1
|
Gou N, Chen C, Huang M, Zhang Y, Bai H, Li H, Wang L, Wuyun T. Transcriptome and Metabolome Analyses Reveal Sugar and Acid Accumulation during Apricot Fruit Development. Int J Mol Sci 2023; 24:16992. [PMID: 38069317 PMCID: PMC10707722 DOI: 10.3390/ijms242316992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The apricot (Prunus armeniaca L.) is a fruit that belongs to the Rosaceae family; it has a unique flavor and is of important economic and nutritional value. The composition and content of soluble sugars and organic acids in fruit are key factors in determining the flavor quality. However, the molecular mechanism of sugar and acid accumulation in apricots remains unclear. We measured sucrose, fructose, glucose, sorbitol, starch, malate, citric acid, titratable acid, and pH, and investigated the transcriptome profiles of three apricots (the high-sugar cultivar 'Shushanggan', common-sugar cultivar 'Sungold', and low-sugar cultivar 'F43') at three distinct developmental phases. The findings indicated that 'Shushanggan' accumulates a greater amount of sucrose, glucose, fructose, and sorbitol, and less citric acid and titratable acid, resulting in a better flavor; 'Sungold' mainly accumulates more sucrose and less citric acid and starch for the second flavor; and 'F43' mainly accumulates more titratable acid, citric acid, and starch for a lesser degree of sweetness. We investigated the DEGs associated with the starch and sucrose metabolism pathways, citrate cycle pathway, glycolysis pathway, and a handful of sugar transporter proteins, which were considered to be important regulators of sugar and acid accumulation. Additionally, an analysis of the co-expression network of weighted genes unveiled a robust correlation between the brown module and sucrose, glucose, and fructose, with VIP being identified as a hub gene that interacted with four sugar transporter proteins (SLC35B3, SLC32A, SLC2A8, and SLC2A13), as well as three structural genes for sugar and acid metabolism (MUR3, E3.2.1.67, and CSLD). Furthermore, we found some lncRNAs and miRNAs that regulate these genes. Our findings provide clues to the functional genes related to sugar metabolism, and lay the foundation for the selection and cultivation of high-sugar apricots in the future.
Collapse
Affiliation(s)
- Ningning Gou
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (N.G.); (C.C.); (M.H.); (Y.Z.); (H.B.); (H.L.); (L.W.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Chen Chen
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (N.G.); (C.C.); (M.H.); (Y.Z.); (H.B.); (H.L.); (L.W.)
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Mengzhen Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (N.G.); (C.C.); (M.H.); (Y.Z.); (H.B.); (H.L.); (L.W.)
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Yujing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (N.G.); (C.C.); (M.H.); (Y.Z.); (H.B.); (H.L.); (L.W.)
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Haikun Bai
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (N.G.); (C.C.); (M.H.); (Y.Z.); (H.B.); (H.L.); (L.W.)
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Hui Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (N.G.); (C.C.); (M.H.); (Y.Z.); (H.B.); (H.L.); (L.W.)
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Lin Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (N.G.); (C.C.); (M.H.); (Y.Z.); (H.B.); (H.L.); (L.W.)
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Tana Wuyun
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (N.G.); (C.C.); (M.H.); (Y.Z.); (H.B.); (H.L.); (L.W.)
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| |
Collapse
|
2
|
Guiguet A, McCartney NB, Gilbert KJ, Tooker JF, Deans AR, Ali JG, Hines HM. Extreme acidity in a cynipid gall: a potential new defensive strategy against natural enemies. Biol Lett 2023; 19:20220513. [PMID: 36855854 PMCID: PMC9975648 DOI: 10.1098/rsbl.2022.0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
The morphology of insect-induced galls contributes to defences of the gall-inducing insect species against its natural enemies. In terms of gall chemistry, the only defensive compounds thus far identified in galls are tannins that accumulate in many galls, preventing damage by herbivores. Intrigued by the fruit-like appearance of the translucent oak gall (TOG; Amphibolips nubilipennis, Cynipidae, Hymenoptera) induced on red oak (Quercus rubra), we hypothesized that its chemical composition may deviate from other galls. We found that the pH of the gall is between 2 and 3, making it among the lowest pH levels found in plant tissues. We examined the organic acid content of TOG and compared it to fruits and other galls using high-performance liquid chromatography and gas chromatography-mass spectrometry. Malic acid, an acid with particularly high abundance in apples, represents 66% of the organic acid detected in TOGs. The concentration of malic acid was two times higher than in other galls and in apples. Gall histology showed that the acid-containing cells were enlarged and vacuolized just like fruits mesocarp cells. Accumulation of organic acid in gall tissues is convergent with fruit morphology and may constitute a new defensive strategy against predators and parasitoids.
