1
|
Ontsouka E, Schroeder M, Albrecht C. Revisited role of the placenta in bile acid homeostasis. Front Physiol 2023; 14:1213757. [PMID: 37546542 PMCID: PMC10402276 DOI: 10.3389/fphys.2023.1213757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
To date, the discussion concerning bile acids (BAs) during gestation is almost exclusively linked to pregnancy complications such as intrahepatic cholestasis of pregnancy (ICP) when maternal serum BA levels reach very high concentrations (>100 μM). Generally, the placenta is believed to serve as a protective barrier avoiding exposure of the growing fetus to excessive amounts of maternal BAs that might cause detrimental effects (e.g., intrauterine growth restriction and/or increased vulnerability to metabolic diseases). However, little is known about the precise role of the placenta in BA biosynthesis, transport, and metabolism in healthy pregnancies when serum BAs are at physiological levels (i.e., low maternal and high fetal BA concentrations). It is well known that primary BAs are synthesized from cholesterol in the liver and are later modified to secondary BA species by colonic bacteria. Besides the liver, BA synthesis in extrahepatic sites such as the brain elicits neuroprotective actions through inhibition of apoptosis as well as oxidative and endoplasmic reticulum stress. Even though historically BAs were thought to be only "detergent molecules" required for intestinal absorption of dietary fats, they are nowadays acknowledged as full signaling molecules. They modulate a myriad of signaling pathways with functional consequences on essential processes such as gluconeogenesis -one of the principal energy sources of the fetus- and cellular proliferation. The current manuscript discusses the potential multipotent roles of physiologically circulating BAs on developmental processes during gestation and provides a novel perspective in terms of the importance of the placenta as a previously unknown source of BAs. Since the principle "not too much, not too little" applicable to other signaling molecules may be also true for BAs, the risks associated with fetal exposure to excessive levels of BAs are discussed.
Collapse
|
2
|
Roth K, Yang Z, Agarwal M, Liu W, Peng Z, Long Z, Birbeck J, Westrick J, Liu W, Petriello MC. Exposure to a mixture of legacy, alternative, and replacement per- and polyfluoroalkyl substances (PFAS) results in sex-dependent modulation of cholesterol metabolism and liver injury. ENVIRONMENT INTERNATIONAL 2021; 157:106843. [PMID: 34479135 PMCID: PMC8490327 DOI: 10.1016/j.envint.2021.106843] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/22/2021] [Accepted: 08/19/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Epidemiological studies have shown Per- and polyfluoroalkyl substances (PFAS) to be associated with diseases of dysregulated lipid and sterol homeostasis such as steatosis and cardiometabolic disorders. However, the majority of mechanistic studies rely on single chemical exposures instead of identifying mechanisms related to the toxicity of PFAS mixtures. OBJECTIVES The goal of the current study is to investigate mechanisms linking exposure to a PFAS mixture with alterations in lipid metabolism, including increased circulating cholesterol and bile acids. METHODS Male and female wild-type C57BL/6J mice were fed an atherogenic diet used in previous studies of pollutant-accelerated atherosclerosis and exposed to water containing a mixture of 5 PFAS representing legacy, replacement, and alternative subtypes (i.e., PFOA, PFOS, PFNA, PFHxS, and GenX), each at a concentration of 2 mg/L, for 12 weeks. Changes at the transcriptome and metabolome level were determined by RNA-seq and high-resolution mass spectrometry, respectively. RESULTS We observed increased circulating cholesterol, sterol metabolites, and bile acids due to PFAS exposure, with some sexual dimorphic effects. PFAS exposure increased hepatic injury, demonstrated by increased liver weight, hepatic inflammation, and plasma alanine aminotransferase levels. Females displayed increased lobular and portal inflammation compared to the male PFAS-exposed mice. Hepatic transcriptomics analysis revealed PFAS exposure modulated multiple metabolic pathways, including those related to sterols, bile acids, and acyl carnitines, with multiple sex-specific differences observed. Finally, we show that hepatic and circulating levels of PFOA were increased in exposed females compared to males, but this sexual dimorphism was not the same for other PFAS examined. DISCUSSION Exposure of mice to a mixture of PFAS results in PFAS-mediated modulation of cholesterol levels, possibly through disruption of enterohepatic circulation.
Collapse
Affiliation(s)
- Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Zhao Yang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Manisha Agarwal
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Wendy Liu
- Department of Pathology, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Zheyun Peng
- Department of Pharmaceutical Sciences, College of Pharmacy, Wayne State University, Detroit, MI 48202, USA
| | - Ze Long
- Department of Pharmaceutical Sciences, College of Pharmacy, Wayne State University, Detroit, MI 48202, USA
| | - Johnna Birbeck
- Department of Chemistry, Lumigen Instrumentation Center, Wayne State University, Detroit, MI 48202, USA
| | - Judy Westrick
- Department of Chemistry, Lumigen Instrumentation Center, Wayne State University, Detroit, MI 48202, USA
| | - Wanqing Liu
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48202, USA; Department of Pharmaceutical Sciences, College of Pharmacy, Wayne State University, Detroit, MI 48202, USA
| | - Michael C Petriello
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
3
|
Ontsouka E, Epstein A, Kallol S, Zaugg J, Baumann M, Schneider H, Albrecht C. Placental Expression of Bile Acid Transporters in Intrahepatic Cholestasis of Pregnancy. Int J Mol Sci 2021; 22:ijms221910434. [PMID: 34638773 PMCID: PMC8508908 DOI: 10.3390/ijms221910434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/20/2022] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-related condition characterized by increased maternal circulating bile acids (BAs) having adverse fetal effects. We investigated whether the human placenta expresses specific regulation patterns to prevent fetal exposition to harmful amounts of BAs during ICP. Using real-time quantitative PCR, we screened placentae from healthy pregnancies (n = 12) and corresponding trophoblast cells (n = 3) for the expression of 21 solute carriers and ATP-binding cassette transporter proteins, all acknowledged as BA- and/or cholestasis-related genes. The placental gene expression pattern was compared between healthy women and ICP patients (n = 12 each). Placental SLCO3A1 (OATP3A1) gene expression was significantly altered in ICP compared with controls. The other 20 genes, including SLC10A2 (ASBT) and EPHX1 (EPOX, mEH) reported for the first time in trophoblasts, were comparably abundant in healthy and ICP placentae. ABCG5 was undetectable in all placentae. Placental SLC10A2 (ASBT), SLCO4A1 (OATP4A1), and ABCC2 mRNA levels were positively correlated with BA concentrations in ICP. Placental SLC10A2 (ASBT) mRNA was also correlated with maternal body mass index. We conclude that at the transcriptional level only a limited response of BA transport systems is found under ICP conditions. However, the extent of the transcriptional response may also depend on the severity of the ICP condition and the magnitude by which the maternal BA levels are increased.
Collapse
Affiliation(s)
- Edgar Ontsouka
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (E.O.); (A.E.); (S.K.); (J.Z.)
| | - Alessandra Epstein
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (E.O.); (A.E.); (S.K.); (J.Z.)
| | - Sampada Kallol
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (E.O.); (A.E.); (S.K.); (J.Z.)
| | - Jonas Zaugg
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (E.O.); (A.E.); (S.K.); (J.Z.)
| | - Marc Baumann
- Department of Obstetrics and Gyneacology, University Hospital, Effingerstrasse 102, 3010 Bern, Switzerland; (M.B.); (H.S.)
| | - Henning Schneider
- Department of Obstetrics and Gyneacology, University Hospital, Effingerstrasse 102, 3010 Bern, Switzerland; (M.B.); (H.S.)
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (E.O.); (A.E.); (S.K.); (J.Z.)
- Correspondence: ; Tel.: +41-31-684-48-57
| |
Collapse
|
4
|
Khan MT, Irfan M, Ahsan H, Ali S, Malik A, Pech-Cervantes A, Cui Z, Zhang Y, Wei D. CYP1A2, 2A13, and 3A4 network and interaction with aflatoxin B 1. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aspergillus fungi are known to produce aflatoxins, among which aflatoxin B1 (AFB1) is the most potent carcinogen that is metabolised by cytochrome P450 (CYP450). In the liver, AFB1 is metabolised into exo-8,9-epoxide by the CYP1A2 enzymes. The resulting epoxide can react with guanine to cause DNA damage. Natural inhibitors are being identified. However, the modes of action are poorly understood. In the current study, we have investigated the mode of action of AFB1 with CYP1A2, CYP3A4 and CYP2A13 using molecular dynamic simulation (MD simulation) approaches. The interaction network and paths among CYP1A2, CYP3A4, and CYP2A13 have been investigated using the STRING database and PathLinker plugin of Cytoscape. CYP3A4 is the most active protein involved in interactions with AFB1 during its metabolism. Residues 362ARG, 445SER, 450LEU and 451PHE of CYP1A2 are important, interacting with AFB1 and converting it to toxic exo-AFB1-8,9-epoxide (AFBEX). The pathway shows that microsomal epoxide hydrolase (EPHX1) may acts as initiator in the signalling pathway where CYP1A2, CYP3A4 and CYP2A13 interact in a sequential order. The interaction network shows there to be a strong association in expression among CYP1A2, CYP3A4 and CYP2A13 along with other metabolising enzymes. The complex of AFB1 and CYP1A2 was found to be stable during the MD simulation. This study provides a better understanding of the mode of action between AFB1 and CYP1A2, CYP3A4 and CYP2A13 which relates to the effective management of AFB1 toxicity. EPHX1 in the protein network may be an ideal target when designing inhibitors to prevent the toxin’s activation. Peptide inhibitors may be designed to block the substrate site residues of CYP1A2 in order to prevent the conversion from AFB1 into AFBEX. This would either neutralise or reduce its toxicity.
