1
|
Yuan DY, McKeague ML, Raghu VK, Schoen RE, Finn OJ, Benos PV. Cellular and transcriptional profiles of peripheral blood mononuclear cells pre-vaccination predict immune response to preventative MUC1 vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598031. [PMID: 38948837 PMCID: PMC11212910 DOI: 10.1101/2024.06.14.598031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A single arm trial (NCT007773097) and a double-blind, placebo controlled randomized trial ( NCT02134925 ) were conducted in individuals with a history of advanced colonic adenoma to test the safety and immunogenicity of the MUC1 tumor antigen vaccine and its potential to prevent new adenomas. These were the first two trials of a non-viral cancer vaccine administered in the absence of cancer. The vaccine was safe and strongly immunogenic in 43% (NCT007773097) and 25% ( NCT02134925 ) of participants. The lack of response in a significant number of participants suggested, for the first time, that even in a premalignant setting, the immune system may have already been exposed to some level of suppression previously reported only in cancer. Single-cell RNA-sequencing (scRNA-seq) on banked pre-vaccination peripheral blood mononuclear cells (PBMCs) from 16 immune responders and 16 non-responders identified specific cell types, genes, and pathways of a productive vaccine response. Responders had a significantly higher percentage of CD4+ naive T cells pre-vaccination, but a significantly lower percentage of CD8+ T effector memory (TEM) cells and CD16+ monocytes. Differential gene expression (DGE) and transcription factor inference analysis showed a higher level of expression of T cell activation genes, such as Fos and Jun, in CD4+ naive T cells, and pathway analysis showed enriched signaling activity in responders. Furthermore, Bayesian network analysis suggested that these genes were mechanistically connected to response. Our analyses identified several immune mechanisms and candidate biomarkers to be further validated as predictors of immune responses to a preventative cancer vaccine that could facilitate selection of individuals likely to benefit from a vaccine or be used to improve vaccine responses.
Collapse
|
2
|
Smit V, de Mol J, Schaftenaar FH, Depuydt MAC, Postel RJ, Smeets D, Verheijen FWM, Bogers L, van Duijn J, Verwilligen RAF, Grievink HW, Bernabé Kleijn MNA, van Ingen E, de Jong MJM, Goncalves L, Peeters JAHM, Smeets HJ, Wezel A, Polansky JK, de Winther MPJ, Binder CJ, Tsiantoulas D, Bot I, Kuiper J, Foks AC. Single-cell profiling reveals age-associated immunity in atherosclerosis. Cardiovasc Res 2023; 119:2508-2521. [PMID: 37390467 PMCID: PMC10676459 DOI: 10.1093/cvr/cvad099] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/07/2023] [Accepted: 05/12/2023] [Indexed: 07/02/2023] Open
Abstract
AIMS Aging is a dominant driver of atherosclerosis and induces a series of immunological alterations, called immunosenescence. Given the demographic shift towards elderly, elucidating the unknown impact of aging on the immunological landscape in atherosclerosis is highly relevant. While the young Western diet-fed Ldlr-deficient (Ldlr-/-) mouse is a widely used model to study atherosclerosis, it does not reflect the gradual plaque progression in the context of an aging immune system as occurs in humans. METHODS AND RESULTS Here, we show that aging promotes advanced atherosclerosis in chow diet-fed Ldlr-/- mice, with increased incidence of calcification and cholesterol crystals. We observed systemic immunosenescence, including myeloid skewing and T-cells with more extreme effector phenotypes. Using a combination of single-cell RNA-sequencing and flow cytometry on aortic leucocytes of young vs. aged Ldlr-/- mice, we show age-related shifts in expression of genes involved in atherogenic processes, such as cellular activation and cytokine production. We identified age-associated cells with pro-inflammatory features, including GzmK+CD8+ T-cells and previously in atherosclerosis undefined CD11b+CD11c+T-bet+ age-associated B-cells (ABCs). ABCs of Ldlr-/- mice showed high expression of genes involved in plasma cell differentiation, co-stimulation, and antigen presentation. In vitro studies supported that ABCs are highly potent antigen-presenting cells. In cardiovascular disease patients, we confirmed the presence of these age-associated T- and B-cells in atherosclerotic plaques and blood. CONCLUSIONS Collectively, we are the first to provide comprehensive profiling of aged immunity in atherosclerotic mice and reveal the emergence of age-associated T- and B-cells in the atherosclerotic aorta. Further research into age-associated immunity may contribute to novel diagnostic and therapeutic tools to combat cardiovascular disease.
Collapse
Affiliation(s)
- Virginia Smit
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jill de Mol
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Frank H Schaftenaar
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Marie A C Depuydt
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Rimke J Postel
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Diede Smeets
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Fenne W M Verheijen
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Laurens Bogers
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Janine van Duijn
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Robin A F Verwilligen
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Hendrika W Grievink
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands
| | - Mireia N A Bernabé Kleijn
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Eva van Ingen
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Maaike J M de Jong
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Lauren Goncalves
- Department of Surgery, Haaglanden Medical Center—location Westeinde, Lijnbaan 32, 2515 VA The Hague, The Netherlands
| | - Judith A H M Peeters
- Department of Surgery, Haaglanden Medical Center—location Westeinde, Lijnbaan 32, 2515 VA The Hague, The Netherlands
| | - Harm J Smeets
- Department of Surgery, Haaglanden Medical Center—location Westeinde, Lijnbaan 32, 2515 VA The Hague, The Netherlands
| | - Anouk Wezel
- Department of Surgery, Haaglanden Medical Center—location Westeinde, Lijnbaan 32, 2515 VA The Hague, The Netherlands
| | - Julia K Polansky
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Menno P J de Winther
- Amsterdam University Medical Centers—location AMC, University of Amsterdam, Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Lazarettgasse 14, AKH BT25.2, 1090 Vienna, Austria
| | - Dimitrios Tsiantoulas
- Department of Laboratory Medicine, Medical University of Vienna, Lazarettgasse 14, AKH BT25.2, 1090 Vienna, Austria
| | - Ilze Bot
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Johan Kuiper
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Amanda C Foks
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
3
|
Salloum D, Singh K, Davidson NR, Cao L, Kuo D, Sanghvi VR, Jiang M, Lafoz MT, Viale A, Ratsch G, Wendel HG. A Rapid Translational Immune Response Program in CD8 Memory T Lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1189-1199. [PMID: 36002234 PMCID: PMC9492650 DOI: 10.4049/jimmunol.2100537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 05/25/2022] [Indexed: 01/04/2023]
Abstract
The activation of memory T cells is a very rapid and concerted cellular response that requires coordination between cellular processes in different compartments and on different time scales. In this study, we use ribosome profiling and deep RNA sequencing to define the acute mRNA translation changes in CD8 memory T cells following initial activation events. We find that initial translation enables subsequent events of human and mouse T cell activation and expansion. Briefly, early events in the activation of Ag-experienced CD8 T cells are insensitive to transcriptional blockade with actinomycin D, and instead depend on the translation of pre-existing mRNAs and are blocked by cycloheximide. Ribosome profiling identifies ∼92 mRNAs that are recruited into ribosomes following CD8 T cell stimulation. These mRNAs typically have structured GC and pyrimidine-rich 5' untranslated regions and they encode key regulators of T cell activation and proliferation such as Notch1, Ifngr1, Il2rb, and serine metabolism enzymes Psat1 and Shmt2 (serine hydroxymethyltransferase 2), as well as translation factors eEF1a1 (eukaryotic elongation factor α1) and eEF2 (eukaryotic elongation factor 2). The increased production of receptors of IL-2 and IFN-γ precedes the activation of gene expression and augments cellular signals and T cell activation. Taken together, we identify an early RNA translation program that acts in a feed-forward manner to enable the rapid and dramatic process of CD8 memory T cell expansion and activation.
Collapse
Affiliation(s)
- Darin Salloum
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kamini Singh
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Albert Einstein Cancer Center, Bronx, NY
| | - Natalie R Davidson
- Department of Computer Science, ETH Zurich, Zurich, Switzerland.,Department of Biology, ETH Zurich, Zurich, Switzerland.,Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Linlin Cao
- Swiss Institute for Experimental Cancer Research, EPFL, Lausanne, Switzerland
| | - David Kuo
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY
| | - Viraj R Sanghvi
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami FL
| | - Man Jiang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Maria Tello Lafoz
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - Agnes Viale
- Integrated Genomics Operation, Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gunnar Ratsch
- Department of Computer Science, ETH Zurich, Zurich, Switzerland.,Department of Biology, ETH Zurich, Zurich, Switzerland.,Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY;
| |
Collapse
|
4
|
Park CH. Making Potent CAR T Cells Using Genetic Engineering and Synergistic Agents. Cancers (Basel) 2021; 13:cancers13133236. [PMID: 34209505 PMCID: PMC8269169 DOI: 10.3390/cancers13133236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Immunotherapies are emerging as powerful weapons for the treatment of malignancies. Chimeric antigen receptor (CAR)-engineered T cells have shown dramatic clinical results in patients with hematological malignancies. However, it is still challenging for CAR T cell therapy to be successful in several types of blood cancer and most solid tumors. Many attempts have been made to enhance the efficacy of CAR T cell therapy by modifying the CAR construct using combination agents, such as compounds, antibodies, or radiation. At present, technology to improve CAR T cell therapy is rapidly developing. In this review, we particularly emphasize the most recent studies utilizing genetic engineering and synergistic agents to improve CAR T cell therapy.
Collapse
Affiliation(s)
- Chi Hoon Park
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Daejeon 34114, Korea; ; Tel.: +82-42-860-7416; Fax: +82-42-861-4246
- Medicinal & Pharmaceutical Chemistry, Korea University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
5
|
Costa-Mattioli M, Walter P. The integrated stress response: From mechanism to disease. Science 2020; 368:368/6489/eaat5314. [PMID: 32327570 DOI: 10.1126/science.aat5314] [Citation(s) in RCA: 787] [Impact Index Per Article: 157.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein quality control is essential for the proper function of cells and the organisms that they make up. The resulting loss of proteostasis, the processes by which the health of the cell's proteins is monitored and maintained at homeostasis, is associated with a wide range of age-related human diseases. Here, we highlight how the integrated stress response (ISR), a central signaling network that responds to proteostasis defects by tuning protein synthesis rates, impedes the formation of long-term memory. In addition, we address how dysregulated ISR signaling contributes to the pathogenesis of complex diseases, including cognitive disorders, neurodegeneration, cancer, diabetes, and metabolic disorders. The development of tools through which the ISR can be modulated promises to uncover new avenues to diminish pathologies resulting from it for clinical benefit.