Collapse
Affiliation(s)
- Antoine Guiguet
- Department of Biology, The Pennsylvania State University, University Park, PA 16801, USA
| | - Nathaniel B. McCartney
- Department of Entomology, The Pennsylvania State University, University Park, PA 16801, USA
- Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16801, USA
| | - Kadeem J. Gilbert
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI 49060, USA
- Department of Plant Biology, Program in Ecology and Evolutionary Biology, Michigan State University, East Lansing, MI 48824, USA
| | - John F. Tooker
- Department of Entomology, The Pennsylvania State University, University Park, PA 16801, USA
| | - Andrew R. Deans
- Department of Entomology, The Pennsylvania State University, University Park, PA 16801, USA
| | - Jared G. Ali
- Department of Entomology, The Pennsylvania State University, University Park, PA 16801, USA
- Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16801, USA
| | - Heather M. Hines
- Department of Biology, The Pennsylvania State University, University Park, PA 16801, USA
- Department of Entomology, The Pennsylvania State University, University Park, PA 16801, USA
| |
Collapse
|
3
|
Borredá C, Perez-Roman E, Talon M, Terol J. Comparative transcriptomics of wild and commercial Citrus during early ripening reveals how domestication shaped fruit gene expression. BMC PLANT BIOLOGY 2022; 22:123. [PMID: 35300613 PMCID: PMC8928680 DOI: 10.1186/s12870-022-03509-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/03/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Interspecific hybridizations and admixtures were key in Citrus domestication, but very little is known about their impact at the transcriptomic level. To determine the effects of genome introgressions on gene expression, the transcriptomes of the pulp and flavedo of three pure species (citron, pure mandarin and pummelo) and four derived domesticated genetic admixtures (sour orange, sweet orange, lemon and domesticated mandarin) have been analyzed at color break. RESULTS Many genes involved in relevant physiological processes for domestication, such sugar/acid metabolism and carotenoid/flavonoid synthesis, were differentially expressed among samples. In the low-sugar, highly acidic species lemon and citron, many genes involved in sugar metabolism, the TCA cycle and GABA shunt displayed a reduced expression, while the P-type ATPase CitPH5 and most subunits of the vacuolar ATPase were overexpressed. The red-colored species and admixtures were generally characterized by the overexpression in the flavedo of specific pivotal genes involved in the carotenoid biosynthesis, including phytoene synthase, ζ-carotene desaturase, β-lycopene cyclase and CCD4b, a carotenoid cleavage dioxygenase. The expression patterns of many genes involved in flavonoid modifications, especially the flavonoid and phenylpropanoid O-methyltransferases showed extreme diversity. However, the most noticeable differential expression was shown by a chalcone synthase gene, which catalyzes a key step in the biosynthesis of flavonoids. This chalcone synthase was exclusively expressed in mandarins and their admixed species, which only expressed the mandarin allele. In addition, comparisons between wild and domesticated mandarins revealed that the major differences between their transcriptomes concentrate in the admixed regions. CONCLUSION In this work we present a first study providing broad evidence that the genome introgressions that took place during citrus domestication largely shaped gene expression in their fruits.
Collapse
Affiliation(s)
- Carles Borredá
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Estela Perez-Roman
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Javier Terol
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain.
| |
Collapse
|
4
|
Melkikh AV, Sutormina MI. From leaves to roots: Biophysical models of transport of substances in plants. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 169-170:53-83. [PMID: 35114180 DOI: 10.1016/j.pbiomolbio.2022.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/19/2022]
Abstract
The transport processes of substances in various plant tissues are extremely diverse. However, models aimed at elucidating the mechanisms of such processes are almost absent in the literature. A unified view of all these transport processes is necessary, considering the laws of statistical physics and thermodynamics. A model of active ion transport was constructed based on the laws of statistical physics. Using this model, we traced the entire pathway of substances and energy in a plant. The pathway included aspects of the production of energy in the process of photosynthesis, consumption of energy to obtain nutrients from the soil, transport of such substances to the main organelles of all types of plant cells, the rise of water with dissolved substances along the trunk to the leaves, and the evaporation of water, accompanied by a change in the percentage of isotopes caused by different rates of evaporation. Models of ion transport in the chloroplasts and mitochondria of plant cells have been constructed. A generalized model comprising plant cells and their vacuoles was analyzed. A model of the transport of substances in the roots of plants was also developed. Based on this model, the problem of transport of substances in tall trees has been considered. The calculated concentrations of ions in the vacuoles of cells and resting potentials agreed well with the experimental data.