Collapse
Affiliation(s)
- M. Tahir Khan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore-Pakistan, 54000 Lahore, Pakistan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China P.R
| | - M. Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32611-7011, USA
| | - H. Ahsan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - S. Ali
- Quaid-i-Azam University Islamabad, Pakistan
- Provincial Tuberculosis Reference Lab, Hayatabad Peshawar, Pakistan
| | - A. Malik
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore-Pakistan, 54000 Lahore, Pakistan
| | - A.A. Pech-Cervantes
- Agricultural Research Station, Fort Valley State University, 9000 Watson Blvd, Fort Valley, GA 31030, USA
| | - Z. Cui
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China P.R
| | - Y.J. Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China P.R
| | - D.Q. Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China P.R
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China P.R
| |
Collapse
|
5
|
Bai X, Chen Y, Hou X, Huang M, Jin J. Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab Rev 2016; 48:541-567. [PMID: 27320238 DOI: 10.1080/03602532.2016.1197239] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemoresistance is a disturbing barrier in cancer therapy, which always results in limited therapeutic options and unfavorable prognosis. Nuclear factor E2-related factor 2 (NRF2) controls the expression of genes encoding cytoprotective enzymes and transporters that protect against oxidative stress and electrophilic injury to maintain intrinsic redox homeostasis. However, recent studies have demonstrated that aberrant activation of NRF2 due to genetic and/or epigenetic mutations in tumor contributes to the high expression of phase I and phase II drug-metabolizing enzymes, phase III transporters, and other cytoprotective proteins, which leads to the decreased therapeutic efficacy of anticancer drugs through biotransformation or extrusion during chemotherapy. Therefore, a better understanding of the role of NRF2 in regulation of these enzymes and transporters in tumors is necessary to find new strategies that improve chemotherapeutic efficacy. In this review, we summarized the recent findings about the chemoresistance-promoting role of NRF2, NRF2-regulated phase I and phase II drug-metabolizing enzymes, phase III drug efflux transporters, and other cytoprotective genes. Most importantly, the potential of NRF2 was proposed to counteract drug resistance in cancer treatment.
Collapse
Affiliation(s)
- Xupeng Bai
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Yibei Chen
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Xiangyu Hou
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Min Huang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Jing Jin
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| |
Collapse
|
6
|
Abstract
Many of the compounds taken up by the liver are organic anions that circulate tightly bound to protein carriers such as albumin. The fenestrated sinusoidal endothelium of the liver permits these compounds to have access to hepatocytes. Studies to characterize hepatic uptake of organic anions through kinetic analyses, suggested that it was carrier-mediated. Attempts to identify specific transporters by biochemical approaches were largely unsuccessful and were replaced by studies that utilized expression cloning. These studies led to identification of the organic anion transport proteins (oatps), a family of 12 transmembrane domain glycoproteins that have broad and often overlapping substrate specificities. The oatps mediate Na(+)-independent organic anion uptake. Other studies identified a seven transmembrane domain glycoprotein, Na(+)/taurocholate transporting protein (ntcp) as mediating Na(+)-dependent uptake of bile acids as well as other organic anions. Although mutations or deficiencies of specific members of the oatp family have been associated with transport abnormalities, there have been no such reports for ntcp, and its physiologic role remains to be determined, although expression of ntcp in vitro recapitulates the characteristics of Na(+)-dependent bile acid transport that is seen in vivo. Both ntcp and oatps traffic between the cell surface and intracellular vesicular pools. These vesicles move through the cell on microtubules, using the microtubule based motors dynein and kinesins. Factors that regulate this motility are under study and may provide a unique mechanism that can alter the plasma membrane content of these transporters and consequently their accessibility to circulating ligands.
Collapse
Affiliation(s)
- Allan W Wolkoff
- The Herman Lopata Chair in Liver Disease Research, Professor of Medicine and Anatomy and Structural Biology, Associate Chair of Medicine for Research, Chief, Division of Gastroenterology and Liver Diseases, Director, Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| |
Collapse
|
7
|
Li T, Apte U. Bile Acid Metabolism and Signaling in Cholestasis, Inflammation, and Cancer. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 74:263-302. [PMID: 26233910 DOI: 10.1016/bs.apha.2015.04.003] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bile acids are synthesized from cholesterol in the liver. Some cytochrome P450 (CYP) enzymes play key roles in bile acid synthesis. Bile acids are physiological detergent molecules, so are highly cytotoxic. They undergo enterohepatic circulation and play important roles in generating bile flow and facilitating biliary secretion of endogenous metabolites and xenobiotics and intestinal absorption of dietary fats and lipid-soluble vitamins. Bile acid synthesis, transport, and pool size are therefore tightly regulated under physiological conditions. In cholestasis, impaired bile flow leads to accumulation of bile acids in the liver, causing hepatocyte and biliary injury and inflammation. Chronic cholestasis is associated with fibrosis, cirrhosis, and eventually liver failure. Chronic cholestasis also increases the risk of developing hepatocellular or cholangiocellular carcinomas. Extensive research in the last two decades has shown that bile acids act as signaling molecules that regulate various cellular processes. The bile acid-activated nuclear receptors are ligand-activated transcriptional factors that play critical roles in the regulation of bile acid, drug, and xenobiotic metabolism. In cholestasis, these bile acid-activated receptors regulate a network of genes involved in bile acid synthesis, conjugation, transport, and metabolism to alleviate bile acid-induced inflammation and injury. Additionally, bile acids are known to regulate cell growth and proliferation, and altered bile acid levels in diseased conditions have been implicated in liver injury/regeneration and tumorigenesis. We will cover the mechanisms that regulate bile acid homeostasis and detoxification during cholestasis, and the roles of bile acids in the initiation and regulation of hepatic inflammation, regeneration, and carcinogenesis.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
8
|
Peng H, Zhu QS, Zhong S, Levy D. Transcription of the Human Microsomal Epoxide Hydrolase Gene (EPHX1) Is Regulated by PARP-1 and Histone H1.2. Association with Sodium-Dependent Bile Acid Transport. PLoS One 2015; 10:e0125318. [PMID: 25992604 PMCID: PMC4439041 DOI: 10.1371/journal.pone.0125318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/18/2015] [Indexed: 01/06/2023] Open
Abstract
Microsomal epoxide hydrolase (mEH) is a bifunctional protein that plays a central role in the metabolism of numerous xenobiotics as well as mediating the sodium-dependent transport of bile acids into hepatocytes. These compounds are involved in cholesterol homeostasis, lipid digestion, excretion of xenobiotics and the regulation of several nuclear receptors and signaling transduction pathways. Previous studies have demonstrated the critical role of GATA-4, a C/EBPα-NF/Y complex and an HNF-4α/CAR/RXR/PSF complex in the transcriptional regulation of the mEH gene (EPHX1). Studies also identified heterozygous mutations in human EPHX1 that resulted in a 95% decrease in mEH expression levels which was associated with a decrease in bile acid transport and severe hypercholanemia. In the present investigation we demonstrate that EPHX1 transcription is significantly inhibited by two heterozygous mutations observed in the Old Order Amish population that present numerous hypercholanemic subjects in the absence of liver damage suggesting a defect in bile acid transport into the hepatocyte. The identity of the regulatory proteins binding to these sites, established using biotinylated oligonucleotides in conjunction with mass spectrometry was shown to be poly(ADP-ribose)polymerase-1 (PARP-1) bound to the EPHX1 proximal promoter and a linker histone complex, H1.2/Aly, bound to a regulatory intron 1 site. These sites exhibited 71% homology and may represent potential nucleosome positioning domains. The high frequency of the H1.2 site polymorphism in the Amish population results in a potential genetic predisposition to hypercholanemia and in conjunction with our previous studies, further supports the critical role of mEH in mediating bile acid transport into hepatocytes.
Collapse
Affiliation(s)
- Hui Peng
- University of Southern California, Keck School of Medicine, Department of Biochemistry and Molecular Biology, Los Angeles, California, United States of America
| | - Qin-shi Zhu
- University of Southern California, Keck School of Medicine, Department of Biochemistry and Molecular Biology, Los Angeles, California, United States of America
| | - Shuping Zhong
- University of Southern California, Keck School of Medicine, Department of Biochemistry and Molecular Biology, Los Angeles, California, United States of America
| | - Daniel Levy
- University of Southern California, Keck School of Medicine, Department of Biochemistry and Molecular Biology, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid-activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein-coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
10
|
Hrycay E, Forrest D, Liu L, Wang R, Tai J, Deo A, Ling V, Bandiera S. Hepatic bile acid metabolism and expression of cytochrome P450 and related enzymes are altered in Bsep (-/-) mice. Mol Cell Biochem 2014; 389:119-32. [PMID: 24399466 DOI: 10.1007/s11010-013-1933-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 12/18/2013] [Indexed: 02/06/2023]
Abstract
The bile salt export pump (BSEP/Bsep; gene symbol ABCB11/Abcb11) translocates bile salts across the hepatocyte canalicular membrane into bile in humans and mice. In humans, mutations in the ABCB11 gene cause a severe childhood liver disease known as progressive familial intrahepatic cholestasis type 2. Targeted inactivation of mouse Bsep produces milder persistent cholestasis due to detoxification of bile acids through hydroxylation and alternative transport pathways. The purpose of the present study was to determine whether functional expression of hepatic cytochrome P450 (CYP) and microsomal epoxide hydrolase (mEH) is altered by Bsep inactivation in mice and whether bile acids regulate CYP and mEH expression in Bsep (-/-) mice. CYP expression was determined by measuring protein levels of Cyp2b, Cyp2c and Cyp3a enzymes and CYP-mediated activities including lithocholic acid hydroxylation, testosterone hydroxylation and alkoxyresorufin O-dealkylation in hepatic microsomes prepared from female and male Bsep (-/-) mice fed a normal or cholic acid (CA)-enriched diet. The results indicated that hepatic lithocholic acid hydroxylation was catalyzed by Cyp3a/Cyp3a11 enzymes in Bsep (-/-) mice and that 3-ketocholanoic acid and murideoxycholic acid were major metabolites. CA feeding of Bsep (-/-) mice increased hepatic Cyp3a11 protein levels and Cyp3a11-mediated testosterone 2β-, 6β-, and 15β-hydroxylation activities, increased Cyp2b10 protein levels and Cyp2b10-mediated benzyloxyresorufin O-debenzylation activity, and elevated Cyp2c29 and mEH protein levels. We propose that bile acids upregulate expression of hepatic Cyp3a11, Cyp2b10, Cyp2c29 and mEH in Bsep (-/-) mice and that Cyp3a11 and multidrug resistance-1 P-glycoproteins (Mdr1a/1b) are vital components of two distinct pathways utilized by mouse hepatocytes to expel bile acids.
