1
|
Loy CA, Trader DJ. Primed for Interactions: Investigating the Primed Substrate Channel of the Proteasome for Improved Molecular Engagement. Molecules 2024; 29:3356. [PMID: 39064934 PMCID: PMC11279888 DOI: 10.3390/molecules29143356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Protein homeostasis is a tightly conserved process that is regulated through the ubiquitin proteasome system (UPS) in a ubiquitin-independent or ubiquitin-dependent manner. Over the past two decades, the proteasome has become an excellent therapeutic target through inhibition of the catalytic core particle, inhibition of subunits responsible for recognizing and binding ubiquitinated proteins, and more recently, through targeted protein degradation using proteolysis targeting chimeras (PROTACs). The majority of the developed inhibitors of the proteasome's core particle rely on gaining selectivity through binding interactions within the unprimed substrate channel. Although this has allowed for selective inhibitors and chemical probes to be generated for the different proteasome isoforms, much remains unknown about the interactions that could be harnessed within the primed substrate channel to increase potency or selectivity. Herein, we discuss small molecules that interact with the primed substrate pocket and how their differences may give rise to altered activity. Taking advantage of additional interactions with the primed substrate pocket of the proteasome could allow for the generation of improved chemical tools for perturbing or monitoring proteasome activity.
Collapse
Affiliation(s)
| | - Darci J. Trader
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92617, USA;
| |
Collapse
|
2
|
Kim Y, Kim EK, Chey Y, Song MJ, Jang HH. Targeted Protein Degradation: Principles and Applications of the Proteasome. Cells 2023; 12:1846. [PMID: 37508510 PMCID: PMC10378610 DOI: 10.3390/cells12141846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The proteasome is a multi-catalytic protease complex that is involved in protein quality control via three proteolytic activities (i.e., caspase-, trypsin-, and chymotrypsin-like activities). Most cellular proteins are selectively degraded by the proteasome via ubiquitination. Moreover, the ubiquitin-proteasome system is a critical process for maintaining protein homeostasis. Here, we briefly summarize the structure of the proteasome, its regulatory mechanisms, proteins that regulate proteasome activity, and alterations to proteasome activity found in diverse diseases, chemoresistant cells, and cancer stem cells. Finally, we describe potential therapeutic modalities that use the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Yosup Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Eun-Kyung Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Yoona Chey
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Min-Jeong Song
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Ho Hee Jang
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
3
|
Gao H, Zhou Y, Jin PS, Wu DG, Wang YN, Zhao X, Zhao B. Molecular alteration of the proteasome contributes to AD-like pathology in the brain of HFD-STZ diabetic rats. Metab Brain Dis 2022; 38:1013-1024. [PMID: 36580191 DOI: 10.1007/s11011-022-01151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Diabetes-related cognitive impairment has been shown in diverse epidemiological investigations and lab-based studies, although the underlying pathological mechanisms remain unclear. Unbalanced protein homeostasis may contribute to cognitive decline by inducing abnormal protein aggregation in the diabetic brain. This study aimed to determine possible changes in the proteasome, which is an important pathway involved in abnormal protein degradation. To this end, we examined potential alterations of proteasomal subunits and hydrolytic activity in the brain of diabetic rats fed with high-fat diet combined with small doses of streptozotocin (STZ). Furthermore, lactacystin were used to inhibit proteasomal activity in vivo and typical Alzheimer's disease (AD)-like pathologies were detected, including amyloid-beta, tau phosphorylation, and oxidative protein changes. Our results showed that proteasomal activity increased in the brains of diabetic rats compared to age-matched control rats. After proteasome inhibition, the levels of tau phosphorylation and protein oxidative modification significantly increased; however, no changes were detected in the pathway involved in amyloid production. These results indicated that changes in protein homeostasis balance in diabetes play a role in some typical AD-like changes, especially in oxidative protein degradation, providing evidence that prevention of diabetes-induced protein imbalance may be a potential therapeutic target.
Collapse
Affiliation(s)
- Han Gao
- School of Basic Medicine Sciences, Dali University, 6Th Xue-Ren Road, Dali, 671000, Yunnan Province, People's Republic of China
| | - Ye Zhou
- School of Basic Medicine Sciences, Dali University, 6Th Xue-Ren Road, Dali, 671000, Yunnan Province, People's Republic of China
| | - Peng-Shuai Jin
- School of Basic Medicine Sciences, Dali University, 6Th Xue-Ren Road, Dali, 671000, Yunnan Province, People's Republic of China
- Zhalantun Vocational College, 20Th Zhongyang Road, Hulunbuir, NeiMonggol Autonomous Region, People's Republic of China
| | - Dong-Gui Wu
- School of Basic Medicine Sciences, Dali University, 6Th Xue-Ren Road, Dali, 671000, Yunnan Province, People's Republic of China
- Zhuhai City People's Hospital, Zhuhai, Guangdong Province, People's Republic of China
| | - Yu-Na Wang
- School of Basic Medicine Sciences, Dali University, 6Th Xue-Ren Road, Dali, 671000, Yunnan Province, People's Republic of China
| | - Xi Zhao
- School of Basic Medicine Sciences, Dali University, 6Th Xue-Ren Road, Dali, 671000, Yunnan Province, People's Republic of China
| | - Bei Zhao
- School of Basic Medicine Sciences, Dali University, 6Th Xue-Ren Road, Dali, 671000, Yunnan Province, People's Republic of China.
- Li Yunqing Expert Workstation of Yunnan Province (No.202005AF150014), Dali University, 6Th Xue-Ren Road, Dali, Yunnan Province, People's Republic of China.
| |
Collapse
|
4
|
Wang X, Wu F, Deng Y, Chai J, Zhang Y, He G, Li X. Increased expression of PSME2 is associated with clear cell renal cell carcinoma invasion by regulating BNIP3‑mediated autophagy. Int J Oncol 2021; 59:106. [PMID: 34779489 PMCID: PMC8651225 DOI: 10.3892/ijo.2021.5286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/11/2021] [Indexed: 02/05/2023] Open
Abstract
Previous studies have showed that proteasome activator complex subunit 2 (PSME2) may play a role in some types of cancer. However, the involvement of PSME2 in clear cell renal cell carcinoma (ccRCC) remains unknown. The aim of the present study was to assess the poorly understood function of PSME2 expression in renal carcinoma. Using bioinformatics analysis, PSME2 mRNA expression profiles were investigated, along with its potential prognostic value and its functional enrichment. Signaling pathways and putative hub genes associated with PSME2 in ccRCC were identified. Based on the bioinformatics analysis results, immunohistochemistry of human ccRCC samples and renal carcinoma cell lines (CAKI-1 and 786-O) transfected with short interfering RNA targeting PSME2 were analyzed using western blot analysis, reverse transcription-quantitative PCR, immunofluorescence, and Cell Counting Kit-8, Transwell and transmission electron microscope assays. The results showed that when PSME2 expression was knocked down, the invasive abilities of the tumor cell lines were reduced, while autophagy was enhanced. The present study demonstrated that PSME2 was associated with the invasion ability of ccRCC cell lines by inhibiting BNIP3-mediated autophagy. In summary, PSME2 could be used as a prognostic factor and a promising therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Xiaoyun Wang
- State Key Laboratory of Biotherapy and Department of Pharmacy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Fengbo Wu
- State Key Laboratory of Biotherapy and Department of Pharmacy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Yutong Deng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P.R. China
| | - Jinlong Chai
- State Key Laboratory of Biotherapy and Department of Pharmacy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Yuehua Zhang
- State Key Laboratory of Biotherapy and Department of Pharmacy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Gu He
- State Key Laboratory of Biotherapy and Department of Pharmacy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Xiang Li
- Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
5
|
Cryo-EM of mammalian PA28αβ-iCP immunoproteasome reveals a distinct mechanism of proteasome activation by PA28αβ. Nat Commun 2021; 12:739. [PMID: 33531497 PMCID: PMC7854634 DOI: 10.1038/s41467-021-21028-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
The proteasome activator PA28αβ affects MHC class I antigen presentation by associating with immunoproteasome core particles (iCPs). However, due to the lack of a mammalian PA28αβ-iCP structure, how PA28αβ regulates proteasome remains elusive. Here we present the complete architectures of the mammalian PA28αβ-iCP immunoproteasome and free iCP at near atomic-resolution by cryo-EM, and determine the spatial arrangement between PA28αβ and iCP through XL-MS. Our structures reveal a slight leaning of PA28αβ towards the α3-α4 side of iCP, disturbing the allosteric network of the gatekeeper α2/3/4 subunits, resulting in a partial open iCP gate. We find that the binding and activation mechanism of iCP by PA28αβ is distinct from those of constitutive CP by the homoheptameric TbPA26 or PfPA28. Our study sheds lights on the mechanism of enzymatic activity stimulation of immunoproteasome and suggests that PA28αβ-iCP has experienced profound remodeling during evolution to achieve its current level of function in immune response. The proteasome activator PA28αβ affects MHC class I antigen presentation by associating with immunoproteasome core particles (iCPs). Cryo-EM structures of the mammalian PA28αβ -iCP immunoproteasome and free iCP, combined with cross-linking data, reveal the complex architecture and suggest a distinct immunoproteasome activation mechanism.
