1
|
Sager RA, Backe SJ, Ahanin E, Smith G, Nsouli I, Woodford MR, Bratslavsky G, Bourboulia D, Mollapour M. Therapeutic potential of CDK4/6 inhibitors in renal cell carcinoma. Nat Rev Urol 2022; 19:305-320. [PMID: 35264774 PMCID: PMC9306014 DOI: 10.1038/s41585-022-00571-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
The treatment of advanced and metastatic kidney cancer has entered a golden era with the addition of more therapeutic options, improved survival and new targeted therapies. Tyrosine kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors and immune checkpoint blockade have all been shown to be promising strategies in the treatment of renal cell carcinoma (RCC). However, little is known about the best therapeutic approach for individual patients with RCC and how to combat therapeutic resistance. Cancers, including RCC, rely on sustained replicative potential. The cyclin-dependent kinases CDK4 and CDK6 are involved in cell-cycle regulation with additional roles in metabolism, immunogenicity and antitumour immune response. Inhibitors of CDK4 and CDK6 are now commonly used as approved and investigative treatments in breast cancer, as well as several other tumours. Furthermore, CDK4/6 inhibitors have been shown to work synergistically with other kinase inhibitors, including mTOR inhibitors, as well as with immune checkpoint inhibitors in preclinical cancer models. The effect of CDK4/6 inhibitors in kidney cancer is relatively understudied compared with other cancers, but the preclinical studies available are promising. Collectively, growing evidence suggests that targeting CDK4 and CDK6 in kidney cancer, alone and in combination with current therapeutics including mTOR and immune checkpoint inhibitors, might have therapeutic benefit and should be further explored.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Garrett Smith
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Imad Nsouli
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Syracuse VA Medical Center, Syracuse, NY, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Syracuse VA Medical Center, Syracuse, NY, USA.
| |
Collapse
|
2
|
Miyata Y, Nishida E. Protein quality control of DYRK family protein kinases by the Hsp90-Cdc37 molecular chaperone. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:119081. [PMID: 34147560 DOI: 10.1016/j.bbamcr.2021.119081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/16/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022]
Abstract
The DYRK (Dual-specificity tYrosine-phosphorylation Regulated protein Kinase) family consists of five related protein kinases (DYRK1A, DYRK1B, DYRK2, DYRK3, DYRK4). DYRKs show homology to Drosophila Minibrain, and DYRK1A in human chromosome 21 is responsible for various neuronal disorders including human Down syndrome. Here we report identification of cellular proteins that associate with specific members of DYRKs. Cellular proteins with molecular masses of 90, 70, and 50-kDa associated with DYRK1B and DYRK4. These proteins were identified as molecular chaperones Hsp90, Hsp70, and Cdc37, respectively. Microscopic analysis of GFP-DYRKs showed that DYRK1A and DYRK1B were nuclear, while DYRK2, DYRK3, and DYRK4 were mostly cytoplasmic in COS7 cells. Overexpression of DYRK1B induced nuclear re-localization of these chaperones with DYRK1B. Treatment of cells with specific Hsp90 inhibitors, geldanamycin and 17-AAG, abolished the association of Hsp90 and Cdc37 with DYRK1B and DYRK4, but not of Hsp70. Inhibition of Hsp90 chaperone activity affected intracellular dynamics of DYRK1B and DYRK4. DYRK1B and DYRK4 underwent rapid formation of cytoplasmic punctate dots after the geldanamycin treatment, suggesting that the chaperone function of Hsp90 is required for prevention of protein aggregation of the target kinases. Prolonged inhibition of Hsp90 by geldanamycin, 17-AAG, or ganetespib, decreased cellular levels of DYRK1B and DYRK4. Finally, DYRK1B and DYRK4 were ubiquitinated in cells, and ubiquitinated DYRK1B and DYRK4 further increased by Hsp90 inhibition with geldanamycin. Taken together, these results indicate that Hsp90 and Cdc37 discriminate specific members of the DYRK kinase family and play an important role in quality control of these client kinases in cells.
Collapse
Affiliation(s)
- Yoshihiko Miyata
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| | - Eisuke Nishida
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
HSP-90/kinase complexes are stabilized by the large PPIase FKB-6. Sci Rep 2021; 11:12347. [PMID: 34117308 PMCID: PMC8196007 DOI: 10.1038/s41598-021-91667-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Protein kinases are important regulators in cellular signal transduction. As one major type of Hsp90 client, protein kinases rely on the ATP-dependent molecular chaperone Hsp90, which maintains their structure and supports their activation. Depending on client type, Hsp90 interacts with different cofactors. Here we report that besides the kinase-specific cofactor Cdc37 large PPIases of the Fkbp-type strongly bind to kinase•Hsp90•Cdc37 complexes. We evaluate the nucleotide regulation of these assemblies and identify prominent interaction sites in this quaternary complex. The synergistic interaction between the participating proteins and the conserved nature of the interaction suggests functions of the large PPIases Fkbp51/Fkbp52 and their nematode homolog FKB-6 as contributing factors to the kinase cycle of the Hsp90 machinery.
Collapse
|
4
|
Wang L, Zhang Q, You Q. Targeting the HSP90-CDC37-kinase chaperone cycle: A promising therapeutic strategy for cancer. Med Res Rev 2021; 42:156-182. [PMID: 33846988 DOI: 10.1002/med.21807] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 12/25/2022]
Abstract
Heat shock protein 90 (HSP90) is an indispensable molecular chaperone that facilitates the maturation of numerous oncoproteins in cancer cells, including protein kinases, ribonucleoproteins, steroid hormone receptors, and transcription factors. Although over 30 HSP90 inhibitors have steadily entered clinical trials, further clinical advancement has been restricted by their limited efficacy, inevitable heat shock response, and multiple side-effects, likely induced via an ATP inhibition mechanism. Since both ATP and various co-chaperones play essential roles in the HSP90 chaperone cycle to achieve integrated function, optimal therapeutics require an understanding of the dynamic interactions among HSP90, ATP, and cochaperones. To date, continuous research has promoted the exploration of the cochaperone cell division cycle 37 (CDC37) as a kinase-specific recognizer and has shown that the HSP90-CDC37-kinase complex is particularly relevant in cancers. Indeed, disrupting the HSP90-CDC37-kinase complex, rather than totally blocking the ATP function of HSP90, is emerging as an alternative way to avoid the limitations of current inhibitors. In this review, we first briefly introduce the HSP90-CDC37-kinase cycle and present the currently available approaches for inhibitor development targeting this cycle and provide insights into selective regulation of the kinase clients of HSP90 by more directional ways.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Zhao C, Peng C, Wang P, Fan S, Yan L, Qiu L. Identification of co-chaperone Cdc37 in Penaeus monodon: coordination with Hsp90 can reduce cadmium stress-induced lipid peroxidation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111800. [PMID: 33340955 DOI: 10.1016/j.ecoenv.2020.111800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Cell division cycle 37 (Cdc37) is an important cytoplasmic phosphoprotein, which usually functions as a complex with heat shock protein 90 (Hsp90), to effectively reduce the damage caused by heavy metals, such as cadmium (Cd), in aquatic animals. The high toxicity of Cd in aquatic systems generally has a deleterious effect on healthy farming of shrimps. In the present study, a novel Cdc37 gene from Penaeus monodon was identified and designated as PmCdc37. Following exposure to Cd stress, the expression levels of PmCdc37 were upregulated at the transcriptional level in both the hepatopancreas and hemolymph. RNA interference and recombinant protein injection experiments were carried out to determine the function of PmCdc37 in P. monodon following Cd exposure. To clarify the correlations between PmCdc37 and PmHsp90, the respective recombinant proteins were expressed in vitro, and the ATPase activity of PmHsp90, with or without PmCdc37, was assessed. Moreover, a pull-down assay was conducted to detect the correlation between PmCdc37 and PmHsp90. After analyzing the expression patterns of PmHsp90 following Cd challenge, whether PmHsp90 can promote the ability of PmCdc37 to resist Cd stress or not was investigated. The results showed that formation of a PmHsp90/PmCdc37 complex protected shrimp against Cd stress-induced damage. Moreover, we also confirmed that PmSOD is involved in Cd stress, and that the PmHsp90/PmCdc37 complex can regulate SOD enzymatic activity. PmSOD was involved in decreasing the MDA content in shrimp hemolymph caused by Cd stress. We concluded that during exposure to Cd, the PmHsp90/PmCdc37 complex increases SOD enzyme activity, and in turn decreases the MDA content, thereby protecting shrimp against the damage caused by Cd stress. The present studies contribute to understanding the molecular mechanism underlying resistance to Cd stress in shrimp.
Collapse
Affiliation(s)
- Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Chao Peng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Pengfei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Sigang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Science, China.
| |
Collapse
|
6
|
Eguchi T, Sogawa C, Ono K, Matsumoto M, Tran MT, Okusha Y, Lang BJ, Okamoto K, Calderwood SK. Cell Stress Induced Stressome Release Including Damaged Membrane Vesicles and Extracellular HSP90 by Prostate Cancer Cells. Cells 2020; 9:cells9030755. [PMID: 32204513 PMCID: PMC7140686 DOI: 10.3390/cells9030755] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor cells exhibit therapeutic stress resistance-associated secretory phenotype involving extracellular vesicles (EVs) such as oncosomes and heat shock proteins (HSPs). Such a secretory phenotype occurs in response to cell stress and cancer therapeutics. HSPs are stress-responsive molecular chaperones promoting proper protein folding, while also being released from cells with EVs as well as a soluble form known as alarmins. We have here investigated the secretory phenotype of castration-resistant prostate cancer (CRPC) cells using proteome analysis. We have also examined the roles of the key co-chaperone CDC37 in the release of EV proteins including CD9 and epithelial-to-mesenchymal transition (EMT), a key event in tumor progression. EVs derived from CRPC cells promoted EMT in normal prostate epithelial cells. Some HSP family members and their potential receptor CD91/LRP1 were enriched at high levels in CRPC cell-derived EVs among over 700 other protein types found by mass spectrometry. The small EVs (30-200 nm in size) were released even in a non-heated condition from the prostate cancer cells, whereas the EMT-coupled release of EVs (200-500 nm) and damaged membrane vesicles with associated HSP90α was increased after heat shock stress (HSS). GAPDH and lactate dehydrogenase, a marker of membrane leakage/damage, were also found in conditioned media upon HSS. During this stress response, the intracellular chaperone CDC37 was transcriptionally induced by heat shock factor 1 (HSF1), which activated the CDC37 core promoter, containing an interspecies conserved heat shock element. In contrast, knockdown of CDC37 decreased EMT-coupled release of CD9-containing vesicles. Triple siRNA targeting CDC37, HSP90α, and HSP90β was required for efficient reduction of this chaperone trio and to reduce tumorigenicity of the CRPC cells in vivo. Taken together, we define "stressome" as cellular stress-induced all secretion products, including EVs (200-500 nm), membrane-damaged vesicles and remnants, and extracellular HSP90 and GAPDH. Our data also indicated that CDC37 is crucial for the release of vesicular proteins and tumor progression in prostate cancer.
