1
|
Ashkinadze D, Kadavath H, Pokharna A, Chi CN, Friedmann M, Strotz D, Kumari P, Minges M, Cadalbert R, Königl S, Güntert P, Vögeli B, Riek R. Atomic resolution protein allostery from the multi-state structure of a PDZ domain. Nat Commun 2022; 13:6232. [PMID: 36266302 PMCID: PMC9584909 DOI: 10.1038/s41467-022-33687-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 09/28/2022] [Indexed: 12/25/2022] Open
Abstract
Recent methodological advances in solution NMR allow the determination of multi-state protein structures and provide insights into structurally and dynamically correlated protein sites at atomic resolution. This is demonstrated in the present work for the well-studied PDZ2 domain of protein human tyrosine phosphatase 1E for which protein allostery had been predicted. Two-state protein structures were calculated for both the free form and in complex with the RA-GEF2 peptide using the exact nuclear Overhauser effect (eNOE) method. In the apo protein, an allosteric conformational selection step comprising almost 60% of the domain was detected with an "open" ligand welcoming state and a "closed" state that obstructs the binding site by changing the distance between the β-sheet 2, α-helix 2, and sidechains of residues Lys38 and Lys72. The observed induced fit-type apo-holo structural rearrangements are in line with the previously published evolution-based analysis covering ~25% of the domain with only a partial overlap with the protein allostery of the open form. These presented structural studies highlight the presence of a dedicated highly optimized and complex dynamic interplay of the PDZ2 domain owed by the structure-dynamics landscape.
Collapse
Affiliation(s)
- Dzmitry Ashkinadze
- grid.5801.c0000 0001 2156 2780Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Harindranath Kadavath
- grid.5801.c0000 0001 2156 2780Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Aditya Pokharna
- grid.5801.c0000 0001 2156 2780Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Celestine N. Chi
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75121 Uppsala, Sweden
| | - Michael Friedmann
- grid.5801.c0000 0001 2156 2780Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Dean Strotz
- grid.5801.c0000 0001 2156 2780Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Pratibha Kumari
- grid.5801.c0000 0001 2156 2780Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Martina Minges
- grid.5801.c0000 0001 2156 2780Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Riccardo Cadalbert
- grid.5801.c0000 0001 2156 2780Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Stefan Königl
- grid.5801.c0000 0001 2156 2780Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Peter Güntert
- grid.5801.c0000 0001 2156 2780Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland ,grid.7839.50000 0004 1936 9721Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Frankfurt am Main, Germany ,grid.265074.20000 0001 1090 2030Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 1920397 Japan
| | - Beat Vögeli
- grid.266190.a0000000096214564Biochemistry and Molecular Genetics Department, University of Colorado School of Medicine, Colorado, CO USA
| | - Roland Riek
- grid.5801.c0000 0001 2156 2780Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
2
|
Ashkinadze D, Kadavath H, Riek R, Güntert P. Optimization and validation of multi-state NMR protein structures using structural correlations. JOURNAL OF BIOMOLECULAR NMR 2022; 76:39-47. [PMID: 35305195 PMCID: PMC9018667 DOI: 10.1007/s10858-022-00392-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Recent advances in the field of protein structure determination using liquid-state NMR enable the elucidation of multi-state protein conformations that can provide insight into correlated and non-correlated protein dynamics at atomic resolution. So far, NMR-derived multi-state structures were typically evaluated by means of visual inspection of structure superpositions, target function values that quantify the violation of experimented restraints and root-mean-square deviations that quantify similarity between conformers. As an alternative or complementary approach, we present here the use of a recently introduced structural correlation measure, PDBcor, that quantifies the clustering of protein states as an additional measure for multi-state protein structure analysis. It can be used for various assays including the validation of experimental distance restraints, optimization of the number of protein states, estimation of protein state populations, identification of key distance restraints, NOE network analysis and semiquantitative analysis of the protein correlation network. We present applications for the final quality analysis stages of typical multi-state protein structure calculations.
Collapse
Affiliation(s)
| | | | - Roland Riek
- Laboratory of Physical Chemistry, ETH Zürich, 8093, Zürich, Switzerland.
| | - Peter Güntert
- Laboratory of Physical Chemistry, ETH Zürich, 8093, Zürich, Switzerland.
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany.
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.
| |
Collapse
|
3
|
Ashkinadze D, Klukowski P, Kadavath H, Güntert P, Riek R. PDBcor: An automated correlation extraction calculator for multi-state protein structures. Structure 2021; 30:646-652.e2. [PMID: 34963060 DOI: 10.1016/j.str.2021.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/15/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022]
Abstract
Allostery and correlated motion are key elements linking protein dynamics with the mechanisms of action of proteins. Here, we present PDBCor, an automated and unbiased method for the detection and analysis of correlated motions from experimental multi-state protein structures. It uses torsion angle and distance statistics and does not require any structure superposition. Clustering of protein conformers allows us to extract correlations in the form of mutual information based on information theory. With PDBcor, we elucidated correlated motion in the WW domain of PIN1, the protein GB3, and the enzyme cyclophilin, in line with reported findings. Correlations extracted with PDBcor can be utilized in subsequent assays including nuclear magnetic resonance (NMR) multi-state structure optimization and validation. As a guide for the interpretation of PDBcor results, we provide a series of protein structure ensembles that exhibit different levels of correlation, including non-correlated, locally correlated, and globally correlated ensembles.
Collapse
Affiliation(s)
- Dzmitry Ashkinadze
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Piotr Klukowski
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Harindranath Kadavath
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Peter Güntert
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland; Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany; Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 1920397, Japan.
| | - Roland Riek
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| |
Collapse
|
4
|
Botta J, Appelhans J, McCormick PJ. Continuing challenges in targeting oligomeric GPCR-based drugs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:213-245. [DOI: 10.1016/bs.pmbts.2019.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Erol I, Cosut B, Durdagi S. Toward Understanding the Impact of Dimerization Interfaces in Angiotensin II Type 1 Receptor. J Chem Inf Model 2019; 59:4314-4327. [PMID: 31429557 DOI: 10.1021/acs.jcim.9b00294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Angiotensin II type 1 receptor (AT1R) is a prototypical class A G protein-coupled receptor (GPCR) that has an important role in cardiovascular pathologies and blood pressure regulation as well as in the central nervous system. GPCRs may exist and function as monomers; however, they can assemble to form higher order structures, and as a result of oligomerization, their function and signaling profiles can be altered. In the case of AT1R, the classical Gαq/11 pathway is initiated with endogenous agonist angiotensin II binding. A variety of cardiovascular pathologies such as heart failure, diabetic nephropathy, atherosclerosis, and hypertension are associated with this pathway. Recent findings reveal that AT1R can form homodimers and activate the noncanonical (β-arrestin-mediated) pathway. Nevertheless, the exact dimerization interface and atomic details of AT1R homodimerization have not been still elucidated. Here, six different symmetrical dimer interfaces of AT1R are considered, and homodimers were constructed using other published GPCR crystal dimer interfaces as template structures. These AT1R homodimers were then inserted into the model membrane bilayers and subjected to all-atom molecular dynamics simulations. Our simulation results along with the principal component analysis and water pathway analysis suggest four different interfaces as the most plausible: symmetrical transmembrane (TM)1,2,8; TM5; TM4; and TM4,5 AT1R dimer interfaces that consist of one inactive and one active protomer. Moreover, we identified ILE2386.33 as a hub residue in the stabilization of the inactive state of AT1R.
Collapse
Affiliation(s)
- Ismail Erol
- Department of Chemistry , Gebze Technical University , Gebze 41400 , Kocaeli , Turkey
| | - Bunyemin Cosut
- Department of Chemistry , Gebze Technical University , Gebze 41400 , Kocaeli , Turkey
| | | |
Collapse
|
6
|
Experimental study of blood pressure and its impact on spontaneous hypertension in rats with Xin Mai Jia. Biomed Pharmacother 2019; 112:108689. [DOI: 10.1016/j.biopha.2019.108689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 11/20/2022] Open
|
7
|
Hunyady L, Gáborik Z, Vauquelin G, Catt KJ. Review: Structural requirements for signalling and regulation of AT1-receptors. J Renin Angiotensin Aldosterone Syst 2016; 2:S16-S23. [DOI: 10.1177/14703203010020010301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- László Hunyady
- Department of Physiology, Semmelweis University Medical
School, Budapest, Hungary,
| | - Zsuzsanna Gáborik
- Department of Physiology, Semmelweis University Medical
School, Budapest, Hungary
| | - Georges Vauquelin
- Department of Molecular and Biochemical Pharmacology,
Institute of Molecular Biology and Biotechnology, Free University of Brussels
(VUB), Sint-Genesius Rode, Belgium
| | - Kevin J Catt
- Endocrinology and Reproduction Research Branch, National
Institute of Child Health and Human Development, National Institutes of Health,
Bethesda, USA
| |
Collapse
|
8
|
Distinctions between non-peptide angiotensin II AT1-receptor antagonists. J Renin Angiotensin Aldosterone Syst 2016; 2:S24-S31. [DOI: 10.1177/14703203010020010401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A far-reaching understanding of the molecular action mechanism of AT1-receptor antagonists (AIIAs) was obtained by using CHO cells expressing transfected human AT 1-receptors. In this model, direct [3H]-antagonist binding and inhibition of agonist-induced responses (inositol phosphate accumulation) can be measured under identical experimental conditions. Whereas preincubation with a surmountable AIIA (losartan) causes parallel shifts of the angiotensin II (Ang II) concentration-response curve, insurmountable antagonists also cause partial (i.e., 30% for irbesartan, 50% for valsartan, 70% for EXP3174,) to almost complete (95% for candesartan) reductions of the maximal response. The main conclusions are that all investigated antagonists are competitive with respect to Ang II. They bind to a common or overlapping site on the receptor in a mutually exclusive way. Insurmountable inhibition is related to the slow dissociation rate of the antagonist-receptor complex (t 1/2 of 7 minutes for irbesartan, 17 minutes for valsartan, 30 minutes for EXP3174 and 120 minutes for candesartan). Antagonist-bound AT1-receptors can adopt a fast and a slow reversible state. This is responsible for the partial nature of the insurmountable inhibition. The long-lasting effect of candesartan, the active metabolite of candesartan cilexetil, in vascular smooth muscle contraction studies, as well as in in vivo experiments on rat and in clinical studies, is compatible with its slow dissociation from, and continuous recycling between AT1-receptors. This recycling, or `rebinding' takes place because of the very high affinity of candesartan for the AT1-receptor.