Collapse
|
6
|
Exploring long-range cooperativity in the 20S proteasome core particle from Thermoplasma acidophilum using methyl-TROSY-based NMR. Proc Natl Acad Sci U S A 2020; 117:5298-5309. [PMID: 32094174 DOI: 10.1073/pnas.1920770117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The 20S core particle (CP) proteasome is a molecular assembly catalyzing the degradation of misfolded proteins or proteins no longer required for function. It is composed of four stacked heptameric rings that form a barrel-like structure, sequestering proteolytic sites inside its lumen. Proteasome function is regulated by gates derived from the termini of α-rings and through binding of regulatory particles (RPs) to one or both ends of the barrel. The CP is dynamic, with an extensive allosteric pathway extending from one end of the molecule to catalytic sites in its center. Here, using methyl-transverse relaxation optimized spectroscopy (TROSY)-based NMR optimized for studies of high-molecular-weight complexes, we evaluate whether the pathway extends over the entire 150-Å length of the molecule. By exploiting a number of different labeling schemes, the two halves of the molecule can be distinguished, so that the effects of 11S RP binding, or the introduction of gate or allosteric pathway mutations at one end of the barrel can be evaluated at the distal end. Our results establish that while 11S binding and the introduction of key mutations affect each half of the CP allosterically, they do not further couple opposite ends of the molecule. This may have implications for the function of so-called "hybrid" proteasomes where each end of the CP is bound with a different regulator, allowing the CP to be responsive to both RPs simultaneously. The methodology presented introduces a general NMR strategy for dissecting pathways of communication in homo-oligomeric molecular machines.
Collapse
|
7
|
Morozov AV, Karpov VL. Proteasomes and Several Aspects of Their Heterogeneity Relevant to Cancer. Front Oncol 2019; 9:761. [PMID: 31456945 PMCID: PMC6700291 DOI: 10.3389/fonc.2019.00761] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/29/2019] [Indexed: 01/19/2023] Open
Abstract
The life of every organism is dependent on the fine-tuned mechanisms of protein synthesis and breakdown. The degradation of most intracellular proteins is performed by the ubiquitin proteasome system (UPS). Proteasomes are central elements of the UPS and represent large multisubunit protein complexes directly responsible for the protein degradation. Accumulating data indicate that there is an intriguing diversity of cellular proteasomes. Different proteasome forms, containing different subunits and attached regulators have been described. In addition, proteasomes specific for a particular tissue were identified. Cancer cells are highly dependent on the proper functioning of the UPS in general, and proteasomes in particular. At the same time, the information regarding the role of different proteasome forms in cancer is limited. This review describes the functional and structural heterogeneity of proteasomes, their association with cancer as well as several established and novel proteasome-directed therapeutic strategies.
Collapse
Affiliation(s)
- Alexey V. Morozov
- Laboratory of Regulation of Intracellular Proteolysis, W.A. Engelhardt Institute of Molecular Biology RAS, Moscow, Russia
| | | |
Collapse
|
8
|
Jiang TX, Zhao M, Qiu XB. Substrate receptors of proteasomes. Biol Rev Camb Philos Soc 2018; 93:1765-1777. [DOI: 10.1111/brv.12419] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Tian-Xia Jiang
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences; Beijing Normal University, 19 Xinjiekouwai Avenue; Beijing 100875 China
| | - Mei Zhao
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences; Beijing Normal University, 19 Xinjiekouwai Avenue; Beijing 100875 China
| | - Xiao-Bo Qiu
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences; Beijing Normal University, 19 Xinjiekouwai Avenue; Beijing 100875 China
| |
Collapse
|
9
|
The 20S immunoproteasome and constitutive proteasome bind with the same affinity to PA28αβ and equally degrade FAT10. Mol Immunol 2017; 113:22-30. [PMID: 29208314 DOI: 10.1016/j.molimm.2017.11.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 11/22/2022]
Abstract
The 20S immunoproteasome (IP) is an interferon(IFN)-γ - and tumor necrosis factor (TNF) -inducible variant of the 20S constitutive proteasome (CP) in which all its peptidolytically active subunits β1, β2, and β5 are replaced by their cytokine inducible homologues β1i (LMP2), β2i (MECL-1), and β5i (LMP7). These subunit replacements alter the cleavage specificity of the proteasome and the spectrum of proteasome-generated peptide ligands of MHC class I molecules. In addition to antigen processing, the IP has recently been shown to serve unique functions in the generation of pro-inflammatory T helper cell subtypes and cytokines as well as in the pathogenesis of autoimmune diseases, but the mechanistic involvement of the IP in these processes has remained elusive. In this study we investigated whether the IP differs from the CP in the interaction with two IFN-γ/TNF inducible factors: the 11S proteasome regulator PA28αβ and the ubiquitin-like modifier FAT10 (ubiquitin D). Using thermophoresis, we determined the affinity of PA28αβ for the CP and IP to be 12.2nM +/- 2.8nM and 15.3nM +/- 2.7nM, respectively, which is virtually identical. Also the activation of the peptidolytic activities of the IP and CP by PA28αβ did not differ. For FAT10 we determined the degradation kinetics in cycloheximide chase experiments in cells expressing almost exclusively IP or CP as well as in IFN-γ stimulated and unstimulated cells and found no differences between the degradation rates. Taken together, we conclude that neither differences in the binding strength to, nor activation by PA28αβ, nor a difference in the rate of FAT10-mediated degradation can account for distinct functional capabilities of the IP as compared to the CP.
Collapse
|
10
|
Huber EM, Groll M. The Mammalian Proteasome Activator PA28 Forms an Asymmetric α 4β 3 Complex. Structure 2017; 25:1473-1480.e3. [PMID: 28867616 DOI: 10.1016/j.str.2017.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/17/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
Abstract
The heptameric proteasome activator (PA) 28αβ is known to modulate class I antigen processing by docking onto 20S proteasome core particles (CPs). The exact stoichiometry and arrangement of its α and β subunits, however, is still controversial. Here we analyzed murine PA28 complexes regarding structure and assembly. Strikingly, PA28α, PA28β, and PA28αβ preparations form heptamers, but solely PA28α and PA28αβ associate with CPs. Co-expression of α and β yields one unique PA28αβ species with an unchangeable subunit composition. Structural data on PA28α, PA28β, and PA28αβ up to 2.9 Å resolution reveal a PA28α4β3 complex with an alternating subunit arrangement and a single α-α interface. Differential scanning fluorimetry experiments and activity assays classify PA28α4β3 as most stable and most active, indicating that this assembly might represent the physiologically relevant species. Together, our data resolve subunit composition and arrangement of PA28αβ and clarify how an asymmetric heptamer can be assembled from two highly homologous subunits.
Collapse
Affiliation(s)
- Eva M Huber
- Center for Integrated Protein Science, Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany.
| | - Michael Groll
- Center for Integrated Protein Science, Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany.
| |
Collapse
|
11
|
Yadranji Aghdam S, Mahmoudpour A. Proteasome Activators, PA28 α and PA28 β, Govern Development of Microvascular Injury in Diabetic Nephropathy and Retinopathy. Int J Nephrol 2016; 2016:3846573. [PMID: 27830089 PMCID: PMC5088333 DOI: 10.1155/2016/3846573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/08/2016] [Accepted: 09/06/2016] [Indexed: 12/25/2022] Open
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR) are major complications of type 1 and type 2 diabetes. DN and DR are mainly caused by injury to the perivascular supporting cells, the mesangial cells within the glomerulus, and the pericytes in the retina. The genes and molecular mechanisms predisposing retinal and glomerular pericytes to diabetic injury are poorly characterized. In this study, the genetic deletion of proteasome activator genes, PA28α and PA28β genes, protected the diabetic mice in the experimental STZ-induced diabetes model against renal injury and retinal microvascular injury and prolonged their survival compared with wild type STZ diabetic mice. The improved wellbeing and reduced renal damage was associated with diminished expression of Osteopontin (OPN) and Monocyte Chemoattractant Protein-1 (MCP-1) in the glomeruli of STZ-injected PA28α/PA28β double knockout (Pa28αβDKO) mice and also in cultured mesangial cells and retinal pericytes isolated from Pa28αβDKO mice that were grown in high glucose. The mesangial PA28-mediated expression of OPN under high glucose conditions was suppressed by peptides capable of inhibiting the binding of PA28 to the 20S proteasome. Collectively, our findings demonstrate that diabetic hyperglycemia promotes PA28-mediated alteration of proteasome activity in vulnerable perivascular cells resulting in microvascular injury and development of DN and DR.