Collapse
Affiliation(s)
- Mauro Costa-Mattioli
- Department of Neuroscience, Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA.
| | - Peter Walter
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
GSK3: A Kinase Balancing Promotion and Resolution of Inflammation. Cells 2020; 9:cells9040820. [PMID: 32231133 PMCID: PMC7226814 DOI: 10.3390/cells9040820] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
GSK3 has been implicated for years in the regulation of inflammation and addressed in a plethora of scientific reports using a variety of experimental (disease) models and approaches. However, the specific role of GSK3 in the inflammatory process is still not fully understood and controversially discussed. Following a detailed overview of structure, function, and various regulatory levels, this review focusses on the immunoregulatory functions of GSK3, including the current knowledge obtained from animal models. Its impact on pro-inflammatory cytokine/chemokine profiles, bacterial/viral infections, and the modulation of associated pro-inflammatory transcriptional and signaling pathways is discussed. Moreover, GSK3 contributes to the resolution of inflammation on multiple levels, e.g., via the regulation of pro-resolving mediators, the clearance of apoptotic immune cells, and tissue repair processes. The influence of GSK3 on the development of different forms of stimulation tolerance is also addressed. Collectively, the role of GSK3 as a kinase balancing the initiation/perpetuation and the amelioration/resolution of inflammation is highlighted.
Collapse
|
7
|
Chuntova P, Downey KM, Hegde B, Almeida ND, Okada H. Genetically Engineered T-Cells for Malignant Glioma: Overcoming the Barriers to Effective Immunotherapy. Front Immunol 2019; 9:3062. [PMID: 30740109 PMCID: PMC6357938 DOI: 10.3389/fimmu.2018.03062] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Malignant gliomas carry a dismal prognosis. Conventional treatment using chemo- and radiotherapy has limited efficacy with adverse events. Therapy with genetically engineered T-cells, such as chimeric antigen receptor (CAR) T-cells, may represent a promising approach to improve patient outcomes owing to their potential ability to attack highly infiltrative tumors in a tumor-specific manner and possible persistence of the adaptive immune response. However, the unique anatomical features of the brain and susceptibility of this organ to irreversible tissue damage have made immunotherapy especially challenging in the setting of glioma. With safety concerns in mind, multiple teams have initiated clinical trials using CAR T-cells in glioma patients. The valuable lessons learnt from those trials highlight critical areas for further improvement: tackling the issues of the antigen presentation and T-cell homing in the brain, immunosuppression in the glioma microenvironment, antigen heterogeneity and off-tumor toxicity, and the adaptation of existing clinical therapies to reflect the intricacies of immune response in the brain. This review summarizes the up-to-date clinical outcomes of CAR T-cell clinical trials in glioma patients and examines the most pressing hurdles limiting the efficacy of these therapies. Furthermore, this review uses these hurdles as a framework upon which to evaluate cutting-edge pre-clinical strategies aiming to overcome those barriers.
Collapse
Affiliation(s)
- Pavlina Chuntova
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Kira M Downey
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Bindu Hegde
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Neil D Almeida
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States.,George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States.,The Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States.,Cancer Immunotherapy Program, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
8
|
Patterson AR, Bolcas P, Lampe K, Cantrell R, Ruff B, Lewkowich I, Hogan SP, Janssen EM, Bleesing J, Khurana Hershey GK, Hoebe K. Loss of GTPase of immunity-associated protein 5 (Gimap5) promotes pathogenic CD4 + T-cell development and allergic airway disease. J Allergy Clin Immunol 2019; 143:245-257.e6. [PMID: 30616774 PMCID: PMC6327968 DOI: 10.1016/j.jaci.2018.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/14/2018] [Accepted: 10/07/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND GTPase of immunity-associated protein 5 (GIMAP5) is essential for lymphocyte homeostasis and survival. Recently, human GIMAP5 single nucleotide polymorphisms have been linked to an increased risk for asthma, whereas loss of Gimap5 in mice has been associated with severe CD4+ T cell-driven immune pathology. OBJECTIVE We sought to identify the molecular and cellular mechanisms by which Gimap5 deficiency predisposes to allergic airway disease. METHODS CD4+ T-cell polarization and development of pathogenic CD4+ T cells were assessed in Gimap5-deficient mice and a human patient with a GIMAP5 loss-of-function (LOF) mutation. House dust mite-induced airway inflammation was assessed by using a complete Gimap5 LOF (Gimap5sph/sph) and conditional Gimap5fl/flCd4Cre/ert2 mice. RESULTS GIMAP5 LOF mutations in both mice and human subjects are associated with spontaneous polarization toward pathogenic TH17 and TH2 cells in vivo. Mechanistic studies in vitro reveal that impairment of Gimap5-deficient TH cell differentiation is associated with increased DNA damage, particularly during TH1-polarizing conditions. DNA damage in Gimap5-deficient CD4+ T cells could be controlled by TGF-β, thereby promoting TH17 polarization. When challenged with house dust mite in vivo, Gimap5-deficient mice displayed an exacerbated asthma phenotype (inflammation and airway hyperresponsiveness), with increased development of TH2, TH17, and pathogenic TH17/TH2 cells. CONCLUSION Activation of Gimap5-deficient CD4+ T cells is associated with increased DNA damage and reduced survival that can be overcome by TGF-β. This leads to selective survival of pathogenic TH17 cells but also TH2 cells in human subjects and mice, ultimately promoting allergic airway disease.
Collapse
Affiliation(s)
- Andrew R Patterson
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Paige Bolcas
- Division of Asthma Research, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kristin Lampe
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio
| | - Rachel Cantrell
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Brandy Ruff
- Division of Asthma Research, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio
| | - Ian Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Simon P Hogan
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Edith M Janssen
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jack Bleesing
- Division of Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kasper Hoebe
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
9
|
Sengupta S, Katz SC, Sengupta S, Sampath P. Glycogen synthase kinase 3 inhibition lowers PD-1 expression, promotes long-term survival and memory generation in antigen-specific CAR-T cells. Cancer Lett 2018; 433:131-139. [PMID: 29959057 DOI: 10.1016/j.canlet.2018.06.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/07/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022]
Abstract
Successful remission in hematological cancers by CAR-T cell immunotherapy has yet to be replicated in solid tumors like GBM. A significant impediment of CAR-T immunotherapy in solid tumors is poor exposure of T cells to tumor antigens resulting in suboptimal CAR-T cell activation, which ultimately fails to induce a robust anti-tumor immune response. Costimulatory moieties in advanced-generation CARs, along with additional IL2 therapy has been shown to be insufficient to overcome this hurdle and have its cytotoxic limitations. GSK3 is constitutively active in naïve T cells and is transiently inactivated during T cell activation resulting in rapid T cell proliferation. Pharmacologic inhibition of GSK3 in GBM-specific CAR-T cells reduced FasL expression, increased T cell proliferation and reduced exhaustion by lowering PD-1 levels resulting in the development of CAR-T effector memory phenotype. Treatment with GSK3-inhibited CAR-T cells resulted in 100% tumor elimination during the tumor-rechallenge experiment in GBM-bearing animals and increased accumulation of memory CAR-T cells in secondary lymphoid organs. These adjuvant-like effects of GSK3 inhibition on activated CAR-T cells may be a valuable adjunct to a successful implementation of CAR-T immunotherapy against GBM and other solid tumors.
Collapse
Affiliation(s)
- Sadhak Sengupta
- Brain Tumor Laboratory, Roger Williams Medical Center, Providence, RI, USA; Department of Neurosurgery, Alpert School of Medicine, Brown University, Providence, RI, USA.
| | - Steven C Katz
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA; Department of Surgery, Boston University School of Medicine, Boston, MA, USA
| | | | - Prakash Sampath
- Brain Tumor Laboratory, Roger Williams Medical Center, Providence, RI, USA; Department of Neurosurgery, Alpert School of Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
10
|
Patterson AR, Endale M, Lampe K, Aksoylar HI, Flagg A, Woodgett JR, Hildeman D, Jordan MB, Singh H, Kucuk Z, Bleesing J, Hoebe K. Gimap5-dependent inactivation of GSK3β is required for CD4 + T cell homeostasis and prevention of immune pathology. Nat Commun 2018; 9:430. [PMID: 29382851 PMCID: PMC5789891 DOI: 10.1038/s41467-018-02897-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
GTPase of immunity-associated protein 5 (Gimap5) is linked with lymphocyte survival, autoimmunity, and colitis, but its mechanisms of action are unclear. Here, we show that Gimap5 is essential for the inactivation of glycogen synthase kinase-3β (GSK3β) following T cell activation. In the absence of Gimap5, constitutive GSK3β activity constrains c-Myc induction and NFATc1 nuclear import, thereby limiting productive CD4+ T cell proliferation. Additionally, Gimap5 facilitates Ser389 phosphorylation and nuclear translocation of GSK3β, thereby limiting DNA damage in CD4+ T cells. Importantly, pharmacological inhibition and genetic targeting of GSK3β can override Gimap5 deficiency in CD4+ T cells and ameliorates immunopathology in mice. Finally, we show that a human patient with a GIMAP5 loss-of-function mutation has lymphopenia and impaired T cell proliferation in vitro that can be rescued with GSK3 inhibitors. Given that the expression of Gimap5 is lymphocyte-restricted, we propose that its control of GSK3β is an important checkpoint in lymphocyte proliferation. Loss of function GIMAP5 mutation is associated with lymphopenia, but how it mediates T cell homeostasis is unclear. Here the authors study Gimap5−/− mice and a patient with GIMAP5 deficiency to show how this GTPAse negatively regulates GSK3β activity to prevent DNA damage and cell death.