Collapse
Affiliation(s)
- A V Melkikh
- Ural Federal University, Yekaterinburg, Russia.
| | | |
Collapse
|
5
|
Gilbert KJ, Renner T. Acid or base? How do plants regulate the ecology of their phylloplane? AOB PLANTS 2021; 13:plab032. [PMID: 34285793 PMCID: PMC8286713 DOI: 10.1093/aobpla/plab032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/25/2021] [Indexed: 05/29/2023]
Abstract
Plants interface with and modify the external environment across their surfaces, and in so doing, can control or mitigate the impacts of abiotic stresses and also mediate their interactions with other organisms. Botanically, it is known that plant roots have a multi-faceted ability to modify rhizosphere conditions like pH, a factor with a large effect on a plant's biotic interactions with microbes. But plants can also modify pH levels on the surfaces of their leaves. Plants can neutralize acid rain inputs in a period of hours, and either acidify or alkalinize the pH of neutral water droplets in minutes. The pH of the phylloplane-that is, the outermost surface of the leaf-varies across species, from incredibly acidic (carnivorous plants: as low as pH 1) to exceptionally alkaline (species in the plant family, Malvaceae, up to pH 11). However, most species mildly acidify droplets on the phylloplane by 1.5 orders of magnitude in pH. Just as rhizosphere pH helps shape the plant microbiome and is known to influence belowground interactions, so too can phylloplane pH influence aboveground interactions in plant canopies. In this review, we discuss phylloplane pH regulation from the physiological, molecular, evolutionary, and ecological perspectives and address knowledge gaps and identify future research directions.
Collapse
Affiliation(s)
- Kadeem J Gilbert
- Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, PA 16802, USA
| | - Tanya Renner
- Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, PA 16802, USA
| |
Collapse
|
6
|
Feng G, Wu J, Xu Y, Lu L, Yi H. High-spatiotemporal-resolution transcriptomes provide insights into fruit development and ripening in Citrus sinensis. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1337-1353. [PMID: 33471410 PMCID: PMC8313135 DOI: 10.1111/pbi.13549] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 05/02/2023]
Abstract
Citrus fruit has a unique structure with soft leathery peel and pulp containing vascular bundles and several segments with many juice sacs. The function and morphology of each fruit tissue are different. Therefore, analysis at the organ-wide or mixed-tissue level inevitably obscures many tissue-specific phenomena. High-throughput RNA sequencing was used to profile Citrus sinensis fruit development based on four fruit tissue types and six development stages from young fruits to ripe fruits. Using a coexpression network analysis, modules of coexpressed genes and hub genes of tissue-specific networks were identified. Of particular, importance is the discovery of the regulatory network of phytohormones during citrus fruit development and ripening. A model was proposed to illustrate how ABF2 mediates the ABA signalling involved in sucrose transport, chlorophyll degradation, auxin homoeostasis, carotenoid and ABA biosynthesis, and cell wall metabolism during citrus fruit development. Moreover, we depicted the detailed spatiotemporal expression patterns of the genes involved in sucrose and citric acid metabolism in citrus fruit and identified several key genes that may play crucial roles in sucrose and citric acid accumulation in the juice sac, such as SWEET15 and CsPH8. The high spatial and temporal resolution of our data provides important insights into the molecular networks underlying citrus fruit development and ripening.