Collapse
Affiliation(s)
- Saeed Yadranji Aghdam
- Reynolds Institute on Aging, Room No. 4151, 629 Jack Stephens Drive, Little Rock, AR 72205, USA
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ali Mahmoudpour
- Norgen Biotek Corp., 3430 Schmon Parkway, Thorold, ON, Canada L2V 4Y6
| |
Collapse
|
12
|
Caniuguir A, Krause BJ, Hernandez C, Uauy R, Casanello P. Markers of early endothelial dysfunction in intrauterine growth restriction-derived human umbilical vein endothelial cells revealed by 2D-DIGE and mass spectrometry analyses. Placenta 2016; 41:14-26. [PMID: 27208404 DOI: 10.1016/j.placenta.2016.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/20/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
Abstract
Intrauterine growth restriction (IUGR) associates with fetal and placental vascular dysfunction, and increased cardiovascular risk later on life. We hypothesize that endothelial cells derived from IUGR umbilical veins present significant changes in the proteome which could be involved in the endothelial dysfunction associated to this conditions. To address this the proteome profile of human umbilical endothelial cells (HUVEC) isolated from control and IUGR pregnancies was compared by 2D-Differential In Gel Electrophoresis (DIGE) and further protein identification by MALDI-TOF MS. Using 2D-DIGE 124 spots were identified as differentially expressed between control and IUGR HUVEC, considering a cut-off of 2 fold change, which represented ∼10% of the total spots detected. Further identification by MALDI-TOF MS and in silico clustering of the proteins showed that those differentially expressed proteins between control and IUGR HUVEC were mainly related with cytoskeleton organization, proteasome degradation, oxidative stress response, mRNA processing, chaperones and vascular function. Finally Principal Component analysis of the identified proteins showed that differentially expressed proteins allow distinguishing between control and IUGR HUVEC based on their proteomic profile. This study demonstrates for the first time that IUGR-derived HUVEC maintained in primary culture conditions present an altered proteome profile, which could reflect an abnormal programming of endothelial function in this fetal condition.
Collapse
Affiliation(s)
- Andres Caniuguir
- Division of Obstetrics & Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Division of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bernardo J Krause
- Division of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cherie Hernandez
- Division of Obstetrics & Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Division of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo Uauy
- Division of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paola Casanello
- Division of Obstetrics & Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Division of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
13
|
McCarthy MK, Weinberg JB. The immunoproteasome and viral infection: a complex regulator of inflammation. Front Microbiol 2015; 6:21. [PMID: 25688236 PMCID: PMC4310299 DOI: 10.3389/fmicb.2015.00021] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/08/2015] [Indexed: 11/13/2022] Open
Abstract
During viral infection, proper regulation of immune responses is necessary to ensure successful viral clearance with minimal host tissue damage. Proteasomes play a crucial role in the generation of antigenic peptides for presentation on MHC class I molecules, and thus activation of CD8 T cells, as well as activation of the NF-κB pathway. A specialized type of proteasome called the immunoproteasome is constitutively expressed in hematopoietic cells and induced in non-immune cells during viral infection by interferon signaling. The immunoproteasome regulates CD8 T cell responses to many viral epitopes during infection. Accumulating evidence suggests that the immunoproteasome may also contribute to regulation of proinflammatory cytokine production, activation of the NF-κB pathway, and management of oxidative stress. Many viruses have mechanisms of interfering with immunoproteasome function, including prevention of transcriptional upregulation of immunoproteasome components as well as direct interaction of viral proteins with immunoproteasome subunits. A better understanding of the role of the immunoproteasome in different cell types, tissues, and hosts has the potential to improve vaccine design and facilitate the development of effective treatment strategies for viral infections.
Collapse
Affiliation(s)
- Mary K McCarthy
- Department of Microbiology and Immunology, University of Michigan Ann Arbor, MI, USA
| | - Jason B Weinberg
- Department of Microbiology and Immunology, University of Michigan Ann Arbor, MI, USA ; Department of Pediatrics and Communicable Diseases, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
14
|
Acquah JRQ, Haratake K, Rakwal R, Udono H, Chiba T. Hsp90 and ECM29 Are Important to Maintain the Integrity of Mammalian 26S Proteasome. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/abc.2015.57022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Cascio P. PA28αβ: the enigmatic magic ring of the proteasome? Biomolecules 2014; 4:566-84. [PMID: 24970231 PMCID: PMC4101498 DOI: 10.3390/biom4020566] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/15/2014] [Accepted: 06/08/2014] [Indexed: 11/16/2022] Open
Abstract
PA28αβ is a γ-interferon-induced 11S complex that associates with the ends of the 20S proteasome and stimulates in vitro breakdown of small peptide substrates, but not proteins or ubiquitin-conjugated proteins. In cells, PA28 also exists in larger complexes along with the 19S particle, which allows ATP-dependent degradation of proteins; although in vivo a large fraction of PA28 is present as PA28αβ-20S particles whose exact biological functions are largely unknown. Although several lines of evidence strongly indicate that PA28αβ plays a role in MHC class I antigen presentation, the exact molecular mechanisms of this activity are still poorly understood. Herein, we review current knowledge about the biochemical and biological properties of PA28αβ and discuss recent findings concerning its role in modifying the spectrum of proteasome's peptide products, which are important to better understand the molecular mechanisms and biological consequences of PA28αβ activity.
Collapse
Affiliation(s)
- Paolo Cascio
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy.
| |
Collapse
|
16
|
Dekker TJA, Balluff BD, Jones EA, Schöne CD, Schmitt M, Aubele M, Kroep JR, Smit VTHBM, Tollenaar RAEM, Mesker WE, Walch A, McDonnell LA. Multicenter Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI MSI) Identifies Proteomic Differences in Breast-Cancer-Associated Stroma. J Proteome Res 2014; 13:4730-8. [DOI: 10.1021/pr500253j] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tim J. A. Dekker
- Department
of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
- Department
of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Benjamin D. Balluff
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Emrys A. Jones
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Cédrik D. Schöne
- Research
Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Manfred Schmitt
- Department
of Obstetrics and Gynecology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Michaela Aubele
- Institute
of Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Judith R. Kroep
- Department
of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Wilma E. Mesker
- Department
of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Axel Walch
- Research
Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Liam A. McDonnell
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
17
|
Saez I, Vilchez D. The Mechanistic Links Between Proteasome Activity, Aging and Age-related Diseases. Curr Genomics 2014; 15:38-51. [PMID: 24653662 PMCID: PMC3958958 DOI: 10.2174/138920291501140306113344] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 01/17/2023] Open
Abstract
Damaged and misfolded proteins accumulate during the aging process, impairing cell function and tissue homeostasis. These perturbations to protein homeostasis (proteostasis) are hallmarks of age-related neurodegenerative disorders such as Alzheimer’s, Parkinson’s or Huntington’s disease. Damaged proteins are degraded by cellular clearance mechanisms such as the proteasome, a key component of the proteostasis network. Proteasome activity declines during aging, and proteasomal dysfunction is associated with late-onset disorders. Modulation of proteasome activity extends lifespan and protects organisms from symptoms associated with proteostasis disorders. Here we review the links between proteasome activity, aging and neurodegeneration. Additionally, strategies to modulate proteasome activity and delay the onset of diseases associated to proteasomal dysfunction are discussed herein.
Collapse
Affiliation(s)
- Isabel Saez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Co-logne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Co-logne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany
| |
Collapse
|
18
|
Raule M, Cerruti F, Benaroudj N, Migotti R, Kikuchi J, Bachi A, Navon A, Dittmar G, Cascio P. PA28αβ reduces size and increases hydrophilicity of 20S immunoproteasome peptide products. ACTA ACUST UNITED AC 2014; 21:470-480. [PMID: 24631123 DOI: 10.1016/j.chembiol.2014.02.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 12/20/2013] [Accepted: 02/03/2014] [Indexed: 11/25/2022]
Abstract
The specific roles that immunoproteasome variants play in MHC class I antigen presentation are unknown at present. To investigate the biochemical properties of different immunoproteasome forms and unveil the molecular mechanisms of PA28 activity, we performed in vitro degradation of full-length proteins by 20S, 26S, and PA28αβ-20S immunoproteasomes and analyzed the spectrum of peptides released. Notably, PA28αβ-20S immunoproteasomes hydrolyze proteins at the same low rates as 20S alone, which is in line with PA28, neither stimulating nor preventing entry of unfolded polypeptides into the core particle. Most importantly, binding of PA28αβ to 20S greatly reduces the size of proteasomal products and favors the release of specific, more hydrophilic, longer peptides. Hence, PA28αβ may either allosterically modify proteasome active sites or act as a selective "smart" sieve that controls the efflux of products from the 20S proteolytic chamber.