Collapse
|
9
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
10
|
Stoichiometry and geometry of the CXC chemokine receptor 4 complex with CXC ligand 12: molecular modeling and experimental validation. Proc Natl Acad Sci U S A 2014; 111:E5363-72. [PMID: 25468967 DOI: 10.1073/pnas.1417037111] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chemokines and their receptors regulate cell migration during development, immune system function, and in inflammatory diseases, making them important therapeutic targets. Nevertheless, the structural basis of receptor:chemokine interaction is poorly understood. Adding to the complexity of the problem is the persistently dimeric behavior of receptors observed in cell-based studies, which in combination with structural and mutagenesis data, suggest several possibilities for receptor:chemokine complex stoichiometry. In this study, a combination of computational, functional, and biophysical approaches was used to elucidate the stoichiometry and geometry of the interaction between the CXC-type chemokine receptor 4 (CXCR4) and its ligand CXCL12. First, relevance and feasibility of a 2:1 stoichiometry hypothesis was probed using functional complementation experiments with multiple pairs of complementary nonfunctional CXCR4 mutants. Next, the importance of dimers of WT CXCR4 was explored using the strategy of dimer dilution, where WT receptor dimerization is disrupted by increasing expression of nonfunctional CXCR4 mutants. The results of these experiments were supportive of a 1:1 stoichiometry, although the latter could not simultaneously reconcile existing structural and mutagenesis data. To resolve the contradiction, cysteine trapping experiments were used to derive residue proximity constraints that enabled construction of a validated 1:1 receptor:chemokine model, consistent with the paradigmatic two-site hypothesis of receptor activation. The observation of a 1:1 stoichiometry is in line with accumulating evidence supporting monomers as minimal functional units of G protein-coupled receptors, and suggests transmission of conformational changes across the dimer interface as the most probable mechanism of altered signaling by receptor heterodimers.
Collapse
|
11
|
Balakumar P, Jagadeesh G. Structural determinants for binding, activation, and functional selectivity of the angiotensin AT1 receptor. J Mol Endocrinol 2014; 53:R71-92. [PMID: 25013233 DOI: 10.1530/jme-14-0125] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The renin-angiotensin system (RAS) plays an important role in the pathophysiology of cardiovascular disorders. Pharmacologic interventions targeting the RAS cascade have led to the discovery of renin inhibitors, angiotensin-converting enzyme inhibitors, and AT(1) receptor blockers (ARBs) to treat hypertension and some cardiovascular and renal disorders. Mutagenesis and modeling studies have revealed that differential functional outcomes are the results of multiple active states conformed by the AT(1) receptor upon interaction with angiotensin II (Ang II). The binding of agonist is dependent on both extracellular and intramembrane regions of the receptor molecule, and as a consequence occupies more extensive area of the receptor than a non-peptide antagonist. Both agonist and antagonist bind to the same intramembrane regions to interfere with each other's binding to exhibit competitive, surmountable interaction. The nature of interactions with the amino acids in the receptor is different for each of the ARBs given the small differences in the molecular structure between drugs. AT(1) receptors attain different conformation states after binding various Ang II analogues, resulting in variable responses through activation of multiple signaling pathways. These include both classical and non-classical pathways mediated through growth factor receptor transactivations, and provide cross-communication between downstream signaling molecules. The structural requirements for AT(1) receptors to activate extracellular signal-regulated kinases 1 and 2 through G proteins, or G protein-independently through β-arrestin, are different. We review the structural and functional characteristics of Ang II and its analogs and antagonists, and their interaction with amino acid residues in the AT(1) receptor.
Collapse
Affiliation(s)
- Pitchai Balakumar
- Pharmacology UnitFaculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, MalaysiaDivision of Cardiovascular and Renal ProductsCenter for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - Gowraganahalli Jagadeesh
- Pharmacology UnitFaculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, MalaysiaDivision of Cardiovascular and Renal ProductsCenter for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993, USA
| |
Collapse
|
12
|
Gomes I, Fujita W, Chandrakala MV, Devi LA. Disease-specific heteromerization of G-protein-coupled receptors that target drugs of abuse. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:207-65. [PMID: 23663971 DOI: 10.1016/b978-0-12-386931-9.00009-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Drugs of abuse such as morphine or marijuana exert their effects through the activation of G-protein-coupled receptors (GPCRs), the opioid and cannabinoid receptors, respectively. Moreover, interactions between either of these receptors have been shown to be involved in the rewarding effects of drugs of abuse. Recent advances in the field, using a variety of approaches, have demonstrated that many GPCRs, including opioid, cannabinoid, and dopamine receptors, can form associations between different receptor subtypes or with other GPCRs to form heteromeric complexes. The formation of these complexes, in turn, leads to the modulation of the properties of individual protomers. The development of tools that can selectively disrupt GPCR heteromers as well as monoclonal antibodies that can selectively block signaling by specific heteromer pairs has indicated that heteromers involving opioid, cannabinoid, or dopamine receptors may play a role in various disease states. In this review, we describe evidence for opioid, cannabinoid, and dopamine receptor heteromerization and the potential role of GPCR heteromers in pathophysiological conditions.
Collapse
Affiliation(s)
- Ivone Gomes
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, USA
| | | | | | | |
Collapse
|
13
|
Zhang XC, Sun K, Zhang L, Li X, Cao C. GPCR activation: protonation and membrane potential. Protein Cell 2013; 4:747-60. [PMID: 24057762 DOI: 10.1007/s13238-013-3073-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/11/2013] [Indexed: 12/22/2022] Open
Abstract
GPCR proteins represent the largest family of signaling membrane proteins in eukaryotic cells. Their importance to basic cell biology, human diseases, and pharmaceutical interventions is well established. Many crystal structures of GPCR proteins have been reported in both active and inactive conformations. These data indicate that agonist binding alone is not sufficient to trigger the conformational change of GPCRs necessary for binding of downstream G-proteins, yet other essential factors remain elusive. Based on analysis of available GPCR crystal structures, we identified a potential conformational switch around the conserved Asp2.50, which consistently shows distinct conformations between inactive and active states. Combining the structural information with the current literature, we propose an energy-coupling mechanism, in which the interaction between a charge change of the GPCR protein and the membrane potential of the living cell plays a key role for GPCR activation.
Collapse
Affiliation(s)
- Xuejun C Zhang
- National Laboratory of Macromolecules, National Center for Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China,
| | | | | | | | | |
Collapse
|
14
|
Fillion D, Cabana J, Guillemette G, Leduc R, Lavigne P, Escher E. Structure of the human angiotensin II type 1 (AT1) receptor bound to angiotensin II from multiple chemoselective photoprobe contacts reveals a unique peptide binding mode. J Biol Chem 2013; 288:8187-8197. [PMID: 23386604 DOI: 10.1074/jbc.m112.442053] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Breakthroughs in G protein-coupled receptor structure determination based on crystallography have been mainly obtained from receptors occupied in their transmembrane domain core by low molecular weight ligands, and we have only recently begun to elucidate how the extracellular surface of G protein-coupled receptors (GPCRs) allows for the binding of larger peptide molecules. In the present study, we used a unique chemoselective photoaffinity labeling strategy, the methionine proximity assay, to directly identify at physiological conditions a total of 38 discrete ligand/receptor contact residues that form the extracellular peptide-binding site of an activated GPCR, the angiotensin II type 1 receptor. This experimental data set was used in homology modeling to guide the positioning of the angiotensin II (AngII) peptide within several GPCR crystal structure templates. We found that the CXC chemokine receptor type 4 accommodated the results better than the other templates evaluated; ligand/receptor contact residues were spatially grouped into defined interaction clusters with AngII. In the resulting receptor structure, a β-hairpin fold in extracellular loop 2 in conjunction with two extracellular disulfide bridges appeared to open and shape the entrance of the ligand-binding site. The bound AngII adopted a somewhat vertical binding mode, allowing concomitant contacts across the extracellular surface and deep within the transmembrane domain core of the receptor. We propose that such a dualistic nature of GPCR interaction could be well suited for diffusible linear peptide ligands and a common feature of other peptidergic class A GPCRs.
