1
|
Yu Q, Dai Q, Huang Z, Li C, Yan L, Fu X, Wang Q, Zhang Y, Cai L, Yang Z, Xiao R. Microfat exerts an anti-fibrotic effect on human hypertrophic scar via fetuin-A/ETV4 axis. J Transl Med 2023; 21:231. [PMID: 37004048 PMCID: PMC10064544 DOI: 10.1186/s12967-023-04065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Hypertrophic scar is a fibrotic disease following wound healing and is characterized by excessive extracellular matrix deposition. Autologous microfat grafting proves an effective strategy for the treatment thereof as it could improve the texture of scars and relieve relevant symptoms. This study aims to explore the potential mechanisms underlying the anti-fibrotic effect of microfat on hypertrophic scars. METHODS In this study, we injected microfat into transplanted hypertrophic scars in mouse models and investigated the subsequent histological changes and differential expression of mRNAs therein. As for in vitro studies, we co-cultured microfat and hypertrophic scar fibroblasts (HSFs) and analyzed molecular profile changes in HSFs co-cultured with microfat by RNA sequencing. Moreover, to identify the key transcription factors (TFs) which might be responsible for the anti-fibrotic function of microfat, we screened the differentially expressed TFs and transfected HSFs with lentivirus to overexpress or knockdown certain differentially expressed TFs. Furthermore, comparative secretome analyses were conducted to investigate the proteins secreted by co-cultured microfat; changes in gene expression of HSFs were examined after the administration of the potential anti-fibrotic protein. Finally, the relationship between the key TF in HSFs and the microfat-secreted anti-fibrotic adipokine was analyzed. RESULTS The anti-fibrotic effect of microfat was confirmed by in vivo transplanted hypertrophic scar models, as the number of α-SMA-positive myofibroblasts was decreased and the expression of fibrosis-related genes downregulated. Co-cultured microfat suppressed the extracellular matrix production of HSFs in in vitro experiment, and the transcription factor ETV4 was primarily differentially expressed in HSFs when compared with normal skin fibroblasts. Overexpression of ETV4 significantly decreased the expression of fibrosis-related genes in HSFs at both mRNA and protein levels. Fetuin-A secreted by microfat could also downregulate the expression of fibrosis-related genes in HSFs, partially through upregulating ETV4 expression. CONCLUSIONS Our results demonstrated that transcription factor ETV4 is essential for the anti-fibrotic effect of microfat on hypertrophic scars, and that fetuin-A secreted by microfat could suppress the fibrotic characteristic of HSFs through upregulating ETV4 expression. Microfat wields an alleviative influence over hypertrophic scars via fetuin-A/ETV4 axis.
Collapse
Affiliation(s)
- Qian Yu
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qiang Dai
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Beijing, People's Republic of China
| | - Zonglin Huang
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Chen Li
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Li Yan
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xin Fu
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qian Wang
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yi Zhang
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Lei Cai
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China.
| | - Zhigang Yang
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China.
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| | - Ran Xiao
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China.
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Ali Mondal S, Sathiaseelan R, Mann SN, Kamal M, Luo W, Saccon TD, Isola JVV, Peelor FF, Li T, Freeman WM, Miller BF, Stout MB. 17α-estradiol, a lifespan-extending compound, attenuates liver fibrosis by modulating collagen turnover rates in male mice. Am J Physiol Endocrinol Metab 2023; 324:E120-E134. [PMID: 36516471 PMCID: PMC9902223 DOI: 10.1152/ajpendo.00256.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Estrogen signaling is protective against chronic liver diseases, although men and a subset of women are contraindicated for chronic treatment with 17β-estradiol (17β-E2) or combination hormone replacement therapies. We sought to determine if 17α-estradiol (17α-E2), a naturally occurring diastereomer of 17β-E2, could attenuate liver fibrosis. We evaluated the effects of 17α-E2 treatment on collagen synthesis and degradation rates using tracer-based labeling approaches in male mice subjected to carbon tetrachloride (CCl4)-induced liver fibrosis. We also assessed the effects of 17α-E2 on markers of hepatic stellate cell (HSC) activation, collagen cross-linking, collagen degradation, and liver macrophage content and polarity. We found that 17α-E2 significantly reduced collagen synthesis rates and increased collagen degradation rates, which was mirrored by declines in transforming growth factor β1 (TGF-β1) and lysyl oxidase-like 2 (LOXL2) protein content in liver. These improvements were associated with increased matrix metalloproteinase 2 (MMP2) activity and suppressed stearoyl-coenzyme A desaturase 1 (SCD1) protein levels, the latter of which has been linked to the resolution of liver fibrosis. We also found that 17α-E2 increased liver fetuin-A protein, a strong inhibitor of TGF-β1 signaling, and reduced proinflammatory macrophage activation and cytokines expression in the liver. We conclude that 17α-E2 reduces fibrotic burden by suppressing HSC activation and enhancing collagen degradation mechanisms. Future studies will be needed to determine if 17α-E2 acts directly in hepatocytes, HSCs, and/or immune cells to elicit these benefits.
Collapse
Affiliation(s)
- Samim Ali Mondal
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Roshini Sathiaseelan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Shivani N Mann
- Department of Neuroscience, University of Arizona, Tucson, Arizona
| | - Maria Kamal
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wenyi Luo
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tatiana D Saccon
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - José V V Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Tiangang Li
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Willard M Freeman
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| |
Collapse
|
3
|
Rämö JT, Kiiskinen T, Seist R, Krebs K, Kanai M, Karjalainen J, Kurki M, Hämäläinen E, Häppölä P, Havulinna AS, Hautakangas H, Mägi R, Palta P, Esko T, Metspalu A, Pirinen M, Karczewski KJ, Ripatti S, Milani L, Stankovic KM, Mäkitie A, Daly MJ, Palotie A. Genome-wide screen of otosclerosis in population biobanks: 27 loci and shared associations with skeletal structure. Nat Commun 2023; 14:157. [PMID: 36653343 PMCID: PMC9849444 DOI: 10.1038/s41467-022-32936-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 08/24/2022] [Indexed: 01/19/2023] Open
Abstract
Otosclerosis is one of the most common causes of conductive hearing loss, affecting 0.3% of the population. It typically presents in adulthood and half of the patients have a positive family history. The pathophysiology of otosclerosis is poorly understood. A previous genome-wide association study (GWAS) identified a single association locus in an intronic region of RELN. Here, we report a meta-analysis of GWAS studies of otosclerosis in three population-based biobanks comprising 3504 cases and 861,198 controls. We identify 23 novel risk loci (p < 5 × 10-8) and report an association in RELN and three previously reported candidate gene or linkage regions (TGFB1, MEPE, and OTSC7). We demonstrate developmental stage-dependent immunostaining patterns of MEPE and RUNX2 in mouse otic capsules. In most association loci, the nearest protein-coding genes are implicated in bone remodelling, mineralization or severe skeletal disorders. We highlight multiple genes involved in transforming growth factor beta signalling for follow-up studies.
Collapse
Affiliation(s)
- Joel T Rämö
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Tuomo Kiiskinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Richard Seist
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristi Krebs
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Masahiro Kanai
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Juha Karjalainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Mitja Kurki
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Eija Hämäläinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Paavo Häppölä
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Aki S Havulinna
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Heidi Hautakangas
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Priit Palta
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Department of Public Health, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Konrad J Karczewski
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Public Health, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Konstantina M Stankovic
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Antti Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Mark J Daly
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
4
|
Chekol Abebe E, Tilahun Muche Z, Behaile T/Mariam A, Mengie Ayele T, Mekonnen Agidew M, Teshome Azezew M, Abebe Zewde E, Asmamaw Dejenie T, Asmamaw Mengstie M. The structure, biosynthesis, and biological roles of fetuin-A: A review. Front Cell Dev Biol 2022; 10:945287. [PMID: 35923855 PMCID: PMC9340150 DOI: 10.3389/fcell.2022.945287] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022] Open
Abstract
Fetuin-A is a heterodimeric plasma glycoprotein containing an A-chain of 282 amino acids and a B-chain of 27 amino acid residues linked by a single inter-disulfide bond. It is predominantly expressed in embryonic cells and adult hepatocytes, and to a lesser extent in adipocytes and monocytes. Fetuin-A binds with a plethora of receptors and exhibits multifaceted physiological and pathological functions. It is involved in the regulation of calcium metabolism, osteogenesis, and the insulin signaling pathway. It also acts as an ectopic calcification inhibitor, protease inhibitor, inflammatory mediator, anti-inflammatory partner, atherogenic factor, and adipogenic factor, among other several moonlighting functions. Fetuin-A has also been demonstrated to play a crucial role in the pathogenesis of several disorders. This review mainly focuses on the structure, synthesis, and biological roles of fetuin-A. Information was gathered manually from various journals via electronic searches using PubMed, Google Scholar, HINARI, and Cochrane Library from inception to 2022. Studies written in English and cohort, case-control, cross-sectional, or experimental studies were considered in the review, otherwise excluded.
Collapse
Affiliation(s)
- Endeshaw Chekol Abebe
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Zelalem Tilahun Muche
- Department of Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Awigchew Behaile T/Mariam
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Teklie Mengie Ayele
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Melaku Mekonnen Agidew
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Muluken Teshome Azezew
- Department of Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Edgeit Abebe Zewde
- Department of Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tadesse Asmamaw Dejenie
- Department of Medical Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Misganaw Asmamaw Mengstie
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
5
|
Karagianni A, Matsuura S, Gerstenfeld LC, Ravid K. Inhibition of Osteoblast Differentiation by JAK2V617F Megakaryocytes Derived From Male Mice With Primary Myelofibrosis. Front Oncol 2022; 12:929498. [PMID: 35880162 PMCID: PMC9307716 DOI: 10.3389/fonc.2022.929498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Past studies described interactions between normal megakaryocytes, the platelet precursors, and bone cell precursors in the bone marrow. This relationship has also been studied in context of various mutations associated with increased number of megakaryocytes. The current study is the first to examine the effects of megakaryocytes from transgenic mice carrying the most common mutation that causes primary myelofibrosis (PMF) in humans (JAK2V617F) on bone cell differentiation. Organ level assessments of mice using micro-computed tomography showed decreased bone volume in JAK2V617F males, compared to matching controls. Tissue level histology revealed increased deposition of osteoid (bone matrix prior mineralization) in these mutated mice, suggesting an effect on osteoblast differentiation. Mechanistic studies using a megakaryocyte-osteoblast co-culture system, showed that both wild type or JAK2V617F megakaryocytes derived from male mice inhibited osteoblast differentiation, but JAK2V617F cells exerted a more significant inhibitory effect. A mouse mRNA osteogenesis array showed increased expression of Noggin, Chordin, Alpha-2-HS-glycoprotein, Collagen type IV alpha 1 and Collagen type XIV alpha 1 (mostly known to inhibit bone differentiation), and decreased expression of alkaline phosphatase, Vascular cell adhesion molecule 1, Sclerostin, Distal-less homeobox 5 and Collagen type III alpha 1 (associated with osteogenesis) in JAK2V617F megakaryocytes, compared to controls. This suggested that the mutation re-programs megakaryocytes to express a cluster of genes, which together could orchestrate greater suppression of osteogenesis in male mice. These findings provide mechanistic insight into the effect of JAK2V617F mutation on bone, encouraging future examination of patients with this or other PMF-inducing mutations.
Collapse
Affiliation(s)
- Aikaterini Karagianni
- Department of Internal Medicine, University of Crete, School of Medicine, Heraklion, Greece
- Department of Medicine, Whitaker Cardiovascular Research Institute, Boston University School of Medicine, Boston, MA, United States
| | - Shinobu Matsuura
- Department of Medicine, Whitaker Cardiovascular Research Institute, Boston University School of Medicine, Boston, MA, United States
| | - Louis C. Gerstenfeld
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, United States
| | - Katya Ravid
- Department of Medicine, Whitaker Cardiovascular Research Institute, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: Katya Ravid,
| |
Collapse
|
6
|
Circulating calcification inhibitors are associated with arterial damage in pediatric patients with primary hypertension. Pediatr Nephrol 2021; 36:2371-2382. [PMID: 33604725 PMCID: PMC8260424 DOI: 10.1007/s00467-021-04957-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 12/26/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Circulating calcification inhibitors: fetuin A (FA) and osteoprotegerin (OPG) together with soluble ligand of receptor activator of nuclear factor kappa-B (sRANKL) have been linked to vascular calcifications and arterial damage. This study aimed to evaluate relationships between FA, OPG, sRANKL, and arterial damage in children with primary hypertension (PH). METHODS In this cross-sectional single-center study, calcification inhibitors (FA, OPG, sRANKL) levels were measured in blood samples of 60 children with PH (median age 15.8, IQR: [14.5-16.8] years) and 20 age-matched healthy volunteers. In each participant, peripheral and central blood pressure evaluation (BP) and ambulatory BP monitoring (ABPM) were performed. Arterial damage was measured using common carotid artery intima media thickness (cIMT), pulse wave velocity (PWV), augmentation index (AIx75HR), and local arterial stiffness (ECHO-tracking-ET) analysis. RESULTS Children with PH had significantly higher peripheral and central BP, BP in ABPM, thicker cIMT, higher PWV, and AIx75HR. FA was significantly lower in patients with PH compared to healthy peers without differences in OPG, sRANKL, and OPG/sRANKL and OPG/FA ratios. In children with PH, FA level correlated negatively with cIMT Z-score and ET AIx; sRANKL level correlated negatively with ABPM systolic blood pressure (SBP), SBP load, diastolic BP load, and AIx75HR; OPG/sRANKL ratio correlated positively with SBP load, while OPG/FA ratio correlated positively with ET AIx. In multivariate analysis, FA was a significant determinant of cIMT (mm) and cIMT Z-score. CONCLUSIONS This study reveals that in children with primary hypertension, arterial damage is related to lower fetuin A concentrations.