Collapse
Affiliation(s)
- Guizhi Feng
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Juxun Wu
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Yanhui Xu
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Liqing Lu
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Hualin Yi
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
7
|
Kumar J, Shen X, Li B, Liu H, Zhao J. Selective recovery of Li and FePO 4 from spent LiFePO 4 cathode scraps by organic acids and the properties of the regenerated LiFePO 4. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 113:32-40. [PMID: 32505109 DOI: 10.1016/j.wasman.2020.05.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/25/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
To recycle the sharply growing spent lithium-ion batteries and alleviate concerns over shortages of resources, particularly Li, is still an urgent issue. In this work, an organic acids based leaching approach at room temperature is proposed to recover Li and FePO4 from spent LiFePO4 cathode powder. The coexistent metal ions, Cu and Al, have also been investigated. Citrus fruit juices, rich in organic acids, such as citric acid and malic acid, have been used as leaching agents in this work. Among lemon, orange and apple, lemon juice shows the best leaching effect based on its suitable pH of the reaction system. Under the optimized conditions, the leaching rates of Li, Cu and Al can reach up to 94.83%, 96.92% and 47.24%, while Fe and P remain as low as 4.05% and 0.84%, respectively. Li2CO3 and FePO4 can be recovered from the leachate and the leaching residue, respectively. The recovered FePO4 was used to prepare new cathode material LiFePO4. The crystalline carbon, present in the spent LiFePO4 cathode scraps, has a significant effect on the electrochemical performances of the regenerated LiFePO4. The regenerated LiFePO4 cathode material delivered a comparable discharge capacity of 155.3 mAh g-1 at 0.1C and rate capacity to the fresh LiFePO4. For the cycling stability, it displays capacity retention of 98.30% over 100 cycles at 1 C with a fading rate of 0.017% per cycle. The proposed organic acids-based recycling strategy is much benign for recycling the spent LiFePO4 cathode materials.
Collapse
Affiliation(s)
- Jai Kumar
- CAS Key Laboratory of Green Process Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, No. 1 BeiErTiao, Zhong Guan Cun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Shen
- CAS Key Laboratory of Green Process Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, No. 1 BeiErTiao, Zhong Guan Cun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Li
- CAS Key Laboratory of Green Process Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, No. 1 BeiErTiao, Zhong Guan Cun, Beijing 100190, China
| | - Huizhou Liu
- CAS Key Laboratory of Green Process Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, No. 1 BeiErTiao, Zhong Guan Cun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junmei Zhao
- CAS Key Laboratory of Green Process Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, No. 1 BeiErTiao, Zhong Guan Cun, Beijing 100190, China; Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
8
|
Citrus Taste Modification Potentials by Genetic Engineering. Int J Mol Sci 2019; 20:ijms20246194. [PMID: 31817978 PMCID: PMC6940753 DOI: 10.3390/ijms20246194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 12/22/2022] Open
Abstract
Citrus fruits are mainly consumed as fresh fruit and processed juice products. They serve as nutritional and a tasty diet in our daily life. However, the formidable bitterness and delayed bitterness significantly impact the citrus industry attributable to the two major bitter compounds naringin and limonin. The extremely sour and acidic also negatively affects the sensory quality of citrus products. Citrus breeding programs have developed different strategies to improve citrus quality and a wealth of studies have aimed to uncover the genetic and biochemical basis of citrus flavor. In this minireview, we outline the major genes characterized to be involved in pathways shaping the sweet, bitter, or sour taste in citrus, and discuss briefly about the possible approaches to modify citrus taste by genetic engineering.
Collapse
|
9
|
Shi CY, Hussain SB, Yang H, Bai YX, Khan MA, Liu YZ. CsPH8, a P-type proton pump gene, plays a key role in the diversity of citric acid accumulation in citrus fruits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110288. [PMID: 31623791 DOI: 10.1016/j.plantsci.2019.110288] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Citric acid homeostasis patterns and its content are diversified among the fruits of citrus cultivars, but the cause remained unclear. In this study we showed that changes of citric acid content were highly associated with the expression profiles of a P-type proton pump gene (CsPH8) in the fruits of six citrus cultivars; moreover, analysis of 21 different fruit samples indicated that the correlation coefficient between titratable acid content and CsPH8 transcript level was 0.5837 with a significant level (P < 0.05). Overexpression of CsPH8 in acidless pumelo juice sacs, strawberry fruit, and tomato fruit significantly increased the titratable acid or citric acid content besides the gene transcript level. On another hand, RNA interference of CsPH8 in acidic pumelo juice sacs significantly decreased the CsPH8 transcript level and the titratable acid or citric acid content as well. In addition, severe drought significantly increased the CsPH8 transcript level besides the titratable acid content. Taken together, these findings address the function of CsPH8 in citrus vacuolar acidification, confirm that CsPH8 plays a key role in the variation of citric acid content, and supported that the acid fluctuation influenced by drought, is at least partly due to the change of CsPH8 transcript level.