Collapse
Affiliation(s)
- Dany Fillion
- Department of Pharmacology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Jérôme Cabana
- Department of Pharmacology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Gaétan Guillemette
- Department of Pharmacology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Richard Leduc
- Department of Pharmacology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Pierre Lavigne
- Department of Pharmacology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Emanuel Escher
- Department of Pharmacology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada.
| |
Collapse
|
15
|
Kriechbaumer V, Nabok A, Widdowson R, Smith DP, Abell BM. Quantification of ligand binding to G-protein coupled receptors on cell membranes by ellipsometry. PLoS One 2012; 7:e46221. [PMID: 23049983 PMCID: PMC3458955 DOI: 10.1371/journal.pone.0046221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/28/2012] [Indexed: 12/18/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are prime drug targets and targeted by approximately 60% of current therapeutic drugs such as β-blockers, antipsychotics and analgesics. However, no biophysical methods are available to quantify their interactions with ligand binding in a native environment. Here, we use ellipsometry to quantify specific interactions of receptors within native cell membranes. As a model system, the GPCR-ligand CXCL12α and its receptor CXCR4 are used. Human-derived Ishikawa cells were deposited onto gold coated slides via Langmuir-Schaefer film deposition and interactions between the receptor CXCR4 on these cells and its ligand CXCL12α were detected via total internal reflection ellipsometry (TIRE). This interaction could be inhibited by application of the CXCR4-binding drug AMD3100. Advantages of this approach are that it allows measurement of interactions in a lipid environment without the need for labelling, protein purification or reconstitution of membrane proteins. This technique is potentially applicable to a wide variety of cell types and their membrane receptors, providing a novel method to determine ligand or drug interactions targeting GPCRs and other membrane proteins.
Collapse
Affiliation(s)
- Verena Kriechbaumer
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, United Kingdom.
| | | | | | | | | |
Collapse
|
16
|
Moitra S, Tirupula KC, Klein-Seetharaman J, Langmead CJ. A minimal ligand binding pocket within a network of correlated mutations identified by multiple sequence and structural analysis of G protein coupled receptors. BMC BIOPHYSICS 2012; 5:13. [PMID: 22748306 PMCID: PMC3478154 DOI: 10.1186/2046-1682-5-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/21/2012] [Indexed: 01/07/2023]
Abstract
Background G protein coupled receptors (GPCRs) are seven helical transmembrane proteins that function as signal transducers. They bind ligands in their extracellular and transmembrane regions and activate cognate G proteins at their intracellular surface at the other side of the membrane. The relay of allosteric communication between the ligand binding site and the distant G protein binding site is poorly understood. In this study, GREMLIN
[1], a recently developed method that identifies networks of co-evolving residues from multiple sequence alignments, was used to identify those that may be involved in communicating the activation signal across the membrane. The GREMLIN-predicted long-range interactions between amino acids were analyzed with respect to the seven GPCR structures that have been crystallized at the time this study was undertaken. Results GREMLIN significantly enriches the edges containing residues that are part of the ligand binding pocket, when compared to a control distribution of edges drawn from a random graph. An analysis of these edges reveals a minimal GPCR binding pocket containing four residues (T1183.33, M2075.42, Y2686.51 and A2927.39). Additionally, of the ten residues predicted to have the most long-range interactions (A1173.32, A2726.55, E1133.28, H2115.46, S186EC2, A2927.39, E1223.37, G902.57, G1143.29 and M2075.42), nine are part of the ligand binding pocket. Conclusions We demonstrate the use of GREMLIN to reveal a network of statistically correlated and functionally important residues in class A GPCRs. GREMLIN identified that ligand binding pocket residues are extensively correlated with distal residues. An analysis of the GREMLIN edges across multiple structures suggests that there may be a minimal binding pocket common to the seven known GPCRs. Further, the activation of rhodopsin involves these long-range interactions between extracellular and intracellular domain residues mediated by the retinal domain.
Collapse
Affiliation(s)
- Subhodeep Moitra
- Computer Science Department, Carnegie Mellon University, Gates Hillman Center, 5000 Forbes Avenue, Pittsburgh, PA, USA
| | - Kalyan C Tirupula
- Department of Structural Biology, University of Pittsburgh School of Medicine, Rm. 2051, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, USA
| | - Judith Klein-Seetharaman
- Department of Structural Biology, University of Pittsburgh School of Medicine, Rm. 2051, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, USA
| | - Christopher James Langmead
- Computer Science Department, Carnegie Mellon University, Gates Hillman Center, 5000 Forbes Avenue, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Somvanshi RK, Kumar U. Pathophysiology of GPCR Homo- and Heterodimerization: Special Emphasis on Somatostatin Receptors. Pharmaceuticals (Basel) 2012; 5:417-46. [PMID: 24281555 PMCID: PMC3763651 DOI: 10.3390/ph5050417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 12/19/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are cell surface proteins responsible for translating >80% of extracellular reception to intracellular signals. The extracellular information in the form of neurotransmitters, peptides, ions, odorants etc is converted to intracellular signals via a wide variety of effector molecules activating distinct downstream signaling pathways. All GPCRs share common structural features including an extracellular N-terminal, seven-transmembrane domains (TMs) linked by extracellular/intracellular loops and the C-terminal tail. Recent studies have shown that most GPCRs function as dimers (homo- and/or heterodimers) or even higher order of oligomers. Protein-protein interaction among GPCRs and other receptor proteins play a critical role in the modulation of receptor pharmacology and functions. Although ~50% of the current drugs available in the market target GPCRs, still many GPCRs remain unexplored as potential therapeutic targets, opening immense possibility to discover the role of GPCRs in pathophysiological conditions. This review explores the existing information and future possibilities of GPCRs as tools in clinical pharmacology and is specifically focused for the role of somatostatin receptors (SSTRs) in pathophysiology of diseases and as the potential candidate for drug discovery.
Collapse
Affiliation(s)
- Rishi K Somvanshi
- Faculty of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | | |
Collapse
|
18
|
Cottet M, Faklaris O, Maurel D, Scholler P, Doumazane E, Trinquet E, Pin JP, Durroux T. BRET and Time-resolved FRET strategy to study GPCR oligomerization: from cell lines toward native tissues. Front Endocrinol (Lausanne) 2012; 3:92. [PMID: 22837753 PMCID: PMC3401989 DOI: 10.3389/fendo.2012.00092] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/03/2012] [Indexed: 11/13/2022] Open
Abstract
The concept of oligomerization of G protein-coupled receptor (GPCR) opens new perspectives regarding physiological function regulation. The capacity of one GPCR to modify its binding and coupling properties by interacting with a second one can be at the origin of regulations unsuspected two decades ago. Although the concept is interesting, its validation at a physiological level is challenging and probably explains why receptor oligomerization is still controversial. Demonstrating direct interactions between two proteins is not trivial since few techniques present a spatial resolution allowing this precision. Resonance energy transfer (RET) strategies are actually the most convenient ones. During the last two decades, bioluminescent resonance energy transfer and time-resolved fluorescence resonance energy transfer (TR-FRET) have been widely used since they exhibit high signal-to-noise ratio. Most of the experiments based on GPCR labeling have been performed in cell lines and it has been shown that all GPCRs have the propensity to form homo- or hetero-oligomers. However, whether these data can be extrapolated to GPCRs expressed in native tissues and explain receptor functioning in real life, remains an open question. Native tissues impose different constraints since GPCR sequences cannot be modified. Recently, a fluorescent ligand-based GPCR labeling strategy combined to a TR-FRET approach has been successfully used to prove the existence of GPCR oligomerization in native tissues. Although the RET-based strategies are generally quite simple to implement, precautions have to be taken before concluding to the absence or the existence of specific interactions between receptors. For example, one should exclude the possibility of collision of receptors diffusing throughout the membrane leading to a specific FRET signal. The advantages and the limits of different approaches will be reviewed and the consequent perspectives discussed.