Collapse
|
7
|
Roca-Tey R, Ramírez de Arellano M, González-Oliva JC, Roda A, Samon R, Ibrik O, Ugalde-Altamirano J, Viladoms J, Calls J. Is fetuin-A a biomarker of dialysis access dysfunction? J Vasc Access 2021; 24:458-464. [PMID: 34325543 DOI: 10.1177/11297298211035846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The arteriovenous (AV) access function of hemodialysis (HD) patients can be impaired by afferent artery stiffness due to preexisting microcalcification and by venous stenosis secondary to neointimal hyperplasia in whose development participates an upregulated local inflammatory process. Fetuin-A is a circulating potent inhibitor of vascular calcification and plays an important anti-inflammatory role. The aims of this prospective study were to investigate the relationship between baseline serum fetuin-A levels and: blood flow (QA) values at baseline, AV access failure (thrombosis or intervention for stenosis) during follow-up and primary unassisted AV access patency. METHODS We measured baseline serum fetuin-A levels and QA values of the AV access in 64 HD patients under routine QA surveillance for stenosis. Patients were classified into tertiles according to their baseline fetuin-A levels (g/L): <0.5 (tertile-1), 0.5-1.20 (tertile-2), and >1.20 (tertile-3). RESULTS Fetuin-A was positively correlated with QA (Spearman coefficient = 0.311, p = 0.012). Fourteen patients (21.9%) underwent AV access failure and they had lower fetuin-A (0.59 ± 0.32 g/L) and lower QA (739.4 ± 438.8 mL/min) values at baseline compared with the remaining patients (1.05 ± 0.65 g/L and 1273.0 ± 596.3 mL/min, respectively) (p = 0.027 and p < 0.001, respectively). The AV access failure rate was highest (34.8%) in tertile-1 (lowest fetuin-A level). Unadjusted Cox regression analysis showed a decrease in the risk of AV access patency loss by increasing fetuin-A concentration (hazard ratio 0.395 (95% confidence interval: 1.42-1.69), p = 0.044) but it was not confirmed in the adjusted model, although the hazard ratio was low (0.523). Kaplan-Meier analysis showed that patients in tertile-3 (highest fetuin-A concentration) had the highest primary unassisted AV access patency (λ2 = 4.68, p = 0.030, log-rank test). CONCLUSION If our results are confirmed in further studies, fetuin-A could be used as a circulating biomarker to identify HD patients at greater risk for AV access dysfunction, who would benefit from much closer dialysis access surveillance.
Collapse
Affiliation(s)
- Ramon Roca-Tey
- Department of Nephrology, Hospital de Mollet, Fundació Sanitària Mollet, Mollet del Vallès, Barcelona, Spain
| | - Manel Ramírez de Arellano
- Department of Nephrology, Hospital de Terrassa, Consorci Sanitari de Terrassa, Terrassa, Barcelona, Spain
| | - Juan Carlos González-Oliva
- Department of Nephrology, Hospital de Mollet, Fundació Sanitària Mollet, Mollet del Vallès, Barcelona, Spain
| | - Amparo Roda
- Department of Nephrology, Hospital de Mollet, Fundació Sanitària Mollet, Mollet del Vallès, Barcelona, Spain
| | - Rosa Samon
- Department of Nephrology, Hospital de Mollet, Fundació Sanitària Mollet, Mollet del Vallès, Barcelona, Spain
| | - Omar Ibrik
- Department of Nephrology, Hospital de Mollet, Fundació Sanitària Mollet, Mollet del Vallès, Barcelona, Spain
| | - Jessica Ugalde-Altamirano
- Department of Nephrology, Hospital de Mollet, Fundació Sanitària Mollet, Mollet del Vallès, Barcelona, Spain
| | - Jordi Viladoms
- Department of Nephrology, Hospital de Mollet, Fundació Sanitària Mollet, Mollet del Vallès, Barcelona, Spain
| | - Jordi Calls
- Department of Nephrology, Hospital de Mollet, Fundació Sanitària Mollet, Mollet del Vallès, Barcelona, Spain
| |
Collapse
|
8
|
Dhooge T, Syx D, Hermanns-Lê T, Hausser I, Mortier G, Zonana J, Symoens S, Byers PH, Malfait F. Caffey disease is associated with distinct arginine to cysteine substitutions in the proα1(I) chain of type I procollagen. Genet Med 2021; 23:2378-2385. [PMID: 34272483 DOI: 10.1038/s41436-021-01274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Infantile Caffey disease is a rare disorder characterized by acute inflammation with subperiosteal new bone formation, associated with fever, pain, and swelling of the overlying soft tissue. Symptoms arise within the first weeks after birth and spontaneously resolve before the age of two years. Many, but not all, affected individuals carry the heterozygous pathogenic COL1A1 variant (c.3040C>T, p.(Arg1014Cys)). METHODS We sequenced COL1A1 in 28 families with a suspicion of Caffey disease and performed ultrastructural, immunocytochemical, and biochemical collagen studies on patient skin biopsies. RESULTS We identified the p.(Arg1014Cys) variant in 23 families and discovered a novel heterozygous pathogenic COL1A1 variant (c.2752C>T, p.(Arg918Cys)) in five. Both arginine to cysteine substitutions are located in the triple helical domain of the proα1(I) procollagen chain. Dermal fibroblasts (one patient with p.(Arg1014Cys) and one with p.(Arg918Cys)) produced molecules with disulfide-linked proα1(I) chains, which were secreted only with p.(Arg1014Cys). No intracellular accumulation of type I procollagen was detected. The dermis revealed mild ultrastructural abnormalities in collagen fibril diameter and packing. CONCLUSION The discovery of this novel pathogenic variant expands the limited spectrum of arginine to cysteine substitutions in type I procollagen. Furthermore, it confirms allelic heterogeneity in Caffey disease and impacts its molecular confirmation.
Collapse
Affiliation(s)
- Tibbe Dhooge
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Delfien Syx
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Trinh Hermanns-Lê
- Department of Dermatopathology, University Hospital of Sart-Tilman, Liège University, Liège, Belgium
| | - Ingrid Hausser
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Geert Mortier
- Department of Medical Genetics, Antwerp University Hospital and University of Antwerp, Antwerp, Belgium
| | - Jonathan Zonana
- Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR, USA
| | - Sofie Symoens
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Peter H Byers
- Department of Pathology and Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Fransiska Malfait
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
9
|
Effects of Alpha-2-HS-glycoprotein on cognitive and emotional assessment in prediabetic and diabetic subjects. J Affect Disord 2021; 282:700-706. [PMID: 33445096 DOI: 10.1016/j.jad.2020.12.135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/12/2020] [Accepted: 12/24/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND High concentrations of Alpha-2-HS-glycoprotein, also called Fetuin-A (Fet-A), are associated with insulin resistance, obesity, non-alcoholic fatty liver disease, type 2 diabetes and polycystic ovary syndrome. Moreover, Fet-A is able to cross the bloodbrain barrier into ischemic brain tissue in adult humans. Although the brain is an important target of insulin action, there is little evidence associating serum levels of Fet-A with psychiatric conditions such as depression and cognitive decline, and no reports about the presence and degree of anxiety disorders. METHODS We have examined cognitive and emotional alterations in a Caucasian population of 94 subjects. RESULTS Our data confirmed that, irrespective of insulin sensitivity status, circulating Fet-A levels are positively associated with an increased risk of showing signs of depression according to the BDI-II test, and have reported new evidences of a positive association between Fet-A and state- and trait- anxiety, as measured by the STAI questionnaires. In contrast, no association was observed between Fet-A levels and cognitive performance on the MMSE. LIMITATIONS Although the study includes a well-characterized population, the small sample size and cross sectional nature are important limitations, and this results should not be considered definitive. The data are based only on Caucasian subjects and their generalizability to other ethnic groups should be done with caution. CONCLUSION Overall, these data suggest for the first time a role of Fet-A as an independent risk factor in the development of symptoms of anxiety and depression in prediabetic and diabetic subjects.
Collapse
|
10
|
Dynamic proteomic profiling of human periodontal ligament stem cells during osteogenic differentiation. Stem Cell Res Ther 2021; 12:98. [PMID: 33536073 PMCID: PMC7860046 DOI: 10.1186/s13287-020-02123-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/25/2020] [Indexed: 01/07/2023] Open
Abstract
Background Human periodontal ligament stem cells (hPDLSCs) are ideal seed cells for periodontal regeneration. A greater understanding of the dynamic protein profiles during osteogenic differentiation contributed to the improvement of periodontal regeneration tissue engineering. Methods Tandem Mass Tag quantitative proteomics was utilized to reveal the temporal protein expression pattern during osteogenic differentiation of hPDLSCs on days 0, 3, 7 and 14. Differentially expressed proteins (DEPs) were clustered and functional annotated by Gene Ontology (GO) terms. Pathway enrichment analysis was performed based on the Kyoto Encyclopedia of Genes and Genomes database, followed by the predicted activation using Ingenuity Pathway Analysis software. Interaction networks of redox-sensitive signalling pathways and oxidative phosphorylation (OXPHOS) were conducted and the hub protein SOD2 was validated with western blotting. Results A total of 1024 DEPs were identified and clustered in 5 distinctive clusters representing dynamic tendencies. The GO enrichment results indicated that proteins with different tendencies show different functions. Pathway enrichment analysis found that OXPHOS was significantly involved, which further predicted continuous activation. Redox-sensitive signalling pathways with dynamic activation status showed associations with OXPHOS to various degrees, especially the sirtuin signalling pathway. SOD2, an important component of the sirtuin pathway, displays a persistent increase during osteogenesis. Data are available via ProteomeXchange with identifier PXD020908. Conclusion This is the first in-depth dynamic proteomic analysis of osteogenic differentiation of hPDLSCs. It demonstrated a dynamic regulatory mechanism of hPDLSC osteogenesis and might provide a new perspective for research on periodontal regeneration. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02123-6.
Collapse
|
11
|
Bucak MN, Akalın PP, Keskin N, Bodu M, Öztürk AE, İli P, Özkan H, Topraggaleh TR, Arslan HO, Başpınar N, Dursun Ş. Combination of fetuin and trehalose in presence of low glycerol has beneficial effects on freeze-thawed ram spermatozoa. Andrology 2021; 9:1000-1009. [PMID: 33438325 DOI: 10.1111/andr.12974] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Freeze-thawing process negatively affects ram spermatozoa in terms of sperm quality, DNA integrity and antioxidant defence system. Thus, antioxidant supplementation of spermatozoa during freeze-thawing is suggested to improve sperm parameters. OBJECTIVES The aim of this study was to determine the effects of fetuin and trehalose added into ram semen extender on sperm parameters, antioxidant parameters, antioxidant-related gene expressions and DNA integrity during the freeze-thawing process, in low glycerol concentration. METHODS Semen samples collected from six mature rams were pooled and splitted into equal aliquots and diluted with a tris-based extender containing different concentrations of glycerol (G5; %5 and G3; %3), fetuin (F; 2.5, 5 and 15 mg/mL) and trehalose (60 mm) as eight groups (G5F0, G5F2.5, G5F5, G5F15, G3F0, G3F2.5, G3F5 and G3F15). RESULTS G3F5 group resulted in the highest motility, mitochondrial activity and viability and the lowest DNA fragmentation and DNA damage (p < 0.05). Also, G3F0 displayed considerably more cryoprotective effect compared with G5F0 group (p < 0.05) in terms of motility, mitochondrial activity and viability rates. Lipid peroxidation levels decreased in G5F5 group compared with G5F0 group (p < 0.05). The levels of total glutathione increased in G3F2.5 group (p < 0.05) in comparison with the G5F0 group. NQO1 gene levels were upregulated approximately twofold in G5F5, G5F15, G3F2.5, G3F5 and G3F15 groups compared with G5F0 group (p < 0.05). The levels of GCLC gene were approximately twofold higher in G3F0, G3F2.5, G3F5 and G3F15 groups compared with G5F0 group (p < 0.05). GSTP1 gene levels were significantly higher with different levels in all treatment groups except for G5F2.5 and G3F0 groups in comparison with G5F0 group (p < 0.05). CONCLUSIONS Co-supplementation of tris-based extender having low glycerol (3%) with trehalose and fetuin to enhance the quality of ram spermatozoa after freeze-thawing process is recommended.