Collapse
Affiliation(s)
- Cai-Yun Shi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Syed Bilal Hussain
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Huan Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ying-Xin Bai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Abbas Khan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yong-Zhong Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
10
|
Strazzer P, Spelt CE, Li S, Bliek M, Federici CT, Roose ML, Koes R, Quattrocchio FM. Hyperacidification of Citrus fruits by a vacuolar proton-pumping P-ATPase complex. Nat Commun 2019; 10:744. [PMID: 30808865 PMCID: PMC6391481 DOI: 10.1038/s41467-019-08516-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/08/2019] [Indexed: 11/09/2022] Open
Abstract
The sour taste of Citrus fruits is due to the extreme acidification of vacuoles in juice vesicle cells via a mechanism that remained elusive. Genetic analysis in petunia identified two vacuolar P-ATPases, PH1 and PH5, which determine flower color by hyperacidifying petal cell vacuoles. Here we show that Citrus homologs, CitPH1 and CitPH5, are expressed in sour lemon, orange, pummelo and rangpur lime fruits, while their expression is strongly reduced in sweet-tasting “acidless” varieties. Down-regulation of CitPH1 and CitPH5 is associated with mutations that disrupt expression of MYB, HLH and/or WRKY transcription factors homologous to those activating PH1 and PH5 in petunia. These findings address a long-standing enigma in cell biology and provide targets to engineer or select for taste in Citrus and other fruits. The sour taste of citrus fruit results from the extremely low pH of juice vesicle cell vacuoles. Here the authors provide genetic evidence that a vacuolar P-type ATPase, that is known to determine flower color in petunia via vacuolar acidification, is also responsible for extreme acidification in citrus.
Collapse
Affiliation(s)
- Pamela Strazzer
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Cornelis E Spelt
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Shuangjiang Li
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Mattijs Bliek
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Claire T Federici
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Mikeal L Roose
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Ronald Koes
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Francesca M Quattrocchio
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Jiang CC, Fang ZZ, Zhou DR, Pan SL, Ye XF. Changes in secondary metabolites, organic acids and soluble sugars during the development of plum fruit cv. 'Furongli' (Prunus salicina Lindl). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1010-1019. [PMID: 30009532 DOI: 10.1002/jsfa.9265] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/28/2018] [Accepted: 07/12/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Organic acids, sugars and pigments are key components that determine the taste and flavor of plum fruit. However, metabolism of organic acid and sugar is not fully understood during the development of plum fruit cv. 'Furongli'. RESULTS Mature fruit of 'Furongli' has the highest content of anthocyanins and the lowest content of total phenol compounds and flavonoids. Malate is the predominant organic acid anion in 'Furongli' fruit, followed by citrate and isocitrate. Glucose was the predominant sugar form, followed by fructose and sucrose. Correlation analysis indicated that malate content increased with increasing phosphoenolpyruvate carboxylase (PEPC) activity and decreasing nicotinamide adenine dinucleotide-malate dehydrogenase (NAD-MDH) activity. Citrate and isocitrate content increased with increasing PEPC and aconitase (ACO) activities, respectively. Both acid invertase and neutral invertase had higher activities at the early stage than later stage of fruit development. Fructose content decreased with increasing phosphoglucoisomerase (PGI) activity, whereas glucose content increased with decreasing hexokinase (HK) activity. CONCLUSION Dynamics in organic acid anions were not solely controlled by a single enzyme but regulated by the integrated activity of enzymes such as nicotinamide adenine dinucleotide phosphate-malic enzyme (NADP-ME), NAD-ME, PEPC, ACO and NADP-isocitrate dehydrogenase. Sugar metabolism enzymes such as PGI, invertase and HK may play vital roles in the regulation of individual sugar metabolic processes. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cui-Cui Jiang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Zhi-Zhen Fang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Dan-Rong Zhou
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Shao-Lin Pan
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xin-Fu Ye
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
12
|
Sadka A, Shlizerman L, Kamara I, Blumwald E. Primary Metabolism in Citrus Fruit as Affected by Its Unique Structure. FRONTIERS IN PLANT SCIENCE 2019; 10:1167. [PMID: 31611894 PMCID: PMC6775482 DOI: 10.3389/fpls.2019.01167] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/26/2019] [Indexed: 05/18/2023]
Abstract
Citrus is one of the world's most important fruit crops, contributing essential nutrients, such as vitamin C and minerals, to the human diet. It is characterized by two important traits: first, its major edible part is composed of juice sacs, a unique structure among fruit, and second, relatively high levels of citric acid are accumulated in the vacuole of the juice sac cell. Although the major routes of primary metabolism are generally the same in citrus fruit and other plant systems, the fruit's unique structural features challenge our understanding of carbon flow into the fruit and its movement through all of its parts. In fact, acid metabolism and accumulation have only been summarized in a few reviews. Here we present a comprehensive view of sugar, acid and amino acid metabolism and their connections within the fruit, all in relation to the fruit's unique structure.