Collapse
Affiliation(s)
- Martin Cottet
- Institut de Génomique Fonctionnelle CNRS, UMR 5203,Montpellier, France
- INSERM, U.661, Montpellier and Université Montpellier 1,2,Montpellier, France
| | - Orestis Faklaris
- Institut de Génomique Fonctionnelle CNRS, UMR 5203,Montpellier, France
- INSERM, U.661, Montpellier and Université Montpellier 1,2,Montpellier, France
| | - Damien Maurel
- Institut de Génomique Fonctionnelle CNRS, UMR 5203,Montpellier, France
- INSERM, U.661, Montpellier and Université Montpellier 1,2,Montpellier, France
| | - Pauline Scholler
- Institut de Génomique Fonctionnelle CNRS, UMR 5203,Montpellier, France
- INSERM, U.661, Montpellier and Université Montpellier 1,2,Montpellier, France
| | - Etienne Doumazane
- Institut de Génomique Fonctionnelle CNRS, UMR 5203,Montpellier, France
- INSERM, U.661, Montpellier and Université Montpellier 1,2,Montpellier, France
| | | | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle CNRS, UMR 5203,Montpellier, France
- INSERM, U.661, Montpellier and Université Montpellier 1,2,Montpellier, France
| | - Thierry Durroux
- Institut de Génomique Fonctionnelle CNRS, UMR 5203,Montpellier, France
- INSERM, U.661, Montpellier and Université Montpellier 1,2,Montpellier, France
- *Correspondence: Thierry Durroux, Institut de Génomique Fonctionnelle CNRS, UMR 5203, Montpellier, France; INSERM U661, Montpellier and Université Montpellier 1,2, 141 Rue de la Cardonille, 34094 Montpellier Cedex 5, France. e-mail:
| |
Collapse
|
19
|
Ng SYL, Lee LTO, Chow BKC. Receptor oligomerization: from early evidence to current understanding in class B GPCRs. Front Endocrinol (Lausanne) 2012; 3:175. [PMID: 23316183 PMCID: PMC3539651 DOI: 10.3389/fendo.2012.00175] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/11/2012] [Indexed: 01/06/2023] Open
Abstract
Dimerization or oligomerization of G protein-coupled receptors (GPCRs) are known to modulate receptor functions in terms of ontogeny, ligand-oriented regulation, pharmacological diversity, signal transduction, and internalization. Class B GPCRs are receptors to a family of hormones including secretin, growth hormone-releasing hormone, vasoactive intestinal polypeptide and parathyroid hormone, among others. The functional implications of receptor dimerization have extensively been studied in class A GPCRs, while less is known regarding its function in class B GPCRs. This article reviews receptor oligomerization in terms of the early evidence and current understanding particularly of class B GPCRs.
Collapse
Affiliation(s)
| | | | - Billy K. C. Chow
- *Correspondence: Billy K. C. Chow, Endocrinology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China. e-mail:
| |
Collapse
|
20
|
Vischer HF, Watts AO, Nijmeijer S, Leurs R. G protein-coupled receptors: walking hand-in-hand, talking hand-in-hand? Br J Pharmacol 2011; 163:246-60. [PMID: 21244374 DOI: 10.1111/j.1476-5381.2011.01229.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Most cells express a panel of different G protein-coupled receptors (GPCRs) allowing them to respond to at least a corresponding variety of extracellular ligands. In order to come to an integrative well-balanced functional response these ligand-receptor pairs can often cross-regulate each other. Although most GPCRs are fully capable to induce intracellular signalling upon agonist binding on their own, many GPCRs, if not all, appear to exist and function in homomeric and/or heteromeric assemblies for at least some time. Such heteromeric organization offers unique allosteric control of receptor pharmacology and function between the protomers and might even unmask 'new' features. However, it is important to realize that some functional consequences that are proposed to originate from heteromeric receptor interactions may also be observed due to intracellular crosstalk between signalling pathways of non-associated GPCRs.
Collapse
Affiliation(s)
- Henry F Vischer
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
21
|
Rozenfeld R, Gupta A, Gagnidze K, Lim MP, Gomes I, Lee-Ramos D, Nieto N, Devi LA. AT1R-CB₁R heteromerization reveals a new mechanism for the pathogenic properties of angiotensin II. EMBO J 2011; 30:2350-63. [PMID: 21540834 DOI: 10.1038/emboj.2011.139] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 04/05/2011] [Indexed: 12/23/2022] Open
Abstract
The mechanism of G protein-coupled receptor (GPCR) signal integration is controversial. While GPCR assembly into hetero-oligomers facilitates signal integration of different receptor types, cross-talk between Gαi- and Gαq-coupled receptors is often thought to be oligomerization independent. In this study, we examined the mechanism of signal integration between the Gαi-coupled type I cannabinoid receptor (CB(1)R) and the Gαq-coupled AT1R. We find that these two receptors functionally interact, resulting in the potentiation of AT1R signalling and coupling of AT1R to multiple G proteins. Importantly, using several methods, that is, co-immunoprecipitation and resonance energy transfer assays, as well as receptor- and heteromer-selective antibodies, we show that AT1R and CB(1)R form receptor heteromers. We examined the physiological relevance of this interaction in hepatic stellate cells from ethanol-administered rats in which CB(1)R is upregulated. We found a significant upregulation of AT1R-CB(1)R heteromers and enhancement of angiotensin II-mediated signalling, as compared with cells from control animals. Moreover, blocking CB(1)R activity prevented angiotensin II-mediated mitogenic signalling and profibrogenic gene expression. These results provide a molecular basis for the pivotal role of heteromer-dependent signal integration in pathology.
Collapse
Affiliation(s)
- Raphael Rozenfeld
- Department of Pharmacology and Systems Therapeutics, New York Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Blue native PAGE and biomolecular complementation reveal a tetrameric or higher-order oligomer organization of the physiological measles virus attachment protein H. J Virol 2010; 84:12174-84. [PMID: 20861270 DOI: 10.1128/jvi.01222-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Members of the Paramyxovirinae subfamily rely on the concerted action of two envelope glycoprotein complexes, attachment protein H and the fusion (F) protein oligomer, to achieve membrane fusion for viral entry. Despite advances in X-ray information, the organization of the physiological attachment (H) oligomer in functional fusion complexes and the molecular mechanism linking H receptor binding with F triggering remain unknown. Here, we have applied an integrated approach based on biochemical and functional assays to the problem. Blue native PAGE analysis indicates that native H complexes extract predominantly in the form of loosely assembled tetramers from purified measles virus (MeV) particles and cells transiently expressing the viral envelope glycoproteins. To gain functional insight, we have established a bimolecular complementation (BiC) assay for MeV H, on the basis of the hypothesis that physical interaction of H with F complexes, F triggering, and receptor binding constitute distinct events. Having experimentally confirmed three distinct H complementation groups, implementation of H BiC (H-BiC) reveals that a high-affinity receptor-to-paramyxovirus H monomer stoichiometry below parity is sufficient for fusion initiation, that F binding and fusion initiation are separable in H oligomers, and that a higher relative amount of F binding-competent than F fusion initiation- or receptor binding-competent H monomers per oligomer is required for optimal fusion. By capitalizing on these findings, H-BiC activity profiles confirm the organization of H into tetramers or higher-order multimers in functional fusion complexes. Results are interpreted in light of a model in which receptor binding may affect the oligomeric organization of the attachment protein complex.
Collapse
|
23
|
de Noronha SMR, Corrêa SAA, Poletti EF, Lopes DD, da Silva CC, Sforça ML, Shimuta SI, Zanchin NIT, Nakaie CR, da Silva IDCG. Structural analysis of three peptides related to the transmambranic helix VI of AT1 receptor. Neuropeptides 2010; 44:115-8. [PMID: 20006383 DOI: 10.1016/j.npep.2009.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/11/2009] [Accepted: 11/12/2009] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Angiotensin II (AII) is the main active product of the renin angiotensin system. Better known effects of AII are via AT1 receptor (AT1R). Expression of AT1R mutants (L265D and L262D) in CHO cells increased cAMP formation when compared to CHO cells expressing the wild type (WT) AT1R. Morphological transformation of CHO cells transfected with mutants correlated with their increased cAMP formation. DNA synthesis was inhibited in these cells too, indicating that cAMP promotes inhibitory effects on transfected CHO cells growth and causes their morphological change from a tumorigenic phenotype to a non-tumorigenic one. OBJECTIVES To assess the importance of leucine 262 and 265 in determining AT1R structure by means of a comparative structural analysis of two mutant peptides and of a wild-type fragment. METHODOLOGY Three peptides had their conformation compared by circular dichroism (CD): L262D(259-272), L265D(259-272) (mutants) and WT(260-277). RESULTS Secondary structures were: beta-turn for WT and L262D and random coil for L265D. CONCLUSIONS Strong correlation was found in the results of biochemical, cellular and structural approaches used to compare WT AT1R to mutant types. Random coil structure of the L265D mutant may be a key point to explain those changes observed in biochemical (binding and signal transduction) and proliferation assays (Correa et al., 2005). beta-Turn formation is an important step during early protein folding and this secondary simple structure is present in L262D and WT, but not in L265D. Therefore, leucine 265 seems to play a crucial role in determining an entirely functional AT1R.
Collapse
Affiliation(s)
- Samuel Marcos Ribeiro de Noronha
- Ginecologia Molecular/Ginecologia, UNIFESP-R. Pedro de Toledo, 791 - 4o. Andar, V. Clementino, CEP04039032 Sao Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rescue of defective G protein-coupled receptor function in vivo by intermolecular cooperation. Proc Natl Acad Sci U S A 2010; 107:2319-24. [PMID: 20080658 DOI: 10.1073/pnas.0906695106] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are ubiquitous mediators of signaling of hormones, neurotransmitters, and sensing. The old dogma is that a one ligand/one receptor complex constitutes the functional unit of GPCR signaling. However, there is mounting evidence that some GPCRs form dimers or oligomers during their biosynthesis, activation, inactivation, and/or internalization. This evidence has been obtained exclusively from cell culture experiments, and proof for the physiological significance of GPCR di/oligomerization in vivo is still missing. Using the mouse luteinizing hormone receptor (LHR) as a model GPCR, we demonstrate that transgenic mice coexpressing binding-deficient and signaling-deficient forms of LHR can reestablish normal LH actions through intermolecular functional complementation of the mutant receptors in the absence of functional wild-type receptors. These results provide compelling in vivo evidence for the physiological relevance of intermolecular cooperation in GPCR signaling.