Collapse
Affiliation(s)
- Mustafa Numan Bucak
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Sciences, Selcuk University, Konya, Turkey
| | - Pınar Peker Akalın
- Department of Biochemistry, Faculty of Veterinary Sciences, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Nazan Keskin
- Department of Histology and Embryology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Mustafa Bodu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Sciences, Selcuk University, Konya, Turkey
| | - Ali Erdem Öztürk
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Sciences, Erciyes University, Kayseri, Turkey
| | - Pinar İli
- Department of Medical Services and Techniques, Denizli Vocational School of Health Services, Pamukkale University, Denizli, Turkey
| | - Hüseyin Özkan
- Department of Genetics, Faculty of Veterinary Sciences, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Tohid Rezaei Topraggaleh
- Department of Anatomical Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Halil Ozancan Arslan
- Republic of Turkey Ministry of Agriculture and Foresty International Center For Livestock Reseach And Training, Ankara, Turkey
| | - Nuri Başpınar
- Department of Biochemistry, Faculty of Veterinary Sciences, Selcuk University, Konya, Turkey
| | - Şükrü Dursun
- Department of Gynecology and Obstetrics, Faculty of Veterinary Sciences, Aksaray University, Aksaray, Turkey
| |
Collapse
|
12
|
Rudloff S, Janot M, Rodriguez S, Dessalle K, Jahnen-Dechent W, Huynh-Do U. Fetuin-A is a HIF target that safeguards tissue integrity during hypoxic stress. Nat Commun 2021; 12:549. [PMID: 33483479 PMCID: PMC7822914 DOI: 10.1038/s41467-020-20832-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/18/2020] [Indexed: 02/08/2023] Open
Abstract
Intrauterine growth restriction (IUGR) is associated with reduced kidney size at birth, accelerated renal function decline, and increased risk for chronic kidney and cardiovascular diseases in adults. Precise mechanisms underlying fetal programming of adult diseases remain largely elusive and warrant extensive investigation. Setting up a mouse model of hypoxia-induced IUGR, fetal adaptations at mRNA, protein and cellular levels, and their long-term functional consequences are characterized, using the kidney as a readout. Here, we identify fetuin-A as an evolutionary conserved HIF target gene, and further investigate its role using fetuin-A KO animals and an adult model of ischemia-reperfusion injury. Beyond its role as systemic calcification inhibitor, fetuin-A emerges as a multifaceted protective factor that locally counteracts calcification, modulates macrophage polarization, and attenuates inflammation and fibrosis, thus preserving kidney function. Our study paves the way to therapeutic approaches mitigating mineral stress-induced inflammation and damage, principally applicable to all soft tissues.
Collapse
Affiliation(s)
- Stefan Rudloff
- Department of Nephrology and Hypertension, Bern University Hospital, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Mathilde Janot
- Department of Nephrology and Hypertension, Bern University Hospital, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Stephane Rodriguez
- Department of Nephrology and Hypertension, Bern University Hospital, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Onco-haematology, Geneva Medical University, Geneva, Switzerland
| | - Kevin Dessalle
- Department of Nephrology and Hypertension, Bern University Hospital, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Willi Jahnen-Dechent
- Helmholtz-Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University Medical Faculty, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Uyen Huynh-Do
- Department of Nephrology and Hypertension, Bern University Hospital, Freiburgstrasse 15, 3010, Bern, Switzerland.
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland.
| |
Collapse
|
13
|
Singh A, Tandon S, Tandon C. An update on vascular calcification and potential therapeutics. Mol Biol Rep 2021; 48:887-896. [PMID: 33394226 DOI: 10.1007/s11033-020-06086-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Pathological calcification is a major cause of cardiovascular morbidities primarily in population with chronic kidney disease (CKD), end stage renal diseases (ERSD) and metabolic disorders. Investigators have accepted the fact that vascular calcification is not a passive process but a highly complex, cell mediated, active process in patients with cardiovascular disease (CVD) resulting from, metabolic insults of bone fragility, diabetes, hypertension, dyslipidemia and atherosclerosis. Over the years, studies have revealed various mechanisms of vascular calcification like induction of bone formation, apoptosis, alteration in Ca-P balance and loss of inhibition. Novel clinical studies targeting cellular mechanisms of calcification provide promising and potential avenues for drug development. The interventions include phosphate binders, sodium thiosulphate, vitamin K, calcimimetics, vitamin D, bisphosphonates, Myoinositol hexaphosphate (IP6), Denosumab and TNAP inhibitors. Concurrently investigators are also working towards reversing or curing pathological calcification. This review focuses on the relationship of vascular calcification to clinical diseases, regulators and factors causing calcification including genetics which have been identified. At present, there is lack of any significant preventive measures for calcifications and hence this review explores further possibilities for drug development and treatment modalities.
Collapse
Affiliation(s)
- Anubha Singh
- Amity Institute of Biotechnology (AIB), Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Simran Tandon
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Chanderdeep Tandon
- Amity Institute of Biotechnology (AIB), Amity University Uttar Pradesh, Noida, Uttar Pradesh, India.
| |
Collapse
|
14
|
Icer MA, Yıldıran H. Effects of fetuin-A with diverse functions and multiple mechanisms on human health. Clin Biochem 2020; 88:1-10. [PMID: 33245873 DOI: 10.1016/j.clinbiochem.2020.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Fetuin-A (Alfa 2-Heremans-Schmid) is a glycoprotein that is mainly synthesized by hepatocytes and then released into the bloodstream. While fetuin-A, a multifunctional protein, has inhibitory effects on health in the processes of calcification, mineralization, coronary artery calcification (CAC), and kidney stone formation by various mechanisms, it has such stimulatory effects as obesity, diabetes, and tumor progression processes. Fetuin-A produces these effects on the organism mainly by playing a role in the secretion levels of some inflammatory cytokines and exosomes, preventing unwanted calcification, inhibiting the autophosphorylation of tyrosine kinase, suppressing the release of adiponectin and peroxisome proliferator-activated receptor-γ (PPARγ), activating the toll-like receptor 4 (TLR-4), triggering the phosphatidylinositol 3 (PI3) kinase/Akt signaling pathway and cell proliferation, and mimicking the transforming growth factor-beta (TGF-β) receptor. In the present review, fetuin-A was examined in a wide perspective from the structure and release of fetuin-A to its effects on health.
Collapse
Affiliation(s)
- Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06500 Ankara, Turkey.
| | - Hilal Yıldıran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06500 Ankara, Turkey
| |
Collapse
|
15
|
Hassan N, Greve B, Espinoza-Sánchez NA, Götte M. Cell-surface heparan sulfate proteoglycans as multifunctional integrators of signaling in cancer. Cell Signal 2020; 77:109822. [PMID: 33152440 DOI: 10.1016/j.cellsig.2020.109822] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
Proteoglycans (PGs) represent a large proportion of the components that constitute the extracellular matrix (ECM). They are a diverse group of glycoproteins characterized by a covalent link to a specific glycosaminoglycan type. As part of the ECM, heparan sulfate (HS)PGs participate in both physiological and pathological processes including cell recruitment during inflammation and the promotion of cell proliferation, adhesion and motility during development, angiogenesis, wound repair and tumor progression. A key function of HSPGs is their ability to modulate the expression and function of cytokines, chemokines, growth factors, morphogens, and adhesion molecules. This is due to their capacity to act as ligands or co-receptors for various signal-transducing receptors, affecting pathways such as FGF, VEGF, chemokines, integrins, Wnt, notch, IL-6/JAK-STAT3, and NF-κB. The activation of those pathways has been implicated in the induction, progression, and malignancy of a tumor. For many years, the study of signaling has allowed for designing specific drugs targeting these pathways for cancer treatment, with very positive results. Likewise, HSPGs have become the subject of cancer research and are increasingly recognized as important therapeutic targets. Although they have been studied in a variety of preclinical and experimental models, their mechanism of action in malignancy still needs to be more clearly defined. In this review, we discuss the role of cell-surface HSPGs as pleiotropic modulators of signaling in cancer and identify them as promising markers and targets for cancer treatment.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Biotechnology Program, Department of Chemistry, Faculty of Science, Cairo University, Egypt
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany.
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| |
Collapse
|
16
|
Jung SH, Lee D, Jin H, Lee HM, Ko HM, Lee KJ, Kim SJ, Ryu Y, Choi WS, Kim B, Won KJ. Fetuin-B regulates vascular plaque rupture via TGF-β receptor-mediated Smad pathway in vascular smooth muscle cells. Pflugers Arch 2020; 472:571-581. [PMID: 32382986 DOI: 10.1007/s00424-020-02385-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 11/28/2022]
Abstract
Fetuin-B is a serum protein linked to the regulation of physiological or pathophysiological events such as fertility, energy metabolism, and liver disease. Recently, fetuin-B has been reported to be involved in the modulation of the rupture of atherosclerotic plaques associated with acute myocardial infarction. However, the exact mechanism involved in the modulation of atherosclerotic plaque rupture event by fetuin-B is not fully elucidated yet. In the present study, we investigated whether fetuin-B could influence atherosclerotic plaque rupture through vascular smooth muscle cells (VSMCs). Immunoprecipitation assay using membrane proteins from VSMCs revealed that fetuin-B tightly bound to transforming growth factor-β receptor (TGF-βR). Fetuin-B treatment elevated TGF-βR signals (e.g., phosphorylation of Smad2 and Smad3) in VSMCs. Fetuin-B also stimulated nuclear translocation of phosphorylated Smads. Phosphorylation of Smad and its nuclear translocation by treatment with fetuin-B were inhibited in VSMCs by treatment with SB431542, a selective inhibitor of TGF-βR. Fetuin-B enhanced expression levels of plasminogen activator inhibitor-1 (PAI-1) and matrix metalloproteinase-2 (MMP-2) in VSMCs through its epigenetic modification including recruitments of both histone deacetylase 1 and RNA polymerase II. These epigenetic alterations in VSMCs were also inhibited by treatment with SB431542. In vivo administration of fetuin-B protein increased expression levels of PAI-1 and MMP-2 in the vascular plaque. However, these increases in expression were inhibited by the administration of SB43154. These results indicate that fetuin-B may modulate vascular plaque rupture by promoting expression of PAI-1 and MMP-2 in VSMCs via TGF-βR-mediated Smad pathway.
Collapse
Affiliation(s)
- Seung Hyo Jung
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Donghyen Lee
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Hengzhe Jin
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Hwan Myung Lee
- Department of Cosmetic Science, College of Life and Health Science, Hoseo University, Asan, 31499, South Korea
| | - Hyun Myung Ko
- Department of Life Sciences, College of Science and Technology, Woosuk University, Jincheon, 27841, South Korea
| | - Kyung-Jin Lee
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Su Jung Kim
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Yunkyoung Ryu
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Wahn Soo Choi
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Bokyung Kim
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Kyung-Jong Won
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea.
| |
Collapse
|
17
|
Bourebaba L, Marycz K. Pathophysiological Implication of Fetuin-A Glycoprotein in the Development of Metabolic Disorders: A Concise Review. J Clin Med 2019; 8:jcm8122033. [PMID: 31766373 PMCID: PMC6947209 DOI: 10.3390/jcm8122033] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
Alpha 2-Heremans-Schmid glycoprotein, also known as fetuin-A (Fet-A), is a multifunctional plasma glycoprotein that has been identified in both animal and human beings. The protein is a hepatokine predominantly synthesized in the liver, which is considered as an important component of diverse normal and pathological processes, including bone metabolism regulation, vascular calcification, insulin resistance, and protease activity control. Epidemiological studies have already consistently demonstrated significant elevated circulating Fet-A in the course of obesity and related complications, such as type 2 diabetes mellitus, metabolic syndrome, and nonalcoholic fatty liver disorder (NAFLD). Moreover, Fet-A has been strongly correlated with many parameters related to metabolic homeostasis dysregulation, such as insulin sensitivity, glucose tolerance, circulating lipid levels (non-esterified free fatty acids and triglycerides), and circulating levels of both pro- and anti-inflammatory factors (C-reactive protein, tumor necrosis factor-α (TNF-α), and interleukin (IL)-6). Metabolic-interfering effects of Fet-A have thus been shown to highly exacerbate insulin resistance (IR) through blocking insulin-stimulated glucose transporter 4 (GLUT-4) translocation and protein kinase B (Akt) activation. Furthermore, the protein appeared to interfere with downstream phosphorylation events in insulin receptor and insulin receptor substrate signaling. The emerging importance of Fet-A for both diagnosis and therapeutics has therefore come to the attention of researchers and the pharmaceutical industry, in the prospect of developing new therapeutic strategies and diagnosis methods for metabolic disorders.