Collapse
Affiliation(s)
- Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (C.S.); (M.T.T.); (Y.O.); (K.O.)
- Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Correspondence: (T.E.); (S.K.C.); Tel.: +81-86-235-6662 (T.E.); +1-617-735-2947 (S.K.C.)
| | - Chiharu Sogawa
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (C.S.); (M.T.T.); (Y.O.); (K.O.)
| | - Kisho Ono
- Department of Oral and Maxillofacial Surgery, Okayama University Hospital, Okayama 700-0914, Japan;
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan;
| | - Manh Tien Tran
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (C.S.); (M.T.T.); (Y.O.); (K.O.)
| | - Yuka Okusha
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (C.S.); (M.T.T.); (Y.O.); (K.O.)
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Benjamin J. Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (C.S.); (M.T.T.); (Y.O.); (K.O.)
| | - Stuart K. Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
- Correspondence: (T.E.); (S.K.C.); Tel.: +81-86-235-6662 (T.E.); +1-617-735-2947 (S.K.C.)
| |
Collapse
|
7
|
MZF1 and SCAND1 Reciprocally Regulate CDC37 Gene Expression in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11060792. [PMID: 31181782 PMCID: PMC6627353 DOI: 10.3390/cancers11060792] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 12/27/2022] Open
Abstract
Cell division control 37 (CDC37) increases the stability of heat shock protein 90 (HSP90) client proteins and is thus essential for numerous intracellular oncogenic signaling pathways, playing a key role in prostate oncogenesis. Notably, elevated expression of CDC37 was found in prostate cancer cells, although the regulatory mechanisms through which CDC37 expression becomes increased are unknown. Here we show both positive and negative regulation of CDC37 gene transcription by two members of the SREZBP-CTfin51-AW1-Number 18 cDNA (SCAN) transcription factor family—MZF1 and SCAND1, respectively. Consensus DNA-binding motifs for myeloid zinc finger 1 (MZF1/ZSCAN6) were abundant in the CDC37 promoter region. MZF1 became bound to these regulatory sites and trans-activated the CDC37 gene whereas MZF1 depletion decreased CDC37 transcription and reduced the tumorigenesis of prostate cancer cells. On the other hand, SCAND1, a zinc fingerless SCAN box protein that potentially inhibits MZF1, accumulated at MZF1-binding sites in the CDC37 gene, negatively regulated the CDC37 gene and inhibited tumorigenesis. SCAND1 was abundantly expressed in normal prostate cells but was reduced in prostate cancer cells, suggesting a potential tumor suppressor role of SCAND1 in prostate cancer. These findings indicate that CDC37, a crucial protein in prostate cancer progression, is regulated reciprocally by MZF1 and SCAND1.
Collapse
|
8
|
Wood DJ, Endicott JA. Structural insights into the functional diversity of the CDK-cyclin family. Open Biol 2019; 8:rsob.180112. [PMID: 30185601 PMCID: PMC6170502 DOI: 10.1098/rsob.180112] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022] Open
Abstract
Since their characterization as conserved modules that regulate progression through the eukaryotic cell cycle, cyclin-dependent protein kinases (CDKs) in higher eukaryotic cells are now also emerging as significant regulators of transcription, metabolism and cell differentiation. The cyclins, though originally characterized as CDK partners, also have CDK-independent roles that include the regulation of DNA damage repair and transcriptional programmes that direct cell differentiation, apoptosis and metabolic flux. This review compares the structures of the members of the CDK and cyclin families determined by X-ray crystallography, and considers what mechanistic insights they provide to guide functional studies and distinguish CDK- and cyclin-specific activities. Aberrant CDK activity is a hallmark of a number of diseases, and structural studies can provide important insights to identify novel routes to therapy.
Collapse
Affiliation(s)
- Daniel J Wood
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jane A Endicott
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
9
|
Li X, Zhu G, Yao X, Wang N, Hu R, Kong Q, Zhou D, Long L, Cai J, Zhou W. Celastrol induces ubiquitin-dependent degradation of mTOR in breast cancer cells. Onco Targets Ther 2018; 11:8977-8985. [PMID: 30588010 PMCID: PMC6294079 DOI: 10.2147/ott.s187315] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Celastrol is a major active component of the thunder god vine (Tripterygium wilfordii) used in traditional Chinese medicine to treat chronic inflammatory and autoimmune diseases. Celastrol inhibits PI3K-Akt-mTOR signaling, which is frequently dysregulated in tumors and critical for tumor-cell proliferation and survival, but the underlying mechanisms are still not fully understood. In the present study, we investigated detailed mechanisms of celastrol inhibition of mTOR signaling in breast cancer cells. Methods First, we evaluated the effect of celastrol on breast cancer-cell growth using MTT assays. Second, we examined the effects of celastrol on mTOR phosphorylation and expression using Western blot. Furthermore, we investigated the cause of mTOR downregulation by celastrol using immunoprecipitation assays. In addition, we evaluated the effect of celastrol on an MDA-MB231 cell-derived xenograft model. Results Celastrol suppressed breast cancer cell growth in vitro and in vivo. Celastrol inhibited mTOR phosphorylation and induced mTOR ubiquitination, resulting in its proteasomal degradation. Mechanistically, we found that mTOR is a client of Hsp90-Cdc37 chaperone complex, and celastrol disrupts mTOR interaction with chaperone Hsp90 while promoting mTOR association with cochaperone Cdc37. Conclusion Our study reveals that celastrol suppresses mTOR signaling, at least in part through regulating its association with chaperones and inducing its ubiquitination.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China, .,Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, P.R. China, .,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, P.R. China,
| | - Guangbei Zhu
- Dapartment of Biophamaceutics, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, P.R. China
| | - Xintong Yao
- Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, P.R. China, .,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, P.R. China,
| | - Ning Wang
- First Affiliated Hospital's Central Laboratory, Army Medical University, Chongqing 400038, P.R. China
| | - Ronghui Hu
- Department of Radiology, Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Qingxin Kong
- Department of Pharmaceutical Engineering, Jiangsu Food and Pharmaceutical Science College, Jiangsu 223003, P.R. China
| | - Duanfang Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China, .,Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, P.R. China, .,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, P.R. China,
| | - Liangyuan Long
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China, .,Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, P.R. China, .,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, P.R. China,
| | - Jiali Cai
- Dapartment of Biophamaceutics, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, P.R. China
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China, .,Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, P.R. China, .,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, P.R. China,
| |
Collapse
|
10
|
Zhu J, Yan F, Tao J, Zhu X, Liu J, Deng S, Zhang X. Cdc37 facilitates cell survival of colorectal carcinoma via activating the CDK4 signaling pathway. Cancer Sci 2018; 109:656-665. [PMID: 29288563 PMCID: PMC5834791 DOI: 10.1111/cas.13495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/12/2017] [Accepted: 12/20/2017] [Indexed: 01/03/2023] Open
Abstract
Cell division cycle 37 (Cdc37) is an important partner for heat shock protein 90 (HSP90), assisting in molecular chaperone activities, particularly with regard to the regulation of protein kinases. Given its influence on cell growth pathways, Cdc37 has been discussed as a potential intermediate in carcinogenesis. However, to date, the potential functional roles and molecular mechanisms by which Cdc37 regulates cell survival in colorectal carcinoma (CRC) remain unclear. Here, we investigated the expression of Cdc37 and its clinical significance in CRC, and systematically explored the role and the underlying mechanism of Cdc37 in CRC cell survival both in vitro and in vivo. Our results showed that Cdc37 was remarkably up-regulated in CRC, which facilitated cell survival mainly by promoting cell proliferation, G1-S transition, and inhibiting cell apoptosis. Our data further indicated that Cdc37 increased the stability of cyclin-dependent kinase 4 (CDK4) to activate the retinoblastoma 1 (RB1) signaling pathway, followed by increased expression of Bcl-2 and Bcl-xL, which ultimately promoted cell survival in CRC. Moreover, knockdown of CDK4 reversed the Cdc37-mediated effect in promoting the progression of CRC. Our findings showed that Cdc37 played a critical role in promoting CRC cell survival by increasing CDK4 stability to activate the RB1 signaling pathway. Thereby, Cdc37 might serve as a potential therapeutic target in CRC patients.
Collapse
Affiliation(s)
- Jianjun Zhu
- Department of Human Anatomy and Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Fang Yan
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jia Tao
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaohua Zhu
- Department of Human Anatomy and Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Jiayou Liu
- Department of Human Anatomy and Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Shishan Deng
- Department of Human Anatomy and Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Xiaoming Zhang
- Sichuan Key Laboratory of Medical Imaging and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
11
|
Li T, Chen X, Dai XY, Wei B, Weng QJ, Chen X, Ouyang DF, Yan R, Huang ZJ, Jiang HL, Zhu H, Lu JJ. Novel Hsp90 inhibitor platycodin D disrupts Hsp90/Cdc37 complex and enhances the anticancer effect of mTOR inhibitor. Toxicol Appl Pharmacol 2017; 330:65-73. [DOI: 10.1016/j.taap.2017.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 02/02/2023]
|
12
|
Oncogenic activity of amplified miniature chromosome maintenance 8 in human malignancies. Oncogene 2017; 36:3629-3639. [PMID: 28481876 PMCID: PMC5481462 DOI: 10.1038/onc.2017.123] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 01/02/2023]
Abstract
Miniature chromosome maintenance (MCM) proteins play critical roles in DNA replication licensing, initiation and elongation. MCM8, one of the MCM proteins playing a critical role in DNA repairing and recombination, was found to have over-expression and increased DNA copy number in a variety of human malignancies. The gain of MCM8 is associated with aggressive clinical features of several human cancers. Increased expression of MCM8 in prostate cancer is associated with cancer recurrence. Forced expression of MCM8 in RWPE1 cells, the immortalized but non-transformed prostate epithelial cell line, exhibited fast cell growth and transformation, while knocked down of MCM8 in PC3, DU145 and LNCaP cells induced cell growth arrest, and decreased tumor volumes and mortality of severe combined immunodeficiency mice xenografted with PC3 and DU145 cells. MCM8 bound cyclin D1 and activated Rb protein phosphorylation by cyclin-dependent kinase 4 in vitro and in vivo. The cyclin D1/MCM8 interaction is required for Rb phosphorylation and S phase entry in cancer cells. As a result, our study showed that copy number increase and overexpression of MCM8 may play critical roles in human cancer development.