Collapse
Affiliation(s)
- Eugene Hrycay
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, V6T1Z3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Transcription of the human microsomal epoxide hydrolase gene (EPHX1) is regulated by an HNF-4α/CAR/RXR/PSF complex. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1000-9. [PMID: 23714182 DOI: 10.1016/j.bbagrm.2013.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 05/13/2013] [Accepted: 05/17/2013] [Indexed: 11/23/2022]
Abstract
Microsomal epoxide hydrolase (mEH) is a bifunctional protein that plays a central role in the metabolism of numerous xenobiotics as well as mediating the sodium-dependent transport of bile acids into hepatocytes where they are involved in cholesterol excretion and metabolism, lipid digestion and regulating numerous signaling pathways. Previous studies have demonstrated the critical role of GATA-4 and a C/EBPα-NF/Y complex in the regulation of the mEH gene (EPHX1). In this study we show that HNF-4α and CAR/RXR also bind to the proximal promoter region and regulate EPHX1 expression. Bile acids, which inhibit the expression of HNF-4α also decrease the expression of EPHX1. Studies also established that the binding of HNF-4α was essential for the activation of EPHX1 activity by CAR suggesting the formation of a complex between these adjacent factors. The nature of this regulatory complex was further explored using a biotinylated oligonucleotide of this region in conjunction with BioMag beads and mass spectrometric analysis which demonstrated the presence of an additional inhibitory factor (PSF), confirmed by co-immunoprecipitation and ChIP analyses, which interacted with DNA-bound CAR/RXR/HNF-4α forming a 4-component regulatory complex.
Collapse
|
12
|
Abstract
This article describes the uses of immunostaining in the diagnosis of cholestasis. To immunostain for bile salt export pump (BSEP) and multidrug resistance protein 3 in severe hepatobiliary disease manifest early in life can rapidly identify whether sequencing of ABCB11 or ABCB4 is likely to yield a genetic diagnosis. To immunostain for canalicular ectoenzymes as well as transporters, with transmission electron microscopy, can suggest whether sequencing of ATP8B1 is likely to yield a genetic diagnosis. Demonstrating BSEP expression can direct attention to bile acid synthesis disorders. Immunostaining for multidrug resistance-associated protein 2 serves principally as a control for adequacy of processing.
Collapse
|
13
|
Microsomal epoxide hydrolase expression in the endometrial uterine corpus is regulated by progesterone during the menstrual cycle. J Mol Histol 2010; 41:111-9. [PMID: 20383792 DOI: 10.1007/s10735-010-9266-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 03/27/2010] [Indexed: 10/19/2022]
Abstract
We have shown previously that high expression levels of microsomal epoxide hydrolase (mEH) correlate with a poor prognosis of breast cancer patients receiving tamoxifen, suggesting that enhanced mEH expression could lead to antiestrogen resistance (Fritz et al. in J Clin Oncol 19:3-9, 2001). Thus, the purpose of this study was to gain insights into the role of mEH in hormone-responsive tissues. We analyzed biopsy samples of the endometrium by immunohistochemical staining, pointing to a regulation of mEH during the menstrual cycle: during the first half mEH expression was low, increased during the second half and reached highest levels during pregnancy. Additionally, the progesterone receptor (PR) positive human endometrial cell lines IKPRAB-36 (estrogene receptor alpha [ERalpha] negative) and ECC1-PRAB72 (ERalpha positive) were chosen to further investigate the hormonal regulation of mEH expression. Western Blot and quantitative RT-PCR analysis revealed an increase of mEH expression after treatment with medroxy-progesterone 17-acetate (MPA) in the ERalpha containing ECC1-PRAB72 cells. In contrast our results suggest that MPA had no influence on the mEH protein level in the ERalpha- IKPRAB-36 cells. In conclusion, mEH expression is regulated by progesterone in the presence of both PRs and ERalpha.
Collapse
|
14
|
Garenc C, Julien P, Levy E. Oxysterols in biological systems: The gastrointestinal tract, liver, vascular wall and central nervous system. Free Radic Res 2009; 44:47-73. [DOI: 10.3109/10715760903321804] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Abstract
In recent years the discovery of a number of major transporter proteins expressed in the liver and intestine specifically involved in bile acid transport has led to improved understanding of bile acid homeostasis and the enterohepatic circulation. Sodium (Na(+))-dependent bile acid uptake from portal blood into the liver is mediated primarily by the Na(+) taurocholate co-transporting polypeptide (NTCP), while secretion across the canalicular membrane into the bile is carried out by the bile salt export pump (BSEP). In the ileum, absorption of bile acids from the lumen into epithelial cells is mediated by the apical Na(+) bile salt transporter (ASBT), whereas exit into portal blood across the basolateral membrane is mediated by the organic solute transporter alpha/beta (OSTalpha/beta) heterodimer. Regulation of transporter gene expression and function occurs at several different levels: in the nucleus, members of the nuclear receptor superfamily, regulated by bile acids and other ligands are primarily involved in controlling gene expression, while cell signalling events directly affect transporter function, and subcellular localization. Polymorphisms, dysfunction, and impaired adaptive responses of several of the bile acid transporters, e.g. BSEP and ASBT, results in liver and intestinal disease. Bile acid transporters are now understood to play central roles in driving bile flow, as well as adaptation to various pathological conditions, with complex regulation of activity and function in the nucleus, cytoplasm, and membrane.
Collapse
Affiliation(s)
- A Kosters
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
16
|
Alrefai WA, Gill RK. Bile acid transporters: structure, function, regulation and pathophysiological implications. Pharm Res 2007; 24:1803-23. [PMID: 17404808 DOI: 10.1007/s11095-007-9289-1] [Citation(s) in RCA: 336] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 02/28/2007] [Indexed: 12/11/2022]
Abstract
Specific transporters expressed in the liver and the intestine, play a critical role in driving the enterohepatic circulation of bile acids. By preserving a circulating pool of bile acids, an important factor influencing bile flow, these transporters are involved in maintaining bile acid and cholesterol homeostasis. Enterohepatic circulation of bile acids is fundamentally composed of two major processes: secretion from the liver and absorption from the intestine. In the hepatocytes, the vectorial transport of bile acids from blood to bile is ensured by Na+ taurocholate co-transporting peptide (NTCP) and organic anion transport polypeptides (OATPs). After binding to a cytosolic bile acid binding protein, bile acids are secreted into the canaliculus via ATP-dependent bile salt excretory pump (BSEP) and multi drug resistant proteins (MRPs). Bile acids are then delivered to the intestinal lumen through bile ducts where they emulsify dietary lipids and cholesterol to facilitate their absorption. Intestinal epithelial cells reabsorb the majority of the secreted bile acids through the apical sodium dependent bile acid transporter (ASBT) and sodium independent organic anion transporting peptide (OATPs). Cytosolic ileal bile acid binding protein (IBABP) mediates the transcellular movement of bile acids to the basolateral membrane across which they exit the cells via organic solute transporters (OST). An essential role of bile acid transporters is evident from the pathology associated with their genetic disruption or dysregulation of their function. Malfunctioning of hepatic and intestinal bile acid transporters is implicated in the pathophysiology of cholestatic liver disease and the depletion of circulating pool of bile acids, respectively. Extensive efforts have been recently made to enhance our understanding of the structure, function and regulation of the bile acid transporters and exploring new potential therapeutics to treat bile acid or cholesterol related diseases. This review will highlight current knowledge about structure, function and molecular characterization of bile acid transporters and discuss the implications of their defects in various hepatic and intestinal disorders.
Collapse
Affiliation(s)
- Waddah A Alrefai
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
17
|
Hosagrahara VP, Rettie AE, Hassett C, Omiecinski CJ. Functional analysis of human microsomal epoxide hydrolase genetic variants. Chem Biol Interact 2005; 150:149-59. [PMID: 15535985 PMCID: PMC4091877 DOI: 10.1016/j.cbi.2004.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 07/30/2004] [Accepted: 07/30/2004] [Indexed: 11/22/2022]
Abstract
Human microsomal epoxide hydrolase (EPHX1) is active in the metabolism of many potentially carcinogenic or otherwise genotoxic epoxides, such as those derived from the oxidation of polyaromatic hydrocarbons. EPHX1 is polymorphic and encodes allelic variation at least two amino acid positions, Y113H and H139R. In a number of recent molecular epidemiological investigations, EPHX1 polymorphism has been suggested as a susceptibility factor for several human diseases. To better evaluate the functional contribution of EPHX1 genetic polymorphism, we characterized the enzymatic properties associated with each of the respective variant proteins. Enzymatic profiles were evaluated with cis-stilbene oxide (cSO) and benzo[a]pyrene-4,5-epoxide (BaPO), two prototypical substrates for the hydrolase. In one series of experiments, activities of recombinant EPHX1 proteins were analyzed subsequent to their expression using the pFastbac baculovirus vector in Spodoptera frugiperda-9 (Sf9) insect cells, and purification by column chromatography. In parallel studies, EPHX1 activities were evaluated with human liver microsomes derived from individuals of known EPHX1 genotype. Using the purified protein preparations, rates of cSO and BaPO hydrolysis for the reference protein, Y113/H139, were approximately 2-fold greater than those measured with the other EPHX1 allelic variants. However, when activities were analyzed using human liver microsomal fractions, no major differences were evident in the reaction rates generated among preparations representing the different EPHX1 alleles. Collectively, these results suggest that the structural differences encoded by the Y113H and H139R variant alleles exert only modest impact on EPHX1-specific enzymatic activities in vivo.