Collapse
Affiliation(s)
- Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland;
- International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland;
- International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland
- Collegium Medicum, Institute of Medical Science, Cardinal Stefan Wyszyński University (UKSW), Wóycickiego 1/3, 01-938 Warsaw, Poland
- Correspondence: ; Tel.: +48-71-320-5202
| |
Collapse
|
18
|
Viegas C, Araújo N, Marreiros C, Simes D. The interplay between mineral metabolism, vascular calcification and inflammation in Chronic Kidney Disease (CKD): challenging old concepts with new facts. Aging (Albany NY) 2019; 11:4274-4299. [PMID: 31241466 PMCID: PMC6628989 DOI: 10.18632/aging.102046] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) is one of the most powerful predictors of premature cardiovascular disease (CVD), with heightened susceptibility to vascular intimal and medial calcification associated with a high cardiovascular mortality. Abnormal mineral metabolism of calcium (Ca) and phosphate (P) and underlying (dys)regulated hormonal control in CKD-mineral and bone disorder (MBD) is often accompanied by bone loss and increased vascular calcification (VC). While VC is known to be a multifactorial process and a major risk factor for CVD, the view of primary triggers and molecular mechanisms complexity has been shifting with novel scientific knowledge over the last years. In this review we highlight the importance of calcium-phosphate (CaP) mineral crystals in VC with an integrated view over the complexity of CKD, while discuss past and recent literature aiming to highlight novel horizons on this major health burden. Exacerbated VC in CKD patients might result from several interconnected mechanisms involving abnormal mineral metabolism, dysregulation of endogenous calcification inhibitors and inflammatory pathways, which function in a feedback loop driving disease progression and cardiovascular outcomes. We propose that novel approaches targeting simultaneously VC and inflammation might represent valuable new prognostic tools and targets for therapeutics and management of cardiovascular risk in the CKD population.
Collapse
Affiliation(s)
- Carla Viegas
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro 8005-139, Portugal
- GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), University of Algarve, Faro 8005-139, Portugal
| | - Nuna Araújo
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro 8005-139, Portugal
| | - Catarina Marreiros
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro 8005-139, Portugal
| | - Dina Simes
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro 8005-139, Portugal
- GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), University of Algarve, Faro 8005-139, Portugal
| |
Collapse
|
19
|
Abstract
Fetuin-A is a glycoprotein structured molecule which is mostly released by the liver. As a multifunctional protein, fetuin-A has positive effects on health such as calcification, cardiovascular diseases and tumor development processes with various mechanisms, whereas it plays a negative role in the processes of obesity, diabetes and fatty liver disease. There are a large number of studies reporting that serum fetuin-A levels are affected by several dietary factors. It is reported in some of these studies that several nutrients increase fetuin-A release, while some others have adverse effects. It is put forward that some nutrients such as dairy products, curcumin, niacin, palmitate, coffee and alcohol consumption decrease fetuin-A level, and dietary omega-3 fatty acids intake may increase fetuin-A concentration. In addition, it is indicated that high blood glucose levels increase hepatic fetuin-A release by activating extracellular signal-regulated kinase 1/2 enzymes and increased plasma free fatty acids do the same effect by increasing NF-KB activity. Despite these studies in the literature, there is not any review evaluating fetuin-A, chronic diseases and nutrition together. Therefore, in this study, the relationship between serum fetuin levels and some diseases and the effects of nutrients on fetuin A levels were investigated with possible mechanisms.
Collapse
Affiliation(s)
- Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| | - Hilal Yıldıran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| |
Collapse
|
20
|
Guo L, Ren H, Zeng H, Gong Y, Ma X. Proteomic analysis of cerebrospinal fluid in pediatric acute lymphoblastic leukemia patients: a pilot study. Onco Targets Ther 2019; 12:3859-3868. [PMID: 31190885 PMCID: PMC6527054 DOI: 10.2147/ott.s193616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose Involvement of central nervous system in acute lymphoblastic leukemia (CNSL) remains one of the major causes of pediatric acute lymphoblastic leukemia (ALL) treatment failure. However, the current understanding of the pathological process of CNSL is still limited. This study aimed to better understand the protein expression in cerebrospinal fluid (CSF) of ALL and discover valuable prognostic biomarkers. Materials and methods CSF samples were obtained from ALL patients and healthy controls. Comparative proteomic profiling using label-free liquid chromatography-tandem mass spectrometry was performed to detect differentially expressed proteins. Results In the present study, 51 differentially expressed proteins were found. Among them, two core clusters including ten proteins (TIMP1, LGALS3BP, A2M, FN1, AHSG, HRG, ITIH4, CF I, C2, and C4a) might be crucial for tumorigenesis and progression of ALL and can be potentially valuable indicators of CNSL. Conclusion These differentially expressed proteins of ALL children with central nervous system involvement and normal children may work as diagnostic and prognostic factors of ALL patients.
Collapse
Affiliation(s)
- Linghong Guo
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, People's Republic of China, .,West China School of Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Honghong Ren
- West China School of Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Hao Zeng
- West China School of Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Yanqiu Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, People's Republic of China,
| |
Collapse
|
21
|
Lee KY, Lee W, Jung SH, Park J, Sim H, Choi YJ, Park YJ, Chung Y, Lee BH. Hepatic upregulation of fetuin-A mediates acetaminophen-induced liver injury through activation of TLR4 in mice. Biochem Pharmacol 2019; 166:46-55. [PMID: 31077645 DOI: 10.1016/j.bcp.2019.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/06/2019] [Indexed: 01/29/2023]
Abstract
Acetaminophen (APAP)-induced liver injury (AILI) is initiated by the generation of a reactive metabolite and ultimately leads to hepatocyte necrosis. Necrotic cells secrete damage-associated molecular patterns that activate hepatic nonparenchymal cells and induce an inflammatory response. Fetuin-A is a hepatokine with reported involvement in low-grade inflammation in many diseases, due to acting as an endogenous ligand for TLR4. However, little is known about the role of fetuin-A in AILI. In this study, we showed that fetuin-A is involved in the aggravation of hepatotoxicity during the initial phase of AILI progression. Treatment with APAP increased the expression and serum levels of fetuin-A in mice. Fetuin-A upregulated transcription of pro-inflammatory cytokines and chemokines through activation of TLR4 and also increased monocyte infiltration into the liver, leading to necroinflammatory reactions in AILI. However, these reactions were attenuated with the silencing of fetuin-A using adenoviral shRNA. As a result, mice with silenced fetuin-A exhibited less centrilobular necrosis and liver injury compared to controls in response to APAP. In conclusion, our results suggest that fetuin-A is an important hepatokine that mediates the hepatotoxicity of APAP through production of chemokines and thus regulates the infiltration of monocytes into the liver, a critical event in the inflammatory response during the initial phase of AILI. Our results indicate that a strategy based on the antagonism of fetuin-A may be a novel therapeutic approach to the treatment of acetaminophen-induced acute liver failure.
Collapse
Affiliation(s)
- Kang-Yo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanakro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Wonseok Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanakro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seung-Hwan Jung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanakro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jungmin Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanakro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyungtai Sim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanakro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - You-Jin Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanakro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Young-Jun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanakro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yeonseok Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanakro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Byung-Hoon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanakro 1, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
22
|
α2-HS Glycoprotein in Plasma Extracellular Vesicles Inhibits the Osteogenic Differentiation of Human Mesenchymal Stromal Cells In Vitro. Stem Cells Int 2019; 2019:7246479. [PMID: 30881463 PMCID: PMC6383392 DOI: 10.1155/2019/7246479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/16/2018] [Accepted: 10/28/2018] [Indexed: 11/18/2022] Open
Abstract
Extracellular vesicles (Evs) contain diverse functional proteins, mRNAs, miRNAs, and DNA fragments, are secreted by various types of cells, and play important roles in cellular communication. Here, we show for the first time that plasma Evs inhibited the osteogenic differentiation of mesenchymal stromal cells (MSCs) in vitro and the level of inhibition was positively correlated with the plasma Evs concentration. Plasma Evs downregulated the expression of markers such as osteocalcin (OCN), Runt-related transcription factor 2 (Runx2), and Osterix at mRNA levels required for osteogenic differentiation and reduced pSmad1/5/8 levels in MSCs. Furthermore, pSmad1/5/8 levels increased and MSCs underwent normal osteogenic differentiation after Evs-derived α2-HS glycoprotein (AHSG) function was inhibited with an anti-AHSG neutralizing antibody. However, the levels of pERK1/2, active β-catenin, and HES1 were not significantly altered. Therefore, we propose that as essential components of the extracellular microenvironment of MSCs, plasma Evs are taken up by MSCs and subsequently repress osteogenic differentiation through an AHSG-mediated decrease in pSmad1/5/8 levels. Our work identifies plasma Evs as novel regulators of MSC osteogenic differentiation.
Collapse
|
23
|
Karmilin K, Schmitz C, Kuske M, Körschgen H, Olf M, Meyer K, Hildebrand A, Felten M, Fridrich S, Yiallouros I, Becker-Pauly C, Weiskirchen R, Jahnen-Dechent W, Floehr J, Stöcker W. Mammalian plasma fetuin-B is a selective inhibitor of ovastacin and meprin metalloproteinases. Sci Rep 2019; 9:546. [PMID: 30679641 PMCID: PMC6346019 DOI: 10.1038/s41598-018-37024-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/28/2018] [Indexed: 11/29/2022] Open
Abstract
Vertebrate fetuins are multi-domain plasma-proteins of the cystatin-superfamily. Human fetuin-A is also known as AHSG, α2-Heremans-Schmid-glycoprotein. Gene-knockout in mice identified fetuin-A as essential for calcified-matrix-metabolism and bone-mineralization. Fetuin-B deficient mice, on the other hand, are female infertile due to zona pellucida ‘hardening’ caused by the metalloproteinase ovastacin in unfertilized oocytes. In wildtype mice fetuin-B inhibits the activity of ovastacin thus maintaining oocytes fertilizable. Here we asked, if fetuins affect further proteases as might be expected from their evolutionary relation to single-domain-cystatins, known as proteinase-inhibitors. We show that fetuin-A is not an inhibitor of any tested protease. In stark contrast, the closely related fetuin-B selectively inhibits astacin-metalloproteinases such as meprins and ovastacin, but not astacins of the tolloid-subfamily, nor any other proteinase. The analysis of fetuin-B expressed in various mammalian cell types, insect cells, and truncated fish-fetuin expressed in bacteria, showed that the cystatin-like domains alone are necessary and sufficient for inhibition. This report highlights fetuin-B as a specific antagonist of ovastacin and meprin-metalloproteinases. Control of ovastacin was shown to be indispensable for female fertility. Meprin inhibition, on the other hand, renders fetuin-B a potential key-player in proteolytic networks controlling angiogenesis, immune-defense, extracellular-matrix-assembly and general cell-signaling, with implications for inflammation, fibrosis, neurodegenerative disorders and cancer.
Collapse
Affiliation(s)
- Konstantin Karmilin
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Carlo Schmitz
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Medical Faculty, 52074, Aachen, Germany
| | - Michael Kuske
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Hagen Körschgen
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Mario Olf
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Katharina Meyer
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - André Hildebrand
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Matthias Felten
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Sven Fridrich
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Irene Yiallouros
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | | | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry RWTH, 52074, Aachen, Germany
| | - Willi Jahnen-Dechent
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Medical Faculty, 52074, Aachen, Germany
| | - Julia Floehr
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Medical Faculty, 52074, Aachen, Germany
| | - Walter Stöcker
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany.
| |
Collapse
|
24
|
Merdler-Rabinowicz R, Grinberg A, Jacobson JM, Somekh I, Klein C, Lev A, Ihsan S, Habib A, Somech R, Simon AJ. Fetuin-A deficiency is associated with infantile cortical hyperostosis (Caffey disease). Pediatr Res 2019; 86:603-607. [PMID: 31288248 PMCID: PMC7086575 DOI: 10.1038/s41390-019-0499-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/11/2019] [Accepted: 06/29/2019] [Indexed: 12/02/2022]
Abstract
BACKGROUND Infantile cortical hyperostosis (ICH)/Caffey disease is an inflammatory collagenopathy of infancy, manifested by subperiosteal bone hyperplasia. Genetically, ICH was linked with heterozygosity for an R836C mutation in the COL1A1 gene. Although an autosomal-recessive trait is also suspected, it has not been proven thus far. METHODS A case of an infant male born to consanguineous parents is reported, presenting with classical findings, course, and clinical outcome of ICH. Whole-exome sequencing (WES) was performed in order to identify a possible underlying genetic defect. RESULTS WES analysis revealed a novel homozygous nonsense mutation in lysine 2 of fetuin-A, encoded by the ALPHA-2-HS-GLYCOPROTEIN (AHSG) gene (c.A4T; p.K2X). Fetuin-A is an important regulator of bone remodeling and an inhibitor of ectopic mineralization. By enzyme-linked immunosorbent assay (ELISA), we show a complete deficiency of this protein in the patient's serum, compared to controls. CONCLUSION A novel homozygous nonsense mutation in AHSG gene has been found in ICH patient with a typical phenotype, resulting in fetuin-A deficiency. This finding postulates an autosomal-recessive mode of inheritance in ICH, which, unlike the autosomal-dominant inheritance associated with COL1A1, is associated with AHSG and fetuin-A deficiency.
