Satoshi Hirose
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
50
|
Kwan AHY, Czolij R, Mackay JP, Crossley M. Pentaprobe: a comprehensive sequence for the one-step detection of DNA-binding activities. Nucleic Acids Res 2004; 31:e124. [PMID: 14530457 PMCID: PMC219492 DOI: 10.1093/nar/gng124] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rapid increase in the number of novel proteins identified in genome projects necessitates simple and rapid methods for assigning function. We describe a strategy for determining whether novel proteins possess typical sequence-specific DNA-binding activity. Many proteins bind recognition sequences of 5 bp or less. Given that there are 4(5) possible 5 bp sites, one might expect the length of sequence required to cover all possibilities would be 4(5) x 5 or 5120 nt. But by allowing overlaps, utilising both strands and using a computer algorithm to generate the minimum sequence, we find the length required is only 516 base pairs. We generated this sequence as six overlapping double-stranded oligonucleotides, termed pentaprobe, and used it in gel retardation experiments to assess DNA binding by both known and putative DNA-binding proteins from several protein families. We have confirmed binding by the zinc finger proteins BKLF, Eos and Pegasus, the Ets domain protein PU.1 and the treble clef N- and C-terminal fingers of GATA-1. We also showed that the N-terminal zinc finger domain of FOG-1 does not behave as a typical DNA-binding domain. Our results suggest that pentaprobe, and related sequences such as hexaprobe, represent useful tools for probing protein function.
Collapse
Affiliation(s)
- Ann H Y Kwan
- School of Molecular and Microbial Biosciences, G08, University of Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|