Collapse
Affiliation(s)
- Vinayak P. Hosagrahara
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Allan E. Rettie
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98105, USA
| | - Christopher Hassett
- Center for Molecular Toxicology, 115 Henning, The Pennsylvania State University, University Park, PA 16802, USA
| | - Curtis J. Omiecinski
- Center for Molecular Toxicology, 115 Henning, The Pennsylvania State University, University Park, PA 16802, USA
- Corresponding author. Tel.: +1 814 8631625; fax.:+1 814 8636140. (C.J. Omiecinski)
| |
Collapse
|
18
|
Newman JW, Morisseau C, Hammock BD. Epoxide hydrolases: their roles and interactions with lipid metabolism. Prog Lipid Res 2005; 44:1-51. [PMID: 15748653 DOI: 10.1016/j.plipres.2004.10.001] [Citation(s) in RCA: 327] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The epoxide hydrolases (EHs) are enzymes present in all living organisms, which transform epoxide containing lipids by the addition of water. In plants and animals, many of these lipid substrates have potent biologically activities, such as host defenses, control of development, regulation of inflammation and blood pressure. Thus the EHs have important and diverse biological roles with profound effects on the physiological state of the host organisms. Currently, seven distinct epoxide hydrolase sub-types are recognized in higher organisms. These include the plant soluble EHs, the mammalian soluble epoxide hydrolase, the hepoxilin hydrolase, leukotriene A4 hydrolase, the microsomal epoxide hydrolase, and the insect juvenile hormone epoxide hydrolase. While our understanding of these enzymes has progressed at different rates, here we discuss the current state of knowledge for each of these enzymes, along with a distillation of our current understanding of their endogenous roles. By reviewing the entire enzyme class together, both commonalities and discrepancies in our understanding are highlighted and important directions for future research pertaining to these enzymes are indicated.
Collapse
Affiliation(s)
- John W Newman
- Department of Entomology, UCDavis Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
19
|
Kedjouar B, de Médina P, Oulad-Abdelghani M, Payré B, Silvente-Poirot S, Favre G, Faye JC, Poirot M. Molecular characterization of the microsomal tamoxifen binding site. J Biol Chem 2004; 279:34048-61. [PMID: 15175332 DOI: 10.1074/jbc.m405230200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tamoxifen is a selective estrogen receptor modulator widely used for the prophylactic treatment of breast cancer. In addition to the estrogen receptor (ER), tamoxifen binds with high affinity to the microsomal antiestrogen binding site (AEBS), which is involved in ER-independent effects of tamoxifen. In the present study, we investigate the modulation of the biosynthesis of cholesterol in tumor cell lines by AEBS ligands. As a consequence of the treatment with the antitumoral drugs tamoxifen or PBPE, a selective AEBS ligand, we show that tumor cells produced a significant concentration- and time-dependent accumulation of cholesterol precursors. Sterols have been purified by HPLC and gas chromatography, and their chemical structures determined by mass spectrometric analysis. The major metabolites identified were 5alpha-cholest-8-en-3beta-ol for tamoxifen treatment and 5alpha-cholest-8-en-3beta-ol and cholesta-5,7-dien-3beta-ol, for PBPE treatment, suggesting that these AEBS ligands affect at least two enzymatic steps: the 3beta-hydroxysterol-Delta8-Delta7-isomerase and the 3beta-hydroxysterol-Delta7-reductase. Steroidal antiestrogens such as ICI 182,780 and RU 58,668 did not affect these enzymatic steps, because they do not bind to the AEBS. Transient co-expression of human 3beta-hydroxysterol-Delta8-Delta7-isomerase and 3beta-hydroxysterol-Delta7-reductase and immunoprecipitation experiments showed that both enzymes were required to reconstitute the AEBS in mammalian cells. Altogether, these data provide strong evidence that the AEBS is a hetero-oligomeric complex including 3beta-hydroxysterol-Delta8-Delta7-isomerase and the 3beta-hydroxysterol-Delta7-reductase as subunits that are necessary and sufficient for tamoxifen binding in mammary cells. Furthermore, because selective AEBS ligands are antitumoral compounds, these data suggest a link between cholesterol metabolism at a post-lanosterol step and tumor growth control. These data afford both the identification of the AEBS and give new insight into a novel molecular mechanism of action for drugs of clinical value.
Collapse
Affiliation(s)
- Blandine Kedjouar
- INSERM U 563, Centre de Physiopathologie de Toulouse Purpan, Département Innovation Thérapeutique et Oncologie Moléculaire, Institut Claudius Regaud, 20-24 rue du Pont Saint Pierre, 31052 Toulouse Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhu QS, Qian B, Levy D. CCAAT/enhancer-binding protein alpha (C/EBPalpha) activates transcription of the human microsomal epoxide hydrolase gene (EPHX1) through the interaction with DNA-bound NF-Y. J Biol Chem 2004; 279:29902-10. [PMID: 15150264 DOI: 10.1074/jbc.m400438200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microsomal epoxide hydrolase (mEH) plays a central role in xenobiotic metabolism as well as mediating the sodium-dependent uptake of bile acids into the liver, where these compounds regulate numerous biological processes such as cholesterol metabolism and hepatocyte signaling pathways. Little is known, however, about the factors that control the constitutive and inducible expression of the mEH gene (EPHX1) that is altered during development and in response to numerous xenobiotics. In previous studies we have established that GATA-4 binding to the EPHX1 core promoter is critical for EPHX1 expression. The -80/+25 bp core promoter also contained a reversed CCAAT box (-5/-1 bp), integrity of which was required for maximal basal EPHX1 transcription in HepG2 cells. Transient transfection of CCAAT/enhancer-binding protein alpha (C/EBPalpha) substantially stimulated EPHX1 promoter activity. Electrophoretic mobility shift assays, however, revealed that nuclear factor Y (NF-Y), but not C/EBPalpha, directly bound to this site although increased expression of NF-Y had no effect on EPHX1 promoter activity. These results suggested that C/EBPalpha activated EPHX1 expression through its interaction with NF-Y bound to the CCAAT box. The existence of a C/EBPalpha[NF-Y] complex was supported by electrophoretic mobility shift assays using antibodies against NF-Y and C/EBPalpha as well as by the ability of a dominant-negative NF-Y expression vector to inhibit promoter activity. The interaction between these transcription factors was established by co-immunoprecipitation analysis and glutathione S-transferase pull-down assays, whereas the association of the two factors and the interaction of NF-Y with the CCAAT box in vivo was confirmed by chromatin immunoprecipitation assays. C/EBPalpha-dependent EPHX1 activation was also supported by reconstitution studies in HeLa cells that lack this protein. These results establish that EPHX1 expression is regulated by C/EBPalpha interacting with DNA-bound NF-Y.
Collapse
Affiliation(s)
- Qin-Shi Zhu
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
21
|
Zhu QS, Qian B, Levy D. Regulation of human microsomal epoxide hydrolase gene (EPHX1) expression by the transcription factor GATA-4. ACTA ACUST UNITED AC 2004; 1676:251-60. [PMID: 14984931 DOI: 10.1016/j.bbaexp.2004.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 11/17/2003] [Accepted: 01/07/2004] [Indexed: 10/26/2022]
Abstract
Microsomal epoxide hydrolase (mEH) is a bifunctional protein that plays a crucial role in the metabolism of numerous xenobiotics as well as in mediating the hepatic sodium-dependent uptake of bile acids that are involved in numerous physiological processes including the regulation of cholesterol metabolism. The transcription factors and nuclear receptors that control the constitutive and inducible expression of the mEH gene (EPHX1), however, have not been described. To characterize these factors, a series of 5'-deletion constructs have been transfected into human liver-derived HepG2 cells as well as non-hepatic HeLa cells. Promoter activity analysis indicated the presence of a positive regulatory element in the -80/-70 bp region. Sequence analysis revealed a putative GATA site at -79/-74 bp as well as an additional site at -31/-26 bp. Electrophoretic mobility shift assays with an anti-GATA-4 antibody confirmed that GATA-4 bound to these two sites with a dissociation constant of 1.56 nM (-79 site) and 0.65 nM (-31 site). Coexpression of GATA-4 stimulated EPHX1 promoter activity up to 7.5-fold in a dose-dependent manner. Endogenous EPHX1 message in HepG2 cells was also significantly increased by overexpression of GATA-4. Mutating the -79 element resulted in a 65% loss of promoter activity, while mutating the -31 element had no effect on basal activity but greatly reduced the response to additional GATA-4. In HeLa cells, which do not express GATA-4, EPHX1 activity was negligible; however, activity could be reconstituted by the addition of exogenous GATA-4. These results demonstrate that GATA-4 plays a critical role in regulating EPHX1 expression.
Collapse
Affiliation(s)
- Qin-shi Zhu
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
22
|
Wang L, Han Y, Kim CS, Lee YK, Moore DD. Resistance of SHP-null mice to bile acid-induced liver damage. J Biol Chem 2003; 278:44475-81. [PMID: 12933814 DOI: 10.1074/jbc.m305258200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The orphan nuclear hormone receptor SHP (gene designation NROB2) is an important component of a negative regulatory cascade by which high levels of bile acids repress bile acid biosynthesis. Short term studies in SHP null animals confirm this function and also reveal the existence of additional pathways for bile acid negative feedback regulation. We have used long term dietary treatments to test the role of SHP in response to chronic elevation of bile acids, cholesterol, or both. In contrast to the increased sensitivity predicted from the loss of negative feedback regulation, the SHP null mice were relatively resistant to the hepatotoxicity associated with a diet containing 0.5% cholic acid and the much more severe effects of a diet containing both 0.5% cholic acid and 2% cholesterol. This was associated with decreased hepatic accumulation of cholesterol and triglycerides in the SHP null mice. There were also alterations in the expression of a number of genes involved in cholesterol and bile acid homeostasis, notably cholesterol 12alpha-hydroxylase (CYP8B1), which was strongly reexpressed in the SHP null mice, but not the wild type mice fed either bile acid containing diet. This contrasts with the strong repression of CYP8B1 observed with short term bile acid feeding, as well as the effects of long term feeding on other bile acid biosynthetic enzymes such as cholesterol 7alpha-hydroxylase (CYP7A1). CYP8B1 expression could contribute to the decreased toxicity of the chronic bile acid treatment by increasing the hydrophilicity of the bile acid pool. These results identify an unexpected role for SHP in hepatotoxicity and suggest new approaches to modulating effects of chronically elevated bile acids in cholestasis.