Collapse
Affiliation(s)
- Rona Merdler-Rabinowicz
- 0000 0004 1937 0546grid.12136.37Pediatric Department A and the Immunology Services, “Edmond and Lily Safra” Children’s Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, affiliated to Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna Grinberg
- 0000 0004 1937 0546grid.12136.37Pediatric Department A and the Immunology Services, “Edmond and Lily Safra” Children’s Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, affiliated to Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jeffrey M. Jacobson
- grid.460042.4Pediatric Radiology Department, “Edmond and Lily Safra” Children’s Hospital, Tel Hashomer, Israel
| | - Ido Somekh
- 0000 0004 1936 973Xgrid.5252.0Dr. von Hauner Children’s Hospital, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Christoph Klein
- 0000 0004 1936 973Xgrid.5252.0Dr. von Hauner Children’s Hospital, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Atar Lev
- 0000 0004 1937 0546grid.12136.37Pediatric Department A and the Immunology Services, “Edmond and Lily Safra” Children’s Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, affiliated to Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Adib Habib
- 0000 0004 1937 0503grid.22098.31Saint Vincent De Paul French Hospital, Nazareth, affiliated to the Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Raz Somech
- 0000 0004 1937 0546grid.12136.37Pediatric Department A and the Immunology Services, “Edmond and Lily Safra” Children’s Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, affiliated to Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amos J. Simon
- 0000 0004 1937 0546grid.12136.37Pediatric Department A and the Immunology Services, “Edmond and Lily Safra” Children’s Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, affiliated to Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel ,0000 0001 2107 2845grid.413795.dSheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
25
|
Ersin Kalkan R, Öngöz Dede F, Gökmenoğlu C, Kara C. Salivary fetuin-A, S100A12, and high-sensitivity C-reactive protein levels in periodontal diseases. Oral Dis 2018; 24:1554-1561. [DOI: 10.1111/odi.12927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/04/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Reyhan Ersin Kalkan
- Department of Periodontology; Samsun Public Oral Health Center; Samsun Turkey
| | - Figen Öngöz Dede
- Department of Periodontology, Faculty of Dentistry; Ordu University; Ordu Turkey
| | - Ceren Gökmenoğlu
- Department of Periodontology, Faculty of Dentistry; Ordu University; Ordu Turkey
| | - Cankat Kara
- Department of Periodontology, Faculty of Dentistry; Ordu University; Ordu Turkey
| |
Collapse
|
26
|
Demiryurek BE, Gundogdu AA. Serum Fetuin-A Levels in Patients with Bilateral Basal Ganglia Calcification. Neurosci Lett 2017; 666:148-152. [PMID: 29288724 DOI: 10.1016/j.neulet.2017.12.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND PURPOSE The idiopathic basal ganglia calcification (Fahr syndrome) may occur due to senility. Fetuin-A is a negative acute phase reactant which inhibits calcium-phosphorus precipitation and vascular calcification. In this study, we aimed to evaluate whether serum fetuin-A levels correlate with bilateral basal ganglia calcification. METHOD Forty-five patients who had bilateral basal ganglia calcification on brain CT were selected according to the inclusion and exclusion criteria, and 45 age and gender-matched subjects without basal ganglia calcification were included for the control group. Serum fetuin-A levels were measured from venous blood samples. All participants were divided into two groups; with and without basal ganglia calcification. These groups were divided into subgroups regarding age (18-32 and 33-45 years of age) and gender (male, female). RESULTS We detected lower levels of serum fetuin-A in patients with basal ganglia calcification compared with the subjects without basal ganglia calcification. In all subgroups (female, male, 18-32 years and 33-45 years), mean fetuin-A levels were significantly lower in patients with basal ganglia calcification (p = 0.017, p = 0.014, p = 0.024, p = 0.026, p = 0.01 respectively). And statistically significantly lower levels of fetuin-A was found to be correlated with the increasing densities of calcification in the calcified basal ganglia group (p-value: <0.001). CONCLUSION Considering the role of fetuin-A in tissue calcification and inflammation, higher serum fetuin-A levels should be measured in patients with basal ganglia calcification. We believe that the measurement of serum fetuin-A may play a role in the prediction of basal ganglia calcification as a biomarker.
Collapse
|
27
|
Jablonski H, Polan C, Wedemeyer C, Hilken G, Schlepper R, Bachmann HS, Grabellus F, Dudda M, Jäger M, Kauther MD. A single intraperitoneal injection of bovine fetuin-A attenuates bone resorption in a murine calvarial model of particle-induced osteolysis. Bone 2017; 105:262-268. [PMID: 28942123 DOI: 10.1016/j.bone.2017.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/13/2017] [Accepted: 09/14/2017] [Indexed: 01/19/2023]
Abstract
Particle-induced osteolysis, which by definition is an aseptic inflammatory reaction to implant-derived wear debris eventually leading to local bone destruction, remains the major reason for long-term failure of orthopedic endoprostheses. Fetuin-A, a 66kDa glycoprotein with diverse functions, is found to be enriched in bone. Besides being an important inhibitor of ectopic calcification, it has been described to influence the production of mediators of inflammation. Furthermore, a regulatory role in bone metabolism has been assigned. In the present study, the influence of a single dose of bovine fetuin-A, intraperitoneally injected in mice subjected to particle-induced osteolysis of the calvaria, was analyzed. Twenty-eight male C57BL/6 mice, twelve weeks of age, were randomly divided into four groups. Groups 2 and 4 were subjected to ultra-high molecular weight polyethylene (UHMWPE) particles placed on their calvariae while groups 1 and 3 were sham-operated. Furthermore, groups 3 and 4 received a single intraperitoneal injection of 20mg bovine fetuin-A while groups 1 and 2 were treated with physiologic saline. After 14days calvarial bone was qualitatively and quantitatively assessed using microcomputed tomography (μCT) and histomorphometrical approaches. Application of fetuin-A led to a reduction of particle-induced osteolysis in terms of visible osteolytic lesions and eroded bone surface. The reduction of bone thickness and bone volume, as elicited by UHMWPE, was alleviated by fetuin-A. In conclusion, fetuin-A was found to exert an anti-resorptive effect on particle-induced osteolysis in-vivo. Thus, fetuin-A could play a potentially osteoprotective role in the treatment of bone metabolic disorders.
Collapse
Affiliation(s)
- Heidrun Jablonski
- University Hospital Essen, Department of Orthopedics and Trauma Surgery, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany.
| | - Christina Polan
- University Hospital Essen, Department of Orthopedics and Trauma Surgery, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Christian Wedemeyer
- St. Barbara Hospital, Department of Orthopedic and Trauma Surgery, Barbarastrasse 1, 45964 Gladbeck, Germany
| | - Gero Hilken
- University Hospital Essen, Central Animal Laboratory, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Rüdiger Schlepper
- University Hospital Essen, Department of Orthopedics and Trauma Surgery, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Hagen Sjard Bachmann
- University Hospital Essen, Institute of Pharmacogenetics, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Florian Grabellus
- University Hospital Essen, Institute for Pathology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Marcel Dudda
- University Hospital Essen, Department of Orthopedics and Trauma Surgery, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Marcus Jäger
- University Hospital Essen, Department of Orthopedics and Trauma Surgery, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Max Daniel Kauther
- University Hospital Essen, Department of Orthopedics and Trauma Surgery, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| |
Collapse
|
28
|
Kanno T, Yasutake K, Tanaka K, Hadano S, Ikeda JE. A novel function of N-linked glycoproteins, alpha-2-HS-glycoprotein and hemopexin: Implications for small molecule compound-mediated neuroprotection. PLoS One 2017; 12:e0186227. [PMID: 29016670 PMCID: PMC5633190 DOI: 10.1371/journal.pone.0186227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 09/27/2017] [Indexed: 11/18/2022] Open
Abstract
Therapeutic agents to the central nervous system (CNS) need to be efficiently delivered to the target site of action at appropriate therapeutic levels. However, a limited number of effective drugs for the treatment of neurological diseases has been developed thus far. Further, the pharmacological mechanisms by which such therapeutic agents can protect neurons from cell death have not been fully understood. We have previously reported the novel small-molecule compound, 2-[mesityl(methyl)amino]-N-[4-(pyridin-2-yl)-1H-imidazol-2-yl] acetamide trihydrochloride (WN1316), as a unique neuroprotectant against oxidative injury and a highly promising remedy for the treatment of amyotrophic lateral sclerosis (ALS). One of the remarkable characteristics of WN1316 is that its efficacious doses in ALS mouse models are much less than those against oxidative injury in cultured human neuronal cells. It is also noted that the WN1316 cytoprotective activity observed in cultured cells is totally dependent upon the addition of fetal bovine serum in culture medium. These findings led us to postulate some serum factors being tightly linked to the WN1316 efficacy. In this study, we sieved through fetal bovine serum proteins and identified two N-linked glycoproteins, alpha-2-HS-glycoprotein (AHSG) and hemopexin (HPX), requisites to exert the WN1316 cytoprotective activity against oxidative injury in neuronal cells in vitro. Notably, the removal of glycan chains from these molecules did not affect the WN1316 cytoprotective activity. Thus, two glycoproteins, AHSG and HPX, represent a pivotal glycoprotein of the cytoprotective activity for WN1316, showing a concrete evidence for the novel glycan-independent function of serum glycoproteins in neuroprotective drug efficacy.
Collapse
Affiliation(s)
- Takuya Kanno
- NGP Biomedical Research Institute, Neugen Pharma Inc., Meguro, Tokyo, Japan
| | - Kaori Yasutake
- NGP Biomedical Research Institute, Neugen Pharma Inc., Meguro, Tokyo, Japan
| | - Kazunori Tanaka
- NGP Biomedical Research Institute, Neugen Pharma Inc., Meguro, Tokyo, Japan
| | - Shinji Hadano
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
| | - Joh-E Ikeda
- NGP Biomedical Research Institute, Neugen Pharma Inc., Meguro, Tokyo, Japan
- Department of Molecular Neurology, Faculty of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario, Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
29
|
Fetuína-A plasmática en pacientes con preeclampsia y gestantes normotensas sanas. PERINATOLOGÍA Y REPRODUCCIÓN HUMANA 2017. [DOI: 10.1016/j.rprh.2017.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
30
|
Partial IGF-1 deficiency is sufficient to reduce heart contractibility, angiotensin II sensibility, and alter gene expression of structural and functional cardiac proteins. PLoS One 2017; 12:e0181760. [PMID: 28806738 PMCID: PMC5555709 DOI: 10.1371/journal.pone.0181760] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/06/2017] [Indexed: 01/15/2023] Open
Abstract
Circulating levels of IGF-1 may decrease under several circumstances like ageing, metabolic syndrome, and advanced cirrhosis. This reduction is associated with insulin resistance, dyslipidemia, progression to type 2 diabetes, and increased risk for cardiovascular diseases. However, underlying mechanisms between IGF-1 deficiency and cardiovascular disease remain elusive. The specific aim of the present work was to study whether the partial IGF-1 deficiency influences heart and/or coronary circulation, comparing vasoactive factors before and after of ischemia-reperfusion (I/R). In addition, histology of the heart was performed together with cardiac gene expression for proteins involved in structure and function (extracellular matrix, contractile proteins, active peptides); carried out using microarrays, followed by RT-qPCR confirmation of the three experimental groups. IGF-1 partial deficiency is associated to a reduction in contractility and angiotensin II sensitivity, interstitial fibrosis as well as altered expression pattern of genes involved in extracellular matrix proteins, calcium dynamics, and cardiac structure and function. Although this work is descriptive, it provides a clear insight of the impact that partial IGF-1 deficiency on the heart and establishes this experimental model as suitable for studying cardiac disease mechanisms and exploring therapeutic options for patients under IGF-1 deficiency conditions.
Collapse
|
31
|
Zavvos V, Buxton AT, Evans C, Lambie M, Davies SJ, Topley N, Wilkie M, Summers A, Brenchley P, Goumenos DS, Johnson TS. A prospective, proteomics study identified potential biomarkers of encapsulating peritoneal sclerosis in peritoneal effluent. Kidney Int 2017; 92:988-1002. [PMID: 28673451 DOI: 10.1016/j.kint.2017.03.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 11/28/2022]
Abstract
Encapsulating peritoneal sclerosis (EPS) is a potentially devastating complication of peritoneal dialysis (PD). Diagnosis is often delayed due to the lack of effective and accurate diagnostic tools. We therefore examined peritoneal effluent for potential biomarkers that could predict or confirm the diagnosis of EPS and would be valuable in stratifying at-risk patients and driving appropriate interventions. Using prospectively collected samples from the Global Fluid Study and a cohort of Greek PD patients, we utilized 2D SDSPAGE/ MS and iTRAQ to identify changes in the peritoneal effluent proteome from patients diagnosed with EPS and controls matched for treatment exposure. We employed a combinatorial peptide ligand library to compress the dynamic range of protein concentrations to aid identification of low-abundance proteins. In patients with stable membrane function, fibrinogen γ-chain and heparan sulphate proteoglycan core protein progressively increased over time on PD. In patients who developed EPS, collagen-α1(I), γ-actin and Complement factors B and I were elevated up to five years prior to diagnosis. Orosomucoid-1 and a2-HS-glycoprotein chain-B were elevated about one year before diagnosis, while apolipoprotein A-IV and α1-antitrypsin were decreased compared to controls. Dynamic range compression resulted in an increased number of proteins detected with improved resolution of protein spots, compared to the full fluid proteome. Intelectin-1, dermatopontin, gelsolin, and retinol binding protein-4 were elevated in proteome-mined samples from patients with EPS compared to patients that had just commenced peritoneal dialysis. Thus, prospective analysis of peritoneal effluent uncovered proteins indicative of inflammatory and pro-fibrotic injury worthy of further evaluation as diagnostic/prognostic markers.