Collapse
|
25
|
Bhuiyan MA, Hossain M, Ishiguro M, Nakamura T, Nagatomo T. Engineered Mutation of Some Important Amino Acids in Angiotensin II Type 1 (AT1) Receptor Increases the Binding Affinity of AT1-Receptor Antagonists. J Pharmacol Sci 2010; 113:57-65. [DOI: 10.1254/jphs.09361fp] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
26
|
Terpager M, Scholl DJ, Kubale V, Martini L, Elling CE, Schwartz TW. Construction of covalently coupled, concatameric dimers of 7TM receptors. J Recept Signal Transduct Res 2009; 29:235-45. [PMID: 19747085 DOI: 10.1080/10799890903154217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
7TM receptors are easily fused to proteins such as G proteins and arrestin but because of the fact that their terminals are found on each side of the membrane they cannot be joined directly in covalent dimers. Here, we use an artificial connector comprising a transmembrane helix composed of Leu-Ala repeats flanked by flexible spacers and positively charged residues to ensure correct inside-out orientation plus an extracellular HA-tag to construct covalently coupled dimers of 7TM receptors. Such 15 TM concatameric homo- and heterodimers of the beta(2)-adrenergic and the NK(1) receptors, which normally do not dimerize with each other, were expressed surprisingly well at the cell surface, where they bound ligands and activated signal transduction in a manner rather similar to the corresponding wild-type receptors. The concatameric heterodimers internalized upon stimulation with agonists for either of the protomers, which was not observed upon simple coexpression of the two receptors. It is concluded that covalently joined 7TM receptor dimers with surprisingly normal receptor properties can be constructed with use of an artificial transmembrane connector, which perhaps can be used to fuse other membrane proteins.
Collapse
Affiliation(s)
- Marie Terpager
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
27
|
Lyngsø C, Erikstrup N, Hansen JL. Functional interactions between 7TM receptors in the renin-angiotensin system--dimerization or crosstalk? Mol Cell Endocrinol 2009; 302:203-12. [PMID: 18930783 DOI: 10.1016/j.mce.2008.09.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 12/15/2022]
Abstract
The Renin-Angiotensin System (RAS) is important for the regulation of cardiovascular physiology, where it controls blood pressure, and salt- and water homeostasis. Dysregulation of RAS can lead to severe diseases including hypertension, diabetic nephropathy, and cardiac arrhythmia, and -failure. The importance of the RAS is clearly emphasised by the widespread use of drugs targeting this system in clinical practice. These include, renin inhibitors, angiotensin II receptor type I blockers, and inhibitors of the angiotensin converting enzyme. Some of the important effectors within the system are 7 transmembrane (7TM) receptors (or G-protein-coupled receptors) such as the angiotensin II Receptors type I and II (AT1R and AT2R) and the MAS-oncogene receptor. Several findings indicate that the 7TM receptors can form both homo- and heterodimers, or higher orders of oligomers. Furthermore, dimerization may be important for receptor function, and in the development of cardiovascular diseases. This is very significant, since "dimers" may provide pharmacologists with novel targets for improved drug therapy. However, we know that 7TM receptors can mediate signals as monomeric units, and so far it has been very difficult to establish if our observations reflect actual well-defined dimerization or merely reflect close proximity between the receptors and/or various types of functional interaction. In this review, we will present and critically discuss the current data on 7TM receptor dimerization with a clear focus on the RAS, and delineate future challenges within the field.
Collapse
Affiliation(s)
- Christina Lyngsø
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
28
|
Brain receptor mosaics and their intramembrane receptor-receptor interactions: molecular integration in transmission and novel targets for drug development. J Acupunct Meridian Stud 2009; 2:1-25. [PMID: 20633470 DOI: 10.1016/s2005-2901(09)60011-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 01/06/2009] [Indexed: 11/21/2022] Open
Abstract
The concept of intramembrane receptor-receptor interactions and evidence for their existence was introduced by Agnati and Fuxe in 1980/81 suggesting the existence of heteromerization of receptors. In 1982, they proposed the existence of aggregates of multiple receptors in the plasma membrane and coined the term receptor mosaics (RM). In this way, cell signaling becomes a branched process beginning at the level of receptor recognition at the plasma membrane where receptors can directly modify the ligand recognition and signaling capacity of the receptors within a RM. Receptor-receptor interactions in RM are classified as operating either with classical cooperativity, when consisting of homomers or heteromers of similar receptor subtypes having the same transmitter, or non-classical cooperativity, when consisting of heteromers. It has been shown that information processing within a RM depends not only on its receptor composition, but also on the topology and the order of receptor activation determined by the concentrations of the ligands and the receptor properties. The general function of RM has also been demonstrated to depend on allosteric regulators (e.g., homocysteine) of the receptor subtypes present. RM as integrative nodes for receptor-receptor interactions in conjunction with membrane associated proteins may form horizontal molecular networks in the plasma membrane coordinating the activity of multiple effector systems modulating the excitability and gene expression of the cells. The key role of electrostatic epitope-epitope interactions will be discussed for the formation of the RM. These interactions probably represent a general molecular mechanism for receptor-receptor interactions and, without a doubt, indicate a role for phosphorylation-dephosphorylation events in these interactions. The novel therapeutic aspects given by the RMs will be discussed in the frame of molecular neurology and psychiatry and combined drug therapy appears as the future way to go.
Collapse
|
29
|
Milligan G. G protein-coupled receptor hetero-dimerization: contribution to pharmacology and function. Br J Pharmacol 2009; 158:5-14. [PMID: 19309353 DOI: 10.1111/j.1476-5381.2009.00169.x] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The concept that G protein-coupled receptors (GPCRs) can form hetero-dimers or hetero-oligomers continues to gain experimental support. However, with the exception of the GABA(B) receptor and the sweet and umami taste receptors few reported examples meet all of the criteria suggested in a recent International Union of Basic and Clinical Pharmacology sponsored review (Pin et al., 2007) that should be required to define distinct and physiologically relevant receptor species. Despite this, there are many examples in which pairs of co-expressed GPCRs reciprocally modulate their function, trafficking and/or ligand pharmacology. Such data are at least consistent with physical interactions between the receptor pairs. In recent times, it has been suggested that specific GPCR hetero-dimer or hetero-oligomer pairs may represent key molecular targets of certain clinically effective, small molecule drugs and there is growing interest in efforts to identify ligands that may modulate hetero-dimer function selectively. The current review summarizes key recent developments in these topics.
Collapse
Affiliation(s)
- Graeme Milligan
- Molecular Pharmacology Group, Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
30
|
Harding PJ, Attrill H, Boehringer J, Ross S, Wadhams GH, Smith E, Armitage JP, Watts A. Constitutive dimerization of the G-protein coupled receptor, neurotensin receptor 1, reconstituted into phospholipid bilayers. Biophys J 2009; 96:964-73. [PMID: 19186134 DOI: 10.1016/j.bpj.2008.09.054] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 09/22/2008] [Indexed: 12/30/2022] Open
Abstract
Neurotensin receptor 1 (NTS1), a Family A G-protein coupled receptor (GPCR), was expressed in Escherichia coli as a fusion with the fluorescent proteins eCFP or eYFP. A fluorophore-tagged receptor was used to study the multimerization of NTS1 in detergent solution and in brain polar lipid bilayers, using fluorescence resonance energy transfer (FRET). A detergent-solubilized receptor was unable to form FRET-competent complexes at concentrations of up to 200 nM, suggesting that the receptor is monomeric in this environment. When reconstituted into a model membrane system at low receptor density, the observed FRET was independent of agonist binding, suggesting constitutive multimer formation. In competition studies, decreased FRET in the presence of untagged NTS1 excludes the possibility of fluorescent protein-induced interactions. A simulation of the experimental data indicates that NTS1 exists predominantly as a homodimer, rather than as higher-order multimers. These observations suggest that, in common with several other Family A GPCRs, NTS1 forms a constitutive dimer in lipid bilayers, stabilized through receptor-receptor interactions in the absence of other cellular signaling components. Therefore, this work demonstrates that well-characterized model membrane systems are useful tools for the study of GPCR multimerization, allowing fine control over system composition and complexity, provided that rigorous control experiments are performed.
Collapse
Affiliation(s)
- Peter J Harding
- Biomembrane Structure Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Fuxe K, Marcellino D, Guidolin D, Woods AS, Agnati LF. Heterodimers and receptor mosaics of different types of G-protein-coupled receptors. Physiology (Bethesda) 2009; 23:322-32. [PMID: 19074740 DOI: 10.1152/physiol.00028.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Through an assembly of interacting GPCRs, heterodimers and high-order heteromers (termed receptor mosaics) are formed and lead to changes in the agonist recognition, signaling, and trafficking of participating receptors via allosteric mechanisms, sometimes involving the appearance of cooperativity. This field has now become a major research area, and this review deals with their physiology being integrators of receptor signaling in the CNS and their use as targets for novel drug development based on their unique pharmacology.