Collapse
Affiliation(s)
- Andrew R Patterson
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 231 Albert Sabin Way # E251n, Cincinnati, OH, 45267, USA
| | - Mehari Endale
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Kristin Lampe
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Halil I Aksoylar
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Aron Flagg
- Pediatric Hematology/Oncology and Blood & Marrow Transplant, Cleveland Clinic Children's, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Jim R Woodgett
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - David Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 231 Albert Sabin Way # E251n, Cincinnati, OH, 45267, USA
| | - Michael B Jordan
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 231 Albert Sabin Way # E251n, Cincinnati, OH, 45267, USA
| | - Harinder Singh
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 231 Albert Sabin Way # E251n, Cincinnati, OH, 45267, USA
| | - Zeynep Kucuk
- Division of Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Jack Bleesing
- Division of Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Kasper Hoebe
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA. .,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 231 Albert Sabin Way # E251n, Cincinnati, OH, 45267, USA. .,Department of Pediatrics, University of Cincinnati, College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA.
| |
Collapse
|
11
|
Weiss CS, Ochs MM, Hagenmueller M, Streit MR, Malekar P, Riffel JH, Buss SJ, Weiss KH, Sadoshima J, Katus HA, Hardt SE. DYRK2 negatively regulates cardiomyocyte growth by mediating repressor function of GSK-3β on eIF2Bε. PLoS One 2013; 8:e70848. [PMID: 24023715 PMCID: PMC3762802 DOI: 10.1371/journal.pone.0070848] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 06/26/2013] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND A prerequisite of hypertrophic response of the myocardium is an increase in protein synthesis. A central regulator of translation initiation is Eukaryotic initiation factor 2B (eIF2B). Here we assessed the hypothesis that regulation of protein synthesis via eIF2Bε is essential to cardiac hypertrophic response in vivo. METHODS Two transgenic mouse lines were generated with cardiac restricted overexpression of eIF2Bε or its mutant eIF2Bε-eIFS(535)A, which cannot be inactivated by phosphorylation through GSK-3β. RESULTS (1) Under baseline conditions eIF2Bε transgenic mice showed no difference in cardiac phenotype compared to wild type, whereas in the mutant eIF2Bε-S(535)A an increase in LV/tibia length (7.5 ± 0.4 mg/mm vs. 6.2 ± 0.2 mg/mm, p<0.001) and cardiomyocyte cross sectional area (13004 ± 570 vs. 10843 ± 347 RU, p<0.01) was observed. (2) Cardiac overexpression of eIF2Bε did not change the response of the heart to pathologic stress induced by chronic isoproterenol treatment. (3) Cardiac overexpression of the eIF2Bε transgene was followed by overexpression of DYRK2 which is known to prime the inhibitory action of GSK-3β on eIF2Bε, while DYRK1A and GSK-3β itself were not increased. (4) In C57BL/6 mice after 48 h of isoproterenol-stimulation or aortic banding, eIF2Bε was increased and DYRK2 was concomitantly decreased. (5) In line with these in vivo findings, siRNA knockdown of DYRK2 in cultured cardiomyocytes resulted in decreased levels of p(S535)- eIF2Bε, (6) whereas adenoviral induced overexpression of DYRK2 was accompanied by clearly increased phosphorylation of eIF2Bε, indicating a coordinated response pattern (7) Adenoviral induced overexpression of DYRK2 leads to significantly reduced cardiomyocyte size and diminishes hypertrophic response to adrenergic stimulation. CONCLUSIONS The interaction of GSK-3β and its priming kinase DYRK2 regulate the activity of eIF2Bε in cardiac myocytes. DYRK2 is a novel negative regulator of cardiomyocyte growth. DYRK2 could serve as a therapeutic option to regulate myocardial growth.
Collapse
Affiliation(s)
- Celine S. Weiss
- Internal Medicine III, University Hospital Heidelberg and DZHK (German Center for Cardiovascular Research), Heidelberg, Germany
| | - Marco M. Ochs
- Internal Medicine III, University Hospital Heidelberg and DZHK (German Center for Cardiovascular Research), Heidelberg, Germany
| | - Marco Hagenmueller
- Internal Medicine III, University Hospital Heidelberg and DZHK (German Center for Cardiovascular Research), Heidelberg, Germany
| | - Marcus R. Streit
- Internal Medicine III, University Hospital Heidelberg and DZHK (German Center for Cardiovascular Research), Heidelberg, Germany
| | - Pratima Malekar
- Internal Medicine III, University Hospital Heidelberg and DZHK (German Center for Cardiovascular Research), Heidelberg, Germany
| | - Johannes H. Riffel
- Internal Medicine III, University Hospital Heidelberg and DZHK (German Center for Cardiovascular Research), Heidelberg, Germany
| | - Sebastian J. Buss
- Internal Medicine III, University Hospital Heidelberg and DZHK (German Center for Cardiovascular Research), Heidelberg, Germany
| | - Karl H. Weiss
- Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Junichi Sadoshima
- New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Hugo A. Katus
- Internal Medicine III, University Hospital Heidelberg and DZHK (German Center for Cardiovascular Research), Heidelberg, Germany
| | - Stefan E. Hardt
- Internal Medicine III, University Hospital Heidelberg and DZHK (German Center for Cardiovascular Research), Heidelberg, Germany
| |
Collapse
|
12
|
Das GC, Hollinger FB. Molecular pathways for glucose homeostasis, insulin signaling and autophagy in hepatitis C virus induced insulin resistance in a cellular model. Virology 2012; 434:5-17. [PMID: 22862962 DOI: 10.1016/j.virol.2012.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 07/01/2012] [Indexed: 12/14/2022]
Abstract
Chronic HCV infection induces insulin resistance (IR). We studied this in a persistently infected cell line with defects in glucose homeostasis resulting from the phosphorylation of glycogen synthase (GS Ser641) and GS kinase isoform 3β (GSK 3βSer9). Reversal of these effects in cells cured of HCV with interferon supports viral specificity. Insulin signaling was disrupted by IRS-1 Ser312 phosphorylation and dysregulation of the Akt pathway. In infected cells, active autophagy was revealed by the formation of LC3 puncta or by increased levels (50-200%) of the markers Beclin 1 and conjugated Atg5/Atg12. Inhibition of autophagy by 3-methyl-adenine (3-MA) reduced Beclin1 levels, inhibited IRS-1 Ser312 or GS Ser641 phosphorylation and decreased viral load. Furthermore, IRS-1 Ser312 and Beclin1 were co-immunoprecipitated suggesting that they interact. It thus appears that HCV infection disturbs glucose homeostasis or insulin signaling to induce IR and also elicits autophagy that may contribute to this process.
Collapse
Affiliation(s)
- Gokul C Das
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States.
| | | |
Collapse
|
13
|
Goodman CA, Mayhew DL, Hornberger TA. Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass. Cell Signal 2011; 23:1896-906. [PMID: 21821120 PMCID: PMC3744211 DOI: 10.1016/j.cellsig.2011.07.013] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/15/2011] [Indexed: 01/30/2023]
Abstract
The maintenance of muscle mass is critical for health and issues associated with the quality of life. Over the last decade, extensive progress has been made with regard to our understanding of the molecules that regulate skeletal muscle mass. Not surprisingly, many of these molecules are intimately involved in the regulation of protein synthesis and protein degradation [e.g. the mammalian target of rapamycin (mTOR), eukaryotic initiation factor 2B (eIF2B), eukaryotic initiation factor 3f (eIF3f) and the forkhead box O (FoxO) transcription factors]. It is also becoming apparent that molecules which sense, or control, the energetic status of the cell play a key role in the regulation of muscle mass [e.g. AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator-1 α (PGC1α)]. In this review we will attempt to summarize the current knowledge of how these molecules regulate skeletal muscle mass.
Collapse
Affiliation(s)
- Craig A Goodman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, WI 53706, USA.
| | | | | |
Collapse
|
14
|
Sunavala-Dossabhoy G, Palaniyandi S, Clark C, Nathan CAO, Abreo FW, Caldito G. Analysis of eIF4E and 4EBP1 mRNAs in head and neck cancer. Laryngoscope 2011; 121:2136-41. [PMID: 21898433 DOI: 10.1002/lary.22144] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/15/2011] [Indexed: 12/18/2022]
Abstract
OBJECTIVES/HYPOTHESIS The eukaryotic translation initiation factor 4E (eIF4E) in conjunction with its binding protein, 4EBP1, regulates the translation of cap-dependent mRNAs. An aberrant increase in eIF4E shifts the balance in favor of translation of transcripts that promote cell proliferation and malignancy. eIF4E protein is commonly elevated in head and neck squamous cell carcinomas (HNSCC), and its overexpression is associated with increased recurrence. An underlying mechanism for eIF4E overexpression is gene amplification, and we wanted to determine whether eIF4E mRNA could serve as a prognostic maker of HNSCC. METHODS Tumor specimens from 26 HNSCC patients and oral tissues from 17 control subjects were examined for eIF4E and 4EBP1 by semiquantitative RT-PCR and correlated with clinical and pathologic findings. RESULTS Unlike eIF4E mRNA alone, expression of eIF4E relative to 4EBP1 was a more precise predictor of HNSCC and its progression (P < .01, Wilcoxon rank sum test). Eight of 26 patients (31%) had elevated eIF4E:4EBP1 (4E:4EBP1; >25), and 7 of these (87.5%) had recurrence. Alternately, from 18 patients with low 4E:4EBP1 (<25; 69%), only 5 patients had recurrence (30.1%). To determine the probability of no recurrence, Kaplan-Meier analysis showed significantly poor disease-free survival in patients with elevated 4E:4EBP1 than those with low ratios (P < .01, log rank test). CONCLUSIONS Elevated 4E:4EBP1 significantly correlated with increased disease recurrence. Because 4EBP1 modulates eIF4E activity, our results highlight the importance of incorporating a joint analysis of eIF4E and 4EBP1 mRNAs in HNSCC patient care decisions.
Collapse
Affiliation(s)
- Gulshan Sunavala-Dossabhoy
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center and the Feist-Weiller Cancer Center, Shreveport, Louisiana 71130, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Wang H, Brown J, Martin M. Glycogen synthase kinase 3: a point of convergence for the host inflammatory response. Cytokine 2010; 53:130-40. [PMID: 21095632 DOI: 10.1016/j.cyto.2010.10.009] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 09/29/2010] [Accepted: 10/26/2010] [Indexed: 02/07/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K) pathway has been shown to play a central role in regulating the host inflammatory response. Recent studies characterizing the downstream effector molecules within the PI3K pathway have identified that the serine/threonine kinase, glycogen synthase kinase 3 (GSK3), plays a pivotal role in regulating the production of pro- and anti-inflammatory cytokines. In innate immune cells, GSK3 inactivation augments anti-inflammatory cytokine production while concurrently suppressing the production of pro-inflammatory cytokines. The role of GSK3 in T cell biology has also been studied in detail and is involved in regulating multiple downstream signaling processes mediated by the T cell receptor (TCR), the co-stimulatory molecule CD28, and the IL-17 receptor. In vivo studies assessing the therapeutic properties of GSK3 inhibitors have shown that the inactivation of GSK3 can protect the host from immune-mediated pathology and death. This review will highlight the immunological importance GSK3 plays within different signal transduction pathways of the immune system, the cellular mechanisms regulating the activity of GSK3, the role of GSK3 in innate and adaptive immune responses, and the in vivo use of GSK3 inhibitors to treat inflammatory mediated diseases in animals.