Collapse
|
13
|
Bahieldin A, Atef A, Shokry AM, Al-Karim S, Al Attas SG, Gadallah NO, Edris S, Al-Kordy MA, Omer AMS, Sabir JSM, Ramadan AM, Al-Hajar ASM, Makki RM, Hassan SM, El-Domyati FM. Structural identification of putative USPs in Catharanthus roseus. C R Biol 2015; 338:643-9. [PMID: 26318047 DOI: 10.1016/j.crvi.2015.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 07/18/2015] [Indexed: 10/23/2022]
Abstract
Nucleotide sequences of the C. roseus SRA database were assembled and translated in order to detect putative universal stress proteins (USPs). Based on the known conserved USPA domain, 24 Pfam putative USPA proteins in C. roseus were detected and arranged in six architectures. The USPA-like domain was detected in all architectures, while the protein kinase-like (or PK-like), (tyr)PK-like and/or U-box domains are shown downstream it. Three other domains were also shown to coexist with the USPA domain in C. roseus putative USPA sequences. These domains are tetratricopeptide repeat (or TPR), apolipophorin III (or apoLp-III) and Hsp90 co-chaperone Cdc37. Subsequent analysis divided USPA-like domains based on the ability to bind ATP. The multiple sequence alignment indicated the occurrence of eight C. roseus residues of known features of the bacterial 1MJH secondary structure. The data of the phylogenetic tree indicated several distinct groups of USPA-like domains confirming the presence of high level of sequence conservation between the plant and bacterial USPA-like sequences.
Collapse
Affiliation(s)
- Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.
| | - Ahmed Atef
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia.
| | - Ahmed M Shokry
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt.
| | - Saleh Al-Karim
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia.
| | - Sanaa G Al Attas
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia.
| | - Nour O Gadallah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt.
| | - Sherif Edris
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt; Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), Faculty of Medicine, King Abdulaziz University (KAU), Jeddah, Saudi Arabia.
| | - Magdy A Al-Kordy
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt.
| | - Abdulkader M Shaikh Omer
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia.
| | - Jamal S M Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia.
| | - Ahmed M Ramadan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt.
| | - Abdulrahman S M Al-Hajar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia.
| | - Rania M Makki
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia.
| | - Sabah M Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.
| | - Fotouh M El-Domyati
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
14
|
Jirawatnotai S, Sharma S, Michowski W, Suktitipat B, Geng Y, Quackenbush J, Elias JE, Gygi SP, Wang YE, Sicinski P. The cyclin D1-CDK4 oncogenic interactome enables identification of potential novel oncogenes and clinical prognosis. Cell Cycle 2015; 13:2889-900. [PMID: 25486477 DOI: 10.4161/15384101.2014.946850] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Overexpression of cyclin D1 and its catalytic partner, CDK4, is frequently seen in human cancers. We constructed cyclin D1 and CDK4 protein interaction network in a human breast cancer cell line MCF7, and identified novel CDK4 protein partners. Among CDK4 interactors we observed several proteins functioning in protein folding and in complex assembly. One of the novel partners of CDK4 is FKBP5, which we found to be required to maintain CDK4 levels in cancer cells. An integrative analysis of the extended cyclin D1 cancer interactome and somatic copy number alterations in human cancers identified BAIAPL21 as a potential novel human oncogene. We observed that in several human tumor types BAIAPL21 is expressed at higher levels as compared to normal tissue. Forced overexpression of BAIAPL21 augmented anchorage independent growth, increased colony formation by cancer cells and strongly enhanced the ability of cells to form tumors in vivo. Lastly, we derived an Aggregate Expression Score (AES), which quantifies the expression of all cyclin D1 interactors in a given tumor. We observed that AES has a prognostic value among patients with ER-positive breast cancers. These studies illustrate the utility of analyzing the interactomes of proteins involved in cancer to uncover potential oncogenes, or to allow better cancer prognosis.
Collapse
Key Words
- ACN, acetonitrile
- AES, aggregate expression score
- ATCC, American type culture collection
- CDK4
- DMEM, Dulbecco's Modified Eagle's medium
- FBS, fetal bovine serum
- LC-MS/MS, liquid chromatography-tandem mass spectrometry
- PPI, protein-protein interaction
- RPMI, Roswell Park Memorial Institute medium
- SCNA, somatic copy-number variation
- TCGA, the cancer genome atlas
- WB, immunoblotting
- breast cancer
- cyclin D1
- interactome
- oncogenes
- oncogenic signature
- siFKBP4, FKBP4-specific small interfering RNA
- siFKBP5, FKBP5-specific small interfering RNA
- siRNA, small interfering RNA
- sicont, control small interfering RNA
- sicyclin D1, cyclin D1-specific small interfering RNA
Collapse
Affiliation(s)
- Siwanon Jirawatnotai
- a Department of Pharmacology; Faculty of Medicine Siriraj Hospital ; Mahidol University ; Bangkok , Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Hsp90 is a major molecular chaperone that is expressed abundantly and plays a pivotal role in assisting correct folding and functionality of its client proteins in cells. The Hsp90 client proteins include a wide variety of signal transducing molecules such as protein kinases and steroid hormone receptors. Cancer is a complex disease, but most types of human cancer share common hallmarks, including self-sufficiency in growth signals, insensitivity to growth-inhibitory mechanism, evasion of programmed cell death, limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasis. A surprisingly large number of Hsp90-client proteins play crucial roles in establishing cancer cell hallmarks. We start the review by describing the structure and function of Hsp90 since conformational changes during the ATPase cycle of Hsp90 are closely related to its function. Many co-chaperones, including Hop, p23, Cdc37, Aha1, and PP5, work together with Hsp90 by modulating the chaperone machinery. Post-translational modifications of Hsp90 and its cochaperones are vital for their function. Many tumor-related Hsp90-client proteins, including signaling kinases, steroid hormone receptors, p53, and telomerase, are described. Hsp90 and its co-chaperones are required for the function of these tumor-promoting client proteins; therefore, inhibition of Hsp90 by specific inhibitors such as geldanamycin and its derivatives attenuates the tumor progression. Hsp90 inhibitors can be potential and effective cancer chemotherapeutic drugs with a unique profile and have been examined in clinical trials. We describe possible mechanisms why Hsp90 inhibitors show selectivity to cancer cells even though Hsp90 is essential also for normal cells. Finally, we discuss the "Hsp90-addiction" of cancer cells, and suggest a role for Hsp90 in tumor evolution.
Collapse
Affiliation(s)
- Yoshihiko Miyata
- Department of Cell & Developmental Biology, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
16
|
Miyata Y, Nakamoto H, Neckers L. The therapeutic target Hsp90 and cancer hallmarks. Curr Pharm Des 2013; 19:347-65. [PMID: 22920906 DOI: 10.2174/138161213804143725] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/15/2012] [Indexed: 01/22/2023]
Abstract
Hsp90 is a major molecular chaperone that is expressed abundantly and plays a pivotal role in assisting correct folding and functionality of its client proteins in cells. The Hsp90 client proteins include a wide variety of signal transducing molecules such as protein kinases and steroid hormone receptors. Cancer is a complex disease, but most types of human cancer share common hallmarks, including self-sufficiency in growth signals, insensitivity to growth-inhibitory mechanism, evasion of programmed cell death, limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasis. A surprisingly large number of Hsp90-client proteins play crucial roles in establishing cancer cell hallmarks. We start the review by describing the structure and function of Hsp90 since conformational changes during the ATPase cycle of Hsp90 are closely related to its function. Many co-chaperones, including Hop, p23, Cdc37, Aha1, and PP5, work together with Hsp90 by modulating the chaperone machinery. Post-translational modifications of Hsp90 and its cochaperones are vital for their function. Many tumor-related Hsp90-client proteins, including signaling kinases, steroid hormone receptors, p53, and telomerase, are described. Hsp90 and its co-chaperones are required for the function of these tumor-promoting client proteins; therefore, inhibition of Hsp90 by specific inhibitors such as geldanamycin and its derivatives attenuates the tumor progression. Hsp90 inhibitors can be potential and effective cancer chemotherapeutic drugs with a unique profile and have been examined in clinical trials. We describe possible mechanisms why Hsp90 inhibitors show selectivity to cancer cells even though Hsp90 is essential also for normal cells. Finally, we discuss the "Hsp90-addiction" of cancer cells, and suggest a role for Hsp90 in tumor evolution.
Collapse
Affiliation(s)
- Yoshihiko Miyata
- Department of Cell & Developmental Biology, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
17
|
Hsp90 inhibitor 17-DMAG decreases expression of conserved herpesvirus protein kinases and reduces virus production in Epstein-Barr virus-infected cells. J Virol 2013; 87:10126-38. [PMID: 23843639 DOI: 10.1128/jvi.01671-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
All eight human herpesviruses have a conserved herpesvirus protein kinase (CHPK) that is important for the lytic phase of the viral life cycle. In this study, we show that heat shock protein 90 (Hsp90) interacts directly with each of the eight CHPKs, and we demonstrate that an Hsp90 inhibitor drug, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), decreases expression of all eight CHPKs in transfected HeLa cells. 17-DMAG also decreases expression the of the endogenous Epstein-Barr virus protein kinase (EBV PK, encoded by the BGLF4 gene) in lytically infected EBV-positive cells and inhibits phosphorylation of several different known EBV PK target proteins. Furthermore, 17-DMAG treatment abrogates expression of the human cytomegalovirus (HCMV) kinase UL97 in HCMV-infected human fibroblasts. Importantly, 17-DMAG treatment decreased the EBV titer approximately 100-fold in lytically infected AGS-Akata cells without causing significant cellular toxicity during the same time frame. Increased EBV PK expression in 17-DMAG-treated AGS-Akata cells did not restore EBV titers, suggesting that 17-DMAG simultaneously targets multiple viral and/or cellular proteins required for efficient viral replication. These results suggest that Hsp90 inhibitors, including 17-DMAG, may be a promising group of drugs that could have profound antiviral effects on herpesviruses.