Collapse
Affiliation(s)
- Li Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
23
|
Hata S, Wang P, Eftychiou N, Ananthanarayanan M, Batta A, Salen G, Pang KS, Wolkoff AW. Substrate specificities of rat oatp1 and ntcp: implications for hepatic organic anion uptake. Am J Physiol Gastrointest Liver Physiol 2003; 285:G829-39. [PMID: 12842829 DOI: 10.1152/ajpgi.00352.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transport of a series of 3H-radiolabeled C23, C24, and C27 bile acid derivatives was compared and contrasted in HeLa cell lines stably transfected with rat Na+/taurocholate cotransporting polypeptide (ntcp) or organic anion transporting polypeptide 1 (oatp1) in which expression was under regulation of a zinc-inducible promoter. Similar uptake patterns were observed for both ntcp and oatp1, except that unconjugated hyodeoxycholate was a substrate of oatp1 but not ntcp. Conjugated bile acids were transported better than nonconjugated bile acids, and the configuration of the hydroxyl groups (alpha or beta) had little influence on uptake. Although cholic and 23 norcholic acids were transported by ntcp and oatp1, other unconjugated bile acids (chenodeoxycholic, ursodeoxycholic) were not. In contrast to ntcp, oatp1-mediated uptake of the trihydroxy bile acids taurocholate and glycocholate was four- to eightfold below that of the corresponding dihydroxy conjugates. Ntcp mediated high affinity, sodium-dependent transport of [35S]sulfobromophthalein with a Km similar to that of oatp1-mediated transport of [35S]sulfobromophthalein (Km = 3.7 vs. 3.3 muM, respectively). In addition, for both transporters, uptake of sulfobromophthalein and taurocholic acid showed mutual competitive inhibition. These results indicate that the substrate specificity of ntcp is considerably broader than previously suspected and caution the extrapolation of transport data obtained in vitro to physiological function in vivo.
Collapse
Affiliation(s)
- Soichiro Hata
- Marion Bessin Liver Research Center, 625 Ullmann Bldg., Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
von Dippe P, Zhu QS, Levy D. Cell surface expression and bile acid transport function of one topological form of m-epoxide hydrolase. Biochem Biophys Res Commun 2003; 309:804-9. [PMID: 13679044 DOI: 10.1016/j.bbrc.2003.08.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The bifunctional hepatic protein, microsomal epoxide hydrolase (mEH), plays a central role in the metabolism of many xenobiotics as well as mediating the Na(+)-dependent uptake of bile acids in parallel with the Na(+)-taurocholate co-transporting protein (ntcp). Previous studies have established that mEH is expressed in the endoplasmic reticulum with two topological orientations, where the type II form is targeted to the plasma membrane. In this report the topology and transport properties of mEH as a function of plasma membrane expression in cultured hepatocytes, transfected Madin-Darby canine kidney cells expressing mEH (MDCK[mEH]), and the human hepatoma cell line, HepG2, were studied using confocal fluorescence microscopy and substrate uptake measurements. Analysis of mEH localization with an anti-mEH monoclonal antibody demonstrated the expression of one topological form on the plasma membrane of hepatocytes and MDCK[mEH] cells where both systems exhibited Na(+)-dependent bile acid uptake. In contrast, Na(+)-dependent bile acid transport in HepG2 cells and hepatocytes in culture (72 h) was substantially reduced as was the expression of ntcp. Although the total mEH level was undiminished, the decrease of bile acid transport was associated with the loss of mEH surface expression possibly resulting from an alteration in mEH endoplasmic reticulum topology and/or the plasma membrane protein targeting system in these de-differentiated cells.
Collapse
Affiliation(s)
- Patricia von Dippe
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, 2011 Zonal Ave., Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
25
|
Zhu QS, Xing W, Qian B, von Dippe P, Shneider BL, Fox VL, Levy D. Inhibition of human m-epoxide hydrolase gene expression in a case of hypercholanemia. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1638:208-16. [PMID: 12878321 DOI: 10.1016/s0925-4439(03)00085-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Microsomal epoxide hydrolase (mEH) is a bifunctional protein that plays a central role in carcinogen metabolism and is also able to mediate the sodium-dependent uptake of bile acids into hepatocytes. Studies have identified a subject (S-1) with extremely elevated serum bile salt levels in the absence of observable hepatocellular injury, suggesting a defect in bile acid uptake. In this individual, mEH protein and mEH mRNA levels were reduced by approximately 95% and 85%, respectively, whereas the expression and amino acid sequence of another bile acid transport protein (NTCP) was unaffected. Sequence analysis of the mEH gene (EPHX1) revealed a point mutation at an upstream HNF-3 site (allele I) and in intron 1 (allele II), which resulted in a significant decrease in EPHX1 promoter activity in transient transfection assays. Gel shift assays using a radiolabeled oligonucleotide from each region resulted in specific transcription factor binding patterns, which were altered in the presence of the mutation. These studies demonstrate that the expression of mEH is greatly reduced in a patient with hypercholanemia, suggesting that mEH participates in sodium-dependent bile acid uptake in human liver where its absence may contribute to the etiology of this disease.
Collapse
Affiliation(s)
- Qin-shi Zhu
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 2003; 83:633-71. [PMID: 12663868 DOI: 10.1152/physrev.00027.2002] [Citation(s) in RCA: 686] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Molecular medicine has led to rapid advances in the characterization of hepatobiliary transport systems that determine the uptake and excretion of bile salts and other biliary constituents in the liver and extrahepatic tissues. The bile salt pool undergoes an enterohepatic circulation that is regulated by distinct bile salt transport proteins, including the canalicular bile salt export pump BSEP (ABCB11), the ileal Na(+)-dependent bile salt transporter ISBT (SLC10A2), and the hepatic sinusoidal Na(+)- taurocholate cotransporting polypeptide NTCP (SLC10A1). Other bile salt transporters include the organic anion transporting polypeptides OATPs (SLC21A) and the multidrug resistance-associated proteins 2 and 3 MRP2,3 (ABCC2,3). Bile salt transporters are also present in cholangiocytes, the renal proximal tubule, and the placenta. Expression of these transport proteins is regulated by both transcriptional and posttranscriptional events, with the former involving nuclear hormone receptors where bile salts function as specific ligands. During bile secretory failure (cholestasis), bile salt transport proteins undergo adaptive responses that serve to protect the liver from bile salt retention and which facilitate extrahepatic routes of bile salt excretion. This review is a comprehensive summary of current knowledge of the molecular characterization, function, and regulation of bile salt transporters in normal physiology and in cholestatic liver disease and liver regeneration.
Collapse
Affiliation(s)
- Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Karl-Franzens University, School of Medicine, Graz, Austria
| | | |
Collapse
|
27
|
Wolkoff AW, Cohen DE. Bile acid regulation of hepatic physiology: I. Hepatocyte transport of bile acids. Am J Physiol Gastrointest Liver Physiol 2003; 284:G175-9. [PMID: 12529265 DOI: 10.1152/ajpgi.00409.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bile acids are cholesterol derivatives that serve as detergents in bile and the small intestine. Approximately 95% of bile acids secreted by hepatocytes into bile are absorbed from the distal ileum into the portal venous system. Extraction from the portal circulation by the hepatocyte followed by reexcretion into the bile canaliculus completes the enterohepatic circulation of these compounds. Over the past few years, candidate bile acid transport proteins of the sinusoidal and canalicular plasma membranes of the hepatocyte have been identified. The physiology of hepatocyte bile acid transport and its relationship to these transport proteins is the subject of this Themes article.
Collapse
Affiliation(s)
- Allan W Wolkoff
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
28
|
Abstract
Cholesterol cholelithiasis is common in Western populations and represents a consequence of altered cholesterol homeostasis. Gallstones form because of a complex and incompletely understood series of metabolic and physicochemical events that promote cholesterol crystallization in bile. In the context of current paradigms, this article reviews recent progress in research on biliary lipid metabolism and the pathogenesis of cholesterol gallstones.
Collapse
Affiliation(s)
- Hideyuki Hyogo
- Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
29
|
Nakagawa Y, Wheelock CE, Morisseau C, Goodrow MH, Hammock BG, Hammock BD. 3-D QSAR analysis of inhibition of murine soluble epoxide hydrolase (MsEH) by benzoylureas, arylureas, and their analogues. Bioorg Med Chem 2000; 8:2663-73. [PMID: 11092551 DOI: 10.1016/s0968-0896(00)00198-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two hundred and seventy-one compounds including benzoylureas, arylureas and related compounds were assayed using recombinant murine soluble epoxide hydrolase (MsEH) produced from a baculovirus expression system. Among all the insect growth regulators assayed, 18 benzoylphenylurea congeners showed weak activity against MsEH. Newly synthesized cyclohexylphenylurea, 1-benzyl-3-phenylurea, and 1,3-dibenzylurea analogues were rather potent. The introduction of a methyl group at the para-position of the phenyl ring of cyclohexylphenylurea enhanced the activity 6-fold, though similar substituent effects were not seen for any of the benzoylphenylureas. The activities of these compounds, including several previously reported compounds, such as dicyclohexylurea, diphenylurea, and their related analogues (Morisseau et al., Proc. Natl. Acad. Sci., 1999, 96, 8849), were quantitatively analyzed using comparative molecular field analysis (CoMFA), a three-dimensional quantitative structure-activity relationship (3-D QSAR) method. Both steric and electrostatic factors contributing to variations in the activity were visualized using CoMFA. CoMFA results showed that one side of the cyclohexylurea moiety having a trans-amide conformation (A-ring moiety) is surrounded by large sterically unfavorable fields, while the other side of A-ring moiety and the other cyclohexyl group (B-ring moiety) is encompassed by sterically favored fields. Electrostatically negative fields were scattered around the entire molecule, and a positive field surrounds the carbon of the carbonyl group. Hydrophobic fields were visualized using Kellogg's hydropathic interaction (HINT) in conjunction with CoMFA. Hydrophobically favorable fields appeared beside the 4- and 4'-carbon atoms of the cyclohexyl groups, and hydrophobically unfavorable fields surrounded the urea bridge. The addition of the molecular hydrophobicity, log P [corrected], to CoMFA did not improve the correlation significantly. The ligand-binding interactions shown by X-ray crystallographic data were rationalized using the results of the CoMFA and HINT analyses, and the essential physicochemical parameters for the design of new MsEH inhibitors were disclosed.