Collapse
Affiliation(s)
- Huizhi Wang
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, United States
| | | | | |
Collapse
|
16
|
Heyd F, Lynch KW. Phosphorylation-dependent regulation of PSF by GSK3 controls CD45 alternative splicing. Mol Cell 2010; 40:126-37. [PMID: 20932480 DOI: 10.1016/j.molcel.2010.09.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/17/2010] [Accepted: 07/16/2010] [Indexed: 12/14/2022]
Abstract
Signal-induced alternative splicing of the CD45 gene in human T cells is essential for proper immune function. Skipping of the CD45 variable exons is controlled, in large part, by the recruitment of PSF to the pre-mRNA substrate upon T cell activation; however, the signaling cascade leading to exon exclusion has remained elusive. Here we demonstrate that in resting T cells PSF is directly phosphorylated by GSK3, thus promoting interaction of PSF with TRAP150, which prevents PSF from binding CD45 pre-mRNA. Upon T cell activation, reduced GSK3 activity leads to reduced PSF phosphorylation, releasing PSF from TRAP150 and allowing it to bind CD45 splicing regulatory elements and repress exon inclusion. Our data place two players, GSK3 and TRAP150, in the complex network that regulates CD45 alternative splicing and demonstrate a paradigm for signal transduction from the cell surface to the RNA processing machinery through the multifunctional protein PSF.
Collapse
Affiliation(s)
- Florian Heyd
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 422 Curie Boulevard, Philadelphia, PA 19104-6059, USA
| | | |
Collapse
|
17
|
Lovatt M, Bijlmakers MJ. Stabilisation of β-catenin downstream of T cell receptor signalling. PLoS One 2010; 5. [PMID: 20862283 PMCID: PMC2940849 DOI: 10.1371/journal.pone.0012794] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 08/21/2010] [Indexed: 11/23/2022] Open
Abstract
Background The role of TCF/β-catenin signalling in T cell development is well established, but important roles in mature T cells have only recently come to light. Methodology/Principal Findings Here we have investigated the signalling pathways that are involved in the regulation of β-catenin in primary human T cells. We demonstrate that β-catenin expression is upregulated rapidly after T cell receptor (TCR) stimulation and that this involves protein stabilisation rather than an increase in mRNA levels. Similar to events in Wnt signalling, the increase in β-catenin coincides with an inhibition of GSK3, the kinase that is required for β-catenin degradation. β-catenin stabilisation in T cells can also be induced by the activation of PKC with phorbol esters and is blocked by inhibitors of phosphatidylinositol 3-kinase (PI3K) and phospholipase C (PKC). Upon TCR signalling, β-catenin accumulates in the nucleus and, parallel to this, the ratio of TCF1 isoforms is shifted in favour of the longer β-catenin binding isoforms. However, phosphorylated β-catenin, which is believed to be inactive, can also be detected and the expression of Wnt target genes Axin2 and dickkopf is down regulated. Conclusions/Significance These data show that in mature human T cells, TCR signalling via PI3K and PKC can result in the stabilisation of β-catenin, allowing β-catenin to migrate to the nucleus. They further highlight important differences between β-catenin activities in TCR and Wnt signalling.
Collapse
Affiliation(s)
- Matthew Lovatt
- Peter Gorer Department of Immunobiology, School of Medicine at Guy's, King's College and St Thomas' Hospitals, King's College London, Guy's Hospital, London, UK.
| | | |
Collapse
|
18
|
Reversing interleukin-2 inhibition mediated by anti-double-stranded DNA autoantibody ameliorates glomerulonephritis in MRL-lpr/lpr mice. ACTA ACUST UNITED AC 2010; 62:2401-11. [DOI: 10.1002/art.27487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Beurel E, Michalek SM, Jope RS. Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends Immunol 2009; 31:24-31. [PMID: 19836308 DOI: 10.1016/j.it.2009.09.007] [Citation(s) in RCA: 313] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 11/30/2022]
Abstract
In just a few years, the view of glycogen synthase kinase-3 (GSK3) has been transformed from an obscure enzyme seldom encountered in the immune literature to one implicated in an improbably large number of roles. GSK3 is a crucial regulator of the balance between pro- and anti-inflammatory cytokine production in both the periphery and the central nervous system, so that GSK3 inhibitors such as lithium can diminish inflammation. GSK3 influences T-cell proliferation, differentiation and survival. Many effects stem from GSK3 regulation of critical transcription factors, such as NF-kappaB, NFAT and STATs. These discoveries led to the rapid application of GSK3 inhibitors to animal models of sepsis, arthritis, colitis, multiple sclerosis and others, demonstrating their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | | | | |
Collapse
|
20
|
Dimelow RJ, Wilkinson SJ. Control of translation initiation: a model-based analysis from limited experimental data. J R Soc Interface 2009; 6:51-61. [PMID: 18567568 DOI: 10.1098/rsif.2008.0221] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have built a detailed kinetic model of translation initiation in yeast and have used a novel approach to determine the flux controlling steps based on limited experimental data. An efficient parameter estimation method was adapted in order to fit the most uncertain parameters (rate constants) to in vivo measurements in yeast. However, it was found that there were many other sets of plausible parameter values that also gave a good fit of the model to the data. We therefore used random sampling of this uncertain parameter space to generate a large number of diverse fitted parameter sets. A compact characterization of these parameter sets was provided by considering flux control. In particular, we suggest that the rate of translation initiation is most strongly influenced by one of two reactions: either the guanine nucleotide exchange reaction involving initiation factors eIF2 and eIF2B or the assembly of the multifactor complex from its constituent protein/tRNA containing complexes. It is hoped that the approach presented in this paper will add to our understanding of translation initiation pathway and can be used to identify key system-level properties of other biochemical processes.
Collapse
Affiliation(s)
- Richard J Dimelow
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7DN, UK.
| | | |
Collapse
|
21
|
Muyllaert D, Kremer A, Jaworski T, Borghgraef P, Devijver H, Croes S, Dewachter I, Van Leuven F. Glycogen synthase kinase-3beta, or a link between amyloid and tau pathology? GENES BRAIN AND BEHAVIOR 2008; 7 Suppl 1:57-66. [PMID: 18184370 DOI: 10.1111/j.1601-183x.2007.00376.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Phosphorylation is the most common post-translational modification of cellular proteins, essential for most physiological functions. Deregulation of phosphorylation has been invoked in disease mechanisms, and the case of Alzheimer's disease (AD) is no exception: both in the amyloid pathology and in the tauopathy are kinases deeply implicated. The glycogen synthase kinase-3 (GSK-3) isozymes participate in diverse cellular processes and important signalling pathways and have been implicitly linked to diverse medical problems, i.e. from diabetes and cancer to mood disorders and schizophrenia, and in the neurodegeneration of AD. Here, we review specific aspects of GSK-3 isozymes in the framework of recent data that we obtained in novel transgenic mouse models that robustly recapitulate the pathology and mechanistical problems of AD.
Collapse
Affiliation(s)
- D Muyllaert
- Experimental Genetics Group, K.U. Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kolltveit KM, Granum S, Aasheim HC, Forsbring M, Sundvold-Gjerstad V, Dai KZ, Molberg O, Schjetne KW, Bogen B, Shapiro VS, Johansen FE, Schenck K, Spurkland A. Expression of SH2D2A in T-cells is regulated both at the transcriptional and translational level. Mol Immunol 2007; 45:2380-90. [PMID: 18160104 DOI: 10.1016/j.molimm.2007.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 11/13/2007] [Indexed: 12/01/2022]
Abstract
The T-cell specific adapter protein (TSAd) encoded by the SH2D2A gene is up-regulated in activated human CD4+ T-cells in a cAMP-dependent manner. Expression of SH2D2A is important for proper activation of T-cells. Here, we show that SH2D2A expression is regulated both at the transcriptional and translational level. cAMP signaling alone induces TSAd-mRNA expression but fails to induce increased TSAd protein levels. By contrast, TCR engagement provides signals for both TSAd transcription and translation. We further show that cAMP signaling can prime T-cells for a more prompt expression of TSAd protein upon TCR stimulation. Our study thus points to a novel mechanism for how cAMP signaling may modulate T-cell activation through transcriptional priming of resting cells.
Collapse
|
23
|
Sengupta S, Jayaraman P, Chilton PM, Casella CR, Mitchell TC. Unrestrained glycogen synthase kinase-3 beta activity leads to activated T cell death and can be inhibited by natural adjuvant. THE JOURNAL OF IMMUNOLOGY 2007; 178:6083-91. [PMID: 17475833 DOI: 10.4049/jimmunol.178.10.6083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Activated T cell death (ATCD) after peak clonal expansion is required for effective homeostasis of the immune system. Using a mouse model of T cell clonal expansion and contraction, we found that regulation of the proapoptotic kinase glycogen synthase kinase (GSK)-3beta plays a decisive role in determining the extent to which T cells are eliminated after activation. Involvement of GSK-3beta in ATCD was tested by measuring T cell survival after GSK-3beta inhibition, either ex vivo with chemical and pharmacological inhibitors or in vivo by retroviral expression of a dominant-negative form of GSK-3. We also measured amounts of inactivating phosphorylation of GSK-3beta (Ser9) in T cells primed in the presence or absence of LPS. Our results show that GSK-3beta activity is required for ATCD and that its inhibition promoted T cell survival. Adjuvant treatment in vivo maintained GSK-3beta (Ser9) phosphorylation in activated T cells, whereas with adjuvant-free stimulation it peaked and then decayed as the cells became susceptible to ATCD. We conclude that the duration of GSK-3beta inactivation determines activated T cell survival and that natural adjuvant stimulation decreases the severity of clonal contraction in part by keeping a critical proapoptotic regulatory factor, GSK-3beta, inactivated.
Collapse
Affiliation(s)
- Sadhak Sengupta
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville School of Medicine, KY 40202, USA
| | | | | | | | | |
Collapse
|
24
|
Proud CG. Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J 2007; 403:217-34. [PMID: 17376031 DOI: 10.1042/bj20070024] [Citation(s) in RCA: 380] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent advances in our understanding of both the regulation of components of the translational machinery and the upstream signalling pathways that modulate them have provided important new insights into the mechanisms by which hormones, growth factors, nutrients and cellular energy status control protein synthesis in mammalian cells. The importance of proper control of mRNA translation is strikingly illustrated by the fact that defects in this process or its control are implicated in a number of disease states, such as cancer, tissue hypertrophy and neurodegeneration. Signalling pathways such as those involving mTOR (mammalian target of rapamycin) and mitogen-activated protein kinases modulate the phosphorylation of translation factors, the activities of the protein kinases that act upon them and the association of RNA-binding proteins with specific mRNAs. These effects contribute both to the overall control of protein synthesis (which is linked to cell growth) and to the modulation of the translation or stability of specific mRNAs. However, important questions remain about both the contributions of individual regulatory events to the control of general protein synthesis and the mechanisms by which the translation of specific mRNAs is controlled.