Collapse
Affiliation(s)
- Vasileios Zavvos
- Department of Nephrology, University Hospital of Patras, Patras, Greece; Academic Nephrology Unit and Sheffield Kidney Institute, University of Sheffield, Sheffield, UK
| | - Anthony T Buxton
- Academic Nephrology Unit and Sheffield Kidney Institute, University of Sheffield, Sheffield, UK
| | - Caroline Evans
- Proteomics Unit, Chemical Engineering, University of Sheffield, Sheffield, UK
| | - Mark Lambie
- Institute of Applied Clinical Sciences, Keele University, Keele, UK
| | - Simon J Davies
- Institute of Applied Clinical Sciences, Keele University, Keele, UK
| | - Nicholas Topley
- Wales Kidney Research Unit, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Martin Wilkie
- Academic Nephrology Unit and Sheffield Kidney Institute, University of Sheffield, Sheffield, UK
| | - Angela Summers
- Kidney Research Laboratories, Manchester Royal Infirmary, Manchester, UK
| | - Paul Brenchley
- Kidney Research Laboratories, Manchester Royal Infirmary, Manchester, UK
| | | | - Timothy S Johnson
- Academic Nephrology Unit and Sheffield Kidney Institute, University of Sheffield, Sheffield, UK.
| |
Collapse
|
32
|
Lim TKY, Anderson KM, Hari P, Di Falco M, Reihsen TE, Wilcox GL, Belani KG, LaBoissiere S, Pinto MR, Beebe DS, Kehl LJ, Stone LS. Evidence for a Role of Nerve Injury in Painful Intervertebral Disc Degeneration: A Cross-Sectional Proteomic Analysis of Human Cerebrospinal Fluid. THE JOURNAL OF PAIN 2017; 18:1253-1269. [PMID: 28652204 DOI: 10.1016/j.jpain.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022]
Abstract
Intervertebral disc degeneration (DD) is a cause of low back pain (LBP) in some individuals. However, although >30% of adults have DD, LBP only develops in a subset of individuals. To gain insight into the mechanisms underlying nonpainful versus painful DD, human cerebrospinal fluid (CSF) was examined using differential expression shotgun proteomic techniques comparing healthy control participants, subjects with nonpainful DD, and patients with painful DD scheduled for spinal fusion surgery. Eighty-eight proteins were detected, 27 of which were differentially expressed. Proteins associated with DD tended to be related to inflammation (eg, cystatin C) regardless of pain status. In contrast, most differentially expressed proteins in DD-associated chronic LBP patients were linked to nerve injury (eg, hemopexin). Cystatin C and hemopexin were selected for further examination using enzyme-linked immunosorbent assay in a larger cohort. While cystatin C correlated with DD severity but not pain or disability, hemopexin correlated with pain intensity, physical disability, and DD severity. This study shows that CSF can be used to study mechanisms underlying painful DD in humans, and suggests that while painful DD is associated with nerve injury, inflammation itself is not sufficient to develop LBP. PERSPECTIVE CSF was examined for differential protein expression in healthy control participants, pain-free adults with asymptomatic intervertebral DD, and LBP patients with painful intervertebral DD. While DD was related to inflammation regardless of pain status, painful degeneration was associated with markers linked to nerve injury.
Collapse
Affiliation(s)
- Tony K Y Lim
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Montreal, McGill University, Quebec, Canada
| | - Kathleen M Anderson
- Program in Physical Therapy, Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, Minnesota
| | - Pawan Hari
- Department of Epidemiology, University of Minnesota, Minneapolis, Minnesota
| | - Marcos Di Falco
- Genome Quebec, McGill University Innovation Centre, Montreal, Quebec, Canada
| | - Troy E Reihsen
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota
| | - George L Wilcox
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota; Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Kumar G Belani
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota
| | - Sylvie LaBoissiere
- Genome Quebec, McGill University Innovation Centre, Montreal, Quebec, Canada
| | | | - David S Beebe
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota
| | - Lois J Kehl
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota; Minnesota Head & Neck Pain Clinic, St. Paul, Minnesota
| | - Laura S Stone
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada; Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
33
|
Yuksel N, Takmaz T, Ozel Turkcu U, Ergin M, Altinkaynak H, Bilgihan A. Serum and Aqueous Humor Levels of Fetuin-A in Pseudoexfoliation Syndrome. Curr Eye Res 2017. [PMID: 28622050 DOI: 10.1080/02713683.2017.1324629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE To evaluate serum and aqueous humor levels of fetuin-A in patients with pseudoexfoliation syndrome (PEXS) in comparison with those of age- and sex-matched healthy subjects. MATERIALS AND METHODS This prospective study included 25 patients with PEXS and 25 control subjects who were undergoing cataract surgery without any systemic or ocular disease. Aqueous humor and serum fetuin-A levels were measured with enzyme-linked immunosorbent assay method. RESULTS The mean age of the PEXS group (14 males, 11 females, n = 25) was 57.7 ± 6.9 years, and the control group (13 males, 12 females, n = 25) was 58.1 ± 5.7 years. There was no difference between the groups in terms of age (p = 0.77) and sex (p = 0.83). The mean serum fetuin-A level of the PEXS group did not differ from that of the control group (p = 0.53). The mean aqueous humor level of the PEXS group was significantly higher than that of the control group (p = 0.032). There were no significant correlations between aqueous humor and serum fetuin-A levels among patients with PEXS and control group (p > 0.05). CONCLUSIONS Increased levels of fetuin-A in aqueous humor of patients with PEXS may show the local effect of fetuin-A on the anterior segment. With considering the wide range of possible biological functions of fetuin-A in the pathogenesis of PEXS, further studies are needed to clarify the clinical relevance of these findings.
Collapse
Affiliation(s)
- Nilay Yuksel
- a Ankara Ataturk Education and Research Hospital , Department of Ophthalmology , Ankara , Turkey
| | - Tamer Takmaz
- a Ankara Ataturk Education and Research Hospital , Department of Ophthalmology , Ankara , Turkey
| | - Ummuhani Ozel Turkcu
- b Faculty of Medicine, Department of Medical Biochemistry , Mugla Sitki Kocman University , Mugla , Turkey
| | - Merve Ergin
- c Gaziantep 25 Aralık State Hospital , Department of Medical Biochemistry , Gaziantep , Turkey
| | - Hasan Altinkaynak
- a Ankara Ataturk Education and Research Hospital , Department of Ophthalmology , Ankara , Turkey
| | - Ayse Bilgihan
- d Faculty of Medicine, Department of Medical Biochemistry , Gazi University , Ankara , Turkey
| |
Collapse
|
34
|
Harris VK, Bell L, Langan RA, Tuddenham J, Landy M, Sadiq SA. Fetuin-A deficiency protects mice from Experimental Autoimmune Encephalomyelitis (EAE) and correlates with altered innate immune response. PLoS One 2017; 12:e0175575. [PMID: 28388685 PMCID: PMC5384772 DOI: 10.1371/journal.pone.0175575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/28/2017] [Indexed: 12/22/2022] Open
Abstract
Fetuin-A is a biomarker of disease activity in multiple sclerosis. Our aim was to investigate whether Fetuin-A plays a direct role in the neuroinflammatory response in the mouse EAE model. Peak Fetuin-A expression in the CNS and in peripheral lymphoid tissue correlated with peak EAE disease activity. Fetuin-A-deficient mice showed reduced EAE severity associated with an accumulation of splenic monocyte and dendritic cell populations, increased IL-12p40, ASC1, and IL-1β expression, and an increase in T regulatory cells. The upregulation of Fetuin-A in LPS-stimulated dendritic cells and microglia further supports an intrinsic role of Fetuin-A in regulating innate immune activation during EAE.
Collapse
Affiliation(s)
- Violaine K. Harris
- Tisch Multiple Sclerosis Research Center of New York, New York, New York, United States of America
- * E-mail:
| | - Lena Bell
- Tisch Multiple Sclerosis Research Center of New York, New York, New York, United States of America
| | - Ruth-Anne Langan
- Tisch Multiple Sclerosis Research Center of New York, New York, New York, United States of America
| | - John Tuddenham
- Tisch Multiple Sclerosis Research Center of New York, New York, New York, United States of America
| | - Mark Landy
- Tisch Multiple Sclerosis Research Center of New York, New York, New York, United States of America
| | - Saud A. Sadiq
- Tisch Multiple Sclerosis Research Center of New York, New York, New York, United States of America
| |
Collapse
|
35
|
Orimoto A, Kurokawa M, Handa K, Ishikawa M, Nishida E, Aino M, Mitani A, Ogawa M, Tsuji T, Saito M. F-spondin negatively regulates dental follicle differentiation through the inhibition of TGF-β activity. Arch Oral Biol 2017; 79:7-13. [PMID: 28282516 DOI: 10.1016/j.archoralbio.2017.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
Abstract
OBJECTIVE F-spondin is an extracellular matrix (ECM) protein that belongs to the thrombospondin type I repeat superfamily and is a negative regulator of bone mass. We have previously shown that f-spondin is specifically expressed in the dental follicle (DF), which gives rise to the periodontal ligament (PDL) during the tooth root formation stage. To investigate the molecular mechanism of PDL formation, we investigated the function of f-spondin in DF differentiation. DESIGN The expression patterning of f-spondin in the developing tooth germ was compared with that of periodontal ligament-related genes, including runx2, type I collagen and periostin, by in situ hybridization analysis. To investigate the function of f-spondin during periodontal ligament formation, an f-spondin adenovirus was infected into the bell stage of the developing tooth germ, and the effect on dental differentiation was analyzed. RESULTS F-spondin was specifically expressed in the DF of the developing tooth germ; by contrast, type I collagen, runx2 and periostin were expressed in the DF and in the alveolar bone. F-spondin-overexpresssing tooth germ exhibited a reduction in gene expression of periostin and type I collagen in the DF. By contrast, the knockdown of f-spondin in primary DF cells increased the expression of these genes. Treatment with recombinant f-spondin protein functionally inhibited periostin expression induced by transforming growth factor-β (TGF-β). CONCLUSION Our data indicated that f-spondin inhibits the differentiation of DF cells into periodontal ligament cells by inhibiting TGF-β. These data suggested that f-spondin negatively regulates PDL differentiation which may play an important role in the immature phenotype of DF.
Collapse
Affiliation(s)
- Ai Orimoto
- Division of Operative Dentistry, Department of Restorative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Misaki Kurokawa
- Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika, Japan
| | - Keisuke Handa
- Division of Operative Dentistry, Department of Restorative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Masaki Ishikawa
- Division of Operative Dentistry, Department of Restorative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Eisaku Nishida
- Department of Periodontology, School of Dentistry, Aichi-gakuin University, Nagoya, Aichi, Japan
| | - Makoto Aino
- Department of Periodontology, School of Dentistry, Aichi-gakuin University, Nagoya, Aichi, Japan
| | - Akio Mitani
- Department of Periodontology, School of Dentistry, Aichi-gakuin University, Nagoya, Aichi, Japan
| | - Miho Ogawa
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Takashi Tsuji
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Masahiro Saito
- Division of Operative Dentistry, Department of Restorative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan.
| |
Collapse
|
36
|
Lichtenauer M, Wernly B, Paar V, Rohm I, Jung C, Yilmaz A, Hoppe UC, Schulze PC, Kretzschmar D, Pistulli R. Specifics of fetuin-A levels in distinct types of chronic heart failure. J Clin Lab Anal 2017; 32. [PMID: 28213903 DOI: 10.1002/jcla.22179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/21/2017] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Fetuin-A has been described to correlate inversely with vascular calcification both in animal models but also in patients with heart and renal disease. In this current study, we sought to investigate whether fetuin-A might be a useful marker for the discrimination of ischemic (ICM) from dilated cardiomyopathy (DCM). METHODS A total of 124 non-consecutive patients were included in this study, 59 patients suffered from ICM and 65 patients from DCM. Serum samples were obtained during out-patient visits and analyzed for fetuin-A by ELISA. RESULTS Median fetuin-A concentration in the overall cohort was significantly lower in ICM patients compared to DCM patients (62.2±16.4 μg/mL vs. 129.6±56.6 μg/mL; P<.001). A positive correlation of fetuin-A levels was found with BMI, cholesterol, LDL/HDL ratio and triglycerides and an inverse correlation with age (r=-.36; P<.001). Moreover, patients suffering from (stable) angina pectoris evidenced lower fetuin-A levels compared to non-symptomatic patients (73.1±22.7 μg/mL vs. 83.7±26.2 μg/mL; P=.047) CONCLUSIONS: Fetuin-A was shown to be a potential discriminator and biomarker for the differential diagnosis between ICM and DCM. Fetuin-A levels might also be helpful in the process of diagnostic decision-making in regards to invasive management or medical therapy.