Collapse
Affiliation(s)
- Mary Raule
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Fulvia Cerruti
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Nadia Benaroudj
- Unité Biologie des Spirochètes, Institut Pasteur, 75015 Paris, France
| | - Rebekka Migotti
- Mass Spectrometry Core Unit, Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Julia Kikuchi
- Mass Spectrometry Core Unit, Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Angela Bachi
- IFOM, FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Ami Navon
- Department of Biological Regulation, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Gunnar Dittmar
- Mass Spectrometry Core Unit, Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Paolo Cascio
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy.
| |
Collapse
|
19
|
Postprandial changes in the proteome are modulated by dietary fat in patients with metabolic syndrome. J Nutr Biochem 2013; 24:318-24. [DOI: 10.1016/j.jnutbio.2012.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 05/10/2012] [Accepted: 06/15/2012] [Indexed: 11/20/2022]
|
20
|
Atkinson SP, Collin J, Irina N, Anyfantis G, Kyung BK, Lako M, Armstrong L. A putative role for the immunoproteasome in the maintenance of pluripotency in human embryonic stem cells. Stem Cells 2012; 30:1373-84. [PMID: 22532526 DOI: 10.1002/stem.1113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The function of the proteasome is essential for maintenance of cellular homeostasis, and in pluripotent stem cells, this has been extended to the removal of nascent proteins in a manner that restricts differentiation. In this study, we show enhanced expression of genes encoding subunits of the 20S proteasome in human embryonic stem cells (hESCs) coupled to their downregulation as the cells progress into differentiation. The decrease in expression is particularly marked for the alternative catalytic subunits of the 20S proteasome variant known as the immunoproteasome indicating the possibility of a hitherto unknown function for this proteasome variant in pluripotent cells. The immunoproteasome is normally associated with antigen-presenting cells where it provides peptides of an appropriate length for antibody generation; however, our data suggest that it may be involved in maintaining the pluripotency in hESCs. Selective inhibition of two immunoproteasome subunits (PSMB9 and PSMB8) results in downregulation of cell surface and transcriptional markers that characterize the pluripotent state, subtle cell accumulation in G1 at the expense of S-phase, and upregulation of various markers characterizing the differentiated primitive and definitive lineages arising from hESC. Our data also support a different function for each of these two subunits in hESC that may be linked to their selectivity in driving proteasome-mediated degradation of cell cycle regulatory components and/or differentiation inducing factors.
Collapse
Affiliation(s)
- Stuart P Atkinson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
Li LP, Cheng WB, Li H, Li W, Yang H, Wen DH, Tang YD. Expression of Proteasome Activator REGγ in Human Laryngeal Carcinoma and Associations with Tumor Suppressor Proteins. Asian Pac J Cancer Prev 2012; 13:2699-703. [DOI: 10.7314/apjcp.2012.13.6.2699] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
22
|
Pickering AM, Davies KJA. Differential roles of proteasome and immunoproteasome regulators Pa28αβ, Pa28γ and Pa200 in the degradation of oxidized proteins. Arch Biochem Biophys 2012; 523:181-90. [PMID: 22564544 DOI: 10.1016/j.abb.2012.04.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 11/30/2022]
Abstract
The response and functions of proteasome regulators Pa28αβ (or 11S), Pa28γ and Pa200 in oxidative-stress adaptation (also called hormesis) was studied in murine embryonic fibroblasts (MEFs), using a well-characterized model of cellular adaptation to low concentrations (1.0-10.0 μM) of hydrogen peroxide (H(2)O(2)), which alter gene expression profiles, increasing resistance to higher levels of oxidative-stress. Pa28αβ bound to 20S proteasomes immediately upon H(2)O(2)-treatment, whereas 26S proteasomes were disassembled at the same time. Over the next 24h, the levels of Pa28αβ, Pa28γ and Pa200 proteasome regulators increased during H(2)O(2)-adaptation, whereas the 19S regulator was unchanged. Purified Pa28αβ, and to a lesser extent Pa28γ, significantly increased the ability of purified 20S proteasome to selectively degrade oxidized proteins; Pa28αβ also increased the capacity of purified immunoproteasome to selectively degrade oxidized proteins but Pa28γ did not. Pa200 regulator actually decreased 20S proteasome and immunoproteasome's ability to degrade oxidized proteins but Pa200 and poly-ADP ribose polymerase may cooperate in enabling initiation of DNA repair. Our results indicate that cytoplasmic Pa28αβ and nuclear Pa28γ may both be important regulators of proteasome's ability to degrade oxidatively-damaged proteins, and induced-expression of both 20S proteasome and immunoproteasome, and their Pa28αβ and Pa28γ regulators are important for oxidative-stress adaptation.
Collapse
Affiliation(s)
- Andrew M Pickering
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | | |
Collapse
|
23
|
Phark S, Park SY, Choi S, Zheng Z, Cho E, Lee M, Lim JY, Seo JB, Won NH, Jung WW, Sul D. Toxicological biomarkers of 2,3,4,7,8-pentachlorodibenzofuran in proteins secreted by HepG2 cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:656-66. [DOI: 10.1016/j.bbapap.2012.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/20/2012] [Accepted: 01/22/2012] [Indexed: 01/08/2023]
|
24
|
Pickering AM, Linder RA, Zhang H, Forman HJ, Davies KJA. Nrf2-dependent induction of proteasome and Pa28αβ regulator are required for adaptation to oxidative stress. J Biol Chem 2012; 287:10021-10031. [PMID: 22308036 DOI: 10.1074/jbc.m111.277145] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The ability to adapt to acute oxidative stress (e.g. H(2)O(2), peroxynitrite, menadione, and paraquat) through transient alterations in gene expression is an important component of cellular defense mechanisms. We show that such adaptation includes Nrf2-dependent increases in cellular capacity to degrade oxidized proteins that are attributable to increased expression of the 20 S proteasome and the Pa28αβ (11 S) proteasome regulator. Increased cellular levels of Nrf2, translocation of Nrf2 from the cytoplasm to the nucleus, and increased binding of Nrf2 to antioxidant response elements (AREs) or electrophile response elements (EpREs) in the 5'-untranslated region of the proteasome β5 subunit gene (demonstrated by chromatin immunoprecipitation (or ChIP) assay) are shown to be necessary requirements for increased proteasome/Pa28αβ levels, and for maximal increases in proteolytic capacity and stress resistance; Nrf2 siRNA and the Nrf2 inhibitor retinoic acid both block these adaptive changes and the Nrf2 inducers DL-sulforaphane, lipoic acid, and curcumin all replicate them without oxidant exposure. The immunoproteasome is also induced during oxidative stress adaptation, contributing to overall capacity to degrade oxidized proteins and stress resistance. Two of the three immunoproteasome subunit genes, however, contain no ARE/EpRE elements, and Nrf2 inducers, inhibitors, and siRNA all have minimal effects on immunoproteasome expression during adaptation to oxidative stress. Thus, immunoproteasome appears to be (at most) minimally regulated by the Nrf2 signal transduction pathway.