Collapse
Affiliation(s)
- Y Nakagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 2000; 102:731-44. [PMID: 11030617 DOI: 10.1016/s0092-8674(00)00062-3] [Citation(s) in RCA: 1371] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mice lacking the nuclear bile acid receptor FXR/BAR developed normally and were outwardly identical to wild-type littermates. FXR/BAR null mice were distinguished from wild-type mice by elevated serum bile acid, cholesterol, and triglycerides, increased hepatic cholesterol and triglycerides, and a proatherogenic serum lipoprotein profile. FXR/BAR null mice also had reduced bile acid pools and reduced fecal bile acid excretion due to decreased expression of the major hepatic canalicular bile acid transport protein. Bile acid repression and induction of cholesterol 7alpha-hydroxylase and the ileal bile acid binding protein, respectively, did not occur in FXR/BAR null mice, establishing the regulatory role of FXR/BAR for the expression of these genes in vivo. These data demonstrate that FXR/BAR is critical for bile acid and lipid homeostasis by virtue of its role as an intracellular bile acid sensor.
Collapse
Affiliation(s)
- C J Sinal
- Laboratory of Metabolism, Division of Basic Sciences, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
31
|
De Berardinis V, Moulis C, Maurice M, Beaune P, Pessayre D, Pompon D, Loeper J. Human microsomal epoxide hydrolase is the target of germander-induced autoantibodies on the surface of human hepatocytes. Mol Pharmacol 2000; 58:542-51. [PMID: 10953047 DOI: 10.1124/mol.58.3.542] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Germander, a plant used in folk medicine, caused an epidemic of cytolytic hepatitis in France. In about half of these patients, a rechallenge caused early recurrence, suggesting an immunoallergic type of hepatitis. Teucrin A (TA) was found responsible for the hepatotoxicity via metabolic activation by CYP3A. In this study, we describe the presence of anti-microsomal epoxide hydrolase (EH) autoantibodies in the sera of patients who drank germander teas for a long period of time. By Western blotting and immunocytochemistry, human microsomal EH was shown to be present in purified plasma membranes of both human hepatocytes and transformed spheroplasts and to be exposed on the cell surface where affinity-purified germander autoantibodies recognized it as their autoantigen. Immunoprecipitation of EH activity by germander-induced autoantibodies confirmed this finding. These autoantibodies were not immunoinhibitory. The plasma membrane-located EH was catalytically competent and may act as target for reactive metabolites from TA. To test this hypothesis CYP3A4 and EH were expressed with human cytochrome P450 reductase and cytochrome b(5) in a "humanized" yeast strain. In the absence of EH only one metabolite was formed. In the presence of EH, two additional metabolites were formed, and a time-dependent inactivation of EH was detected, suggesting that a reactive oxide derived from TA could alkylate the enzyme and trigger an immune response. Antibodies were found to recognize TA-alkylated EH. Recognition of EH present at the surface of human hepatocytes could suggest an (auto)antibody participation in an immune cell destruction.
Collapse
Affiliation(s)
- V De Berardinis
- Centre de Génétique Moléculaire du Centre National de la Recherche Scientifique, Laboratoire propre associé à l'Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Morton DH, Salen G, Batta AK, Shefer S, Tint GS, Belchis D, Shneider B, Puffenberger E, Bull L, Knisely AS. Abnormal hepatic sinusoidal bile acid transport in an Amish kindred is not linked to FIC1 and is improved by ursodiol. Gastroenterology 2000; 119:188-95. [PMID: 10889168 DOI: 10.1053/gast.2000.8547] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The mechanism for abnormal hepatic bile acid transport was investigated in an 18-month-old Amish boy who presented with pruritus, poor growth, and severe bleeding episodes. Serum bilirubin, gamma-glutamyltranspeptidase, and cholesterol levels were normal, but prothrombin time and partial thromboplastin time were prolonged and bone alkaline phosphatase level was elevated. METHODS AND RESULTS Cholic acid plus chenodeoxycholic acid levels measured by capillary gas-chromatography were 32 times higher than control in serum (34.7 vs. 1.1+/-0.4 microg/dL) but were not detected in liver and were reduced in gallbladder bile. Treatment with ursodiol, a more hydrophilic bile acid, improved pruritus, produced 37% weight gain, and after 2 years reduced serum primary bile acid concentrations about 85%, while accounting for 71% of serum and 24% of biliary bile acid conjugates. On ursodiol therapy, hepatic bile acid synthesis was enhanced 2-fold compared with controls, and microscopy revealed chronic hepatitis without cholestasis. Three younger sisters with elevated serum bile acids responded positively to ursodiol. Microsatellite markers for the FIC1 (gene for Byler's disease) region in these 4 children were inconsistent with linkage to FIC1. CONCLUSIONS Conjugated cholic acid and chenodeoxycholic acid were synthesized in the liver and secreted into bile but could not reenter the liver from portal blood and accumulated in serum. In contrast, unconjugated ursodiol entered the liver and was conjugated and secreted into bile. Thus, the enterohepatic circulation of all conjugated bile acids was interrupted at the hepatic sinusoidal basolateral membrane. Unconjugated ursodiol bypassed the hepatic uptake block to enlarge the biliary and intestinal bile acid pools. A mutation in FIC1 recognized among the Amish and linkage of the disorder to FIC1 were excluded.
Collapse
Affiliation(s)
- D H Morton
- Clinic for Special Children, Strasburg, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Bile acids originate from the liver and are transported via bile to the intestines where they perform an important role in the absorption of lipids and lipid-soluble nutrients. Most of the bile acids are reclaimed from the terminal ileum and returned to the liver via portal blood for reuse. The transport of bile acids is vectorial in both liver and intestinal cells, originating and terminating at opposite poles. Bile acids enter through the basolateral pole in liver cells, and through the apical pole in intestinal cells. During the past decade, much has been learned about the mechanisms by which bile acids enter and exit liver and intestinal cells. By contrast, the mechanisms by which bile acids are transported across cells remain poorly understood. The current body of evidence suggests that bile acids do not traverse the cell by vesicular transport. Although a carrier-mediated mechanism is a likely alternative, only a handful of intracellular proteins capable of binding bile acids have been described. The significance of these proteins in the intracellular transport of bile acids remains to be tested.
Collapse
Affiliation(s)
- L B Agellon
- Department of Biochemistry, University of Alberta, Edmonton, Alta, Canada.
| | | |
Collapse
|
34
|
Suzuki H, Sugiyama Y. Transporters for bile acids and organic anions. PHARMACEUTICAL BIOTECHNOLOGY 2000; 12:387-439. [PMID: 10742983 DOI: 10.1007/0-306-46812-3_14] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- H Suzuki
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Japan
| | | |
Collapse
|
35
|
Zou J, Hallberg BM, Bergfors T, Oesch F, Arand M, Mowbray SL, Jones TA. Structure of Aspergillus niger epoxide hydrolase at 1.8 A resolution: implications for the structure and function of the mammalian microsomal class of epoxide hydrolases. Structure 2000; 8:111-22. [PMID: 10673439 DOI: 10.1016/s0969-2126(00)00087-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Epoxide hydrolases have important roles in the defense of cells against potentially harmful epoxides. Conversion of epoxides into less toxic and more easily excreted diols is a universally successful strategy. A number of microorganisms employ the same chemistry to process epoxides for use as carbon sources. RESULTS The X-ray structure of the epoxide hydrolase from Aspergillus niger was determined at 3.5 A resolution using the multiwavelength anomalous dispersion (MAD) method, and then refined at 1.8 A resolution. There is a dimer consisting of two 44 kDa subunits in the asymmetric unit. Each subunit consists of an alpha/beta hydrolase fold, and a primarily helical lid over the active site. The dimer interface includes lid-lid interactions as well as contributions from an N-terminal meander. The active site contains a classical catalytic triad, and two tyrosines and a glutamic acid residue that are likely to assist in catalysis. CONCLUSIONS The Aspergillus enzyme provides the first structure of an epoxide hydrolase with strong relationships to the most important enzyme of human epoxide metabolism, the microsomal epoxide hydrolase. Differences in active-site residues, especially in components that assist in epoxide ring opening and hydrolysis of the enzyme-substrate intermediate, might explain why the fungal enzyme attains the greater speeds necessary for an effective metabolic enzyme. The N-terminal domain that is characteristic of microsomal epoxide hydrolases corresponds to a meander that is critical for dimer formation in the Aspergillus enzyme.
Collapse
Affiliation(s)
- J Zou
- Department of Cell and Molecular Biology, BMC, Uppsala University, Box 596, Uppsala, S-751 24, Sweden
| | | | | | | | | | | | | |
Collapse
|
36
|
Webster CR, Anwer MS. Role of the PI3K/PKB signaling pathway in cAMP-mediated translocation of rat liver Ntcp. Am J Physiol Gastrointest Liver Physiol 2000; 277:G1165-72. [PMID: 10600813 DOI: 10.1152/ajpgi.1999.277.6.g1165] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
cAMP stimulates Na(+)-taurocholate (TC) cotransport by translocating the Na(+)-TC-cotransporting peptide (Ntcp) to the plasma membrane. The present study was undertaken to determine whether the phosphatidylinositol-3-kinase (PI3K)-signaling pathway is involved in cAMP-mediated translocation of Ntcp. The ability of cAMP to stimulate TC uptake declined significantly when hepatocytes were pretreated with PI3K inhibitors wortmannin or LY-294002. Wortmannin inhibited cAMP-mediated translocation of Ntcp to the plasma membrane. cAMP stimulated protein kinase B (PKB) activity by twofold within 5 min, an effect inhibited by wortmannin. Neither basal mitogen-activated protein kinase (MAPK) activity nor cAMP-mediated inhibition of MAPK activity was affected by wortmannin. cAMP also stimulated p70(S6K) activity. However, rapamycin, an inhibitor of p70(S6K), failed to inhibit cAMP-mediated stimulation of TC uptake, indicating that the effect of cAMP is not mediated via p70(S6K). Cytochalasin D, an inhibitor of actin filament formation, inhibited the ability of cAMP to stimulate TC uptake and Ntcp translocation. Together, these results suggest that the stimulation of TC uptake and Ntcp translocation by cAMP may be mediated via the PI3K/PKB signaling pathway and requires intact actin filaments.