Collapse
|
18
|
Zhang L, Hou Y, Wu K, Li D. Comparative proteomics analysis of chronic atrophic gastritis: changes of protein expression in chronic atrophic gastritis without Helicobacter pylori infection. Braz J Med Biol Res 2012; 45:273-83. [PMID: 22370706 PMCID: PMC3854201 DOI: 10.1590/s0100-879x2012007500026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 02/01/2012] [Indexed: 11/22/2022] Open
Abstract
Chronic atrophic gastritis (CAG) is a very common gastritis and one of the major precursor lesions of gastric cancer, one of the most common cancers worldwide. The molecular mechanism underlying CAG is unclear, but its elucidation is essential for the prevention and early detection of gastric cancer and appropriate intervention. A combination of two-dimensional gel electrophoresis and mass spectrometry was used in the present study to analyze the differentially expressed proteins. Samples from 21 patients (9 females and 12 males; mean age: 61.8 years) were used. We identified 18 differentially expressed proteins in CAG compared with matched normal mucosa. Eight proteins were up-regulated and 10 down-regulated in CAG when compared with the same amounts of proteins in individually matched normal gastric mucosa. Two novel proteins, proteasome activator subunit 1 (PSME1), which was down-regulated in CAG, and ribosomal protein S12 (RPS12), which was up-regulated in CAG, were further investigated. Their expression was validated by Western blot and RT-PCR in 15 CAG samples matched with normal mucosa. The expression level of RPS12 was significantly higher in CAG than in matched normal gastric mucosa (P < 0.05). In contrast, the expression level of PSME1 in CAG was significantly lower than in matched normal gastric mucosa (P < 0.05). This study clearly demonstrated that there are some changes in protein expression between CAG and normal mucosa. In these changes, down-regulation of PSME1 and up-regulation of RPS12 could be involved in the development of CAG. Thus, the differentially expressed proteins might play important roles in CAG as functional molecules.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Gastroenterology and Hepatology, The 309 Hospital of People's Liberation Army, Beijing, China.
| | | | | | | |
Collapse
|
19
|
Hsp90 in non-mammalian metazoan model systems. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:712-21. [PMID: 21983200 DOI: 10.1016/j.bbamcr.2011.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 01/26/2023]
Abstract
The molecular chaperone Hsp90 has been discovered in the heat-shock response of the fruit fly more than 30years ago. Today, it is becoming clear that Hsp90 is in the middle of a regulatory system, participating in the modulation of many essential client proteins and signaling pathways. Exerting these activities, Hsp90 works together with about a dozen of cochaperones. Due to their organismal simplicity and the possibility to influence their genetics on a large scale, many studies have addressed the function of Hsp90 in several multicellular model systems. Defined pathways involving Hsp90 client proteins have been identified in the metazoan model systems of Caenorhabditis elegans, Drosophila melanogaster and the zebrafish Danio rerio. Here, we summarize the functions of Hsp90 during muscle maintenance, development of phenotypic traits and the involvement of Hsp90 in stress responses, all of which were largely uncovered using the model organisms covered in this review. These findings highlight the many specific and general actions of the Hsp90 chaperone machinery. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
|
20
|
Chen YQ, Xie X. Podophyllotoxin induces CREB phosphorylation and CRE-driven gene expression via PKA but not MAPKs. Mol Cells 2010; 29:41-50. [PMID: 20033853 DOI: 10.1007/s10059-010-0015-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/15/2009] [Accepted: 10/20/2009] [Indexed: 12/11/2022] Open
Abstract
CRE-driven luciferase reporter is commonly used in drug screening systems involving G protein-coupled receptors (GPCRs). In a screen campaign designed to search for melanocortin-4 receptor (MC4R) agonists, podophyllotoxin, a microtubules disruptor, was found to induce cAMP-responsive element (CRE)-driven reporter expression. MC4R was not involved because podophyllotoxin induced CREB activation and CRE-driven transcription in cells not expressing MC4R. Previous studies indicated that intracellular calcium, PKA, and MAPKs are involved in CREB phosphorylation and activation. Our studies revealed that podophyllotoxin did not affect intracellular calcium level and the phosphorylation state of p38. Podophyllotoxin induced JNK and ERK activation, but blockade of JNK and ERK activation with specific inhibitors had no effect on podophyllotoxin-induced CREB activation and CRE-regulated gene expression. Further experiments revealed that H89, a specific inhibitor of PKA, significantly inhibited podophyllotoxin-induced CREB activation. Podophyllotoxin itself did not alter intracellular cAMP level. Taken together, podophyllotoxin induces CREB activation and CRE-driven gene expression via PKA activation by a cAMP-independent mechanism.
Collapse
Affiliation(s)
- Ya Qiong Chen
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | | |
Collapse
|
21
|
Feo F, Frau M, Pascale RM. Interaction of major genes predisposing to hepatocellular carcinoma with genes encoding signal transduction pathways influences tumor phenotype and prognosis. World J Gastroenterol 2008; 14:6601-15. [PMID: 19034960 PMCID: PMC2773299 DOI: 10.3748/wjg.14.6601] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Studies on rodents and humans demonstrate an inherited predisposition to hepatocellular carcinoma (HCC). Analysis of the molecular alterations involved in the acquisition of a phenotype resistant or susceptible to hepatocarcinogenesis showed a deregulation of G1 and S phases in HCC of genetically susceptible F344 rats and a G1-S block in lesions of resistant Brown norway (BN) rats. Unrestrained extracellular signal-regulated kinase (ERK) activity linked to proteasomal degradation of dual-specificity phosphatase 1 (DUSP1), a specific ERK inhibitor, by the CKS1-SKP2 ubiquitin ligase complex occurs in more aggressive HCC of F344 rats and humans. This mechanism is less active in HCC of BN rats and human HCC with better prognosis. Upregulation of iNos cross-talk with IKK/NF-κB and RAS/ERK pathways occurs in rodent liver lesions at higher levels in the most aggressive models represented by HCC of F344 rats and c-Myc-TGF-α transgenic mice. iNOS, IKK/NF-κB, and RAS/ERK upregulation is highest in human HCC with a poorer prognosis and positively correlates with tumor proliferation, genomic instability and microvascularization, and negatively with apoptosis. Thus, cell cycle regulation and the activity of signal transduction pathways seem to be modulated by HCC modifier genes, and differences in their efficiency influence the susceptibility to hepatocarcinogenesis and probably the prognosis of human HCC.
Collapse
|
22
|
Helmbrecht K, Zeise E, Rensing L. Chaperones in cell cycle regulation and mitogenic signal transduction: a review. Cell Prolif 2008; 33:341-65. [PMID: 11101008 PMCID: PMC6496586 DOI: 10.1046/j.1365-2184.2000.00189.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chaperones/heat shock proteins (HSPs) of the HSP90 and HSP70 families show elevated levels in proliferating mammalian cells and a cell cycle-dependent expression. They transiently associate with key molecules of the cell cycle control system such as Cdk4, Wee-1, pRb, p53, p27/Kip1 and are involved in the nuclear localization of regulatory proteins. They also associate with viral oncoproteins such as SV40 super T, large T and small t antigen, polyoma large and middle S antigen and EpsteinBarr virus nuclear antigen. This association is based on a J-domain in the viral proteins and may assist their targeting to the pRb/E2F complex. Small HSPs and their state of phosphorylation and oligomerization also seem to be involved in proliferation and differentiation. Chaperones/HSPs thus play important roles within cell cycle processes. Their exact functioning, however, is still a matter of discussion. HSP90 in particular, but also HSP70 and other chaperones associate with proteins of the mitogen-activated signal cascade, particularly with the Src kinase, with tyrosine receptor kinases, with Raf and the MAP-kinase activating kinase (MEK). This apparently serves the folding and translocation of these proteins, but possibly also the formation of large immobilized complexes of signal transducing molecules (scaffolding function).
Collapse
Affiliation(s)
- K Helmbrecht
- Institute of Cell Biology, Biochemistry and Biotechnology, University of Bremen, Germany
| | | | | |
Collapse
|
23
|
Millson S, Vaughan C, Zhai C, Ali M, Panaretou B, Piper P, Pearl L, Prodromou C. Chaperone ligand-discrimination by the TPR-domain protein Tah1. Biochem J 2008; 413:261-8. [PMID: 18412542 PMCID: PMC2865030 DOI: 10.1042/bj20080105] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 04/11/2008] [Accepted: 04/15/2008] [Indexed: 01/22/2023]
Abstract
Tah1 [TPR (tetratricopeptide repeat)-containing protein associated with Hsp (heat-shock protein) 90] has been identified as a TPR-domain protein. TPR-domain proteins are involved in protein-protein interactions and a number have been characterized that interact either with Hsp70 or Hsp90, but a few can bind both chaperones. Independent studies suggest that Tah1 interacts with Hsp90, but whether it can also interact with Hsp70/Ssa1 has not been investigated. Amino-acid-sequence alignments suggest that Tah1 is most similar to the TPR2b domain of Hop (Hsp-organizing protein) which when mutated reduces binding to both Hsp90 and Hsp70. Our alignments suggest that there are three TPR-domain motifs in Tah1, which is consistent with the architecture of the TPR2b domain. In the present study we find that Tah1 is specific for Hsp90, and is able to bind tightly the yeast Hsp90, and the human Hsp90alpha and Hsp90beta proteins, but not the yeast Hsp70 Ssa1 isoform. Tah1 acheives ligand discrimination by favourably binding the methionine residue in the conserved MEEVD motif (Hsp90) and positively discriminating against the first valine residue in the VEEVD motif (Ssa1). In the present study we also show that Tah1 can affect the ATPase activity of Hsp90, in common with some other TPR-domain proteins.
Collapse
Key Words
- atpase activity
- heat-shock protein 90 (hsp90)
- heat-shock protein 70 (hsp70)
- tetratricopeptide-repeat-containing protein associated with heat-shock protein 90 (tah1)
- tetratricopeptide repeat (tpr) domain
- stress-inducible protein 1/heat-shock protein organizing protein/p60 (sti1/hop/p60)
- chip, c-terminal of heat-shock protein 70-interacting protein
- cpr6, cyclosporin-sensitive proline rotamase 6
- fkbp51, fk506-binding protein 51
- gst, glutathione transferase
- hop, heat-shock-protein-organizing protein
- hsp, heat-shock protein
- itc, isothermal titration calorimetry
- sti1, stress-inducible protein 1 (the yeast homologue of hop)
- csti1, c-terminal of sti1
- tah1, tetratricopeptide-repeat-containing protein associated with hsp90
- tpr, tetratricopeptide repeat
Collapse
Affiliation(s)
- Stefan H. Millson
- *Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, U.K
| | - Cara K. Vaughan
- †Section of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, U.K
| | - Chao Zhai
- ‡Pharmaceutical Science Research Division, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Maruf M. U. Ali
- †Section of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, U.K
| | - Barry Panaretou
- ‡Pharmaceutical Science Research Division, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Peter W. Piper
- *Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, U.K
| | - Laurence H. Pearl
- †Section of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, U.K
| | - Chrisostomos Prodromou
- †Section of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, U.K
| |
Collapse
|
24
|
A Phase I Study of 17-Allylamino-17-Demethoxygeldanamycin Combined with Paclitaxel in Patients with Advanced Solid Malignancies. Clin Cancer Res 2008; 14:3456-61. [DOI: 10.1158/1078-0432.ccr-07-5088] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Moriwaki Y, Kim YJ, Ido Y, Misawa H, Kawashima K, Endo S, Takahashi R. L347P PINK1 mutant that fails to bind to Hsp90/Cdc37 chaperones is rapidly degraded in a proteasome-dependent manner. Neurosci Res 2008; 61:43-8. [PMID: 18359116 DOI: 10.1016/j.neures.2008.01.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 12/25/2007] [Accepted: 01/15/2008] [Indexed: 11/30/2022]
Abstract
Mutation of PTEN-induced kinase 1 (PINK1), which encodes a putative mitochondrial serine/threonine kinase, leads to PARK6, an autosomal recessive form of familial Parkinson's disease. Although the precise function(s) of PINK1 protein is unknown, the recessive inheritance of this form of Parkinson's disease suggests loss of PINK1 function is closely associated with its pathogenesis. Here we report that PINK1 forms a complex with the molecular chaperones Hsp90 and Cdc37/p50 within cells, which appears to enhance its stability. When cells were treated with an Hsp90 inhibitor (geldanamycin or novobiocin), levels of PINK1 were greatly diminished, reflecting its rapid degradation via ubiquitin-proteasome pathway. Similarly, the half-life of a pathogenic PINK1 mutant (L347P) that did not interact with Hsp90 or Cdc37/p50 was only 30min, whereas that of wild-type PINK1 was 1h. These results strongly suggest that Hsp90 and Cdc37 are binding partners of PINK1 which regulate its stability.