Collapse
Affiliation(s)
- Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
32
|
Aplin M, Bonde MM, Hansen JL. Molecular determinants of angiotensin II type 1 receptor functional selectivity. J Mol Cell Cardiol 2009; 46:15-24. [DOI: 10.1016/j.yjmcc.2008.09.123] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/09/2008] [Accepted: 09/18/2008] [Indexed: 01/14/2023]
|
33
|
Kobe F, Renner U, Woehler A, Wlodarczyk J, Papusheva E, Bao G, Zeug A, Richter DW, Neher E, Ponimaskin E. Stimulation- and palmitoylation-dependent changes in oligomeric conformation of serotonin 5-HT1A receptorsi. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1503-16. [DOI: 10.1016/j.bbamcr.2008.02.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/21/2008] [Accepted: 02/25/2008] [Indexed: 12/01/2022]
|
34
|
Damian M, Mary S, Martin A, Pin JP, Banères JL. G protein activation by the leukotriene B4 receptor dimer. Evidence for an absence of trans-activation. J Biol Chem 2008; 283:21084-92. [PMID: 18490452 DOI: 10.1074/jbc.m710419200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is compelling evidence that G protein-coupled receptors exist as homo- and heterodimers, but the way these assemblies function at the molecular level remains unclear. We used here the purified leukotriene B(4) receptor BLT1 stabilized in its dimeric state to analyze how a receptor dimer activates G proteins. For this, we produced heterodimers between the wild-type BLT1 and a BLT1/ALXR chimera. The latter is no longer activated by leukotriene B(4) but is still activated by ALXR agonists. In this heterodimer, agonist binding to either one of the two protomers induced asymmetric conformational changes within the receptor dimer. Of importance, no G protein activation was observed when using a dimer where the ligand-loaded protomer was not able to trigger GDP/GTP exchange due to specific mutations in its third intracellular loop, establishing that the conformation of the agonist-free protomer is not competent for G protein activation. Taken together, these data indicate that although ligand binding to one protomer in the heterodimer is associated with cross-conformational changes, a trans-activation mechanism where the ligand-free subunit would trigger GDP/GTP exchange cannot be considered in this case for G protein activation. This observation sheds light into the way GPCR dimers, in particular heterodimers, could activate their cognate G proteins.
Collapse
Affiliation(s)
- Marjorie Damian
- Institut des Biomolécules Max Mousseron, CNRS UMR5247, Universités Montpellier 1 et 2, Montpellier, France
| | | | | | | | | |
Collapse
|
35
|
Springael JY, Urizar E, Costagliola S, Vassart G, Parmentier M. Allosteric properties of G protein-coupled receptor oligomers. Pharmacol Ther 2007; 115:410-8. [PMID: 17655934 DOI: 10.1016/j.pharmthera.2007.06.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 06/07/2007] [Indexed: 11/18/2022]
Abstract
Allosteric regulation of ligand binding is a well-established mechanism regulating the function of G protein-coupled receptors (GPCR). Allosteric modulators have been considered so far as molecules binding to an allosteric site, distinct from that of the reference ligand (orthosteric site), and able to modulate the binding affinity at the orthosteric site and/or the signaling properties resulting from orthosteric site occupancy. Given that most GPCR are known to form dimers or higher order oligomers, we explored whether allosteric interactions could also occur between protomers within oligomeric arrays, thereby influencing binding and signaling receptor properties. Two main conclusions emerged from such studies. First, allosteric modulators can affect one receptor by binding to another receptor within a dimeric or oligomeric complex. Second, allosteric modulators might act on a given receptor by targeting the "orthosteric site" in another receptor of the complex. Allosteric regulation within di(oligo)mers thus implies that the pharmacological properties of a given receptor subtype can be influenced by the array of dimerization partners coexpressed in each particular cell type. Ligands could thus act as agonists or antagonists on 1 receptor, while modulating allosterically the function of a variety of other receptors to which they do not bind directly. Allosteric regulation across GPCR oligomeric interfaces is expected to greatly influence the practice of pharmacology. It will likely affect the design of drug discovery programs, which rely mostly on the overexpression of the receptor of interest in a cell line, thereby focusing on homo-oligomers and ignoring the potential effects of other partners.
Collapse
Affiliation(s)
- Jean-Yves Springael
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Campus Erasme, 808 Route de Lennik, Elsevier Inc, B-1070, Brussels, Belgium
| | | | | | | | | |
Collapse
|
36
|
Santos EL, Reis RI, Silva RG, Shimuta SI, Pecher C, Bascands JL, Schanstra JP, Oliveira L, Bader M, Paiva ACM, Costa-Neto CM, Pesquero JB. Functional rescue of a defective angiotensin II AT1 receptor mutant by the Mas protooncogene. ACTA ACUST UNITED AC 2007; 141:159-67. [PMID: 17320985 DOI: 10.1016/j.regpep.2006.12.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Revised: 12/23/2006] [Accepted: 12/23/2006] [Indexed: 11/19/2022]
Abstract
Earlier studies with Mas protooncogene, a member of the G-protein-coupled receptor family, have proposed this gene to code for a functional AngII receptor, however further results did not confirm this assumption. In this work we investigated the hypothesis that a heterodimeration AT(1)/Mas could result in a functional interaction between both receptors. For this purpose, CHO or COS-7 cells were transfected with the wild-type AT(1) receptor, a non-functional AT(1) receptor double mutant (C18F-K20A) and Mas or with WT/Mas and C18F-K20A/Mas. Cells single-expressing Mas or C18F/K20A did not show any binding for AngII. The co-expression of the wild-type AT(1) receptor and Mas showed a binding profile similar to that observed for the wild-type AT(1) expressed alone. Surprisingly, the co-expression of the double mutant C18F/K20A and Mas evoked a total recovery of the binding affinity for AngII to a level similar to that obtained for the wild-type AT(1). Functional measurements using inositol phosphate and extracellular acidification rate assays also showed a clear recovery of activity for AngII on cells co-expressing the mutant C18F/K20A and Mas. In addition, immunofluorescence analysis localized the AT(1) receptor mainly at the plasma membrane and the mutant C18F-K20A exclusively inside the cells. However, the co-expression of C18F-K20A mutant with the Mas changed the distribution pattern of the mutant, with intense signals at the plasma membrane, comparable to those observed in cells expressing the wild-type AT(1) receptor. These results support the hypothesis that Mas is able to rescue binding and functionality of the defective C18F-K20A mutant by dimerization.
Collapse
MESH Headings
- Amino Acid Sequence
- Angiotensin II/metabolism
- Animals
- CHO Cells
- COS Cells
- Cell Membrane/metabolism
- Chlorocebus aethiops
- Cricetinae
- Cricetulus
- Fluoresceins
- Fluorescent Antibody Technique, Direct
- Fluorescent Dyes
- Indoles
- Inhibitory Concentration 50
- Inositol Phosphates/analysis
- Inositol Phosphates/metabolism
- Models, Chemical
- Molecular Sequence Data
- Mutation
- Polymerase Chain Reaction
- Proto-Oncogenes/genetics
- Receptor, Angiotensin, Type 1/chemistry
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Transfection
Collapse
Affiliation(s)
- Edson L Santos
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo, 04023-062 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Oliveira L, Costa-Neto CM, Nakaie CR, Schreier S, Shimuta SI, Paiva ACM. The Angiotensin II AT1 Receptor Structure-Activity Correlations in the Light of Rhodopsin Structure. Physiol Rev 2007; 87:565-92. [PMID: 17429042 DOI: 10.1152/physrev.00040.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The most prevalent physiological effects of ANG II, the main product of the renin-angiotensin system, are mediated by the AT1 receptor, a rhodopsin-like AGPCR. Numerous studies of the cardiovascular effects of synthetic peptide analogs allowed a detailed mapping of ANG II's structural requirements for receptor binding and activation, which were complemented by site-directed mutagenesis studies on the AT1 receptor to investigate the role of its structure in ligand binding, signal transduction, phosphorylation, binding to arrestins, internalization, desensitization, tachyphylaxis, and other properties. The knowledge of the high-resolution structure of rhodopsin allowed homology modeling of the AT1 receptor. The models thus built and mutagenesis data indicate that physiological (agonist binding) or constitutive (mutated receptor) activation may involve different degrees of expansion of the receptor's central cavity. Residues in ANG II structure seem to control these conformational changes and to dictate the type of cytosolic event elicited during the activation. 1) Agonist aromatic residues (Phe8 and Tyr4) favor the coupling to G protein, and 2) absence of these residues can favor a mechanism leading directly to receptor internalization via phosphorylation by specific kinases of the receptor's COOH-terminal Ser and Thr residues, arrestin binding, and clathrin-dependent coated-pit vesicles. On the other hand, the NH2-terminal residues of the agonists ANG II and [Sar1]-ANG II were found to bind by two distinct modes to the AT1 receptor extracellular site flanked by the COOH-terminal segments of the EC-3 loop and the NH2-terminal domain. Since the [Sar1]-ligand is the most potent molecule to trigger tachyphylaxis in AT1 receptors, it was suggested that its corresponding binding mode might be associated with this special condition of receptors.