Collapse
Affiliation(s)
- C R Webster
- Departments of Biomedical Sciences and Clinical Sciences, Tufts University School of Veterinary Medicine, North Grafton, Massachusetts 01536, USA
| | | |
Collapse
|
37
|
Lakehal F, Wendum D, Barbu V, Becquemont L, Poupon R, Balladur P, Hannoun L, Ballet F, Beaune PH, Housset C. Phase I and phase II drug-metabolizing enzymes are expressed and heterogeneously distributed in the biliary epithelium. Hepatology 1999; 30:1498-506. [PMID: 10573530 DOI: 10.1002/hep.510300619] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tissue expression of drug-metabolizing enzymes influences susceptibility to drugs and carcinogens. Because the biliary epithelium, exposed to bile-borne chemicals, may give rise to drug-induced cholangiopathies and to cholangiocarcinomas, we determined the pattern of expression of drug-metabolizing enzymes in this epithelium. We first demonstrated by blot analyses that biliary epithelial cells (BEC) isolated from human gallbladders display cytochrome P450 (CYP) 1A, 2E1, and 3A, microsomal epoxide hydrolase (mEH), alpha, mu, and pi glutathione S-transferase (GST), transcripts and proteins. We also identified CYP-associated steroid 6beta-hydroxylase activity in BEC. CYP and mEH expression was 5- to 20-fold lower in BEC than in autologous hepatocytes, and further differed by a higher ratio of CYP3A5/CYP3A4, and by CYP1A1 predominance over CYP1A2. alphaGST was highly expressed in both hepatocytes and BEC, while piGST was restricted to BEC. In approximately 50% of individuals, muGST was expressed in hepatocytes and at lower levels in BEC. By using the same antibodies as those used in immunoblots, we could show by immunohistochemistry that CYP2E1, CYP3A, mEH, alpha, mu, and piGST immunoreactivities are expressed and display a heterogeneous distribution in the epithelium lining the entire biliary tract except for small intrahepatic bile ducts that were devoid of CYP3A and alphaGST immunoreactivities. In conclusion, BEC contribute to phase II, and although to a lesser extent than hepatocytes, to phase I biotransformation. The distribution of drug-metabolizing enzymes in BEC suggest that they are heterogeneous in their ability to generate and detoxicate reactive metabolites, which may contribute to specific distributions of cholangiopathies.
Collapse
Affiliation(s)
- F Lakehal
- Unité INSERM U402, Faculté de Médecine Saint-Antoine, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhu Q, von Dippe P, Xing W, Levy D. Membrane topology and cell surface targeting of microsomal epoxide hydrolase. Evidence for multiple topological orientations. J Biol Chem 1999; 274:27898-904. [PMID: 10488137 DOI: 10.1074/jbc.274.39.27898] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microsomal epoxide hydrolase (mEH) is a bifunctional membrane protein that plays a central role in the metabolism of xenobiotics and in the hepatocyte uptake of bile acids. Numerous studies have established that this protein is expressed both in the endoplasmic reticulum and at the sinusoidal plasma membrane. Preliminary evidence has suggested that mEH is expressed in the endoplasmic reticulum (ER) membrane with two distinct topological orientations. To further characterize the membrane topology and targeting of this protein, an N-glycosylation site was engineered into mEH to serve as a topological probe for the elucidation of the cellular location of mEH domains. The cDNAs for mEH and this mEH derivative (mEHg) were then expressed in vitro and in COS-7 cells. Analysis of total expressed protein in these systems indicated that mEHg was largely unglycosylated, suggesting that expression in the ER was primarily of a type I orientation (Ccyt/Nexo). However, analysis, by biotin/avidin labeling procedures, of mEHg expressed at the surface of transfected COS-7 cells, showed it to be fully glycosylated, indicating that the topological form targeted to this site originally had a type II orientation (Cexo/Ncyt) in the ER. The surface expression of mEH was also confirmed by confocal fluorescence scanning microscopy. The sensitivity of mEH topology to the charge at the N-terminal domain was demonstrated by altering the net charge over a range of 0 to +3. The introduction of one positive charge led to a significant inversion in mEH topology based on glycosylation site analysis. A truncated form of mEH lacking the N-terminal hydrophobic transmembrane domain was also detected on the extracellular surface of transfected COS-7 cells, demonstrating the existence of at least one additional transmembrane segment. These results suggest that mEH may be integrated into the membrane with multiple transmembrane domains and is inserted into the ER membrane with two topological orientations, one of which is targeted to the plasma membrane where it mediates bile acid transport.
Collapse
Affiliation(s)
- Q Zhu
- Department of Biochemistry and Molecular Biology, University of Southern California, School of Medicine, Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|
39
|
Affiliation(s)
- G A Kullak-Ublick
- Department of Medicine, Division of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland.
| |
Collapse
|
40
|
Miyata M, Kudo G, Lee YH, Yang TJ, Gelboin HV, Fernandez-Salguero P, Kimura S, Gonzalez FJ. Targeted disruption of the microsomal epoxide hydrolase gene. Microsomal epoxide hydrolase is required for the carcinogenic activity of 7,12-dimethylbenz[a]anthracene. J Biol Chem 1999; 274:23963-8. [PMID: 10446164 DOI: 10.1074/jbc.274.34.23963] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microsomal epoxide hydrolase (mEH) is a conserved enzyme that is known to hydrolyze many drugs and carcinogens, and a few endogenous steroids and bile acids. mEH-null mice were produced and found to be fertile and have no phenotypic abnormalities thus indicating that mEH is not critical for reproduction and physiological homeostasis. mEH has also been implicated in participating in the metabolic activation of polycyclic aromatic hydrocarbon carcinogens. Embryonic fibroblast derived from the mEH-null mice were unable to produce the proximate carcinogenic metabolite of 7,12-dimethylbenz[a]anthracene (DMBA), a widely studied experimental prototype for the polycylic aromatic hydrocarbon class of chemical carcinogens. They were also resistant to DMBA-mediated toxicity. Using the two-stage initiation-promotion skin cancer bioassay, the mEH-null mice were found to be highly resistant to DMBA-induced carcinogenesis. In a complete carcinogenesis bioassay, the mEH mice were totally resistant to tumorigenesis. These data establish in an intact animal model that mEH is a key genetic determinant in DMBA carcinogenesis through its role in production of the ultimate carcinogenic metabolite of DMBA, the 3,4-diol-1,2-epoxide.
Collapse
Affiliation(s)
- M Miyata
- Laboratory of Metabolism, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Sepsis-associated cholestasis should always be considered as part of the differential diagnosis of jaundice in the hospitalized or critically ill patient. The development of a disproportionate elevation of serum bilirubin in comparison with serum alkaline phosphatase and serum aminotransferases should be considered an early warning sign of an underlying infection, even in the absence of fever, leukocytosis, or other signs or symptoms. Prompt recognition and appropriate medical and surgical intervention may reduce morbidity and mortality.
Collapse
Affiliation(s)
- R H Moseley
- Medical Service, Ann Arbor Veterans Affairs Health System, Michigan, USA.
| |
Collapse
|
42
|
Abstract
Bile is the route for elimination of cholesterol from the body. Recent studies have begun to elucidate hepatocellular, molecular and physical-chemical mechanisms whereby bile salts stimulate biliary secretion of cholesterol together with phospholipids, which are enriched (up to 95%) in phosphatidylcholines. Active translocation of bile salts and phosphatidylcholines across the hepatocyte's canalicular plasma membrane provides the driving force for biliary lipid secretion. This facilitates physical-chemical interactions between detergent-like bile salt molecules and the ectoplasmic leaflet of the canalicular membrane, which result in biliary secretion of cholesterol and phosphatidylcholines as vesicles. Within the hepatocyte, separate molecular pathways function to resupply bile salts, phosphatidylcholines and cholesterol to the canalicular membrane for ongoing biliary lipid secretion.
Collapse
Affiliation(s)
- D E Cohen
- Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
43
|
Schwarzman AL, Singh N, Tsiper M, Gregori L, Dranovsky A, Vitek MP, Glabe CG, St George-Hyslop PH, Goldgaber D. Endogenous presenilin 1 redistributes to the surface of lamellipodia upon adhesion of Jurkat cells to a collagen matrix. Proc Natl Acad Sci U S A 1999; 96:7932-7. [PMID: 10393925 PMCID: PMC22165 DOI: 10.1073/pnas.96.14.7932] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most familial early-onset Alzheimer's disease cases are caused by mutations in the presenilin 1 (PS1) gene. Subcellular localization of the endogenous PS1 is essential for understanding its function, interactions with proteins, and role in Alzheimer's disease. Although numerous studies revealed predominant localization of PS1 to endoplasmic reticulum and Golgi, there are conflicting reports on the localization of PS1 to the cell surface. We found that endogenous PS1 is highly expressed in T lymphocytes (Jurkat cells). Using a variety of methods, we present evidence that endogenous PS1 is localized to the cell surface in addition to intracellular membrane compartments. Moreover, PS1 appeared in high levels on the surface of lamellipodia upon adhesion of the cells to a collagen matrix. The redistribution of PS1 in adhered cells was strikingly similar to that of the well characterized adhesion protein CD44. Cell surface PS1 formed complexes in vivo with actin-binding protein filamin (ABP-280), which is known to form bridges between cell surface receptors and cytoskeleton and mediate cell adhesion and cell motility. Taken together, our results suggest a role of PS1 in cell adhesion and/or cell-matrix interaction.