Collapse
Affiliation(s)
- Andrew M Pickering
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology, Arts & Sciences, University of Southern California, Los Angeles, California 90089; Division of Molecular and Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts & Sciences, University of Southern California, Los Angeles, California 90089
| | - Robert A Linder
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology, Arts & Sciences, University of Southern California, Los Angeles, California 90089; Division of Molecular and Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts & Sciences, University of Southern California, Los Angeles, California 90089
| | - Hongqiao Zhang
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology, Arts & Sciences, University of Southern California, Los Angeles, California 90089; University of California at Merced, Merced, California 95343
| | - Henry J Forman
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology, Arts & Sciences, University of Southern California, Los Angeles, California 90089; University of California at Merced, Merced, California 95343
| | - Kelvin J A Davies
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology, Arts & Sciences, University of Southern California, Los Angeles, California 90089; Division of Molecular and Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts & Sciences, University of Southern California, Los Angeles, California 90089.
| |
Collapse
|
25
|
Grune T, Catalgol B, Licht A, Ermak G, Pickering A, Ngo JK, Davies KJA. HSP70 mediates dissociation and reassociation of the 26S proteasome during adaptation to oxidative stress. Free Radic Biol Med 2011; 51:1355-64. [PMID: 21767633 PMCID: PMC3172204 DOI: 10.1016/j.freeradbiomed.2011.06.015] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/01/2011] [Accepted: 06/07/2011] [Indexed: 01/28/2023]
Abstract
We report an entirely new role for the HSP70 chaperone in dissociating 26S proteasome complexes (into free 20S proteasomes and bound 19S regulators), preserving 19S regulators, and reconstituting 26S proteasomes in the first 1-3h after mild oxidative stress. These responses, coupled with direct 20S proteasome activation by poly(ADP ribose) polymerase in the nucleus and by PA28αβ in the cytoplasm, instantly provide cells with increased capacity to degrade oxidatively damaged proteins and to survive the initial effects of stress exposure. Subsequent adaptive (hormetic) processes (3-24h after stress exposure), mediated by several signal transduction pathways and involving increased transcription/translation of 20S proteasomes, immunoproteasomes, and PA28αβ, abrogate the need for 26S proteasome dissociation. During this adaptive period, HSP70 releases its bound 19S regulators, 26S proteasomes are reconstituted, and ATP-stimulated proteolysis is restored. The 26S proteasome-dependent, and ATP-stimulated, turnover of ubiquitinylated proteins is essential for normal cell metabolism, and its restoration is required for successful stress adaptation.
Collapse
Affiliation(s)
- Tilman Grune
- Institute of Nutrition, Department of Nutritional Toxicology, Friedrich Schiller University, D-07740Jena, Germany
| | - Betül Catalgol
- Institute of Nutrition, Department of Nutritional Toxicology, Friedrich Schiller University, D-07740Jena, Germany
| | - Anke Licht
- Institute of Nutrition, Department of Nutritional Toxicology, Friedrich Schiller University, D-07740Jena, Germany
| | - Gennady Ermak
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology; and Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts & Sciences: the University of Southern California, Los Angeles, California 90089-0191, U.S.A
| | - Andrew Pickering
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology; and Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts & Sciences: the University of Southern California, Los Angeles, California 90089-0191, U.S.A
| | - Jenny K. Ngo
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology; and Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts & Sciences: the University of Southern California, Los Angeles, California 90089-0191, U.S.A
| | - Kelvin J. A. Davies
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology; and Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts & Sciences: the University of Southern California, Los Angeles, California 90089-0191, U.S.A
| |
Collapse
|
26
|
Jiang N, Kham SKY, Koh GS, Suang Lim JY, Ariffin H, Chew FT, Yeoh AEJ. Identification of prognostic protein biomarkers in childhood acute lymphoblastic leukemia (ALL). J Proteomics 2011; 74:843-57. [DOI: 10.1016/j.jprot.2011.02.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/25/2011] [Accepted: 02/26/2011] [Indexed: 10/18/2022]
|
27
|
The immunoproteasome, the 20S proteasome and the PA28αβ proteasome regulator are oxidative-stress-adaptive proteolytic complexes. Biochem J 2011; 432:585-94. [PMID: 20919990 DOI: 10.1042/bj20100878] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Oxidized cytoplasmic and nuclear proteins are normally degraded by the proteasome, but accumulate with age and disease. We demonstrate the importance of various forms of the proteasome during transient (reversible) adaptation (hormesis), to oxidative stress in murine embryonic fibroblasts. Adaptation was achieved by 'pre-treatment' with very low concentrations of H2O2, and tested by measuring inducible resistance to a subsequent much higher 'challenge' dose of H2O2. Following an initial direct physical activation of pre-existing proteasomes, the 20S proteasome, immunoproteasome and PA28αβ regulator all exhibited substantially increased de novo synthesis during adaptation over 24 h. Cellular capacity to degrade oxidatively damaged proteins increased with 20S proteasome, immunoproteasome and PA28αβ synthesis, and was mostly blocked by the 20S proteasome, immunoproteasome and PA28 siRNA (short interfering RNA) knockdown treatments. Additionally, PA28αβ-knockout mutants achieved only half of the H2O2-induced adaptive increase in proteolytic capacity of wild-type controls. Direct comparison of purified 20S proteasome and immunoproteasome demonstrated that the immunoproteasome can selectively degrade oxidized proteins. Cell proliferation and DNA replication both decreased, and oxidized proteins accumulated, during high H2O2 challenge, but prior H2O2 adaptation was protective. Importantly, siRNA knockdown of the 20S proteasome, immunoproteasome or PA28αβ regulator blocked 50-100% of these adaptive increases in cell division and DNA replication, and immunoproteasome knockdown largely abolished protection against protein oxidation.
Collapse
|
28
|
REG gamma: a potential marker in breast cancer and effect on cell cycle and proliferation of breast cancer cell. Med Oncol 2010; 28:31-41. [DOI: 10.1007/s12032-010-9546-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Accepted: 09/11/2009] [Indexed: 02/01/2023]
|
29
|
Abstract
Activation of the ubiquitin-proteasome system has been described in different models of cardiac hypertrophy. Cardiac cell growth in response to pressure or volume overload, as well as physiological adaptive hypertrophy, is accompanied by an increase in protein ubiquitination, proteasome subunit expression, and proteasome activity. Importantly, an inhibition of proteasome activity prevents and reverses cardiac hypertrophy and remodelling in vivo. The focus of this review is to provide an update about the mechanisms by which proteasome inhibitors affect cardiac cell growth in adaptive and maladaptive models of cardiac hypertrophy. In the first part, we summarize how the proteasome affects both proteolysis and protein synthesis in a context of cardiac cell growth. In the second part, we show how proteasome inhibition can prevent and reverse cardiac hypertrophy and remodelling in response to different conditions of overload.
Collapse
Affiliation(s)
- Nadia Hedhli
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ 07103, USA
| | | |
Collapse
|
30
|
Le Feuvre AY, Dantas-Barbosa C, Baldin V, Coux O. High yield bacterial expression and purification of active recombinant PA28αβ complex. Protein Expr Purif 2009; 64:219-24. [DOI: 10.1016/j.pep.2008.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 10/17/2008] [Accepted: 10/20/2008] [Indexed: 10/21/2022]
|
31
|
Sixt SU, Beiderlinden M, Jennissen HP, Peters J. Extracellular proteasome in the human alveolar space: a new housekeeping enzyme? Am J Physiol Lung Cell Mol Physiol 2007; 292:L1280-8. [PMID: 17220374 DOI: 10.1152/ajplung.00140.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We hypothesized that 20S proteasome is present and functional in the extracellular alveolar space in humans. Proteasomal activity was measured in bronchoalveolar lavage (BAL) supernatant from eight humans using specific proteasomal fluorogenic substrates and I(125)-albumin with and without specific proteasome inhibitors. Furthermore, gelfiltration, Western blot technique, and mass spectrometry were applied for proteasome characterization. All proteasomal fluorogenic substrates were hydrolyzed by BAL supernatant, with hydrolysis inhibited by epoxomicin (P = 0.024) and other proteasome inhibitors as well. E64, a lysosomal inhibitor, did not inhibit enzyme activity. The majority of proteolytic activity was detected in BAL supernatant rather than in the cell pellet. No correlation was found between proteasomal hydrolysis in BAL supernatant and lactate dehydrogenase activity, the total cell count in the cell pellet, and the fraction of avital cells in the cell pellet, ruling out cell lysis as a major source of proteasomal activity. Gelfiltration revealed hydrolyzing activity in the supernatant at 660 kDa and proteasome core proteins after analysis by ESI-QqTOF mass spectrometry. Furthermore, Western blots using a polyclonal antibody against proteasomal alpha-/beta-subunits detected proteasomal proteins in the typical 20- to 30-kDa range in BAL supernatant. Incubation of BAL supernatant with I(125)-albumin showed a high mean cleavage rate (101.8 microg/ml x h lavage +/- 46 SD) that was inhibited by epoxomicin (P = 0.013) and was ATP and ubiquitin independent. We identified for the first time extracellular, biologically active, ATP- and ubiquitin-independent 20S proteasome in the human alveolar space, with a high albumin cleavage rate. Possibly, the proteasome assists in maintenance of a low intra-alveolar oncotic pressure and/or alveolar protein degradation.