Collapse
Affiliation(s)
- Michael Lichtenauer
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Bernhard Wernly
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Vera Paar
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Ilonka Rohm
- Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Department of Internal Medicine I, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Duesseldorf, Germany
| | - Atilla Yilmaz
- Clinic of Internal Medicine II, Elisabeth Klinikum Schmalkalden, Schmalkalden, Germany
| | - Uta C Hoppe
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Paul Christian Schulze
- Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Department of Internal Medicine I, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Daniel Kretzschmar
- Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Department of Internal Medicine I, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Rudin Pistulli
- Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Department of Internal Medicine I, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
37
|
Reza Sailani M, Jahanbani F, Nasiri J, Behnam M, Salehi M, Sedghi M, Hoseinzadeh M, Takahashi S, Zia A, Gruber J, Lynch JL, Lam D, Winkelmann J, Amirkiai S, Pang B, Rego S, Mazroui S, Bernstein JA, Snyder MP. Association of AHSG with alopecia and mental retardation (APMR) syndrome. Hum Genet 2017; 136:287-296. [PMID: 28054173 DOI: 10.1007/s00439-016-1756-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/25/2016] [Indexed: 02/01/2023]
Abstract
Alopecia with mental retardation syndrome (APMR) is a very rare autosomal recessive condition that is associated with total or partial absence of hair from the scalp and other parts of the body as well as variable intellectual disability. Here we present whole-exome sequencing results of a large consanguineous family segregating APMR syndrome with seven affected family members. Our study revealed a novel predicted pathogenic, homozygous missense mutation in the AHSG (OMIM 138680) gene (AHSG: NM_001622:exon7:c.950G>A:p.Arg317His). The variant is predicted to affect a region of the protein required for protein processing and disrupts a phosphorylation motif. In addition, the altered protein migrates with an aberrant size relative to healthy individuals. Consistent with the phenotype, AHSG maps within APMR linkage region 1 (APMR 1) as reported before, and falls within runs of homozygosity (ROH). Previous families with APMR syndrome have been studied through linkage analyses and the linkage resolution did not allow pointing out to a single gene candidate. Our study is the first report to identify a homozygous missense mutation for APMR syndrome through whole-exome sequencing.
Collapse
Affiliation(s)
- M Reza Sailani
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Jafar Nasiri
- Child Growth and Development Research Center, Pediatrics Department, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mansoor Salehi
- Division of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
- Medical Genetics Laboratory, Isfahan University Hospital, Isfahan, Iran
| | - Maryam Sedghi
- Medical Genetics Laboratory, Isfahan University Hospital, Isfahan, Iran
| | - Majid Hoseinzadeh
- Medical Genetics Laboratory, Isfahan University Hospital, Isfahan, Iran
| | | | - Amin Zia
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Joshua Gruber
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Daniel Lam
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Semira Amirkiai
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Baoxu Pang
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Shannon Rego
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Safoura Mazroui
- Clinic of Internal Medicine, Department of Cardiology, University Heart Center, Jena University Hospital, Jena, Germany
| | | | | |
Collapse
|
38
|
Nangami GN, Sakwe AM, Izban MG, Rana T, Lammers PE, Thomas P, Chen Z, Ochieng J. Fetuin-A (alpha 2HS glycoprotein) modulates growth, motility, invasion, and senescence in high-grade astrocytomas. Cancer Med 2016; 5:3532-3543. [PMID: 27882696 PMCID: PMC5224863 DOI: 10.1002/cam4.940] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 11/20/2022] Open
Abstract
Glioblastomas (high-grade astrocytomas) are highly aggressive brain tumors with poor prognosis and limited treatment options. In the present studies, we have defined the role of fetuin-A, a liver-derived multifunctional serum protein, in the growth of an established glioblastoma cell line, LN229. We hereby demonstrate that these cells synthesize ectopic fetuin-A which supports their growth in culture in the absence of serum. We have demonstrated that a panel of tissue microarray (TMA) of glioblastomas also express ectopic fetuin-A. Knocking down fetuin-A using shRNA approach in LN229, significantly reduced their in vitro growth as well as growth and invasion in vivo. The fetuin-A knockdown subclones of LN229 (A and D) also had reduced motility and invasive capacity. Treatment of LN229 cells with asialofetuin (ASF), attenuated their uptake of labeled fetuin-A, and induced senescence in them. Interestingly, the D subclone that had ~90% reduction in ectopic fetuin-A, underwent senescence in serum-free medium which was blunted in the presence of purified fetuin-A. Uptake of labeled exosomes was attenuated in fetuin-A knockdown subclones A and D. Taken together, the studies demonstrate the impact of fetuin-A as significant node of growth, motility, and invasion signaling in glioblastomas that can be targeted for therapy.
Collapse
Affiliation(s)
- Gladys N. Nangami
- Department of Biochemistry and Cancer BiologyMeharry Medical College1005 D.B. Todd Blvd.Nashville37208Tennessee
| | - Amos M. Sakwe
- Department of Biochemistry and Cancer BiologyMeharry Medical College1005 D.B. Todd Blvd.Nashville37208Tennessee
| | - Michael G. Izban
- Departments of PathologyMeharry Medical College1005 D.B. Todd Blvd.Nashville37208Tennessee
| | - Tanu Rana
- Department of Biochemistry and Cancer BiologyMeharry Medical College1005 D.B. Todd Blvd.Nashville37208Tennessee
| | - Philip E. Lammers
- Department of Internal MedicineMeharry Medical College1005 D.B. Todd Blvd.Nashville37208Tennessee
| | - Portia Thomas
- Department of Biochemistry and Cancer BiologyMeharry Medical College1005 D.B. Todd Blvd.Nashville37208Tennessee
| | - Zhenbang Chen
- Department of Biochemistry and Cancer BiologyMeharry Medical College1005 D.B. Todd Blvd.Nashville37208Tennessee
| | - Josiah Ochieng
- Department of Biochemistry and Cancer BiologyMeharry Medical College1005 D.B. Todd Blvd.Nashville37208Tennessee
| |
Collapse
|
39
|
Effect of Exogenous Fetuin-A on TGF- β/Smad Signaling in Hepatic Stellate Cells. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8462615. [PMID: 27990439 PMCID: PMC5136394 DOI: 10.1155/2016/8462615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/27/2016] [Accepted: 10/24/2016] [Indexed: 01/17/2023]
Abstract
Objective. To explore the effects of low concentration of exogenous fetuin-A intervention on TGF-β1 induced LX2 cells through detection of the expression of mRNA and protein of Smad2, Smad3, and Smad7. Methods. MTT assay was used to detect the LX2 cells proliferation and the regression equation calculating software was applied to determine IC50 of fetuin-A. RT-PCR was used to determine the relative content of Smad2, Smad3, and Smad7 mRNA in LX2 cells. Western blot was used to detect the LX2 cells relative content of Smad2, Smad3, Smad7 protein expression, respectively. Results. The analysis from RT-PCR and western blot showed that when compared with the other groups TGF-β1 + fetuin-A group increased the expression of Smad2 and Smad3 while decreased the expression of Smad7 (P < 0.05). Conclusion. Fetuin-A may improve the excessive activation of hepatic stellate cells which is caused by an enhanced positive regulation of Smad2 and Smad3 protein and the deficiency in negative regulation of Smad7 protein. This is through inhibiting the expression of Smad2 and Smad3 gene and promoting the expression of Smad7 gene. As a result, the development of liver fibrosis will be reduced.
Collapse
|
40
|
Suleimenova D, Hashimi SM, Li M, Ivanovski S, Mattheos N. Gene expression profiles in guided bone regeneration using combinations of different biomaterials: a pilot animal study. Clin Oral Implants Res 2016; 28:713-720. [PMID: 27238458 DOI: 10.1111/clr.12868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the gene expression profile related to guided bone regeneration (GBR) at the early healing stage while using combinations of different biomaterials. MATERIALS AND METHODS Cranial defects in 4 New Zealand rabbits were filled with A) biphasic calcium phosphate/experimental pericardium-derived collagen membrane, B) Bio-Oss® /Bio-Gide® , C) biphasic calcium phosphate/strontium hydroxyapatite-containing collagen membrane and D) Bio-Oss® /strontium hydroxyapatite-containing collagen membrane. Seven days after surgery, one animal was subjected to histological observation and histomorphometric analysis, and three animals to real-time quantitative reverse transcription polymerase chain reaction (PCR). An RT2 Profiler PCR Array (PANZ-026Z, QIAGEN, QIAGEN Sciences, Germantown, MD, USA) was conducted to observe the gene expression profile of groups A, C and D as compared with the control group B. RESULTS The analysis showed 9 of the 84 genes on the array to be significantly different in the three experimental groups (six genes in group D, four in group C and one in group A). Group D demonstrated the most changes in gene expression profile at day 7. Genes that were significantly down-regulated (AHSG, EGF) or up-regulated (CDH11, MMP13, GLI1 and MCSF) are responsible for early-stage bone formation, bone remodeling and pre-osteoclast development. The gene expression profile of this group correlated with the histological findings, as this group showed the higher formation of osteoid as compared with the other groups. CONCLUSION Gene expression patterns at early-stage healing of GBR-treated defects appear to be related to the biomaterial used. The combination of Bio-Oss® and strontium hydroxyapatite-containing collagen membrane showed the most pro-osteogenic gene regulation profile (group D), implying the stimulation of key transcriptional factors, which appeared to translate into the up-regulation of the osteogenic process and earlier bone formation.
Collapse
Affiliation(s)
- Dina Suleimenova
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Saeed M Hashimi
- School of Dentistry, Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld, Australia
| | - Ma Li
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Saso Ivanovski
- School of Dentistry, Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld, Australia
| | - Nikos Mattheos
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
41
|
Robinson KN, Teran-Garcia M. From infancy to aging: Biological and behavioral modifiers of Fetuin-A. Biochimie 2016; 124:141-149. [DOI: 10.1016/j.biochi.2015.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/23/2015] [Indexed: 12/16/2022]
|
42
|
Naito C, Hashimoto M, Watanabe K, Shirai R, Takahashi Y, Kojima M, Watanabe R, Sato K, Iso Y, Matsuyama TA, Suzuki H, Ishibashi-Ueda H, Watanabe T. Facilitatory effects of fetuin-A on atherosclerosis. Atherosclerosis 2016; 246:344-51. [DOI: 10.1016/j.atherosclerosis.2016.01.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/11/2022]
|
43
|
Korhonen PK, Pozio E, La Rosa G, Chang BCH, Koehler AV, Hoberg EP, Boag PR, Tan P, Jex AR, Hofmann A, Sternberg PW, Young ND, Gasser RB. Phylogenomic and biogeographic reconstruction of the Trichinella complex. Nat Commun 2016; 7:10513. [PMID: 26830005 PMCID: PMC4740406 DOI: 10.1038/ncomms10513] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 12/18/2015] [Indexed: 01/21/2023] Open
Abstract
Trichinellosis is a globally important food-borne parasitic disease of humans caused by roundworms of the Trichinella complex. Extensive biological diversity is reflected in substantial ecological and genetic variability within and among Trichinella taxa, and major controversy surrounds the systematics of this complex. Here we report the sequencing and assembly of 16 draft genomes representing all 12 recognized Trichinella species and genotypes, define protein-coding gene sets and assess genetic differences among these taxa. Using thousands of shared single-copy orthologous gene sequences, we fully reconstruct, for the first time, a phylogeny and biogeography for the Trichinella complex, and show that encapsulated and non-encapsulated Trichinella taxa diverged from their most recent common ancestor ∼21 million years ago (mya), with taxon diversifications commencing ∼10-7 mya.
Collapse
Affiliation(s)
- Pasi K Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Edoardo Pozio
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Giuseppe La Rosa
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Bill C H Chang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Yourgene Bioscience, Shu-Lin District, New Taipei City 23863, Taiwan
| | - Anson V Koehler
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Eric P Hoberg
- United States National Parasite Collection, US Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA
| | - Peter R Boag
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Patrick Tan
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Republic of Singapore.,Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 138672, Republic of Singapore
| | - Aaron R Jex
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Queensland 4111, Australia
| | - Paul W Sternberg
- Division of Biology, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
44
|
Harman H, Tekeoğlu İ, Gürol G, Sağ MS, Karakeçe E, Çİftçİ İH, Kamanlı A, Nas K. Comparison of fetuin-A and transforming growth factor beta 1 levels in patients with spondyloarthropathies and rheumatoid arthritis. Int J Rheum Dis 2016; 20:2020-2027. [PMID: 26799059 DOI: 10.1111/1756-185x.12791] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM We investigated the serum transforming growth factor beta 1 (TGFβ1) and fetuin-A levels, and determined the relationships between these biomarkers and disease activity, mobility and radiologic progression in patients with spondyloarthropathy (SpA) and rheumatoid arthritis (RA). METHOD The study included 55 patients with SpA and 38 patients with RA, together with 28 healthy subjects. In AS patients, we assessed disease activity using the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), functional ability using the Bath Ankylosing Spondylitis Functional Index (BASFI), and mobility using the Bath Ankylosing Spondylitis Metrology Index (BASMI), radiologic progression using the Bath Ankylosing Spondylitis Radiology Index (BASRI). Serum fetuin-A and TGFβ1 were determined using enzyme-linked immunosorbent assay (ELISA) equipment. RESULTS Fetuin-A was significantly higher in the axial SpA and RA groups than in healthy subjects (P < 0.01). Serum TGFβ1 and fetuin-A levels were similar in the peripheral SpA group and in healthy subjects. A significant positive correlation was found between the fetuin-A and TGFβ1 levels in the axial SpA, peripheral SpA, and RA groups (r = 0.293, P = 0.009; r = 0.215, P = 0.04; r = 0.223, P = 0.05, respectively). Significant correlations were found between fetuin-A and the BASMI and BASRI values in the axial SpA patients (r = 0.444, P = 0.031; r = 0.486, P < 0.001, respectively). CONCLUSION We conclude that Fetuin-A may be one of the steps that can be active in disease progression in axial SpA patients.