Collapse
Affiliation(s)
- A L Schwarzman
- Department of Psychiatry and Behavioral Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zimniak P, Pikula S, Bandorowicz-Pikula J, Awasthi YC. Mechanisms for xenobiotic transport in biological membranes. Toxicol Lett 1999; 106:107-18. [PMID: 10403654 DOI: 10.1016/s0378-4274(99)00061-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- P Zimniak
- Department of Internal Medicine, University of Arkansas for Medical Sciences, and McClellan VA Hospital Medical Research, Little Rock, USA
| | | | | | | |
Collapse
|
45
|
Hogue DL, Kerby L, Ling V. A mammalian lysosomal membrane protein confers multidrug resistance upon expression in Saccharomyces cerevisiae. J Biol Chem 1999; 274:12877-82. [PMID: 10212276 DOI: 10.1074/jbc.274.18.12877] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mouse transporter protein (MTP) is a highly conserved polytopic membrane protein present in mammalian lysosomes and endosomes. The role of MTP in regulating the in vivo subcellular distribution of numerous structurally distinct small molecules has been examined in this study by its expression in a drug-sensitive strain of the yeast Saccharomyces cerevisiae. Surprisingly, the expression of MTP in membranes of an intracellular compartment resulted in a cellular resistance or hypersensitivity to a range of drugs that included nucleoside and nucleobase analogs, antibiotics, anthracyclines, ionophores, and steroid hormones. The intracellular bioavailability of steroid hormones was altered by MTP, as determined using an in vivo glucocorticoid receptor-driven reporter assay in yeast, suggesting that the MTP-regulated drug sensitivity arose due to a change in the subcellular compartmentalization of steroid hormones and other drugs. MTP-regulated drug sensitivity in yeast was blocked to varying degrees by compounds that inhibit lysosomal function, interfere with intracellular cholesterol transport, or modulate the multidrug resistance phenotype of mammalian cells. These results indicate that MTP is involved in the subcellular compartmentalization of diverse hydrophobic small molecules and contributes to the inherent drug sensitivity or resistance of the mammalian cell.
Collapse
Affiliation(s)
- D L Hogue
- British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3 Canada.
| | | | | |
Collapse
|
46
|
Abstract
Bile acids undergo a unique enterohepatic circulation, which allows them to be efficiently reused with minimal loss. With the cloning of key bile acid transporter genes in the liver and intestine, clinicians now have a detailed understanding of how the different components in the enterohepatic circulation operate. These advances in basic knowledge of this process have directly led to a rapid and highly detailed understanding of rare genetic disorders of bile acid transport, which usually present as pediatric cholestatic disorders. Mutations in specific bile acid or lipid transporters have been identified within specific cholestatic disorders, which allows for genetic tests to be established for specific diseases and provides a unique opportunity to understand how these genes operate together. These same transporters may also prove useful for development of novel drug delivery systems, which can either enhance intestinal absorption of drugs or be used to target delivery to the liver or biliary system. Knowledge gained from these transporters will provide new therapeutic modalities to treat cholestatic disorders caused by common diseases.
Collapse
Affiliation(s)
- R J Bahar
- Department of Pediatrics, University of California-Los Angeles School of Medicine, USA
| | | |
Collapse
|
47
|
Affiliation(s)
- B L Shneider
- Division of Pediatric Gastroenterology, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
48
|
Mukhopadhyay S, Ananthanarayanan M, Stieger B, Meier PJ, Suchy FJ, Anwer MS. Sodium taurocholate cotransporting polypeptide is a serine, threonine phosphoprotein and is dephosphorylated by cyclic adenosine monophosphate. Hepatology 1998; 28:1629-36. [PMID: 9828228 DOI: 10.1002/hep.510280624] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Na+/taurocholate (Na+/TC) cotransport in hepatocytes is mediated primarily by Na+/TC cotransporting polypeptide (Ntcp), and cyclic adenosine monophosphate (cAMP) stimulates Na+/TC cotransport by inducing translocation of Ntcp to the plasma membrane. The aim of the present study was to determine if Ntcp is a phosphoprotein and if cAMP alters Ntcp phosphorylation. Freshly prepared hepatocytes from rat livers were incubated with carrier-free 32PO4 for 2 hours, followed by incubation with 10 micromol/L 8-chlorophenylthio adenosin 3':5'-cyclic monophosphate (CPT-cAMP) for 15 minutes. Subcellular fractions isolated from 32P-labeled hepatocytes were subjected to immunoprecipitation using Ntcp antibody, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and autoradiography to determine if Ntcp is phosphorylated. Ntcp immunoprecipitated from plasma membranes isolated from nonlabeled hepatocytes was subjected to immunoblot analysis using anti-phosphoserine, anti-phosphothreonine, or anti-phosphotyrosine antibody to determine whether Ntcp is a serine, threonine, or tyrosine phosphoprotein. Hepatocytes were loaded with bis-(2-amino-5-methylphenoxy)-ethane-N,N,N',N'-tetraacetic acid (MAPTA), a Ca2+ buffering agent, and the effect of CPT-cAMP on TC uptake, cytosolic [Ca2+], and ntcp phosphorylation and translocation was determined. In addition, the effect of cAMP on protein phosphatases 1 and 2A (PP1/2A) was determined in homogenates and plasma membranes obtained from CPT-cAMP-treated hepatocytes. Phosphorylation study showed that phosphorylated Ntcp is detectable in plasma membranes, and cAMP treatment resulted in dephosphorylation of Ntcp. Immunoblot analysis with phosphoamino antibodies revealed that Ntcp is a serine/threonine, and not a tyrosine, phosphoprotein, and cAMP inhibited both serine and threonine phosphorylation. In MAPTA-loaded hepatocytes, CPT-cAMP failed to stimulate TC uptake, failed to increase cytosolic [Ca2+], and failed to induce translocation and dephosphorylation of Ntcp. cAMP did not alter the activity of PP1/2A in either homogenates or in plasma membranes. Taken together, these results suggest that Ntcp is a serine/threonine phosphoprotein and is dephosphorylated by cAMP treatment. Activation of PP1/2A is not involved in cAMP-mediated dephosphorylation of Ntcp. Both translocation and dephosphorylation of Ntcp may be involved in the regulation of hepatic Na+/TC cotransport.
Collapse
Affiliation(s)
- S Mukhopadhyay
- Department of Biomedical Sciences, Tufts University School of Veterinary Medicine, North Grafton, MA, USA
| | | | | | | | | | | |
Collapse
|
49
|
Mukhopadhyay S, Webster CR, Anwer MS. Role of protein phosphatases in cyclic AMP-mediated stimulation of hepatic Na+/taurocholate cotransport. J Biol Chem 1998; 273:30039-45. [PMID: 9792726 DOI: 10.1074/jbc.273.45.30039] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic AMP has been proposed to stimulate Na+/taurocholate (TC) cotransport in hepatocytes by translocating Na+/TC cotransport polypeptide (Ntcp) to the plasma membrane and to induce Ntcp dephosphorylation. Whether protein phosphatases 1 and 2A (PP1/2A) are involved in the regulation of Na+/TC cotransport by cAMP was investigated in the present study. Okadaic acid and tautomycin, inhibitors of PP1/2A, inhibited cAMP-mediated increases in TC uptake and cytosolic [Ca2+], and only tautomycin inhibited basal TC uptake. Removal of cAMP reversed cAMP-mediated increases in TC uptake and plasma membrane Ntcp mass. Okadaic acid alone increased Ntcp phosphorylation without affecting Ntcp mass in plasma membranes and homogenates. In the presence of okadaic acid, cAMP failed to increase plasma membrane Ntcp mass, induce Ntcp dephosphorylation, and decrease endosomal Ntcp mass. Phosphorylated Ntcp was detectable in endosomes isolated from okadaic acid-treated hepatocytes but not in endosomes from control and cAMP-treated hepatocytes. PP1 was found to be enriched in plasma membranes, whereas PP2A was mostly in the cytosol. Cyclic AMP did not activate either PP1 or PP2A, whereas okadaic acid inhibited primarily PP2A. These results suggest that 1) the effect of cAMP on Na+/TC cotransport is not mediated via either PP1 or PP2A; rather, cAMP-mediated signaling pathway is maintained by PP2A and inhibition of PP2A overrides cAMP-mediated effects, and 2) okadaic acid, by inhibiting PP2A, inhibits cAMP-mediated increases in Na+/TC cotransport by decreasing the ability of cAMP to increase cytosolic [Ca2+]. It is proposed that cAMP-mediated dephosphorylation of Ntcp leads to an increased retention of Ntcp in the plasma membrane, and okadaic acid, by inhibiting PP2A, inhibits cAMP-mediated stimulation of Na+/TC cotransport by reversing the ability of cAMP to increase cytosolic [Ca2+] and to induce Ntcp dephosphorylation.
Collapse
Affiliation(s)
- S Mukhopadhyay
- Department of Biomedical Sciences, Tufts University School of Veterinary Medicine, North Grafton, Massachusetts 01536, USA
| | | | | |
Collapse
|
50
|
Hassett C, Laurenzana EM, Sidhu JS, Omiecinski CJ. Effects of chemical inducers on human microsomal epoxide hydrolase in primary hepatocyte cultures. Biochem Pharmacol 1998; 55:1059-69. [PMID: 9605429 DOI: 10.1016/s0006-2952(97)00679-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human microsomal epoxide hydrolase (mEH; EC 3.3.2.3) is an important biotransformation enzyme and potential risk determinant for pathologies such as cancer and teratogenesis. Currently, the effects of chemical exposures on human mEH gene expression are largely unknown, but they may constitute a unique modifier of disease susceptibility. To examine this issue, we exposed cultures of primary human hepatocytes isolated from seven donors to prototypic chemical inducers [such as phenobarbital (PB), polyaromatic hydrocarbons, dexamethasone, butylated hydroxyanisole, and ciprofibrate]. Basal levels of mEH RNA and protein were detected readily in untreated cells. Chemical treatment of cultured hepatocytes resulted in variable mEH RNA and protein expression, but, in general, only modest modulatory effects were detected following these exposures. The maximum increase in mEH RNA expression observed was approximately 3.5-fold following Arochlor 1254 exposure. Immunochemical levels of mEH protein were quantified for all treatment groups in three cultures and demonstrated less overall variation and, in general, a lack of concordance with corresponding mEH RNA levels. Cytochrome P450 (CYP) 1A2 and 3A mRNA levels were measured before and following exposure to beta-naphthaflavone and PB, respectively, to permit independent evaluation of hepatocyte inducer responsiveness. Substantial increases in RNA expression levels for both the CYP1A2 and CYP3A genes demonstrated that the hepatocyte cultures were robust and highly responsive to inducer treatment. These results indicate that the mEH gene in human hepatocytes is only modestly responsive to chemical exposures.
Collapse
Affiliation(s)
- C Hassett
- Department of Environmental Health, University of Washington, Seattle 98105-6099, USA
| | | | | | | |
Collapse
|