Collapse
Affiliation(s)
- Stephan Urs Sixt
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Essen, Germany
| | | | | | | |
Collapse
|
32
|
Li DA, He Y, Guo YJ, Wang F, Song SX, Wang Y, Yang F, He XW, Sun SH. Comparative proteomics analysis to annexin B1 DNA and protein vaccination in mice. Vaccine 2007; 25:932-8. [PMID: 17027125 DOI: 10.1016/j.vaccine.2006.08.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 08/27/2006] [Accepted: 08/29/2006] [Indexed: 11/21/2022]
Abstract
DNA vaccines have been widely reported to elicit both effective humoral and cellular immune responses, but the mechanisms of antigen processing and presentation in DNA immunization is still ambiguous. Aiming to molecular mechanisms involved in DNA immunization, comparative serum proteomics was introduced to discover differentially expressed proteins after different immunizations. Using two-dimensional electrophoresis and matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry, 23 three-fold or greater up-regulated proteins were separated and identified, including 14 from ANXB1 DNA immunized mice and 9 from annexin B1 protein immunized mice. The histocompatibility class I molecule H2-Q10 (HA10_MOUSE) and proteasome activator PA28 alpha-subunit (PSME1_MOUSE) were found up-regulated in ANXB1 DNA immunized mice, which may contribute to the augmented activation of T lymphocytes. These proteins may serve as potential surrogate markers of successful vaccination and provide research targets for molecular mechanisms of vaccinology.
Collapse
Affiliation(s)
- De-An Li
- Department of Medical Genetics, Second Military Medical University, 800 Xiang-Yin Road, Yangpu District, Shanghai 200433, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Shibatani T, Carlson EJ, Larabee F, McCormack AL, Früh K, Skach WR. Global organization and function of mammalian cytosolic proteasome pools: Implications for PA28 and 19S regulatory complexes. Mol Biol Cell 2006; 17:4962-71. [PMID: 16987959 PMCID: PMC1679665 DOI: 10.1091/mbc.e06-04-0311] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Proteolytic activity of the 20S proteasome is regulated by activators that govern substrate movement into and out of the catalytic chamber. However, the physiological relationship between activators, and hence the relative role of different proteasome species, remains poorly understood. To address this problem, we characterized the total pool of cytosolic proteasomes in intact and functional form using a single-step method that bypasses the need for antibodies, proteasome modification, or column purification. Two-dimensional Blue Native(BN)/SDS-PAGE and tandem mass spectrometry simultaneously identified six native proteasome populations in untreated cytosol: 20S, singly and doubly PA28-capped, singly 19S-capped, hybrid, and doubly 19S-capped proteasomes. All proteasome species were highly dynamic as evidenced by recruitment and exchange of regulatory caps. In particular, proteasome inhibition with MG132 markedly stimulated PA28 binding to exposed 20S alpha-subunits and generated doubly PA28-capped and hybrid proteasomes. PA28 recruitment virtually eliminated free 20S particles and was blocked by ATP depletion. Moreover, inhibited proteasomes remained stably associated with distinct cohorts of partially degraded fragments derived from cytosolic and ER substrates. These data establish a versatile platform for analyzing substrate-specific proteasome function and indicate that PA28 and 19S activators cooperatively regulate global protein turnover while functioning at different stages of the degradation cycle.
Collapse
Affiliation(s)
- Toru Shibatani
- *Department of Biochemistry and Molecular Biology, Oregon Health & Sciences University, Portland, OR 97201; and
| | - Eric J. Carlson
- *Department of Biochemistry and Molecular Biology, Oregon Health & Sciences University, Portland, OR 97201; and
| | - Fredrick Larabee
- *Department of Biochemistry and Molecular Biology, Oregon Health & Sciences University, Portland, OR 97201; and
| | - Ashley L. McCormack
- Vaccine and Gene Therapy Institute, Oregon Health & Sciences University, Beaverton, OR 97006-3448
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health & Sciences University, Beaverton, OR 97006-3448
| | - William R. Skach
- *Department of Biochemistry and Molecular Biology, Oregon Health & Sciences University, Portland, OR 97201; and
| |
Collapse
|
34
|
Hirano Y, Hendil KB, Yashiroda H, Iemura SI, Nagane R, Hioki Y, Natsume T, Tanaka K, Murata S. A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature 2005; 437:1381-5. [PMID: 16251969 DOI: 10.1038/nature04106] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Accepted: 08/02/2005] [Indexed: 11/08/2022]
Abstract
The 26S proteasome is a multisubunit protease responsible for regulated proteolysis in eukaryotic cells. It comprises one catalytic 20S proteasome and two axially positioned 19S regulatory complexes. The 20S proteasome is composed of 28 subunits arranged in a cylindrical particle as four heteroheptameric rings, alpha1-7beta1-7beta1-7alpha1-7 (refs 4, 5), but the mechanism responsible for the assembly of such a complex structure remains elusive. Here we report two chaperones, designated proteasome assembling chaperone-1 (PAC1) and PAC2, that are involved in the maturation of mammalian 20S proteasomes. PAC1 and PAC2 associate as heterodimers with proteasome precursors and are degraded after formation of the 20S proteasome is completed. Overexpression of PAC1 or PAC2 accelerates the formation of precursor proteasomes, whereas knockdown by short interfering RNA impairs it, resulting in poor maturation of 20S proteasomes. Furthermore, the PAC complex provides a scaffold for alpha-ring formation and keeps the alpha-rings competent for the subsequent formation of half-proteasomes. Thus, our results identify a mechanism for the correct assembly of 20S proteasomes.
Collapse
Affiliation(s)
- Yuko Hirano
- Laboratory of Frontier Science, Core Technology and Research Center, Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113-8613, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sun X, Wei L, Lidén J, Hui G, Dahlman-Wright K, Hjerpe A, Dobra K. Molecular characterization of tumour heterogeneity and malignant mesothelioma cell differentiation by gene profiling. J Pathol 2005; 207:91-101. [PMID: 16007577 DOI: 10.1002/path.1810] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Malignant mesothelioma is an aggressive tumour, characterized by a variable differentiation pattern and poor prognosis. At present, the clinical outcome in patients with malignant mesothelioma is mainly predicted by the morphological phenotype of the tumour. However, this conventional clinicopathological parameter is of limited value, partly because of the biological heterogeneity of this tumour and poor understanding of the regulatory mechanisms underlying the various patterns of growth. To elucidate the intrinsic molecular programmes that determine tumour differentiation, oligonucleotide arrays were used in an in vitro model of mesothelioma differentiation. The analysis of 2059 genes detected 102 genes that were significantly deregulated. Clustering of these genes into functional categories showed distinctive patterns for the two phenotypes, namely epithelioid and sarcomatoid. The molecular fingerprint of the sarcomatoid tumour component indicates overrepresentation of growth factor receptors and growth factor binding proteins, whereas epithelioid mesothelioma cells express other tumour-promoting factors involved in differentiation, metabolism, and regulation of apoptosis. These differences in the molecular phenotype may give a better basis for diagnosis and for designing novel therapies.
Collapse
Affiliation(s)
- Xiaojuan Sun
- Department of Laboratory Medicine, Division of Pathology, Huddinge University Hospital, F-46, Karolinska Institutet, S-141 86 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Julian Adams
- Infinity Pharmaceuticals, Inc., 780 Memorial Drive, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
37
|
Barton LF, Runnels HA, Schell TD, Cho Y, Gibbons R, Tevethia SS, Deepe GS, Monaco JJ. Immune Defects in 28-kDa Proteasome Activator γ-Deficient Mice. THE JOURNAL OF IMMUNOLOGY 2004; 172:3948-54. [PMID: 15004203 DOI: 10.4049/jimmunol.172.6.3948] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein complexes of the 28-kDa proteasome activator (PA28) family activate the proteasome and may alter proteasome cleavage specificity. Initial investigations have demonstrated a role for the IFN-gamma-inducible PA28alpha/beta complex in Ag processing. Although the noninducible and predominantly nuclear PA28gamma complex has been implicated in affecting proteasome-dependent signaling pathways, such as control of the mitotic cell cycle, there is no previous evidence demonstrating a role for this structure in Ag processing. We therefore generated PA28gamma-deficient mice and investigated their immune function. PA28gamma(-/-) mice display a slight reduction in CD8+ T cell numbers and do not effectively clear a pulmonary fungal infection. However, T cell responses in two viral infection models appear normal in both magnitude and the hierarchy of antigenic epitopes recognized. We conclude that PA28gamma(-/-) mice, like PA28alpha(-/-)/beta(-/-) mice, are deficient in the processing of only specific Ags.