Collapse
Affiliation(s)
- Yasuhiro Moriwaki
- Department of Pharmacology, Kyoritsu University of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Kim TW, Kim HJ, Lee C, Kim HY, Baek SH, Kim JH, Kwon KS, Kim JR. Identification of replicative senescence-associated genes in human umbilical vein endothelial cells by an annealing control primer system. Exp Gerontol 2008; 43:286-95. [PMID: 18258400 DOI: 10.1016/j.exger.2007.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 12/14/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
Abstract
Cellular senescence is regulated by specific genes in many organisms. The identification and functional analysis of senescence-associated genes could provide valuable insights into the senescence process. Here, we employed a new and improved differential display reverse transcription-polymerase chain reaction (DDRT-PCR) method that involves annealing control primers (ACPs) to identify genes that are differentially expressed in human umbilical endothelial cells during replicative senescence. Using 120 ACPs, we identified 31 differentially expressed genes (DEGs). Basic local alignment search tool (BLAST) search revealed 29 known genes and two unknown genes. Expression levels of the 29 known genes were confirmed by real-time quantitative RT-RCR and by Western blotting for eight of these genes. CD9 antigen, MHC class I chain-related sequence A (MICA) and cell division cycle 37 homolog (CDC37) were up-regulated, and bone morphogenetic protein 4 (BMP4), dickkopf-1 (DKK1), and transcription factor 7-like 1 (TCF7L1) were down-regulated in old cells. Treatment with recombinant human MICA caused a decrease in cell proliferation and an increase in senescence-associated beta-galactosidase staining. Further analysis of differentially expressed genes may provide insights into the molecular basis of replicative senescence and vascular diseases associated with cellular senescence.
Collapse
Affiliation(s)
- Tae Woo Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Miyata Y, Nishida E. Analysis of the CK2-dependent phosphorylation of serine 13 in Cdc37 using a phospho-specific antibody and phospho-affinity gel electrophoresis. FEBS J 2007; 274:5690-703. [PMID: 17922836 DOI: 10.1111/j.1742-4658.2007.06090.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The CK2-dependent phosphorylation of Ser13 in cell division cycle protein 37 (Cdc37), a kinase-specific heat shock protein 90 (Hsp90) cochaperone, has previously been reported to be essential for the association of Cdc37 with signaling protein kinases [Bandhakavi S, McCann RO, Hanna DE & Glover CVC (2003) J Biol Chem278, 2829-2836; Shao J, Prince T, Hartson SD & Matts RL (2003) J Biol Chem278, 38117-38220; Miyata Y & Nishida E (2004) Mol Cell Biol24, 4065-4074]. Here we describe a new phospho-specific antibody against Cdc37 that recognizes recombinant purified Cdc37 only when incubated with CK2 in the presence of Mg(2+) and ATP. The replacement of Ser13 in Cdc37 by nonphosphorylatable amino acids abolished binding to this antibody. The antibody was specific for phosphorylated Cdc37 and did not crossreact with other CK2 substrates such as Hsp90 and FK506-binding protein 52. Using this antibody, we showed that complexes of Hsp90 with its client signaling kinases, Cdk4, MOK, v-Src, and Raf1, contained the CK2-phosphorylated form of Cdc37 in vivo. Immunofluorescent staining showed that Hsp90 and the phosphorylated form of Cdc37 accumulated in epidermal growth factor-induced membrane ruffles. We further characterized the phosphorylation of Cdc37 using phospho-affinity gel electrophoresis. Our analyses demonstrated that the CK2-dependent phosphorylation of Cdc37 on Ser13 caused a specific gel mobility shift, and that Cdc37 in the complexes between Hsp90 and its client signaling protein kinases was in the phosphorylated form. Our results show the physiological importance of CK2-dependent Cdc37 phosphorylation and the usefulness of phospho-affinity gel electrophoresis in protein phosphorylation analysis.
Collapse
Affiliation(s)
- Yoshihiko Miyata
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
28
|
Falsone SF, Gesslbauer B, Rek A, Kungl AJ. A proteomic approach towards the Hsp90-dependent ubiquitinylated proteome. Proteomics 2007; 7:2375-83. [PMID: 17623298 DOI: 10.1002/pmic.200600996] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Since many Hsp90 client proteins are key players in tumour pathways, the ubiquitylation and subsequent degradation of Hsp90-substrates as a consequence of pharmacologically inhibiting Hsp90 represents an innovative approach for cancer therapy. We therefore identified Hsp90-binding proteins which accumulated as ubiquityl-tagged aggregates in the detergent insoluble fraction of HeLa cells as a consequence of simultaneously inhibiting Hsp90 and the proteasome. 2-DE followed by nanoLC-MS/MS of trypsinised protein spots provided the Hsp90-dependent ubiquitylated proteome which was finally annotated and functionally classified. The overall picture thus obtained emphasised the well-established role of Hsp90 in stabilising proteins involved in gene transcription and signal transduction. It also provided a novel Hsp90-related link to metabolic pathways as the inhibition of Hsp90 caused the ubiquitylation of a significant amount of metabolic enzymes. These findings serve to support cumulating indications which attribute Hsp90 to diverse stabilising functions beyond signal transduction and gene transcription.
Collapse
Affiliation(s)
- S Fabio Falsone
- Institute of Pharmaceutical Sciences, University of Graz, Austria
| | | | | | | |
Collapse
|
29
|
Yamamoto M, Tamakawa S, Yoshie M, Yaginuma Y, Ogawa K. Neoplastic hepatocyte growth associated with cyclin D1 redistribution from the cytoplasm to the nucleus in mouse hepatocarcinogenesis. Mol Carcinog 2007; 45:901-13. [PMID: 17013836 DOI: 10.1002/mc.20204] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cyclin D1 overexpression is a frequent change in hepatocellular carcinomas (HCCs). Our present study demonstrated that cyclin D1 overexpression with abundant cyclin E, cdk4, cdk2, and p27Kip1 (p27) occurred in neoplastic hepatocytes from the early stage of mouse hepatocarcinogenesis. While cyclin D1 expression was mainly found in the cytoplasm of the tumor cells, it shifted to the nucleus in association with cell proliferation after the animals were subjected to a partial hepatectomy (PH), and then returned once more to the cytoplasm when the cells became quiescent. Inhibition of PI3 kinase (PI3K) by Ly294002 in mouse HCC cells in vitro suppressed the nuclear shift of cyclin D1 as well as cell proliferation, while PI3K activation by PTEN suppression failed to induce nuclear shift of cyclin D1, suggesting that PI3K activation is essential but not sufficient for the cyclin D1 nuclear shift. While MEK-ERK1/2 inhibition by PD98059 and mTOR inhibition by rapamycin affected the cyclin D1 nuclear shift and cell proliferation to a lesser extent, both these inhibitors reduced cyclin D1 levels. Finally, although p27, cdk4 and calmodulin (CaM) were detected in the cyclin D1 immunoprecipitates from both quiescent and proliferating HCC cells, Hsc70 and SSeCKS were detected only in the immunoprecipitate from quiescent cells, and p21Waf1/Cip1 (p21) was detected only in that from proliferating cells, suggesting that the cyclin D1 complex is different in quiescent and proliferating cells. These observations indicate that the nuclear/cytoplasmic localization of cyclin D1 plays an important role in the proliferation/quiescence of neoplastic hepatocytes.
Collapse
Affiliation(s)
- Masahiro Yamamoto
- Department of Pathology, Asahikawa Medical College, Midorigaoka East, Asahikawa, Japan
| | | | | | | | | |
Collapse
|
30
|
Hawle P, Horst D, Bebelman JP, Yang XX, Siderius M, van der Vies SM. Cdc37p is required for stress-induced high-osmolarity glycerol and protein kinase C mitogen-activated protein kinase pathway functionality by interaction with Hog1p and Slt2p (Mpk1p). EUKARYOTIC CELL 2007; 6:521-32. [PMID: 17220467 PMCID: PMC1828922 DOI: 10.1128/ec.00343-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The yeast Saccharomyces cerevisiae utilizes rapidly responding mitogen-activated protein kinase (MAPK) signaling cascades to adapt efficiently to a changing environment. Here we report that phosphorylation of Cdc37p, an Hsp90 cochaperone, by casein kinase 2 controls the functionality of two MAPK cascades in yeast. These pathways, the high-osmolarity glycerol (HOG) pathway and the cell integrity (protein kinase C) MAPK pathway, mediate adaptive responses to high osmotic and cell wall stresses, respectively. Mutation of the phosphorylation site Ser14 in Cdc37p renders cells sensitive to osmotic stress and cell wall perturbation by calcofluor white. We found that levels of the MAPKs Hog1p and Slt2p (Mpk1p) in cells are reduced in a cdc37-S14A mutant, and consequently downstream responses mediated by Hog1p and Slt2p are compromised. Furthermore, we present evidence that Hog1p and Slt2p both interact in a complex with Cdc37p in vivo, something that has not been reported previously. The interaction of Hsp90, Slt2p, and Hog1p with Cdc37p depends on the phosphorylation status of Cdc37p. In fact, our biochemical data show that the osmosensitive phenotype of the cdc37-S14A mutant is due to the loss of the interaction between Cdc37p, Hog1p, and Hsp90. Likewise, during cell wall stress, the interaction of Slt2p with Cdc37p and Hsp90 is crucial for Slt2p-dependent downstream responses, such as the activation of the transcription factor Rlm1p. Interestingly, phosphorylated Slt2p, but not phosphorylated Hog1p, has an increased affinity for Cdc37p. Together these observations suggest that Cdc37p acts as a regulator of MAPK signaling.