Collapse
Affiliation(s)
- Christopher G Proud
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3.
| |
Collapse
|
25
|
Shen T, Cseresnyés Z, Liu Y, Randall WR, Schneider MF. Regulation of the nuclear export of the transcription factor NFATc1 by protein kinases after slow fibre type electrical stimulation of adult mouse skeletal muscle fibres. J Physiol 2007; 579:535-51. [PMID: 17185343 PMCID: PMC2075400 DOI: 10.1113/jphysiol.2006.120048] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 12/20/2006] [Indexed: 11/08/2022] Open
Abstract
The transcription factor nuclear factor of activated T cells (NFAT)c1 has been shown to be involved in turning on slow skeletal muscle fibre gene expression. Previous studies from our laboratory have characterized the stimulation pattern-dependent nuclear import and resting shuttling of NFATc1-green fluorescent protein (GFP) in flexor digitorum brevis (FDB) muscle fibres from adult mouse. In this study, we use viral expression of the transcription factor NFATc1-GFP fusion protein to investigate the mechanisms underlying the nuclear export of the NFATc1-GFP that accumulated in the nuclei of cultured dissociated adult mouse FDB muscle fibres during slow-twitch fibre type electrical stimulation. In these studies, we found that inhibition of either glycogen synthase kinase 3beta (GSK3beta) or casein kinase 1 or 2 (CK1/2) markedly slowed the decay of nuclear NFATc1-GFP after cessation of muscle fibre electrical stimulation, whereas inhibition of casein kinase 1delta, p38 mitogen-activated protein kinase, c-Jun N-terminal kinase and protein kinase A had little effect. Simultaneous inhibition of GSK3beta and CK1/2 completely blocked the nuclear export of NFATc1-GFP after muscle activity. We also developed a simplified model of NFATc1 phosphorylation/dephosphorylation and nuclear fluxes, and used this model to simulate the observed time courses of nuclear NFATc1-GFP with and without NFATc1 kinase inhibition. Our results suggest that GSK3beta and CK1/2 are the major protein kinases that contribute to the removal of NFATc1 that accumulates in muscle fibre nuclei during muscle activity, and that GSK3beta and CK1/2 are responsible for phosphorylating NFATc1 in muscle nuclei in a complementary or synergistic fashion.
Collapse
Affiliation(s)
- Tiansheng Shen
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201-1503, USA
| | | | | | | | | |
Collapse
|
26
|
Mussmann R, Geese M, Harder F, Kegel S, Andag U, Lomow A, Burk U, Onichtchouk D, Dohrmann C, Austen M. Inhibition of GSK3 promotes replication and survival of pancreatic beta cells. J Biol Chem 2007; 282:12030-7. [PMID: 17242403 DOI: 10.1074/jbc.m609637200] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent developments indicate that the regeneration of beta cell function and mass in patients with diabetes is possible. A regenerative approach may represent an alternative treatment option relative to current diabetes therapies that fail to provide optimal glycemic control. Here we report that the inactivation of GSK3 by small molecule inhibitors or RNA interference stimulates replication of INS-1E rat insulinoma cells. Specific and potent GSK3 inhibitors also alleviate the toxic effects of high concentrations of glucose and the saturated fatty acid palmitate on INS-1E cells. Furthermore, treatment of isolated rat islets with structurally diverse small molecule GSK3 inhibitors increases the rate beta cell replication by 2-3-fold relative to controls. We propose that GSK3 is a regulator of beta cell replication and survival. Moreover, our results suggest that specific inhibitors of GSK3 may have practical applications in beta cell regenerative therapies.
Collapse
Affiliation(s)
- Rainer Mussmann
- DeveloGen AG, Marie-Curie-Strasse 7, Göttingen 37079, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chatzikyriakidou A, Sofikitis N, Georgiou I. Identification of novel cystinuria mutations and polymorphisms in SLC3A1 and SLC7A9 genes: absence of SLC7A10 gene mutations in cystinuric patients. ACTA ACUST UNITED AC 2006; 9:175-84. [PMID: 16225397 DOI: 10.1089/gte.2005.9.175] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cystinuria represents 3% of nephrolithiasis in humans with an overall prevalence of 1 in 7,000 neonates. Two genes have been reported to account for the genetic basis of cystinuria, the SLC3A1 and the SLC7A9. Recently, the possible involvement of the SLC7A10 gene in the genetic basis of the disorder was also reported. In the present study, we found a total of 15 mutations in 20 Greek cystinuric patients. Eight mutations are novel, 4 in the SLC3A1: F266S, T351I, R456C, and N516D, and 4 in the SLC7A9: 479-1G>C, Y232C, D233E, and 1399+1G>T. Furthermore, 2 polymorphisms were identified in the SLC3A1 gene and 16 polymorphic variants were also found in the SLC7A9 gene of which the 235+18C>A, 604+10G>A, and 604+24T>C are novel. Finally, no mutation was found in the SLC7A10 gene in all patients. Only, the novel 634+8C>G and the previously reported 913-11C+T polymorphisms were identified in the SLC7A10 gene. In conclusion, a spectrum of SLC3A1 and SLC7A9 mutations are responsible for the genetic basis of cystinuria in Greek patients.
Collapse
Affiliation(s)
- Anthoula Chatzikyriakidou
- Genetics Unit, Department of Obstetrics and Gynaecology, Ioannina University School of Medicine, Ioannina, Greece
| | | | | |
Collapse
|
28
|
Miyamoto S, Patel P, Hershey JWB. Changes in ribosomal binding activity of eIF3 correlate with increased translation rates during activation of T lymphocytes. J Biol Chem 2005; 280:28251-64. [PMID: 15946946 DOI: 10.1074/jbc.m414129200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rate of protein synthesis in quiescent peripheral blood T lymphocytes increases dramatically following mitogenic activation. The stimulation of translation is due to an increase in the rate of initiation caused by the regulation of initiation factor activities. Here, we focus on eIF3, a large multiprotein complex that plays a central role in the formation of the 40 S initiation complex. Using sucrose density gradient centrifugation to analyze ribosome complexes, we find that most eIF3 is not bound to 40 S ribosomal subunits in unactivated T lymphocytes but becomes ribosome-bound following activation. Immunoblot analyses of sucrose gradient fractions for individual eIF3 subunits show that the small eIF3j subunit is unassociated with the eIF3 complex in quiescent T lymphocytes, but upon activation joins the other eIF3 subunits and binds 40 S ribosomal subunits. Because eIF3j has been shown to be required for eIF3 binding to 40 S ribosomes in vitro, the results suggest that mitogenic stimulation of T lymphocytes leads to an activation of eIF3j, thereby enabling eIF3 to bind to the larger ribosome-free eIF3 subunit complex, and then to the 40 S ribosomes. The association of eIF3j with the other eIF3 subunits appears to be inhibited by rapamycin, suggesting a mechanism that lies downstream from the mammalian target of rapamycin kinase. This association requires ionomycin together with a phorbol ester, which also suggests that calcium signaling is involved. We conclude that the complex formation of eIF3 and its association with the ribosomes might contribute to increased translation rates during T lymphocyte activation.
Collapse
Affiliation(s)
- Suzanne Miyamoto
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California-Davis, Davis, California 95616, USA
| | | | | |
Collapse
|
29
|
Krupa A, Preethi G, Srinivasan N. Structural modes of stabilization of permissive phosphorylation sites in protein kinases: distinct strategies in Ser/Thr and Tyr kinases. J Mol Biol 2004; 339:1025-39. [PMID: 15178245 DOI: 10.1016/j.jmb.2004.04.043] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 04/21/2004] [Accepted: 04/22/2004] [Indexed: 11/20/2022]
Abstract
Protein kinases phosphorylate several cellular proteins providing control mechanisms for various signalling processes. Their activity is impeded in a number of ways and restored by alteration in their structural properties leading to a catalytically active state. Most protein kinases are subjected to positive and negative regulation by phosphorylation of Ser/Thr/Tyr residues at specific sites within and outside the catalytic core. The current review describes the analysis on 3D structures of protein kinases that revealed features distinct to active states of Ser/Thr and Tyr kinases. The nature and extent of interactions among well-conserved residues surrounding the permissive phosphorylation sites differ among the two classes of enzymes. The network of interactions of highly conserved Arg preceding the catalytic base that mediates stabilization of the activation segment exemplifies such diverse interactions in the two groups of kinases. The N-terminal and the C-terminal lobes of various groups of protein kinases further show variations in their extent of coupling as suggested from the extent of interactions between key functional residues in activation segment and the N-terminal alphaC-helix. We observe higher similarity in the conformations of ATP bound to active forms of protein kinases compared to ATP conformations in the inactive forms of kinases. The extent of structural variations accompanying phosphorylation of protein kinases is widely varied. The comparison of their crystal structures and the distinct features observed are hoped to aid in the understanding of mechanisms underlying the control of the catalytic activity of distinct subgroups of protein kinases.
Collapse
Affiliation(s)
- A Krupa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
30
|
Rajasekhar VK, Holland EC. Postgenomic global analysis of translational control induced by oncogenic signaling. Oncogene 2004; 23:3248-64. [PMID: 15094774 DOI: 10.1038/sj.onc.1207546] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It is commonly assumed that developmental and oncogenic signaling achieve their phenotypic effects primarily by directly regulating the transcriptional profile of cells. However, there is growing evidence that the direct effect on transcription may be overshadowed by differential effects on the translational efficiency of specific existing mRNA species. Global analysis of this effect using microarrays indicates that this mechanism of controlling protein production provides a highly specific, robust, and rapid response to oncogenic and developmental stimuli. The mRNAs so affected encode proteins involved in cell-cell interaction, signal transduction, and growth control. Furthermore, a large number of transcription factors capable of secondarily rearranging the transcriptional profile of the cell are controlled at this level as well. To what degree this translational control is either necessary or sufficient for tumor formation or maintenance remains to be determined.
Collapse
Affiliation(s)
- Vinagolu K Rajasekhar
- Department of Surgery (Neurosurgery), Neurology, Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10021, USA.
| | | |
Collapse
|
31
|
Vojtechová M, Sloncová E, Kucerová D, Jiricka J, Sovová V, Tuhácková Z. Initiation factor eIF2B not p70 S6 kinase is involved in the activation of the PI-3K signalling pathway induced by the v-src oncogene. FEBS Lett 2003; 543:81-6. [PMID: 12753910 DOI: 10.1016/s0014-5793(03)00415-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Our data show that in hamster fibroblasts transformed by Rous sarcoma virus (RSV), the phosphoinositide 3'-kinase (PI-3K)/Akt/glycogen synthase kinase 3 antiapoptotic pathway is upregulated and involved in increased protein synthesis through activation of initiation factor eIF2B. Upon inhibition of PI-3K by wortmannin, phosphorylation of 70-kDa ribosomal protein S6 kinase (p70 S6k) and its physiological substrate, ribosomal protein S6, decreased in the non-transformed cells but not in RSV-transformed cells. Thus PI-3K, which is thought to be involved in regulation of p70 S6k, signals to p70 S6k in normal fibroblasts, but it does not appear to be an upstream effector of p70 S6k in fibroblasts transformed by v-src oncogene, suggesting that changes in the PI-3K signalling pathway upstream of p70 S6k are induced by RSV transformation.