Collapse
Affiliation(s)
- Lance F Barton
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hagemann C, Patel R, Blank JL. MEKK3 interacts with the PA28 gamma regulatory subunit of the proteasome. Biochem J 2003; 373:71-9. [PMID: 12650640 PMCID: PMC1223459 DOI: 10.1042/bj20021758] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2002] [Revised: 03/07/2003] [Accepted: 03/21/2003] [Indexed: 11/17/2022]
Abstract
The proteasome is a multisubunit proteolytic enzyme comprising activator complexes bound to the 20 S catalytic core. The functions of the proteasomal activator (PA) 700 in ubiquitin/ATP-dependent protein degradation and of the PA28 alpha/beta activators in antigen presentation are well defined. However, the function of a third PA, PA28 gamma, remains elusive. We now show that mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinase (ERK) kinase kinase 3 (MEKK3), a MAPK kinase kinase (MAPKKK) involved in MAPK kinase 7 (MKK7)-c-Jun N-terminal kinase ('JNK') and MKK6-p38 signalling, can bind PA28 gamma but not PA28 alpha. In contrast, B-Raf, a MAPKKK specific for the MAPK/ERK kinase ('MEK')-ERK module, binds PA28 gamma and alpha. The PA28 gamma-binding domain of MEKK3 is located within its N-terminal regulatory domain (amino acids 1-178). Expression of MEKK3 in Cos-7 cells led to an increase in endogenous and co-expressed PA28 gamma protein levels, whereas kinase-deficient MEKK3 had no effect on PA28 gamma expression. Furthermore, in vitro assays indicated that PA28 gamma was a MEKK3 substrate. MEKK3 represents the first protein kinase capable of binding and phosphorylating a PA, and provides a potential mechanism to link stress-activated protein kinase signalling with the PA28 gamma-dependent proteasome.
Collapse
Affiliation(s)
- Carsten Hagemann
- Department of Cell Physiology and Pharmacology, University of Leicester, Medical Sciences Building, University Road, Leicester LE1 9HN, UK
| | | | | |
Collapse
|
39
|
Goldberg AL, Cascio P, Saric T, Rock KL. The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol Immunol 2002; 39:147-64. [PMID: 12200047 DOI: 10.1016/s0161-5890(02)00098-6] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Three different proteolytic processes have been shown to be important in the generation of antigenic peptides displayed on MHC-class I molecules. The great majority of these peoptides are derived from oligopeptides produced during the degradation of intracellular proteins by the ubiquitin-proteasome pathway. Novel methods were developed to follow this process in vitro. When pure 26S proteasomes degrade the model substrate, ovalbumin, they produce the immunodominant peptide, SIINFEKL, occasionally, but more often an N-extended form of SIINFEKL. Interferon-gamma stimulates antigen presentation in part by inducing new forms of the proteasome that are more efficient in antigen presentation, and in vitro these immunoproteasomes specifically produce more of the N-extended versions of SIINFEKL. In addition, gamma-interferon induces a novel 26S complex containing the 19S and 20S particles and the proteasome activator, PA28, which we show cleaves proteins in distinct ways. In vivo studies established that proteasomal cleavages produce the C-termini of antigenic peptides, but not their N-termini, which can be formed efficiently by aminopeptidases that trim longer proteasomal products to the presented epitopes. gamma-interferon stimulates this trimming process by inducing in the cytosol leucine aminopeptidase and a novel aminopeptidase in the ER. Peptides released by proteasomes, including antigenic peptides, are labile in cytosolic extracts, and most of the longer proteasome products are rapidly cleaved by the cytosolic enzyme, thymet oligopeptidase (TOP). If cells express large amounts of TOP, class I presentation decreases, and if TOP is inhibited, presentation increases. Thus, peptide degradation in the cytosol appears to limit the efficiency of antigen presentation.
Collapse
Affiliation(s)
- Alfred L Goldberg
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
40
|
Abstract
Proteasomes are highly abundant cytosolic and nuclear protease complexes that degrade most intracellular proteins in higher eukaryotes and appear to play a major role in the cytosolic steps of MHC class I antigen processing. This review summarizes the knowledge of the role of proteasomes in antigen processing and the impact of proteasomal proteolysis on T cell-mediated immunity.
Collapse
Affiliation(s)
- G Niedermann
- Max Planck Institute of Immunobiology, Stübeweg 51, 79108 Freiburg, Germany
| |
Collapse
|
41
|
Cascio P, Call M, Petre BM, Walz T, Goldberg AL. Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes. EMBO J 2002; 21:2636-45. [PMID: 12032076 PMCID: PMC126027 DOI: 10.1093/emboj/21.11.2636] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PA28 is a gamma-interferon-induced complex that associates with the 20S proteasome and stimulates breakdown of small peptides. Recent immunoprecipitation studies indicate that, in vivo, PA28 also exists in larger complexes that also contain the 19S particle, which is required for ATP-ubiquitin-dependent degradation of proteins. However, because of its lability, the structure and properties of this larger complex remain unclear. Here, we demonstrate that, in vitro, PA28 can associate with 'singly capped' 26S (i.e. 19S-20S) proteasomes. Electron microscopy of the resulting structures revealed one PA28 ring at one end of the 20S particle and a 19S complex at the other. These hybrid complexes show enhanced hydrolysis of small peptides, but no significant increase in rates of protein breakdown. Nevertheless, during breakdown of proteins, the complexes containing PA28alphabeta or PA28alpha generated a pattern of peptides different from those generated by 26S proteasomes, without altering mean product length. Presumably, this change in peptides produced accounts for the capacity of PA28 to enhance antigen presentation.
Collapse
Affiliation(s)
- Paolo Cascio
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
42
|
Kopp F, Dahlmann B, Kuehn L. Reconstitution of hybrid proteasomes from purified PA700-20 S complexes and PA28alphabeta activator: ultrastructure and peptidase activities. J Mol Biol 2001; 313:465-71. [PMID: 11676531 DOI: 10.1006/jmbi.2001.5063] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activity of the proteasome, the major non-lysosomal proteinase in eukaryotes, is stimulated by two activator complexes, PA700 and PA28. PA700-20 S-PA700 proteasome complexes, generally designated as 26 S proteasomes, degrade proteins, whereas complexes of the type PA28-20 S-PA28 degrade only peptides. We report, for the first time, the in vitro reconstitution of previously identified hybrid proteasomes (PA700-20 S-PA28) from purified PA700-20 S proteasome complexes and PA28 activator. In electron micrographs, the hybrid appears as a corkscrew-shaped particle with a PA700 and a PA28 activator each bound to a terminal alpha-disk of the 20 S core proteasome. The multiple peptidase activities of hybrid proteasomes are not different from those of PA28-20 S-PA28 or PA700-20 S-PA700 complexes.
Collapse
Affiliation(s)
- F Kopp
- Department of Clinical Biochemistry, Deutsches Diabetes-Forschungsinstitut, Düsseldorf, Germany
| | | | | |
Collapse
|
43
|
Masson P, Andersson O, Petersen UM, Young P. Identification and characterization of a Drosophila nuclear proteasome regulator. A homolog of human 11 S REGgamma (PA28gamma ). J Biol Chem 2001; 276:1383-90. [PMID: 11027688 DOI: 10.1074/jbc.m007379200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the cloning and characterization of a Drosophila proteasome 11 S REGgamma (PA28) homolog. The 28-kDa protein shows 47% identity to the human REGgamma and strongly enhances the trypsin-like activities of both Drosophila and mammalian 20 S proteasomes. Surprisingly, the Drosophila REG was found to inhibit the proteasome's chymotrypsin-like activity against the fluorogenic peptide succinyl-LLVY-7-amino-4-methylcoumarin. Immunocytological analysis reveals that the Drosophila REG is localized to the nucleus but is distributed throughout the cell when nuclear envelope breakdown occurs during mitosis. Through site-directed mutagenesis studies, we have identified a functional nuclear localization signal present in the homolog-specific insert region. The Drosophila PA28 NLS is similar to the oncogene c-Myc nuclear localization motif. Comparison between uninduced and innate immune induced Drosophila cells suggests that the REGgamma proteasome activator has a role independent of the invertebrate immune system. Our results support the idea that gamma class proteasome activators have an ancient conserved function within metazoans and were present prior to the emergence of the alpha and beta REG classes.
Collapse
Affiliation(s)
- P Masson
- Department of Molecular Biology, Stockholm University, S-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
44
|
Li Y, Salter-Cid L, Vitiello A, Preckel T, Lee JD, Angulo A, Cai Z, Peterson PA, Yang Y. Regulation of transporter associated with antigen processing by phosphorylation. J Biol Chem 2000; 275:24130-5. [PMID: 10823836 DOI: 10.1074/jbc.m003617200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP-binding cassette transporter associated with antigen processing (TAP) is required for transport of antigenic peptides, generated by proteasome complexes in the cytoplasm, into the lumen of the endoplasmic reticulum where assembly with major histocompatibility complex class I molecules takes place. The TAP transporter is a heterodimer of TAP1 and TAP2. Here we show that both TAP1 and TAP2 are phosphorylated under physiological conditions. Phosphorylation induces formation of high molecular weight TAP complexes that contain TAP1, TAP2, tapasin, and class I heterodimers. In addition, a 43-kDa phosphoprotein, which appears to be a kinase, is contained in the phosphorylated TAP-containing complexes. Phosphorylated TAP complexes are able to bind peptides and ATP, however, they are not capable of transporting peptides. After de-phosphorylation, TAP complexes regain the ability to transport peptides. Interestingly, phosphorylation levels of TAP complexes induced by viral infection inversely correlates with a significant reduction in TAP-dependent peptide transport activity. Enhanced TAP phosphorylation appears to be one of several strategies that viruses have exploited to better escape from host immune surveillance. These results demonstrate that major histocompatibility complex class I antigen processing and presentation is modulated by reversible TAP phosphorylation, and implicate the importance of TAP phosphorylation in the regulation of cytotoxic immune response.