Collapse
Affiliation(s)
- Patricija Hawle
- Department of Biochemistry and Molecular Biology, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Srirangam A, Mitra R, Wang M, Gorski JC, Badve S, Baldridge LA, Hamilton J, Kishimoto H, Hawes J, Li L, Orschell CM, Srour EF, Blum JS, Donner D, Sledge GW, Nakshatri H, Potter DA. Effects of HIV protease inhibitor ritonavir on Akt-regulated cell proliferation in breast cancer. Clin Cancer Res 2006; 12:1883-96. [PMID: 16551874 PMCID: PMC2727652 DOI: 10.1158/1078-0432.ccr-05-1167] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE These studies were designed to determine whether ritonavir inhibits breast cancer in vitro and in vivo and, if so, how. EXPERIMENTAL DESIGN Ritonavir effects on breast cancer cell growth were studied in the estrogen receptor (ER)-positive lines MCF7 and T47D and in the ER-negative lines MDA-MB-436 and MDA-MB-231. Effects of ritonavir on Rb-regulated and Akt-mediated cell proliferation were studied. Ritonavir was tested for inhibition of a mammary carcinoma xenograft. RESULTS ER-positive estradiol-dependent lines (IC50, 12-24 micromol/L) and ER-negative (IC50, 45 micromol/L) lines exhibit ritonavir sensitivity. Ritonavir depletes ER-alpha levels notably in ER-positive lines. Ritonavir causes G1 arrest, depletes cyclin-dependent kinases 2, 4, and 6 and cyclin D1 but not cyclin E, and depletes phosphorylated Rb and Ser473 Akt. Ritonavir induces apoptosis independent of G1 arrest, inhibiting growth of cells that have passed the G1 checkpoint. Myristoyl-Akt, but not activated K-Ras, rescues ritonavir inhibition. Ritonavir inhibited a MDA-MB-231 xenograft and intratumoral Akt activity at a clinically attainable serum Cmax of 22 +/- 8 micromol/L. Because heat shock protein 90 (Hsp90) substrates are depleted by ritonavir, ritonavir effects on Hsp90 were tested. Ritonavir binds Hsp90 (K(D), 7.8 micromol/L) and partially inhibits its chaperone function. Ritonavir blocks association of Hsp90 with Akt and, with sustained exposure, notably depletes Hsp90. Stably expressed Hsp90alpha short hairpin RNA also depletes Hsp90, inhibiting proliferation and sensitizing breast cancer cells to low ritonavir concentrations. CONCLUSIONS Ritonavir inhibits breast cancer growth in part by inhibiting Hsp90 substrates, including Akt. Ritonavir may be of interest for breast cancer therapeutics and its efficacy may be increased by sustained exposure or Hsp90 RNA interference.
Collapse
Affiliation(s)
- Anjaiah Srirangam
- Department of Medicine, Indiana University, Indianapolis, Indiana
- Department of Walther Oncology Center, Indiana University, Indianapolis, Indiana
| | - Ranjana Mitra
- Department of Medicine, Indiana University, Indianapolis, Indiana
- Department of Walther Oncology Center, Indiana University, Indianapolis, Indiana
| | - Mu Wang
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, Indiana
| | | | - Sunil Badve
- Department of Pathology, Indiana University, Indianapolis, Indiana
| | | | - Justin Hamilton
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | | | - John Hawes
- Department of Chemistry and Biology, Miami University, Oxford, Ohio
| | - Lang Li
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | | | - Edward F. Srour
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Janice S. Blum
- Department of Microbiology and Immunology, Indiana University, Indianapolis, Indiana
- Department of Walther Oncology Center, Indiana University, Indianapolis, Indiana
- Department of Walther Cancer Institute, Indiana University, Indianapolis, Indiana
- Department of Indiana University Cancer Center, Indiana University, Indianapolis, Indiana
| | - David Donner
- Department of Surgery, University of California, San Francisco, California
| | - George W. Sledge
- Department of Medicine, Indiana University, Indianapolis, Indiana
- Department of Pathology, Indiana University, Indianapolis, Indiana
- Department of Walther Oncology Center, Indiana University, Indianapolis, Indiana
- Department of Walther Cancer Institute, Indiana University, Indianapolis, Indiana
- Department of Indiana University Cancer Center, Indiana University, Indianapolis, Indiana
| | - Harikrishna Nakshatri
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, Indiana
- Department of Surgery, Indiana University, Indianapolis, Indiana
- Department of Walther Oncology Center, Indiana University, Indianapolis, Indiana
- Department of Walther Cancer Institute, Indiana University, Indianapolis, Indiana
- Department of Indiana University Cancer Center, Indiana University, Indianapolis, Indiana
| | - David A. Potter
- Department of Medicine, Indiana University, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, Indiana
- Department of Walther Oncology Center, Indiana University, Indianapolis, Indiana
- Department of Walther Cancer Institute, Indiana University, Indianapolis, Indiana
- Department of Indiana University Cancer Center, Indiana University, Indianapolis, Indiana
| |
Collapse
|
32
|
Vaughan CK, Gohlke U, Sobott F, Good VM, Ali MMU, Prodromou C, Robinson CV, Saibil HR, Pearl LH. Structure of an Hsp90-Cdc37-Cdk4 complex. Mol Cell 2006; 23:697-707. [PMID: 16949366 PMCID: PMC5704897 DOI: 10.1016/j.molcel.2006.07.016] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 05/13/2006] [Accepted: 07/05/2006] [Indexed: 10/24/2022]
Abstract
Activation of many protein kinases depends on their interaction with the Hsp90 molecular chaperone system. Recruitment of protein kinase clients to the Hsp90 chaperone system is mediated by the cochaperone adaptor protein Cdc37, which acts as a scaffold, simultaneously binding protein kinases and Hsp90. We have now expressed and purified an Hsp90-Cdc37-Cdk4 complex, defined its stoichiometry, and determined its 3D structure by single-particle electron microscopy. Comparison with the crystal structure of Hsp90 allows us to identify the locations of Cdc37 and Cdk4 in the complex and suggests a mechanism by which conformational changes in the kinase are coupled to the Hsp90 ATPase cycle.
Collapse
Affiliation(s)
- Cara K Vaughan
- Section of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Terasawa K, Shinozaki F, Minami M, Minami Y. Client binding of Cdc37 is regulated intramolecularly and intermolecularly. Biosci Biotechnol Biochem 2006; 70:1542-6. [PMID: 16794345 DOI: 10.1271/bbb.60201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recently we showed that the glycine-rich loop in the N-terminal portion of protein kinases and the client-binding site of Cdc37 are both necessary for interaction between Cdc37 and protein kinases. We demonstrate here that the N-terminal portion of Cdc37, distinct from its client-binding site, interacts with the C-terminal portion of Raf-1. This interaction might expose the client-binding site of Cdc37. In addition, we provide evidence indicating that Cdc37 is monomeric in its physiological state, and that it becomes a dimer only when it is complexed with both Hsp90 and protein kinases.
Collapse
Affiliation(s)
- Kazuya Terasawa
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo
| | | | | | | |
Collapse
|
34
|
Beers M, Kemphues K. Depletion of the co-chaperone CDC-37 reveals two modes of PAR-6 cortical association in C. elegans embryos. Development 2006; 133:3745-54. [PMID: 16943281 DOI: 10.1242/dev.02544] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PAR proteins play roles in the establishment and maintenance of polarity in many different cell types in metazoans. In C. elegans, polarity established in the one-cell embryo determines the anteroposterior axis of the developing animal and is essential to set the identities of the early blastomeres. PAR-1 and PAR-2 colocalize at the posterior cortex of the embryo. PAR-3, PAR-6 and PKC-3 (aPKC) colocalize at the anterior cortex of the embryo. A process of mutual exclusion maintains the anterior and posterior protein domains. We present results indicating that a homolog of the Hsp90 co-chaperone Cdc37 plays a role in dynamic interactions among the PAR proteins. We show that CDC-37 is required for the establishment phase of embryonic polarity; that CDC-37 reduction allows PAR-3-independent cortical accumulation of PAR-6 and PKC-3; and that CDC-37 is required for the mutual exclusion of the anterior and posterior group PAR proteins. Our results indicate that CDC-37 acts in part by maintaining PKC-3 levels and in part by influencing the activity or levels of other client proteins. Loss of the activities of these client proteins reveals that there are two sites for PAR-6 cortical association, one dependent on CDC-42 and not associated with PAR-3, and the other independent of CDC-42 and co-localizing with PAR-3. We propose that, in wild-type embryos, CDC-37-mediated inhibition of the CDC-42-dependent binding site and PAR-3-mediated release of this inhibition provide a key mechanism for the anterior accumulation of PAR-6.
Collapse
Affiliation(s)
- Melissa Beers
- Department of Molecular Biology and Genetics, 101 Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
35
|
Terasawa K, Yoshimatsu K, Iemura SI, Natsume T, Tanaka K, Minami Y. Cdc37 interacts with the glycine-rich loop of Hsp90 client kinases. Mol Cell Biol 2006; 26:3378-89. [PMID: 16611982 PMCID: PMC1447410 DOI: 10.1128/mcb.26.9.3378-3389.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recently, we identified a client-binding site of Cdc37 that is required for its association with protein kinases. Phage display technology and liquid chromatography-tandem mass spectrometry (which identifies a total of 33 proteins) consistently identify a unique sequence, GXFG, as a Cdc37-interacting motif that occurs in the canonical glycine-rich loop (GXGXXG) of protein kinases, regardless of their dependence on Hsp90 or Cdc37. The glycine-rich motif of Raf-1 (GSGSFG) is necessary for its association with Cdc37; nevertheless, the N lobe of Raf-1 (which includes the GSGSFG motif) on its own cannot interact with Cdc37. Chimeric mutants of Cdk2 and Cdk4, which differ sharply in their affinities toward Cdc37, show that their C-terminal portions may determine this difference. In addition, a nonclient kinase, the catalytic subunit of cyclic AMP-dependent protein kinase, interacts with Cdc37 but only when a threonine residue in the activation segment of its C lobe is unphosphorylated. Thus, although a region in the C termini of protein kinases may be crucial for accomplishing and maintaining their interaction with Cdc37, we conclude that the N-terminal glycine-rich loop of protein kinases is essential for physically associating with Cdc37.