Collapse
Affiliation(s)
- Martina Vojtechová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 16637 6, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
32
|
Quevedo C, Salinas M, Alcázar A. Initiation factor 2B activity is regulated by protein phosphatase 1, which is activated by the mitogen-activated protein kinase-dependent pathway in insulin-like growth factor 1-stimulated neuronal cells. J Biol Chem 2003; 278:16579-86. [PMID: 12624094 DOI: 10.1074/jbc.m212936200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated that insulin-like growth factor 1 (IGF1) induces eukaryotic initiation factor 2B (eIF2B) activation in neuronal cells through the phosphatidylinositol 3 kinase/glycogen synthase kinase 3 pathway as well as by activation of the mitogen-activated protein kinase (MAPK)-activating kinase (MEK)/MAPK signaling pathway (Quevedo, C., Alcázar, A., and Salinas, M. (2000) J. Biol. Chem. 275, 19192-19197). This paper addresses the mechanism involved in IGF1-induced eIF2B activation via the MEK/MAPK cascade in cultured neurons treated with IGF1 and demonstrates that extracellular signal-regulated MAP kinase 1 and 2 (ERK1 and -2) immunoprecipitates of IGF1-treated neuronal cells promote this activation. This effect did not directly result from eIF2B phosphorylation by ERK immunoprecipitates. In addition, recombinant ERK1 and -2 neither activate eIF2B nor phosphorylate it. Endogenous protein phosphatase 1 and 2A catalytic subunits (PP1C and PP2AC, respectively) were co-immunoprecipitated with ERK1 and -2, and the association of ERK with PP1C was stimulated by IGF1 treatment, resulting in increased PP1 activity. ERK immunoprecipitates incubated with PP1 inhibitors did not activate eIF2B, indicating that PP1C activates eIF2B. In vitro experiments with phosphorylated eIF2B showed that recombinant PP1C (alpha isoform) dephosphorylates and activates eIF2B. Paralleling eIF2B activation, IGF1 treatment induced PP1 activation in a MEK/MAPK-dependent fashion. Moreover, the treatment of neurons with the PP1 inhibitor tautomycin inhibited PP1 activation and prevented IGF1-induced eIF2B activation. These findings strongly suggest that IGF1-induced eIF2B activation in neurons is effected by PP1, the activation of which is mediated by the MEK/MAPK signaling pathway.
Collapse
Affiliation(s)
- Celia Quevedo
- Servicio de Bioquímica-Investigación, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | | | | |
Collapse
|
33
|
Kane LP, Weiss A. The PI-3 kinase/Akt pathway and T cell activation: pleiotropic pathways downstream of PIP3. Immunol Rev 2003; 192:7-20. [PMID: 12670391 DOI: 10.1034/j.1600-065x.2003.00008.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ligation of the T cell receptor for antigen (TCR) and/or costimulatory receptor CD28 results in rapid activation of phosphoinositide-3 kinase (PI-3 kinase). It remains unclear, however, precisely how this activation occurs and also how the newly generated phospholipid products trigger the various events associated with T cell activation. Here we discuss the current understanding of how PI-3 kinase is activated by the TCR and CD28 and what roles its products play in T cell activation. We also review recent advances in understanding the function of Akt in particular, especially its role in CD28 costimulation. Several functional targets of Akt are discussed in this regard: inducible transcription, cell survival, glucose metabolism, and the cellular translational machinery. These pathways have been associated with TCR/CD28 costimulation, and they have also been implicated as targets of Akt.
Collapse
Affiliation(s)
- Lawrence P Kane
- Department of Medicine, The Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
34
|
Seminario MC, Wange RL. Lipid phosphatases in the regulation of T cell activation: living up to their PTEN-tial. Immunol Rev 2003; 192:80-97. [PMID: 12670397 DOI: 10.1034/j.1600-065x.2003.00013.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The initiating events associated with T activation in response to stimulation of the T cell antigen receptor (TCR) and costimulatory receptors, such as CD28, are intimately associated with the enzymatically catalyzed addition of phosphate not only to key tyrosine, threonine and serine residues in proteins but also to the D3 position of the myo-inositol ring of phosphatidylinositol (PtdIns). This latter event is catalyzed by the lipid kinase phosphoinositide 3-kinase (PI3K). The consequent production of PtdIns(3,4)P2 and PtdIns(3,4,5)P3 serves both to recruit signaling proteins to the plasma membrane and to induce activating conformational changes in proteins that contain specialized domains for the binding of these phospholipids. The TCR signaling proteins that are subject to regulation by PI3K include Akt, phospholipase Cgamma1 (PLCgamma1), protein kinase C zeta (PKC-zeta), Itk, Tec and Vav, all of which play critical roles in T cell activation. As is the case for phosphorylation of protein substrates, the phosphorylation of PtdIns is under dynamic regulation, with the D3 phosphate being subject to hydrolysis by the 3-phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome 10), thereby placing PTEN in direct opposition to PI3K. In this review we consider recent data concerning how PTEN may act in regulating the process of T cell activation.
Collapse
Affiliation(s)
- Maria-Cristina Seminario
- Laboratory of Cellular and Molecular Biology, National Institutes on Aging/IRP/NIH/DHHS, Baltimore, MD 21224, USA.
| | | |
Collapse
|
35
|
Astoul E, Laurence AD, Totty N, Beer S, Alexander DR, Cantrell DA. Approaches to define antigen receptor-induced serine kinase signal transduction pathways. J Biol Chem 2003; 278:9267-75. [PMID: 12515807 DOI: 10.1074/jbc.m211252200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present report we describe the properties of a novel phospho-specific antiserum that has opened a route to the characterization of antigen receptor-activated serine kinase pathways in lymphocytes. The basis for the present work was that Ser-21 in glycogen synthase kinase 3alpha is robustly phosphorylated following antigen receptor triggering. We predicted accordingly that antigen receptors would also stimulate phosphorylation of other proteins with a similar sequence. To test this idea we raised an antibody against the phospho-peptide RARTSpSFAEP, where pS is a phospho-serine corresponding to the glycogen synthase kinase 3alpha Ser-21 sequence. The resulting antiserum was called phospho antibody for proteomics-1 (PAP-1). The present study describes the properties of PAP-1 and shows that it can reveal quite striking differences in the phospho-proteome of different cell types and is able to pinpoint new targets in important signal transduction pathways. PAP-1 was used to map protein phosphorylations regulated by the antigen receptor in T cells. One of these PAP-1-reactive proteins was purified and revealed to be a previously unrecognized target for antigen receptor signal transduction, namely an "orphan" adapter SLY (Src homology 3 (SH3) domain-containing protein expressed in lymphocytes). The use of sera detecting specific phosphorylation sites is thus proved as a powerful method for the discovery of novel downstream components of antigen receptor signals in T cells.
Collapse
Affiliation(s)
- Emmanuelle Astoul
- Lymphocyte Activation Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | | | | | | | |
Collapse
|
36
|
Sheridan CM, Heist EK, Beals CR, Crabtree GR, Gardner P. Protein kinase A negatively modulates the nuclear accumulation of NF-ATc1 by priming for subsequent phosphorylation by glycogen synthase kinase-3. J Biol Chem 2002; 277:48664-76. [PMID: 12351631 DOI: 10.1074/jbc.m207029200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear localization and transcriptional activity of the NF-ATc family of transcription factors, essential to many developmental, differentiation, and adaptation processes, are determined by the opposing activities of the phosphatase calcineurin, which promotes nuclear accumulation of NF-ATc, and several kinases, which promote cytoplasmic accumulation. Many reports suggest that protein kinase A (PKA) negatively modulates calcineurin-mediated NF-ATc activation. Here we show that overexpression of PKA causes phosphorylation and cytoplasmic accumulation of NF-ATc1 in direct opposition to calcineurin by phosphorylating Ser-245, Ser-269, and Ser-294 in the conserved serine-proline repeat domain, and that mutation of these serines blocks the effect of PKA. Activation of endogenous PKA is similarly able to promote phosphorylation of these sites on NF-ATc1 in two lymphoid cell lines. We further show that a complete block of NF-ATc1 nuclear localization by PKA requires a second kinase activity that can be supplied by glycogen synthase kinase-3 (GSK-3), and that mutation of either the PKA phosphorylation sites or the upstream GSK-3 sites prevents the effect of PKA. Thus, we propose that PKA functions cooperatively as a priming kinase for further phosphorylation by GSK-3 to oppose calcineurin-mediated nuclear accumulation and transcriptional activity of NF-ATc1 and that, through this mechanism, PKA may be an important modulator of many NF-ATc-dependent processes.
Collapse
Affiliation(s)
- Colleen M Sheridan
- Program in Immunology, Department of Molecular Pharmacology, Howard Hughes Medical Institute, California 94305, USA
| | | | | | | | | |
Collapse
|
37
|
Holnthoner W, Pillinger M, Groger M, Wolff K, Ashton AW, Albanese C, Neumeister P, Pestell RG, Petzelbauer P. Fibroblast growth factor-2 induces Lef/Tcf-dependent transcription in human endothelial cells. J Biol Chem 2002; 277:45847-53. [PMID: 12235165 DOI: 10.1074/jbc.m209354200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lef/Tcf proteins belong to a family of architectural transcription factors that control developmental processes and play an important role in oncogenesis. Classical activators of Lef/Tcf-dependent transcription comprise the Wnt family of proteins, which translocate beta-catenin into the nucleus and allow the formation of transactivation-competent Lef/Tcf-beta-catenin complexes. Here we show that in human endothelial cells fibroblast growth factor-2 (FGF-2) reduces GSK-3 activity and augments nuclear levels of beta-catenin. FGF-2 induced Lef/Tcf-dependent transcription of a cyclin D1-luciferase construct. Gel shift assays revealed binding of Tcf-4 as the only Lef/Tcf family member and of beta-catenin to the Lef/Tcf site in the cyclin D1 promoter. Cotransfection with a dominant negative Tcf-4 construct inhibited the FGF-2-induced cyclin D1 promoter activity. Overexpression of an uninhibitable GSK-3beta mutant resulted in partial inhibition of FGF-2-mediated cyclin D1 induction. The importance for cyclin D1 in FGF-2-induced angiogenesis in vivo is shown in cyclin D1(-/-) mice, where FGF-2-induced new vessel formation was significantly reduced compared with FGF-2-induced angiogenesis in cyclin D1(+/+) mice. In conclusion, FGF-2 is a novel modulator of Lef/Tcf-beta-catenin signaling in endothelial cells, suggesting that angiogenic properties of FGF-2 are at least in part mediated by Lef/Tcf-beta-catenin activation.