Collapse
Affiliation(s)
- Halil Harman
- Divison of Rheumatology, Department of Pysical Medicine and Rehabilitation, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - İbrahim Tekeoğlu
- Divison of Rheumatology, Department of Pysical Medicine and Rehabilitation, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Gönül Gürol
- Department of Medical Physiology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Mustafa Serdar Sağ
- Divison of Rheumatology, Department of Pysical Medicine and Rehabilitation, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Engin Karakeçe
- Department of Microbiology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - İhsan Hakkı Çİftçİ
- Department of Microbiology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Ayhan Kamanlı
- Divison of Rheumatology, Department of Pysical Medicine and Rehabilitation, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Kemal Nas
- Divison of Rheumatology, Department of Pysical Medicine and Rehabilitation, Sakarya University Faculty of Medicine, Sakarya, Turkey
| |
Collapse
|
45
|
Zhao KW, Murray EJB, Murray SS. Spp24 derivatives stimulate a Gi-protein coupled receptor-Erk1/2 signaling pathway and modulate gene expressions in W-20-17 cells. J Cell Biochem 2015; 116:767-77. [PMID: 25501958 DOI: 10.1002/jcb.25032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/09/2014] [Indexed: 01/20/2023]
Abstract
Secreted phosphoprotein 24 kDa (Spp24) is an apatite- and BMP/TGF-β cytokine-binding phosphoprotein found in serum and many tissues, including bone. N-terminally intact degradation products ranging in size from 14 kDa to 23 kDa have been found in bone. The cleavage sites in Spp24 that produce these short forms have not been definitively identified, and the biological activities and mechanisms of action of Spp24 and its degradation products have not been fully elucidated. We found that the C-terminus of Spp24 is labile to proteolysis by furin, kallikrein, lactoferrin, and trypsin, indicating that both extracellular and intracellular proteolytic events could account for the generation of biologically-active Spp18, Spp16, and Spp14. We determined the effects of these truncation products on kinase-mediated signal transduction, gene expression, and osteoblastic differentiation in W-20-17 bone marrow stromal cells cultured in basal or pro-osteogenic media. After culturing for five days, all forms inhibited BMP-2-stimulated osteoblastic differentiation, assessed as induction of alkaline phosphatase activity, in basal, but not pro-osteogenic media. After 10 days, they also inhibited BMP-2-stimulated mineral deposition in pro-osteogenic media. Spp24 had no effect on Erk1/2 phosphorylation, but Spp18 stimulated short-term Erk1/2, MEK 1/2, and p38 phosphorylation. Pertussis toxin and a MEK1/2 inhibitor ablated Spp18-stimulated Erk 1/2 phosphorylation, indicating a role for Gi proteins and MEK1/2 in the Spp18-stimulated Erk1/2 phosphorylation cascade. Truncation products, but not full-length Spp24, stimulated RUNX2, ATF4, and CSF1 transcription. This suggests that Spp24 truncation products have effects on osteoblastic differentiation mediated by kinase pathways that are independent of exogenous BMP/TGF-β cytokines.
Collapse
Affiliation(s)
- Ke-Wei Zhao
- Geriatric Research, Education and Clinical Center (11-E), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, California, 91343
| | | | | |
Collapse
|
46
|
Liu Y, Chen X, Xu Q, Gao X, Tam POS, Zhao K, Zhang X, Chen LJ, Jia W, Zhao Q, Vollrath D, Pang CP, Zhao C. SPP2 Mutations Cause Autosomal Dominant Retinitis Pigmentosa. Sci Rep 2015; 5:14867. [PMID: 26459573 PMCID: PMC4602186 DOI: 10.1038/srep14867] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 09/08/2015] [Indexed: 01/12/2023] Open
Abstract
Retinitis pigmentosa (RP) shows progressive loss of photoreceptors involved with heterogeneous genetic background. Here, by exome sequencing and linkage analysis on a Chinese family with autosomal dominant RP, we identified a putative pathogenic variant, p.Gly97Arg, in the gene SPP2, of which expression was detected in multiple tissues including retina. The p.Gly97Arg was absent in 800 ethnically matched chromosomes and 1400 in-house exome dataset, and was located in the first of the two highly conserved disulfide bonded loop of secreted phosphoprotein 2 (Spp-24) encoded by SPP2. Overexpression of p.Gly97Arg and another signal peptide mutation, p.Gly29Asp, caused cellular retention of both endogenous wild type and exogenous mutants in vitro, and primarily affected rod photoreceptors in zebrafish mimicking cardinal feature of RP. Taken together, our data indicate that the two mutations of SPP2 have dominant negative effects and cellular accumulation of Spp-24 might be particularly toxic to photoreceptors and/or retinal pigment epithelium. SPP2 has a new role in retinal degeneration.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Qihua Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China.,Department of Ophthalmology, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, China
| | - Xiang Gao
- Department of Ophthalmology, School of Medicine, Henan Polytechnic University, Henan 454150, China
| | - Pancy O S Tam
- Department of Ophthalmology &Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Kanxing Zhao
- Tianjin Medical University, Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin 300040, China
| | - Xiumei Zhang
- Department of Ophthalmology, School of Medicine, Henan Polytechnic University, Henan 454150, China
| | - Li Jia Chen
- Department of Ophthalmology &Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Wenshuang Jia
- Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Qingshun Zhao
- Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Douglas Vollrath
- Department of Genetics, Stanford University School of Medicine, CA 94305, USA
| | - Chi Pui Pang
- Department of Ophthalmology &Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Chen Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat Sen University, Guangzhou, China
| |
Collapse
|
47
|
Huang Y, Huang X, Ding L, Wang P, Peng K, Chen Y, Dai M, Zhang D, Xu M, Bi Y, Wang W. Serum Fetuin-A Associated With Fatty Liver Index, Early Indicator of Nonalcoholic Fatty Liver Disease: A Strobe-Compliant Article. Medicine (Baltimore) 2015; 94:e1517. [PMID: 26426614 PMCID: PMC4616834 DOI: 10.1097/md.0000000000001517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Increased fetuin-A has been reported in association with type 2 diabetes and other metabolic diseases. However, the large population data concerning fetuin-A and nonalcoholic fatty liver disease (NAFLD) were limited. In this study, we aimed to investigate the association of serum fetuin-A with fatty liver index (FLI), the indicator of NAFLD. A population-based cross-sectional analysis was performed in 5219 middle-aged and elderly participants who were recruited from 2 nearby urban communities in Shanghai, China. Serum fetuin-A concentrations were measured by enzyme-linked immunosorbent assay (ELISA). The fourth quartiles of FLI, alanine aminotransferance (ALT), aspartate aminotransferance (AST), and γ-glutamyl transpeptadase (GGT) were defined as elevated FLI, ALT, AST, and GGT, respectively. Fetuin-A was positively associated with log-transformed-FLI, -ALT, -AST, and -GGT after adjustment for the confounding factors (all P < 0.05). Multivariate logistic regression analysis showed that each one-standard deviation increase in serum fetuin-A (120.1 mg/L) was associated with 12% (95% confidence interval [CI] 1.01-1.25, P = 0.04), 13% (95% CI 1.06-1.21, P < 0.001), and 10% (95% CI 1.03-1.17, P = 0.005) increased risk of elevated FLI, ALT, and AST, respectively. Categorical analysis showed that as compared to the lowest quartile, the highest quartile of serum fetuin-A associated with a 35% (95% CI 0.98-1.86), 50% (95% CI 1.24-1.83), and 33% (95% CI 1.10-1.60) increased risk of elevated FLI, ALT, and AST, respectively. No significant association was found with GGT. In Chinese adults, serum fetuin-A concentrations were significantly associated with elevated FLI, ALT, and AST, the early indicators of NAFLD.
Collapse
Affiliation(s)
- Ya Huang
- From the Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, the National Clinical Research Center for Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Both diabetes and fetuin-A are independently associated with increased risk of arterial stiffness. Clin Chim Acta 2015; 445:133-8. [DOI: 10.1016/j.cca.2015.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 03/24/2015] [Accepted: 03/24/2015] [Indexed: 01/03/2023]
|
49
|
Schlieper G, Schurgers L, Brandenburg V, Reutelingsperger C, Floege J. Vascular calcification in chronic kidney disease: an update. Nephrol Dial Transplant 2015; 31:31-9. [PMID: 25916871 DOI: 10.1093/ndt/gfv111] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/17/2015] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular calcification is both a risk factor and contributor to morbidity and mortality. Patients with chronic kidney disease (and/or diabetes) exhibit accelerated calcification of the intima, media, heart valves and likely the myocardium as well as the rare condition of calcific uraemic arteriolopathy (calciphylaxis). Pathomechanistically, an imbalance of promoters (e.g. calcium and phosphate) and inhibitors (e.g. fetuin-A and matrix Gla protein) is central in the development of calcification. Next to biochemical and proteinacous alterations, cellular processes are also involved in the pathogenesis. Vascular smooth muscle cells undergo osteochondrogenesis, excrete vesicles and show signs of senescence. Therapeutically, measures to prevent the initiation of calcification by correcting the imbalance of promoters and inhibitors appear to be essential. In contrast to prevention, therapeutic regression of cardiovascular calcification in humans has been rarely reported. Measures to enhance secondary prevention in patients with established cardiovascular calcifications are currently being tested in clinical trials.
Collapse
Affiliation(s)
- Georg Schlieper
- Department of Nephrology, RWTH University of Aachen, Aachen, Germany
| | - Leon Schurgers
- Department of Biochemistry, Faculty of Medicine, Health and Life Science, Maastricht, The Netherlands
| | | | - Chris Reutelingsperger
- Department of Biochemistry, Faculty of Medicine, Health and Life Science, Maastricht, The Netherlands
| | - Jürgen Floege
- Department of Nephrology, RWTH University of Aachen, Aachen, Germany
| |
Collapse
|
50
|
Sato M, Kamada Y, Takeda Y, Kida S, Ohara Y, Fujii H, Akita M, Mizutani K, Yoshida Y, Yamada M, Hougaku H, Takehara T, Miyoshi E. Fetuin-A negatively correlates with liver and vascular fibrosis in nonalcoholic fatty liver disease subjects. Liver Int 2015; 35:925-35. [PMID: 25627311 DOI: 10.1111/liv.12478] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/26/2014] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Fetuin-A (α2HS-glycoprotein), a liver secretory glycoprotein, is known as a transforming growth factor (TGF)-β1 signalling inhibitor. Serum fetuin-A concentration is associated with nonalcoholic fatty liver disease (NAFLD) and cardiovascular disease. However, the usefulness of serum fetuin-A as a predictive fibrosis biomarker in NAFLD patients remains unclear. In this study, we investigated the relationship between circulating fetuin-A levels and fibrosis-related markers [platelet count, NAFLD fibrosis score and carotid intima media thickness (IMT)] in subjects with NAFLD. METHODS A total of 295 subjects (male, 164; female, 131) who received medical health check-ups were enrolled in this study. NAFLD was diagnosed using abdominal ultrasonography. Serum fetuin-A was measured by ELISA. IMT was assessed using a high-resolution ultrasound scanner. Using recombinant human fetuin-A, we investigated the effects of fetuin-A on hepatic stellate cells, which play a pivotal role in the process of hepatic fibrosis. RESULTS Serum fetuin-A concentration was significantly correlated with platelet count (R = 0.19, P < 0.01), NAFLD fibrosis score (R = -0.25, P < 0.01) and mean IMT (R = -0.22, P < 0.01). Multivariate analyses revealed that the fetuin-A concentration is a significant and independent determinant of platelet count, NAFLD fibrosis score and mean IMT. Recombinant fetuin-A suppressed TGF-β1 signalling and fibrosis-related gene expression and increased the expression of TGF-β1 pseudoreceptor bone morphogenic protein and activin membrane-bound inhibitor (BAMBI). CONCLUSIONS Serum fetuin-A level is associated with liver/vessel fibrosis-related markers in NAFLD patients. Circulating fetuin-A could be a useful serum biomarker for predicting liver and vascular fibrosis progression in NAFLD patients.
Collapse
Affiliation(s)
- Motoya Sato
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|