Collapse
Affiliation(s)
- Laerte Oliveira
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
38
|
Persani L, Calebiro D, Bonomi M. Technology Insight: modern methods to monitor protein-protein interactions reveal functional TSH receptor oligomerization. ACTA ACUST UNITED AC 2007; 3:180-90. [PMID: 17237844 DOI: 10.1038/ncpendmet0401] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 07/18/2006] [Indexed: 11/08/2022]
Abstract
The formation of supramolecular structures (dimers or oligomers) is emerging as an important aspect of G-protein-coupled receptor (GPCR) biology. In some cases, GPCR oligomerization is a prerequisite for membrane targeting or function; in others, the relevance of the phenomenon is presently unknown. Although supramolecular structures of GPCRs were initially documented by classical biochemical techniques such as coimmunoprecipitation, many recent advances in the field of GPCR oligomerization have been prompted by the introduction of two new biophysical assays based on Förster's resonance energy transfer-fluorescence resonance energy transfer and bioluminescence resonance energy transfer. These modern techniques allow the study of protein-protein interaction in intact cells, and can be used to monitor monomer association and dissociation in vivo. Recently, oligomerization has also been reported in the case of the TSH receptor (TSHR). This review will focus on the previously unsuspected implications that oligomerization has in TSHR physiology and pathology. It is now clear that TSHR oligomerization is constitutive, occurs early during post-translational processing, and may be involved in membrane targeting and activation by the hormone or by stimulating antibodies. Oligomerization between inactive mutants and wild-type TSHR provides a molecular explanation for the dominant forms of TSH resistance.
Collapse
Affiliation(s)
- Luca Persani
- Department of Medical Sciences, University of Milan, Milan, Italy.
| | | | | |
Collapse
|
39
|
Oro C, Qian H, Thomas WG. Type 1 angiotensin receptor pharmacology: signaling beyond G proteins. Pharmacol Ther 2006; 113:210-26. [PMID: 17125841 PMCID: PMC7112676 DOI: 10.1016/j.pharmthera.2006.10.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 10/03/2006] [Indexed: 02/07/2023]
Abstract
Drugs that inhibit the production of angiotensin II (AngII) or its access to the type 1 angiotensin receptor (AT1R) are prescribed to alleviate high blood pressure and its cardiovascular complications. Accordingly, much research has focused on the molecular pharmacology of AT1R activation and signaling. An emerging theme is that the AT1R generates G protein dependent as well as independent signals and that these transduction systems separately contribute to AT1R biology in health and disease. Regulatory molecules termed arrestins are central to this process as is the capacity of AT1R to crosstalk with other receptor systems, such as the widely studied transactivation of growth factor receptors. AT1R function can also be modulated by polymorphisms in the AGTR gene, which may significantly alter receptor expression and function; a capacity of the receptor to dimerize/oligomerize with altered pharmacology; and by the cellular environment in which the receptor resides. Together, these aspects of the AT1R “flavour” the response to angiotensin; they may also contribute to disease, determine the efficacy of current drugs and offer a unique opportunity to develop new therapeutics that antagonize only selective facets of AT1R function.
Collapse
Affiliation(s)
- Cristina Oro
- Baker Heart Research Institute, Melbourne, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Hongwei Qian
- Baker Heart Research Institute, Melbourne, Australia
| | - Walter G. Thomas
- Baker Heart Research Institute, Melbourne, Australia
- Corresponding author. Molecular Endocrinology Laboratory, Baker Heart Research Institute, P.O. Box 6492, St. Kilda Road Central, Melbourne 8008, Australia. Tel.: +61 3 8532 1224; fax: +61 3 8532 1100.
| |
Collapse
|
40
|
Hawtin SR, Simms J, Conner M, Lawson Z, Parslow RA, Trim J, Sheppard A, Wheatley M. Charged extracellular residues, conserved throughout a G-protein-coupled receptor family, are required for ligand binding, receptor activation, and cell-surface expression. J Biol Chem 2006; 281:38478-88. [PMID: 16990262 DOI: 10.1074/jbc.m607639200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For G-protein-coupled receptors (GPCRs) in general, the roles of extracellular residues are not well defined compared with residues in transmembrane helices (TMs). Nevertheless, extracellular residues are important for various functions in both peptide-GPCRs and amine-GPCRs. In this study, the V(1a) vasopressin receptor was used to systematically investigate the role of extracellular charged residues that are highly conserved throughout a subfamily of peptide-GPCRs, using a combination of mutagenesis and molecular modeling. Of the 13 conserved charged residues identified in the extracellular loops (ECLs), Arg(116) (ECL1), Arg(125) (top of TMIII), and Asp(204) (ECL2) are important for agonist binding and/or receptor activation. Molecular modeling revealed that Arg(125) (and Lys(125)) stabilizes TMIII by interacting with lipid head groups. Charge reversal (Asp(125)) caused re-ordering of the lipids, altered helical packing, and increased solvent penetration of the TM bundle. Interestingly, a negative charge is excluded at this locus in peptide-GPCRs, whereas a positive charge is excluded in amine-GPCRs. This contrasting conserved charge may reflect differences in GPCR binding modes between peptides and amines, with amines needing to access a binding site crevice within the receptor TM bundle, whereas the binding site of peptide-GPCRs includes more extracellular domains. A conserved negative charge at residue 204 (ECL2), juxtaposed to the highly conserved disulfide bond, was essential for agonist binding and signaling. Asp(204) (and Glu(204)) establishes TMIII contacts required for maintaining the beta-hairpin fold of ECL2, which if broken (Ala(204) or Arg(204)) resulted in ECL2 unfolding and receptor dysfunction. This study provides mechanistic insight into the roles of conserved extracellular residues.
Collapse
Affiliation(s)
- Stuart R Hawtin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Tuccinardi T, Calderone V, Rapposelli S, Martinelli A. Proposal of a New Binding Orientation for Non-Peptide AT1 Antagonists: Homology Modeling, Docking and Three-Dimensional Quantitative Structure−Activity Relationship Analysis. J Med Chem 2006; 49:4305-16. [PMID: 16821790 DOI: 10.1021/jm060338p] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A three-dimensional model of the AT1 receptor was constructed by means of a homology modeling procedure, using the X-ray structure of bovine rhodopsin as the initial template and taking into account the available site-directed mutagenesis data. The docking of losartan and its active metabolite EXP3174, followed by 1 ns of molecular dynamics (MD) simulation inserted into the phospholipid bilayer, suggested a different binding orientation for these antagonists from those previously proposed. Furthermore, the docking of several non-peptide antagonists was used as an alignment tool for the development of a three-dimensional quantitative structure-activity relationship (3D-QSAR) model, and the good results confirmed our binding hypothesis and the reliability of the model.
Collapse
Affiliation(s)
- Tiziano Tuccinardi
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | | | | | | |
Collapse
|
42
|
Mavromoustakos T, Moutevelis-Minakakis P, Kokotos CG, Kontogianni P, Politi A, Zoumpoulakis P, Findlay J, Cox A, Balmforth A, Zoga A, Iliodromitis E. Synthesis, binding studies and in vivo biological evaluation of novel non-peptide antihypertensive analogues. Bioorg Med Chem 2006; 14:4353-60. [PMID: 16546395 DOI: 10.1016/j.bmc.2006.02.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 01/23/2006] [Accepted: 02/24/2006] [Indexed: 11/17/2022]
Abstract
AT(1) antagonists (SARTANs) constitute the last generation of drugs for the treatment of hypertension, designed and synthesized to mimic the C-terminal segment of the vasoconstrictive hormone angiotensin II (AngII). They exert their action by blocking the binding of AngII on the AT(1) receptor. Up to date eight AT(1) antagonists have been approved for the regulation of high blood pressure. Although these molecules share common structural features and are designed to act under the same mechanism, they have differences in their pharmacological profiles and antihypertensive efficacy. Thus, there is still a need for novel analogues with better pharmacological and financial profiles. An example of a novel synthetic non peptide AT(1) antagonist which devoids the classical template of SARTANs is MM1. In vivo studies showed that MMK molecules, which fall in the same class of MM1, had a significant antihypertensive (40-80% compared to the drug losartan) activity. However, in vitro affinity studies showed that losartan has considerably higher affinity. The theoretical docking studies showed that MM1 acts on the same site of the receptor as losartan. They exert hydrophobic interactions with amino acid Val108 of the third helix of the AT(1) receptor and other hydrophobic amino acids in spatial vicinity. In addition, losartan favours multiple hydrogen bondings between its tetrazole group with Lys199. These additional interactions may in part explain its higher in vitro binding affinity.
Collapse
Affiliation(s)
- T Mavromoustakos
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, Athens, Greece.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pignatari GC, Rozenfeld R, Ferro ES, Oliveira L, Paiva ACM, Devi LA. A role for transmembrane domains V and VI in ligand binding and maturation of the angiotensin II AT1 receptor. Biol Chem 2006; 387:269-76. [PMID: 16542148 DOI: 10.1515/bc.2006.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Several studies have proposed that angiotensin II (Ang II) binds to its receptor AT1 through interactions with residues in helices V and VI, suggesting that the distance between these helices is crucial for ligand binding. Based on a 3D model of AT1 in which the C-terminus of Ang II is docked, we identified the hydrophobic residues of TM V and VI pointing towards the external face of the helices, which may play a role in the structure of the binding pocket and in the structural integrity of the receptor. We performed a systematic mutagenesis study of these residues and examined the binding, localization, maturation, and dimerization of the mutated receptors. We found that mutations of hydrophobic residues to alanine in helix V do not alter binding, whereas mutations to glutamate lead to loss of binding without a loss in cell surface expression, suggesting that the external face of helix V may not directly participate in binding, but may rather contribute to the structure of the binding pocket. In contrast, mutations of hydrophobic residues to glutamate in helix VI lead to a loss in cell surface expression, suggesting that the external surface of helix VI plays a structural role and ensures correct folding of the receptor.