Collapse
Affiliation(s)
- Wolfgang Holnthoner
- Department of Dermatology, Division of General Dermatology, University of Vienna Medical School, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang X, Janmaat M, Beugnet A, Paulin FEM, Proud CG. Evidence that the dephosphorylation of Ser(535) in the epsilon-subunit of eukaryotic initiation factor (eIF) 2B is insufficient for the activation of eIF2B by insulin. Biochem J 2002; 367:475-81. [PMID: 12133000 PMCID: PMC1222905 DOI: 10.1042/bj20020677] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2002] [Revised: 06/06/2002] [Accepted: 07/22/2002] [Indexed: 11/17/2022]
Abstract
Eukaryotic initiation factor (eIF) 2B is a guanine-nucleotide exchange factor that plays a key role in the regulation of protein synthesis. It is activated by insulin, serum and other agents that stimulate general protein synthesis. The largest (epsilon) subunit of eIF2B is a substrate for glycogen synthase kinase (GSK)-3 in vitro, and phosphorylation by GSK3 inhibits the activity of eIF2B. The site of phosphorylation has previously been identified as Ser(535). GSK3 is inactivated by phosphorylation in response to insulin or serum. In Chinese-hamster ovary cells, insulin and serum bring about the dephosphorylation of Ser(535) in vivo, concomitantly with the phosphorylation of GSK3, and these effects are mediated through signalling via phosphoinositide 3-kinase. We have made use of inhibitors of GSK3 to determine whether GSK3 is responsible for phosphorylation of Ser(535) in vivo and to explore the role of phosphorylation of Ser(535) in the regulation of eIF2B. Treatment of cells with LiCl or with either of two recently developed GSK3 inhibitors, SB-415286 and SB-216763, brought about the dephosphorylation of Ser(535), which strongly indicates that this site is indeed a target for GSK3 in vivo. However, these compounds did not elicit significant activation of eIF2B, indicating, consistent with conclusions from one of our previous studies, that additional inputs are required for the activation of eIF2B. Our results also show that each of the inhibitors used affects overall protein synthesis and have additional effects on translation factors or signalling pathways apparently unrelated to their effects on GSK3, indicating that caution must be exercised when interpreting data obtained using these compounds.
Collapse
Affiliation(s)
- Xuemin Wang
- Division of Molecular Physiology, School of Life Sciences, MSI/WTB Complex, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | | | | | | | | |
Collapse
|
39
|
Murphy LLS, Hughes CCW. Endothelial Cells Stimulate T Cell NFAT Nuclear Translocation in the Presence of Cyclosporin A: Involvement of the wnt/Glycogen Synthase Kinase-3β Pathway. THE JOURNAL OF IMMUNOLOGY 2002; 169:3717-25. [PMID: 12244165 DOI: 10.4049/jimmunol.169.7.3717] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cells resistant to the immunosuppressive drug cyclosporin A (CsA) may be important mediators of chronic graft rejection. We previously reported that T cells activated in the presence of endothelial cells (EC) develop resistance to CsA, and initiate IL-2 secretion within 8-12 h of triggering. CsA normally blocks the phosphatase, calcineurin, thus preventing nuclear translocation of the transcription factor, NFAT. We find that in the presence but not the absence of EC, NFAT1 can be detected in the nuclei of CsA-treated T cells within 8 h of triggering, reaching a maximal level of 60% of control by 24 h. Glycogen synthase kinase-3beta (GSK-3beta), which rephosphorylates NFAT and promotes nuclear export, is inhibited by EC costimulation. GSK-3beta is a component of the wnt signaling pathway, and EC express wnt-5a and T cells express frizzled-5, a wnt-5a receptor. Wnt-5a promotes T cell NFAT nuclear accumulation in the presence of CsA, an effect mimicked by Li(+), a potent inhibitor of GSK-3beta. The protein kinase C agonist PMA dramatically synergizes with both EC and wnt-5a in stimulating T cell IL-2 synthesis, and inhibition of either protein kinase C by Ro-31-8425 or G-proteins by pertussis toxin effectively blocks the actions of wnt-5a on T cells. Finally, a secreted, dominant-negative form of frizzled-5 blocks EC-mediated CsA resistance. Thus, EC promote CsA-resistant nuclear localization of NFAT and subsequent IL-2 synthesis through a noncanonical wnt-dependent pathway.
Collapse
Affiliation(s)
- Lisa L Salazar Murphy
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
40
|
Takano H, Zou Y, Akazawa H, Toko H, Mizukami M, Hasegawa H, Asakawa M, Nagai T, Komuro I. Inhibitory molecules in signal transduction pathways of cardiac hypertrophy. Hypertens Res 2002; 25:491-8. [PMID: 12358132 DOI: 10.1291/hypres.25.491] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cardiac hypertrophy is induced by a variety of diseases, such as hypertension, valvular diseases, myocardial infarction, and endocrine disorders. Although cardiac hypertrophy may initially be a beneficial response that normalizes wall stress and maintains normal cardiac function, prolonged hypertrophy is a leading cause of heart failure and sudden death. A number of studies have elucidated molecules responsible for the development of cardiac hypertrophy, including the mitogen-activated protein (MAP) kinases pathway, Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, and calcium/calmodulin-dependent protein phosphatase calcineurin pathway. These molecules may be targets for therapies designed to prevent the progression of cardiac hypertrophy. Numerous studies have focused on characterization of the intracellular signal transduction molecules that promote cardiac hypertrophy in order to clarify the molecular mechanisms, but there have been only a few reports on the inhibitory regulators of hypertrophic response. Recently, several molecules have attracted much attention as endogenous inhibitory regulators of cardiac hypertrophy. Enhancement of these inhibitory regulators would also seem to be a potential approach for the pharmacological treatment of hypertrophy. In this review, we summarize the inhibitory molecules of cardiac hypertrophy.
Collapse
Affiliation(s)
- Hiroyuki Takano
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Barnes AP, Milgram SL. Signals from the X: signal transduction and X-linked mental retardation. Int J Dev Neurosci 2002; 20:397-406. [PMID: 12175880 DOI: 10.1016/s0736-5748(02)00016-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The dramatic increase in genomic information is allowing the rapid identification of genes that are altered in mental retardation (MR). It is necessary to place their resulting gene products in their cellular context to understand how they may have contributed to a patient's cognitive deficits. This review will consider signaling molecules that have been implicated in X-linked MR and the known pathways by which these proteins covey information will be delineated. The proteins discussed include four distinct classes: transmembrane receptors, guanine nucleotide related proteins, kinases, and translational regulators.
Collapse
Affiliation(s)
- Anthony P Barnes
- Department of Cell and Developmental Biology, UNC-Neurodevelopmental Disorders Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
42
|
Kleijn M, Proud CG. The regulation of protein synthesis and translation factors by CD3 and CD28 in human primary T lymphocytes. BMC BIOCHEMISTRY 2002; 3:11. [PMID: 12028592 PMCID: PMC116439 DOI: 10.1186/1471-2091-3-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2002] [Accepted: 05/17/2002] [Indexed: 01/22/2023]
Abstract
BACKGROUND Activation of human resting T lymphocytes results in an immediate increase in protein synthesis. The increase in protein synthesis after 16-24 h has been linked to the increased protein levels of translation initiation factors. However, the regulation of protein synthesis during the early onset of T cell activation has not been studied in great detail. We studied the regulation of protein synthesis after 1 h of activation using alphaCD3 antibody to stimulate the T cell receptor and alphaCD28 antibody to provide the co-stimulus. RESULTS Activation of the T cells with both antibodies led to a sustained increase in the rate of protein synthesis. The activities and/or phosphorylation states of several translation factors were studied during the first hour of stimulation with alphaCD3 and alphaCD28 to explore the mechanism underlying the activation of protein synthesis. The initial increase in protein synthesis was accompanied by activation of the guanine nucleotide exchange factor, eukaryotic initiation factor (eIF) 2B, and of p70 S6 kinase and by dephosphorylation of eukaryotic elongation factor (eEF) 2. Similar signal transduction pathways, as assessed using signal transduction inhibitors, are involved in the regulation of protein synthesis, eIF2B activity and p70 S6 kinase activity. A new finding was that the p38 MAPK alpha/beta pathway was involved in the regulation of overall protein synthesis in primary T cells. Unexpectedly, no changes were detected in the phosphorylation state of the cap-binding protein eIF4E and the eIF4E-binding protein 4E-BP1, or the formation of the cap-binding complex eIF4F. CONCLUSIONS Both eIF2B and p70 S6 kinase play important roles in the regulation of protein synthesis during the early onset of T cell activation.
Collapse
Affiliation(s)
- Miranda Kleijn
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dundee, MSI/Wellcome Trust Biocentre, DD1 5EH United Kingdom
| | - Christopher G Proud
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dundee, MSI/Wellcome Trust Biocentre, DD1 5EH United Kingdom
| |
Collapse
|
43
|
Mendez R, Welsh G, Kleijn M, Myers MG, White MF, Proud CG, Rhoads RE. Regulation of protein synthesis by insulin through IRS-1. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 26:49-93. [PMID: 11575167 DOI: 10.1007/978-3-642-56688-2_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- R Mendez
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Takei N, Kawamura M, Hara K, Yonezawa K, Nawa H. Brain-derived neurotrophic factor enhances neuronal translation by activating multiple initiation processes: comparison with the effects of insulin. J Biol Chem 2001; 276:42818-25. [PMID: 11551908 DOI: 10.1074/jbc.m103237200] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effects of neurotrophic factors on translational activation were investigated in cortical neurons. Brain-derived neurotrophic factor (BDNF) increased protein synthesis within 30 min, whereas insulin produced a weaker enhancement of protein synthesis. BDNF-triggered protein synthesis was inhibited by LY294002, PD98059, and rapamycin, whereas the effect of insulin was unaffected by PD98059. To explore the mechanisms underlying this effect, the protein phosphorylation cascades that lead to the activation of translation initiation in neurons were examined. BDNF induced the phosphorylation of both eukaryote initiation factor (eIF) 4E and its binding protein (eIF4E-binding protein-1). The former reaction was inhibited by PD98059, whereas the latter was inhibited by LY294002 or rapamycin. In agreement, BDNF induced the phosphorylation of mammalian TOR (target of rapamycin) and enhanced its kinase activity toward eIF4E-binding protein-1. In contrast, insulin failed to activate MAPK and did not induce the phosphorylation of eIF4E. Since BDNF and insulin increased the activity of eIF2B and eIF2, the only difference between them was eIF4E phosphorylation. Thus, this may explain the lower activity of insulin in potentiating neuronal protein synthesis. These results suggest strongly that BDNF simultaneously activates multiple signaling cascades consisting of phosphatidylinositol 3-kinase, mammalian TOR, and MAPK to enhance translation initiation in neurons.