Collapse
Affiliation(s)
- Kazuya Terasawa
- Department of Biophysics and Biochemistry, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 133-0033, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Turnbull EL, Martin IV, Fantes PA. Activity of Cdc2 and its interaction with the cyclin Cdc13 depend on the molecular chaperone Cdc37 in Schizosaccharomyces pombe. J Cell Sci 2006; 119:292-302. [PMID: 16390871 DOI: 10.1242/jcs.02729] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cdc37 is a molecular chaperone whose clients are predominantly protein kinases, many of which are important in cell-cycle progression. Temperature-sensitive mutants of cdc37 in Schizosaccharomyces pombe are lethal at the restrictive temperature, arresting cell division within a single cell cycle. These mutant cells elongate during incubation at the restrictive temperature, consistent with a cell-cycle defect. The cell-cycle arrest arises from defective function of the mutant Cdc37 proteins rather than a reduction in Cdc37 protein levels. Around 80% of the arrested, elongated cells contain a single nucleus and replicated (2C) DNA content, indicating that these mutants arrest the cell cycle in G2 or mitosis (M). Cytological observations show that the majority of cells arrest in G2. In fission yeast, a G2 cell-cycle arrest can arise by inactivation of the cyclin-dependent kinase (Cdk) Cdc2 that regulates entry into mitosis. Studies of the cdc37 temperature-sensitive mutants show a genetic interaction with some cdc2 alleles and overexpression of cdc2 rescues the lethality of some cdc37 alleles at the restrictive temperature, suggesting that Cdc2 is a likely client for the Cdc37 molecular chaperone. In cdc37 temperature-sensitive mutants at the restrictive temperature, the level of Cdc2 protein remains constant but Cdc2 protein kinase activity is greatly reduced. Inactivation of Cdc2 appears to result from the inability to form complexes with its mitotic cyclin partner Cdc13. Further evidence for Cdc2 being a client of Cdc37 in S. pombe comes from the identification of genetic and biochemical interactions between these proteins.
Collapse
Affiliation(s)
- Emma L Turnbull
- The Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JR, UK
| | | | | |
Collapse
|
37
|
Pascale RM, Simile MM, Calvisi DF, Frau M, Muroni MR, Seddaiu MA, Daino L, Muntoni MD, De Miglio MR, Thorgeirsson SS, Feo F. Role of HSP90, CDC37, and CRM1 as modulators of P16(INK4A) activity in rat liver carcinogenesis and human liver cancer. Hepatology 2005; 42:1310-9. [PMID: 16317707 DOI: 10.1002/hep.20962] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Current evidence indicates that neoplastic nodules induced in liver of Brown Norway (BN) rats genetically resistant to hepatocarcinogenesis are not prone to evolve into hepatocellular carcinoma. We show that BN rats subjected to diethylnitrosamine/2-acetylaminofluorene/partial hepatectomy treatment with a "resistant hepatocyte" protocol displayed higher number of glutathione-S-transferase 7-7(+) hepatocytes when compared with susceptible Fisher 344 (F344) rats, both during and at the end of 2-acetylaminofluorene treatment. However, DNA synthesis declined in BN but not F344 rats after completion of reparative growth. Upregulation of p16(INK4A), Hsp90, and Cdc37 genes; an increase in Cdc37-Cdk4 complexes; and a decrease in p16(INK4A)-Cdk4 complexes occurred in preneoplastic liver, nodules, and hepatocellular carcinoma of F344 rats. These parameters did not change significantly in BN rats. E2f4 was equally expressed in the lesions of both strains, but Crm1 expression and levels of E2f4-Crm1 complex were higher in F344 rats. Marked upregulation of P16(INK4A) was associated with moderate overexpression of HSP90, CDC37, E2F4, and CRM1 in human hepatocellular carcinomas with a better prognosis. In contrast, strong induction of HSP90, CDC37, and E2F4 was paralleled by P16(INK4A) downregulation and high levels of HSP90-CDK4 and CDC37-CDK4 complexes in hepatocellular carcinomas with poorer prognosis. CDC37 downregulation by small interfering RNA inhibited in vitro growth of HepG2 cells. In conclusion, our findings underline the role of Hsp90/Cdc37 and E2f4/Crm1 systems in the acquisition of a susceptible or resistant carcinogenic phenotype. The results also suggest that protection by CDC37 and CRM1 against growth restraint by P16(INK4A) influences the prognosis of human hepatocellular carcinoma.
Collapse
Affiliation(s)
- Rosa M Pascale
- Department of Biomedical Sciences, Division of Experimental Pathology and Oncology, University of Sassari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Turnbull EL, Martin IV, Fantes PA. Cdc37 maintains cellular viability in Schizosaccharomyces pombe independently of interactions with heat-shock protein 90. FEBS J 2005; 272:4129-40. [PMID: 16098195 DOI: 10.1111/j.1742-4658.2005.04825.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cdc37 is a molecular chaperone that interacts with a range of clients and co-chaperones, forming various high molecular mass complexes. Cdc37 sequence homology among species is low. High homology between yeast and metazoan proteins is restricted to the extreme N-terminal region, which is known to bind clients that are predominantly protein kinases. We show that despite the low homology, both Saccharomyces cerevisiae and human Cdc37 are able to substitute for the Schizosaccharomyces pombe protein in a strain deleted for the endogenous cdc37 gene. Expression of a construct consisting of only the N-terminal domain of S. pombe Cdc37, lacking the postulated heat-shock protein (Hsp) 90-binding and homodimerization domains, can also sustain cellular viability, indicating that Cdc37 dimerization and interactions with the cochaperone Hsp90 may not be essential for Cdc37 function in S. pombe. Biochemical investigations showed that a small proportion of total cellular Cdc37 occurs in a high molecular mass complex that also contains Hsp90. These data indicate that the N-terminal domain of Cdc37 carries out essential functions independently of the Hsp90-binding domain and dimerization of the chaperone itself.
Collapse
Affiliation(s)
- Emma L Turnbull
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, UK
| | | | | |
Collapse
|
39
|
Laman H, Funes JM, Ye H, Henderson S, Galinanes-Garcia L, Hara E, Knowles P, McDonald N, Boshoff C. Transforming activity of Fbxo7 is mediated specifically through regulation of cyclin D/cdk6. EMBO J 2005; 24:3104-16. [PMID: 16096642 PMCID: PMC1201355 DOI: 10.1038/sj.emboj.7600775] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 07/18/2005] [Indexed: 12/19/2022] Open
Abstract
D cyclins (D1, D2 and D3) and their catalytic subunits (cyclin-dependent kinases cdk4 and cdk6) have a facilitating, but nonessential, role in cell cycle entry. Tissue-specific functions for D-type cyclins and cdks have been reported; however, the biochemical properties of these kinases are indistinguishable. We report that an F box protein, Fbxo7, interacted with cellular and viral D cyclins and distinguished among the cdks that bind D-type cyclins, specifically binding cdk6, in vitro and in vivo. Fbxo7 specifically regulated D cyclin/cdk6 complexes: Fbxo7 knockdown decreased cdk6 association with cyclin and its overexpression increased D cyclin/cdk6 activity and E2F activity. Fbxo7 interacted with p27, but its enhancement of cyclin D/cdk6 activity was p21/p27 independent. Fbxo7 overexpression transformed murine fibroblasts, rendering them tumorigenic in athymic nude mice. Transformed phenotypes were dependent on cdk6, as knockdown of cdk6 reversed them. Fbxo7 was highly expressed in epithelial tumors, but not in normal tissues, suggesting that it may have a proto-oncogenic role in human cancers.
Collapse
Affiliation(s)
- Heike Laman
- Cancer Research UK, Viral Oncology Group, Wolfson Institute for Biomedical Research, University College London, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The Hsp90 molecular chaperone system is involved in the activation of an important set of cell regulatory proteins, including many whose disregulation drives cancer. Recruitment of protein kinases to the Hsp90 system is mediated by the co-chaperone adaptor Cdc37 -- an essential protein whose overexpression is itself, oncogenic. Current structural, biochemical and biological studies of Cdc37 are beginning to unravel the nature of its interactions with Hsp90 and protein kinase clients, and implicate it as a key permissive factor in cell transformation by disregulated protein kinases. The central role of the Hsp90-Cdc37 chaperone complex makes it an important target for future anti-cancer drug development.
Collapse
Affiliation(s)
- Laurence H Pearl
- Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK.
| |
Collapse
|
41
|
Rosania GR, Chang YT. Targeting hyperproliferative disorders with cyclin dependent kinase inhibitors. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.10.2.215] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Mikolajczyk M, Nelson M. Regulation of stability of cyclin-dependent kinase CDK11p110 and a caspase-processed form, CDK11p46, by Hsp90. Biochem J 2004; 384:461-7. [PMID: 15344906 PMCID: PMC1134131 DOI: 10.1042/bj20040848] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 08/20/2004] [Accepted: 09/02/2004] [Indexed: 11/17/2022]
Abstract
CDK11p110 (cyclin-dependent kinase 11p110, formerly known as PITSLRE) is a member of the CDK superfamily. It associates with cyclin L and is involved in the regulation of transcription and in premRNA splicing. During staurosporine-, Fas- and tumour necrosis factor a-induced apoptosis, CDK11p110, is cleaved by caspases to generate smaller 46-50 kDa proteins containing the catalytic kinase domain. Ectopic expression of the caspase-processed form CDK11p46 induces apoptosis. The mechanisms that regulate activation and stability of CDK11 isoforms are still unclear. In the present study, we demonstrate that in human melanoma cells CDK11p110 and CDK11p46 interact with Hsp90 (heat-shock protein 90) and its co-chaperone cdc37. Furthermore, we show that the treatment of cells with the Hsp90-specific inhibitor geldanamycin leads to ubiquitination and enhanced degradation of both CDK11p110 and CDK11p46 through a proteasome-dependent pathway. We also determined that geldanamycin-triggered degradation of CDK11p46 slows down the progression of apoptosis. These results indicate that Hsp90 and cdc37 stabilize CDK11 kinase, and suggest that this stabilization is crucial for its pro-apoptotic function.
Collapse
Affiliation(s)
- Monika Mikolajczyk
- Department of Pathology, Arizona Cancer Center, College of Medicine, University of Arizona, Tucson, AZ 85724, U.S.A
| | - Mark A. Nelson
- Department of Pathology, Arizona Cancer Center, College of Medicine, University of Arizona, Tucson, AZ 85724, U.S.A
| |
Collapse
|
43
|
Young JC, Agashe VR, Siegers K, Hartl FU. Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 2004; 5:781-91. [PMID: 15459659 DOI: 10.1038/nrm1492] [Citation(s) in RCA: 837] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cells are faced with the task of folding thousands of different polypeptides into a wide range of conformations. For many proteins, the folding process requires the action of molecular chaperones. In the cytosol of prokaryotic and eukaryotic cells, molecular chaperones of different structural classes form a network of pathways that can handle substrate polypeptides from the point of initial synthesis on ribosomes to the final stages of folding.