Collapse
Affiliation(s)
- Y Li
- R. W. Johnson Pharmaceutical Research Institute, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Voges D, Zwickl P, Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 2000; 68:1015-68. [PMID: 10872471 DOI: 10.1146/annurev.biochem.68.1.1015] [Citation(s) in RCA: 1383] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In eukaryotic cells, most proteins in the cytosol and nucleus are degraded via the ubiquitin-proteasome pathway. The 26S proteasome is a 2.5-MDa molecular machine built from approximately 31 different subunits, which catalyzes protein degradation. It contains a barrel-shaped proteolytic core complex (the 20S proteasome), capped at one or both ends by 19S regulatory complexes, which recognize ubiquitinated proteins. The regulatory complexes are also implicated in unfolding and translocation of ubiquitinated targets into the interior of the 20S complex, where they are degraded to oligopeptides. Structure, assembly and enzymatic mechanism of the 20S complex have been elucidated, but the functional organization of the 19S complex is less well understood. Most subunits of the 19S complex have been identified, however, specific functions have been assigned to only a few. A low-resolution structure of the 26S proteasome has been obtained by electron microscopy, but the precise arrangement of subunits in the 19S complex is unclear.
Collapse
Affiliation(s)
- D Voges
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | |
Collapse
|
46
|
Abstract
There are two immune responses in vertebrates: humoral immunity is mediated by circulating antibodies, whereas cytotoxic T lymphocytes (CTL) confer cellular immunity. CTL lyse infected cells upon recognition of cell-surface MHC Class I molecules complexed with foreign peptides. The displayed peptides are produced in the cytosol by degradation of host proteins or proteins from intracellular pathogens that might be present. Proteasomes are cylindrical multisubunit proteases that generate many of the peptides eventually transferred to the cell surface for immune surveillance. In mammalian proteasomes, six active sites face a central chamber. As this chamber is sealed off from the enzyme's surface, there must be mechanisms to promote entry of substrates. Two protein complexes have been found to bind the ends of the proteasome and activate it. One of the activators is the 19 S regulatory complex of the 26 S proteasome; the other activator is '11 S REG' [Dubiel, Pratt, Ferrell and Rechsteiner (1992) J. Biol. Chem. 267, 22369-22377] or 'PA28' [Ma, Slaughter and DeMartino (1992) J. Biol. Chem. 267, 10515-10523]. During the past 7 years, our understanding of the structure of REG molecules has increased significantly, but much less is known about their biological functions. There are three REG subunits, namely alpha, beta and gamma. Recombinant REGalpha forms a ring-shaped heptamer of known crystal structure. 11 S REG is a heteroheptamer of alpha and beta subunits. REGgamma is also presumably a heptameric ring, and it is found in the nuclei of the nematode work Caenorhabditis elegans and higher organisms, where it may couple proteasomes to other nuclear components. REGalpha and REGbeta, which are abundant in vertebrate immune tissues, are located mostly in the cytoplasm. Synthesis of REG alpha and beta subunits is induced by interferon-gamma, and this has led to the prevalent hypothesis that REG alpha/beta hetero-oligomers play an important role in Class I antigen presentation. In the present review we focus on the structural properties of REG molecules and on the evidence that REGalpha/beta functions in the Class I immune response.
Collapse
|
47
|
Stohwasser R, Soza A, Eggers M, Koszinowski UH, Kloetzel PM. PA28alphabeta double and PA28beta single transfectant mouse B8 cell lines reveal enhanced presentation of a mouse cytomegalovirus (MCMV) pp89 MHC class I epitope. Mol Immunol 2000; 37:13-9. [PMID: 10781831 DOI: 10.1016/s0161-5890(00)00017-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PA28 is an interferon-gamma inducible modulator of proteasome function composed of two subunits, i.e. PA28alpha and PA28beta. Previously we showed that stabile overexpression of the PA28alpha subunit alone supported MHC class I antigen presentation of two viral epitopes. However, no information was obtained on the consequences when PA28alpha and PA28beta function in concert or when PA28beta is overexpressed on its own. Here we demonstrate that overexpression of PA28alpha and beta together is similarly efficient in supporting MHC class I antigen presentation of the MCMV pp89 9mer epitope as PA28alpha alone, excluding a potentially potentiating role of PA28beta. Surprisingly, and despite the fact that PA28beta alone was thought to be inactive and to only stabilize PA28 activity, overexpression of PA28beta also resulted in improved antigen presentation. However, by northernblot and immunoprecipitation experiments we show that while PA28alpha is able to act alone the observed effect in the PA28beta and PA28alphabeta transfectant cell lines is due to increased levels of PA28alphabeta complexes.
Collapse
Affiliation(s)
- R Stohwasser
- Institute of Biochemistry, Medical Faculty - Charité, Humboldt University, Monbijoustrasse 2, 10117, Berlin, Germany.
| | | | | | | | | |
Collapse
|
48
|
Preckel T, Fung-Leung WP, Cai Z, Vitiello A, Salter-Cid L, Winqvist O, Wolfe TG, Von Herrath M, Angulo A, Ghazal P, Lee JD, Fourie AM, Wu Y, Pang J, Ngo K, Peterson PA, Früh K, Yang Y. Impaired immunoproteasome assembly and immune responses in PA28-/- mice. Science 1999; 286:2162-5. [PMID: 10591649 DOI: 10.1126/science.286.5447.2162] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In vitro PA28 binds and activates proteasomes. It is shown here that mice with a disrupted PA28b gene lack PA28a and PA28b polypeptides, demonstrating that PA28 functions as a hetero-oligomer in vivo. Processing of antigenic epitopes derived from exogenous or endogenous antigens is altered in PA28-/- mice. Cytotoxic T lymphocyte responses are impaired, and assembly of immunoproteasomes is greatly inhibited in mice lacking PA28. These results show that PA28 is necessary for immunoproteasome assembly and is required for efficient antigen processing, thus demonstrating the importance of PA28-mediated proteasome function in immune responses.
Collapse
Affiliation(s)
- T Preckel
- The R. W. Johnson Pharmaceutical Research Institute, 3210 Merryfield Row, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
DeMartino GN, Slaughter CA. The proteasome, a novel protease regulated by multiple mechanisms. J Biol Chem 1999; 274:22123-6. [PMID: 10428771 DOI: 10.1074/jbc.274.32.22123] [Citation(s) in RCA: 395] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- G N DeMartino
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA.
| | | |
Collapse
|
50
|
Zaiss DM, Kloetzel PM. A second gene encoding the mouse proteasome activator PA28beta subunit is part of a LINE1 element and is driven by a LINE1 promoter. J Mol Biol 1999; 287:829-35. [PMID: 10222192 DOI: 10.1006/jmbi.1999.2656] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The PMSE2 gene encodes the beta-subunit of the proteasome activator PA28 and, as shown by genomic Southern blot analysis, there probably exist four copies sharing sequence homology with PMSE2. Here, we report that in the mouse genome there exist two different chromosomal loci for PA28beta, both of which are transcribed and and which encode a functional PA28beta subunit. One of these represents the previously described PMSE2 gene possessing an intron-exon structure and a gamma interferon (IFNgamma)-inducible promoter. The second one, named PMSE2b, which we describe here, exhibits all the characteristics of an expressed retrotransposon. Our data show that the PA28beta retrotransposon is inserted into a transcriptional active LINE1 element and is driven by a LINE1 F-type monomer promoter as revealed by luciferase assays. The resulting PMSE2b mRNA encodes a protein which is indistinguishable from that encoded by the IFNgamma-inducible PMSE2 gene. Since PA28 plays an important role in major histocompatibility complex class I antigen presentation, the implications for the mouse immune system through a constitutively expressed PA28beta subunit and the biological relevance of this finding are discussed.
Collapse
Affiliation(s)
- D M Zaiss
- Institute of Biochemistry-Charité, Humboldt University Medical School, Humboldt University, Monbijoustrasse 2, Berlin, 10117, Germany
| | | |
Collapse
|