Collapse
Affiliation(s)
- N Takei
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Asahimachi 1, Niigata 951-8585, Japan.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Glycogen synthase kinase-3beta (GSK3beta) is a fascinating enzyme with an astoundingly diverse number of actions in intracellular signaling systems. GSK3beta activity is regulated by serine (inhibitory) and tyrosine (stimulatory) phosphorylation, by protein complex formation, and by its intracellular localization. GSK3beta phosphorylates and thereby regulates the functions of many metabolic, signaling, and structural proteins. Notable among the signaling proteins regulated by GSK3beta are the many transcription factors, including activator protein-1, cyclic AMP response element binding protein, heat shock factor-1, nuclear factor of activated T cells, Myc, beta-catenin, CCAAT/enhancer binding protein, and NFkappaB. Lithium, the primary therapeutic agent for bipolar mood disorder, is a selective inhibitor of GSK3beta. This raises the possibility that dysregulation of GSK3beta and its inhibition by lithium may contribute to the disorder and its treatment, respectively. GSK3beta has been linked to all of the primary abnormalities associated with Alzheimer's disease. These include interactions between GSK3beta and components of the plaque-producing amyloid system, the participation of GSK3beta in phosphorylating the microtubule-binding protein tau that may contribute to the formation of neurofibrillary tangles, and interactions of GSK3beta with presenilin and other Alzheimer's disease-associated proteins. GSK3beta also regulates cell survival, as it facilitates a variety of apoptotic mechanisms, and lithium provides protection from many insults. Thus, GSK3beta has a central role regulating neuronal plasticity, gene expression, and cell survival, and may be a key component of certain psychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- C A Grimes
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 1057, Birmingham, AL 35294-0017, USA
| | | |
Collapse
|
46
|
Wang X, Paulin FE, Campbell LE, Gomez E, O’Brien K, Morrice N, Proud CG. Eukaryotic initiation factor 2B: identification of multiple phosphorylation sites in the epsilon-subunit and their functions in vivo. EMBO J 2001; 20:4349-59. [PMID: 11500362 PMCID: PMC125262 DOI: 10.1093/emboj/20.16.4349] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Eukaryotic initiation factor (eIF) 2B is a heteromeric guanine nucleotide exchange factor that plays an important role in regulating mRNA translation. Here we identify multiple phosphorylation sites in the largest, catalytic, subunit (epsilon) of mammalian eIF2B. These sites are phosphorylated by four different protein kinases. Two conserved sites (Ser712/713) are phosphorylated by casein kinase 2. They lie at the extreme C-terminus and are required for the interaction of eIF2Bepsilon with its substrate, eIF2, in vivo and for eIF2B activity in vitro. Glycogen synthase kinase 3 (GSK3) is responsible for phosphorylating Ser535. This regulatory phosphorylation event requires both the fourth site (Ser539) and a distal region, which acts to recruit GSK3 to eIF2Bepsilon in vivo. The fifth site, which lies outside the catalytic domain of eIF2Bepsilon, can be phosphorylated by casein kinase 1. All five sites are phosphorylated in the eIF2B complex in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicholas Morrice
- Division of Molecular Physiology, School of Life Sciences and
MRC Protein Phosphorylation Unit, MSI/WTB Complex, University of Dundee, Dundee DD1 5EH, UK Corresponding author e-mail:
X.Wang and F.E.M.Paulin contributed equally to this work
| | - Christopher G. Proud
- Division of Molecular Physiology, School of Life Sciences and
MRC Protein Phosphorylation Unit, MSI/WTB Complex, University of Dundee, Dundee DD1 5EH, UK Corresponding author e-mail:
X.Wang and F.E.M.Paulin contributed equally to this work
| |
Collapse
|
47
|
Woods YL, Cohen P, Becker W, Jakes R, Goedert M, Wang X, Proud CG. The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2Bepsilon at Ser539 and the microtubule-associated protein tau at Thr212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase. Biochem J 2001; 355:609-15. [PMID: 11311121 PMCID: PMC1221774 DOI: 10.1042/bj3550609] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The substrate specificity of glycogen synthase kinase 3 (GSK3) is unusual in that efficient phosphorylation only occurs if another phosphoserine or phosphothreonine residue is already present four residues C-terminal to the site of GSK3 phosphorylation. One such substrate is the epsilon-subunit of rat eukaryotic protein-synthesis initiation factor 2B (eIF2Bepsilon), which is inhibited by the GSK3-catalysed phosphorylation of Ser(535). There is evidence that GSK3 is only able to phosphorylate eIF2Bepsilon at Ser(535) if Ser(539) is already phosphorylated by another protein kinase. However, no protein kinases capable of phosphorylating Ser(539) have so far been identified. Here we show that Ser(539) of eIF2Bepsilon, which is followed by proline, is phosphorylated specifically by two isoforms of dual-specificity tyrosine phosphorylated and regulated kinase (DYRK2 and DYRK1A), but only weakly or not at all by other 'proline-directed' protein kinases tested. We also establish that phosphorylation of Ser(539) permits GSK3 to phosphorylate Ser(535) in vitro and that eIF2Bepsilon is highly phosphorylated at Ser(539) in vivo. The DYRK isoforms also phosphorylate human microtubule-associated protein tau at Thr(212) in vitro, a residue that is phosphorylated in foetal tau and hyperphosphorylated in filamentous tau from Alzheimer's-disease brain. Phosphorylation of Thr(212) primes tau for phosphorylation by GSK3 at Ser(208) in vitro, suggesting a more general role for DYRK isoforms in priming phosphorylation of GSK3 substrates.
Collapse
Affiliation(s)
- Y L Woods
- MRC Protein Phosphorylation Unit, School of Life Sciences, MSI/WTB Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| | | | | | | | | | | | | |
Collapse
|
48
|
Oh CK, Filler SG, Cho SH. Eukaryotic translation initiation factor-6 enhances histamine and IL-2 production in mast cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:3606-11. [PMID: 11207322 DOI: 10.4049/jimmunol.166.5.3606] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Eukaryotic translation initiation factor (eIF)-6 is known to be important in ribosome biogenesis. Previously, we have discovered that eIF-6 mRNA is induced in lung in a murine model of asthma. We also found that there was enhanced eIF-6 expression in mast cells stimulated with PMA plus calcium ionophore. Therefore, we hypothesized that the induction of eIF-6 enhances the production of bioactive mediators by mast cells upon allergic stimulation. In the current study, we found that eIF-6 mRNA was rapidly induced in murine mast cells stimulated by Fc epsilon RI cross-linking, which is a major physiologic stimulant for mast cells. eIF-6 was also induced in human mast cells upon stimulation. The increase in eIF-6 gene expression in murine mast cells was blocked by therapeutic agents such as dexamethasone and cyclosporin A. To determine the location and function of eIF-6, murine mast cells were transfected with a construct that overexpressed enhanced green fluorescent protein-tagged eIF-6. These experiments demonstrated that eIF-6 was localized predominantly in the nucleolus of the mast cells. Also, overexpression of enhanced green fluorescent protein/eIF-6 enhanced the production of histamine and IL-2, but not IL-4 by stimulated murine mast cells. These results suggest that eIF-6 regulates the production of selected bioactive mediators in allergic diseases. This is the first demonstration of a biologic function of eIF-6 in mammalian cells.
Collapse
Affiliation(s)
- C K Oh
- Division of Allergy and Immunology, Harbor-University of California, Los Angeles, Medical Center, Torrance, CA 90509, USA
| | | | | |
Collapse
|
49
|
Zhang J, Johnson GV. Tau protein is hyperphosphorylated in a site-specific manner in apoptotic neuronal PC12 cells. J Neurochem 2000; 75:2346-57. [PMID: 11080186 DOI: 10.1046/j.1471-4159.2000.0752346.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alterations in the status of microtubules contribute to the cytoskeletal rearrangements that occur during apoptosis. The microtubule-associated protein tau regulates microtubule dynamics and thus is likely to play an important role in the cytoskeletal changes that occur in apoptotic cells. Previously, we demonstrated that the phosphorylation of tau at the Tau-1 epitope was increased during neuronal PC12 cell apoptosis, and further that the microtubule binding of tau from apoptotic cells was significantly impaired because of altered phosphorylation. The fact that the microtubule-binding capacity of tau from apoptotic cells was reduced to approximately 30% of control values indicated that sites in addition to those within the Tau-1 epitope were hyperphosphorylated during apoptosis. In this study using a combination of immunological and biochemical approaches, numerous sites were found to be hyperphosphorylated on tau isolated from apoptotic cells. Further, during apoptosis, the activities of cell division control protein kinase (cdc2) and cyclin-dependent kinase 5 (cdk5) were selectively and significantly increased. The association of these two protein kinases with tau was also increased during apoptosis. These findings are intriguing because many of the sites found to be hyperphosphorylated on tau during apoptosis are also hyperphosphorylated on tau from Alzheimer's disease brain. Likewise, there are data indicating that in Alzheimer's disease the activities of cdc2 and cdk5 are also increased.
Collapse
Affiliation(s)
- J Zhang
- Department of Psychiatry and Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017, USA
| | | |
Collapse
|
50
|
Tyzack JK, Wang X, Belsham GJ, Proud CG. ABC50 interacts with eukaryotic initiation factor 2 and associates with the ribosome in an ATP-dependent manner. J Biol Chem 2000; 275:34131-9. [PMID: 10931828 DOI: 10.1074/jbc.m002868200] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic initiation factor 2 (eIF2) plays a key role in the process of translation initiation and in its control. Here we demonstrate that highly purified mammalian eIF2 contains an additional polypeptide of apparent molecular mass of 110 kDa. This polypeptide co-purified with eIF2 through five different chromatography procedures. A cDNA clone encoding the polypeptide was isolated, and its sequence closely matched that of a protein previously termed ABC50, a member of the ATP-binding cassette (ABC) family of proteins. Antibodies to ABC50 co-immunoprecipitated eIF2 and vice versa, indicating that the two proteins interact. The presence of ABC50 had no effect upon the ability of eIF2 to bind GDP but markedly enhanced the association of methionyl-tRNA with the factor. Unlike the majority of ABC proteins, which are membrane-associated transporters, ABC50 associates with the ribosome and co-sediments in sucrose gradients with the 40 and 60 S ribosomal subunits. The association of ABC50 with ribosomal subunits was increased by ATP and decreased by ADP. ABC50 is related to GCN20 and eEF3, two yeast ABC proteins that are not membrane-associated transporters and are instead implicated in mRNA translation and/or its control. Thus, these data identify ABC50 as a third ABC protein with a likely function in mRNA translation, which associates with eIF2 and with ribosomes.
Collapse
Affiliation(s)
- J K Tyzack
- MSI/WTB Complex, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | | | | | | |
Collapse
|