Collapse
Affiliation(s)
- Jason C Young
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
44
|
Sun J, Liao JK. Induction of angiogenesis by heat shock protein 90 mediated by protein kinase Akt and endothelial nitric oxide synthase. Arterioscler Thromb Vasc Biol 2004; 24:2238-44. [PMID: 15486309 PMCID: PMC2633590 DOI: 10.1161/01.atv.0000147894.22300.4c] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE A specific inhibitor of heat shock protein 90 (Hsp90), 17-AAG, has been shown to inhibit tumor growth through cell cycle arrest, differentiation, or apoptosis. Because angiogenesis is important for tumor growth, we hypothesize that inhibition of angiogenesis by 17-AAG may mediate some of its antitumor effects. METHODS AND RESULTS Because protein kinase Akt and endothelial nitric oxide synthase (eNOS) are critical for angiogenesis, we studied the effects of 17-AAG on the phosphorylation and expression of Akt and eNOS in human umbilical vein endothelial cells. In a concentration- and time-dependent manner, inhibition of Hsp90 by 17-AAG decreased Akt and eNOS expression by 74% and 81%, respectively. Inhibition of eNOS expression by 17-AAG occurred at the transcriptional level as determined by eNOS promoter activity and nuclear run-on assay. Furthermore, treatment with 17-AAG decreased basal and vascular endothelial growth factor-stimulated Akt and eNOS phosphorylation. This corresponded with decreased NO production and inhibition of endothelial cell migration and angiogenesis. The anti-angiogenic effect of 17-AAG was partially reversed by the NO donor, SNAP. CONCLUSIONS These findings indicate that Hsp90 is important not only for Akt and eNOS phosphorylation but also for eNOS gene transcription and suggests that Hsp90 may be a novel target for anti-angiogenic therapy.
Collapse
Affiliation(s)
- Jianxin Sun
- Vascular Medicine Research Unit, Brigham & Women's Hospital and Harvard Medical School, Boston, Mass, USA
| | | |
Collapse
|
45
|
Zhang W, Hirshberg M, McLaughlin SH, Lazar GA, Grossmann JG, Nielsen PR, Sobott F, Robinson CV, Jackson SE, Laue ED. Biochemical and structural studies of the interaction of Cdc37 with Hsp90. J Mol Biol 2004; 340:891-907. [PMID: 15223329 DOI: 10.1016/j.jmb.2004.05.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 05/07/2004] [Accepted: 05/11/2004] [Indexed: 11/18/2022]
Abstract
The heat shock protein Hsp90 plays a key, but poorly understood role in the folding, assembly and activation of a large number of signal transduction molecules, in particular kinases and steroid hormone receptors. In carrying out these functions Hsp90 hydrolyses ATP as it cycles between ADP- and ATP-bound forms, and this ATPase activity is regulated by the transient association with a variety of co-chaperones. Cdc37 is one such co-chaperone protein that also has a role in client protein recognition, in that it is required for Hsp90-dependent folding and activation of a particular group of protein kinases. These include the cyclin-dependent kinases (Cdk) 4/6 and Cdk9, Raf-1, Akt and many others. Here, the biochemical details of the interaction of human Hsp90 beta and Cdc37 have been characterised. Small angle X-ray scattering (SAXS) was then used to study the solution structure of Hsp90 and its complexes with Cdc37. The results suggest a model for the interaction of Cdc37 with Hsp90, whereby a Cdc37 dimer binds the two N-terminal domain/linker regions in an Hsp90 dimer, fixing them in a single conformation that is presumably suitable for client protein recognition.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Miyata Y, Nishida E. CK2 controls multiple protein kinases by phosphorylating a kinase-targeting molecular chaperone, Cdc37. Mol Cell Biol 2004; 24:4065-74. [PMID: 15082798 PMCID: PMC387775 DOI: 10.1128/mcb.24.9.4065-4074.2004] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cdc37 is a kinase-associated molecular chaperone whose function in concert with Hsp90 is essential for many signaling protein kinases. Here, we report that mammalian Cdc37 is a pivotal substrate of CK2 (casein kinase II). Purified Cdc37 was phosphorylated in vitro on a conserved serine residue, Ser13, by CK2. Moreover, Ser13 was the unique phosphorylation site of Cdc37 in vivo. Crucially, the CK2 phosphorylation of Cdc37 on Ser13 was essential for the optimal binding activity of Cdc37 toward various kinases examined, including Raf1, Akt, Aurora-B, Cdk4, Src, MOK, MAK, and MRK. In addition, nonphosphorylatable mutants of Cdc37 significantly suppressed the association of Hsp90 with protein kinases, while the Hsp90-binding activity of the mutants was unchanged. The treatment of cells with a specific CK2 inhibitor suppressed the phosphorylation of Cdc37 in vivo and reduced the levels of Cdc37 target kinases. These results unveil a regulatory mechanism of Cdc37, identify a novel molecular link between CK2 and many crucial protein kinases via Cdc37, and reveal the molecular basis for the ability of CK2 to regulate pleiotropic cellular functions.
Collapse
Affiliation(s)
- Yoshihiko Miyata
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| | | |
Collapse
|
47
|
Zhang H, Wu W, Du Y, Santos SJ, Conrad SE, Watson JT, Grammatikakis N, Gallo KA. Hsp90/p50cdc37 is required for mixed-lineage kinase (MLK) 3 signaling. J Biol Chem 2004; 279:19457-63. [PMID: 15001580 DOI: 10.1074/jbc.m311377200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mixed-lineage kinase 3 (MLK3) is a mitogen-activated protein kinase (MAPK) kinase kinase that activates MAPK pathways, including the c-Jun NH(2)-terminal kinase (JNK) and p38 pathways. MLK3 and its family members have been implicated in JNK-mediated apoptosis. A survey of human cell lines revealed high levels of MLK3 in breast cancer cells. To learn more about MLK3 regulation and its signaling pathways in breast cancer cells, we engineered the estrogen-responsive human breast cancer cell line, MCF-7, to stably, inducibly express FLAG epitope-tagged MLK3. FLAG.MLK3 complexes were isolated by affinity purification, and associated proteins were identified by in-gel trypsin digestion followed by liquid chromatography/tandem mass spectrometry. Among the proteins identified were heat shock protein 90alpha,beta (Hsp90) and its kinase-specific co-chaperone p50(cdc37). We show that endogenous MLK3 complexes with Hsp90 and p50(cdc37). Further experiments demonstrate that MLK3 associates with Hsp90/p50(cdc37) through its catalytic domain in an activity-independent manner. Upon treatment of MCF-7 cells with geldanamycin, an ansamycin antibiotic that inhibits Hsp90 function, MLK3 levels decrease dramatically. Furthermore, tumor necrosis factor alpha-induced activation of MLK3 and JNK in MCF-7 cells is blocked by geldanamycin treatment. Our finding that geldanamycin treatment does not affect the cellular levels of the downstream signaling components, MAPK kinase 4, MAPK kinase 7, and JNK, suggests that Hsp90/p50(cdc37) regulates JNK signaling at the MAPK kinase kinase level. Previously identified Hsp90/p50(cdc37) clients include oncoprotein kinases and protein kinases that promote cellular proliferation and survival. Our findings reveal that Hsp90/p50(cdc37) also regulates protein kinases involved in apoptotic signaling.
Collapse
Affiliation(s)
- Hua Zhang
- Cell and Molecular Biology Program, Department of Physiology, Michigan State University, 4180 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Cdc37 is a relatively poorly conserved and yet essential molecular chaperone. It has long been thought to function primarily as an accessory factor for Hsp90, notably directing Hsp90 to kinases as substrates. More recent discoveries challenge this simplistic view. Cdc37 client proteins other than kinases have now been found, and Cdc37 displays a variety of Hsp90-independent activities both in vitro and in vivo. It can function as a molecular chaperone by itself, interact with other Hsp90 cochaperones in the absence of Hsp90, and even support yeast growth and protein folding without its Hsp90-binding domain. Thus, for many substrates, there may be many alternative chaperone pathways involving Cdc37, Hsp90, or both.
Collapse
Affiliation(s)
- Morag MacLean
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30, quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | | |
Collapse
|
49
|
Ni J, Gao Y, Liu H, Chen J. Candida albicansCdc37 interacts with the Crk1 kinase and is required for Crk1 production. FEBS Lett 2004; 561:223-30. [PMID: 15013782 DOI: 10.1016/s0014-5793(04)00172-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Revised: 12/11/2003] [Accepted: 12/15/2003] [Indexed: 11/29/2022]
Abstract
Crk1, a Cdc2-related protein kinase from the human pathogenic fungus Candida albicans, plays an important role in hyphal development and virulence. To address its regulatory mechanisms, we searched for Crk1 interacting proteins by two-hybrid screening. A CDC37 ortholog (CaCDC37) was cloned from the screening with the Crk1 kinase domain as the bait. The CaCdc37 interacted preferentially with the kinase domain of Crk1 (Crk1N) as shown by two-hybrid and immunoprecipitation experiments. CaCDC37 could complement a cdc37 thermosensitive mutant (cdc37-34) of Saccharomyces cerevisiae. Importantly, Crk1 protein was hardly detectable in the cdc37-34 mutant at restrictive temperature. However, upon expression of CaCdc37 in the cdc37 mutant, Crk1 protein was detected even at restrictive temperature. Our data suggested that CaCdc37 was required for the production of Crk1 kinase. Like Cdc37 proteins of S. cerevisiae and higher eukaryotes, CaCdc37 might function as a molecular chaperone that stabilized Crk1 and other protein kinases in C. albicans. In support of this, CaSTI1 was identified from a two-hybrid screen with the full-length Crk1 as the bait. CaSti1 showed two-hybrid interactions with both Crk1 and the CaCdc37.
Collapse
Affiliation(s)
- Jian Ni
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, PR China
| | | | | | | |
Collapse
|
50
|
Roe SM, Ali MMU, Meyer P, Vaughan CK, Panaretou B, Piper PW, Prodromou C, Pearl LH. The Mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell 2004; 116:87-98. [PMID: 14718169 DOI: 10.1016/s0092-8674(03)01027-4] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recruitment of protein kinase clients to the Hsp90 chaperone involves the cochaperone p50(cdc37) acting as a scaffold, binding protein kinases via its N-terminal domain and Hsp90 via its C-terminal region. p50(cdc37) also has a regulatory activity, arresting Hsp90's ATPase cycle during client-protein loading. We have localized the binding site for p50(cdc37) to the N-terminal nucleotide binding domain of Hsp90 and determined the crystal structure of the Hsp90-p50(cdc37) core complex. Dimeric p50(cdc37) binds to surfaces of the Hsp90 N-domain implicated in ATP-dependent N-terminal dimerization and association with the middle segment of the chaperone. This interaction fixes the lid segment in an open conformation, inserts an arginine side chain into the ATP binding pocket to disable catalysis, and prevents trans-activating interaction of the N domains.
Collapse
Affiliation(s)
- S Mark Roe
- Section of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|