Collapse
Affiliation(s)
- Graciela C Pignatari
- Department of Biophysics, Escola Paulista de Medicina, UNIFESP, São Paulo 04023-062, Brazil
| | | | | | | | | | | |
Collapse
|
44
|
Changeux JP, Edelstein SJ. Allosteric receptors after 30 years. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2006. [DOI: 10.1007/bf02904502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Baleanu-Gogonea C, Karnik S. Model of the whole rat AT1 receptor and the ligand-binding site. J Mol Model 2006; 12:325-37. [PMID: 16404618 DOI: 10.1007/s00894-005-0049-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 07/22/2005] [Indexed: 10/25/2022]
Abstract
We present a three-dimensional model of the rat type 1 receptor (AT1) for the hormone angiotensin II (Ang II). Ang II and the AT1 receptor play a critical role in the cell-signaling process responsible for the actions of renin-angiotensin system in the regulation of blood pressure, water-electrolyte homeostasis and cell growth. Development of improved therapeutics would be significantly enhanced with the availability of a 3D-structure model for the AT1 receptor and of the binding site for agonists and antagonists. This model was constructed using a combination of computation and homology-modeling techniques starting with the experimentally determined three-dimensional structure of bovine rhodopsin (PDB#1F88) as a template. All 359 residues and two disulfide bonds in the rat AT1 receptor have been accounted for in this model. Ramachandran-map analysis and a 1 nanosecond molecular dynamics simulation of the solvated receptor with and without the bound ligand, Ang II, lend credence to the validity of the model. Docking calculations were performed with the agonist, Ang II and the antihypertensive antagonist, losartan. [Figure: see text].
Collapse
Affiliation(s)
- Camelia Baleanu-Gogonea
- Department of Molecular Cardiology at Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | |
Collapse
|
46
|
Nikiforovich GV, Mihalik B, Catt KJ, Marshall GR. Molecular mechanisms of constitutive activity: mutations at position 111 of the angiotensin AT1 receptor. ACTA ACUST UNITED AC 2005; 66:236-48. [PMID: 16218991 DOI: 10.1111/j.1399-3011.2005.00293.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A possible molecular mechanism for the constitutive activity of mutants of the angiotensin type 1 receptor (AT1) at position 111 was suggested by molecular modeling. This involves a cascade of conformational changes in spatial positions of side chains along transmembrane helix (TM3) from L112 to Y113 to F117, which in turn, results in conformational changes in TM4 (residues I152 and M155) leading to the movement of TM4 as a whole. The mechanism is consistent with the available data of site-directed mutagenesis, as well as with correct predictions of constitutive activity of mutants L112F and L112C. It was also predicted that the double mutant N111G/L112A might possess basal constitutive activity comparable with that of the N111G mutant, whereas the double mutants N111G/Y113A, N111G/F117A, and N111G/I152A would have lower levels of basal activity. Experimental studies of the above double mutants showed significant constitutive activity of N111G/L112A and N111G/F117A. The basal activity of N111G/I152A was higher than expected, and that of N111G/Y113A was not determined due to poor expression of the mutant. The proposed mechanism of constitutive activity of the AT(1) receptor reveals a novel nonsimplistic view on the general problem of constitutive activity, and clearly demonstrates the inherent complexity of the process of G protein-coupled receptor (GPCR) activation.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- CHO Cells
- Cricetinae
- Intracellular Membranes/metabolism
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed/methods
- Mutation
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary/genetics
- Rats
- Receptor, Angiotensin, Type 1/chemistry
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Transfection
Collapse
Affiliation(s)
- G V Nikiforovich
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
47
|
Hunyady L, Catt KJ. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol 2005; 20:953-70. [PMID: 16141358 DOI: 10.1210/me.2004-0536] [Citation(s) in RCA: 402] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Angiotensin II (Ang II) activates a wide spectrum of signaling responses via the AT1 receptor (AT1R) that mediate its physiological control of blood pressure, thirst, and sodium balance and its diverse pathological actions in cardiovascular, renal, and other cell types. Ang II-induced AT1R activation via Gq/11 stimulates phospholipases A2, C, and D, and activates inositol trisphosphate/Ca2+ signaling, protein kinase C isoforms, and MAPKs, as well as several tyrosine kinases (Pyk2, Src, Tyk2, FAK), scaffold proteins (G protein-coupled receptor kinase-interacting protein 1, p130Cas, paxillin, vinculin), receptor tyrosine kinases, and the nuclear factor-kappaB pathway. The AT1R also signals via Gi/o and G11/12 and stimulates G protein-independent signaling pathways, such as beta-arrestin-mediated MAPK activation and the Jak/STAT. Alterations in homo- or heterodimerization of the AT1R may also contribute to its pathophysiological roles. Many of the deleterious actions of AT1R activation are initiated by locally generated, rather than circulating, Ang II and are concomitant with the harmful effects of aldosterone in the cardiovascular system. AT1R-mediated overproduction of reactive oxygen species has potent growth-promoting, proinflammatory, and profibrotic actions by exerting positive feedback effects that amplify its signaling in cardiovascular cells, leukocytes, and monocytes. In addition to its roles in cardiovascular and renal disease, agonist-induced activation of the AT1R also participates in the development of metabolic diseases and promotes tumor progression and metastasis through its growth-promoting and proangiogenic activities. The recognition of Ang II's pathogenic actions is leading to novel clinical applications of angiotensin-converting enzyme inhibitors and AT1R antagonists, in addition to their established therapeutic actions in essential hypertension.
Collapse
Affiliation(s)
- László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
48
|
Abstract
A wide range of approaches has been applied to examine the quaternary structure of G protein-coupled receptors, the basis of such protein-protein interactions and how such interactions might modulate the pharmacology and function of these receptors. These include co-immunoprecipitation, various adaptations of resonance energy transfer techniques, functional complementation studies and the analysis of ligand-binding data. Each of the available techniques has limitations that restrict interpretation of the data. However, taken together, they provide a coherent body of evidence indicating that many, if not all, G protein-coupled receptors exist and function as dimer/oligomers. Herein we assess the widely applied techniques and discuss the relative benefits and limitations of these approaches.
Collapse
Affiliation(s)
- Graeme Milligan
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, UK
| | | |
Collapse
|
49
|
Bywater RP. Location and nature of the residues important for ligand recognition in G-protein coupled receptors. J Mol Recognit 2005; 18:60-72. [PMID: 15386622 DOI: 10.1002/jmr.685] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The overall structure of the biogenic amine subclass of the G-protein-coupled receptors, and of their ligand binding sites, is discussed with the aim of highlighting the major structural features of these receptors that are responsible for ligand recognition. A comparison is made between biogenic amine receptors, peptide receptors of the rhodopsin class, and the secretin receptors which all have peptide ligands. The question of where the peptide ligands bind, whether at extracellular sites or within the transmembrane helix bundle, is discussed. The suitability of the rhodopsin crystal structure as a template for construction of homology models is discussed and it is concluded that there are many reasons why a caution should be issued against using it uncritically.
Collapse
Affiliation(s)
- Robert P Bywater
- Adelard Institute, London, UK and Division of Molecular Neurobiology, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.
| |
Collapse
|
50
|
Feng YH, Ding Y, Ren S, Zhou L, Xu C, Karnik SS. Unconventional homologous internalization of the angiotensin II type-1 receptor induced by G-protein-independent signals. Hypertension 2005; 46:419-25. [PMID: 15998700 PMCID: PMC1266297 DOI: 10.1161/01.hyp.0000172621.68061.22] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Internalization of a G-protein-coupled receptor (GPCR) is essential to the desensitization, endocytosis, and signal transduction of the receptor. It has been the general view that conventional homologous internalization of a GPCR requires activation of the G-protein(s) coupled to the receptor. However, whether and how GPCR-mediated G-protein-independent signals trigger receptor internalization remains unknown, although G-protein-independent internalization has been reported. Here we show that an angiotensin II (Ang II) type-1 (AT1) receptor mutant incapable of activating any G-protein still undergoes normal internalization. Substitution of Asp125 with Ala and Arg126 with Leu at the highly conserved DRY motif of the AT1 receptor disabled the ability of the receptor to activate G-proteins, as shown by various Ang II binding studies, GDP-GTP exchange, and inositol phosphate production assays. Surprisingly, the mutant internalized normally in the presence of Ang II and transactivated the epidermal growth factor receptor (EGFR). Similar to the wild-type receptor, overexpression of a dominant-negative K220R mutant GRK2 diminished the internalization of D125A-R126L but not the transactivation of EGFR. These data indicate that G-protein-independent specific signals may also trigger homologous internalizations of the AT1 receptor through beta-arrestin-dependent and -independent pathways, suggesting a possible mechanism for G-protein-independent activation of G-protein-coupled receptor kinases (GRKs). This may represent a general mechanism for triggering GPCR internalization.
Collapse
Affiliation(s)
- Ying-Hong Feng
- Department of Pharmacology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA.
| | | | | | | | | | | |
Collapse
|