Collapse
Affiliation(s)
- Avi Sadka
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
- *Correspondence: Avi Sadka,
| | - Lyudmila Shlizerman
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Itzhak Kamara
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
13
|
Batista-Silva W, Nascimento VL, Medeiros DB, Nunes-Nesi A, Ribeiro DM, Zsögön A, Araújo WL. Modifications in Organic Acid Profiles During Fruit Development and Ripening: Correlation or Causation? FRONTIERS IN PLANT SCIENCE 2018; 9:1689. [PMID: 30524461 PMCID: PMC6256983 DOI: 10.3389/fpls.2018.01689] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/31/2018] [Indexed: 05/21/2023]
Abstract
The pivotal role of phytohormones during fruit development and ripening is considered established knowledge in plant biology. Perhaps less well-known is the growing body of evidence suggesting that organic acids play a key function in plant development and, in particular, in fruit development, maturation and ripening. Here, we critically review the connection between organic acids and the development of both climacteric and non-climacteric fruits. By analyzing the metabolic content of different fruits during their ontogenetic trajectory, we noticed that the content of organic acids in the early stages of fruit development is directly related to the supply of substrates for respiratory processes. Although different organic acid species can be found during fruit development in general, it appears that citrate and malate play major roles in this process, as they accumulate on a broad range of climacteric and non-climacteric fruits. We further highlight the functional significance of changes in organic acid profile in fruits due to either the manipulation of fruit-specific genes or the use of fruit-specific promoters. Despite the complexity behind the fluctuation in organic acid content during fruit development and ripening, we extend our understanding on the importance of organic acids on fruit metabolism and the need to further boost future research. We suggest that engineering organic acid metabolism could improve both qualitative and quantitative traits of crop fruits.
Collapse
Affiliation(s)
- Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Vitor L. Nascimento
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - David B. Medeiros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Dimas M. Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Wagner L. Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
14
|
Adiamo OQ, Eltoum YAI, Babiker EE. Effects of Gum Arabic Edible Coatings and Sun-Drying on the Storage Life and Quality of Raw and Blanched Tomato Slices. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2017. [DOI: 10.1080/15428052.2017.1404535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Oladipupo Q. Adiamo
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Yousif A. I. Eltoum
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Elfadil E. Babiker
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Tresguerres M. Novel and potential physiological roles of vacuolar-type H+-ATPase in marine organisms. J Exp Biol 2016; 219:2088-97. [DOI: 10.1242/jeb.128389] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ABSTRACT
The vacuolar-type H+-ATPase (VHA) is a multi-subunit enzyme that uses the energy from ATP hydrolysis to transport H+ across biological membranes. VHA plays a universal role in essential cellular functions, such as the acidification of lysosomes and endosomes. In addition, the VHA-generated H+-motive force can drive the transport of diverse molecules across cell membranes and epithelia for specialized physiological functions. Here, I discuss diverse physiological functions of VHA in marine animals, focusing on recent discoveries about base secretion in shark gills, potential bone dissolution by Osedax bone-eating worms and its participation in a carbon-concentrating mechanism that promotes coral photosynthesis. Because VHA is evolutionarily conserved among eukaryotes, it is likely to play many other essential physiological roles in diverse marine organisms. Elucidating and characterizing basic VHA-dependent mechanisms could help to determine species responses to environmental stress, including (but not limited to) that resulting from climate change.
Collapse
Affiliation(s)
- Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, SIO mail code 0202, La Jolla, CA 92093, USA
| |
Collapse
|
16
|
Guo LX, Shi CY, Liu X, Ning DY, Jing LF, Yang H, Liu YZ. Citrate Accumulation-Related Gene Expression and/or Enzyme Activity Analysis Combined With Metabolomics Provide a Novel Insight for an Orange Mutant. Sci Rep 2016; 6:29343. [PMID: 27385485 PMCID: PMC4935991 DOI: 10.1038/srep29343] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/17/2016] [Indexed: 01/12/2023] Open
Abstract
'Hong Anliu' (HAL, Citrus sinensis cv. Hong Anliu) is a bud mutant of 'Anliu' (AL), characterized by a comprehensive metabolite alteration, such as lower accumulation of citrate, high accumulation of lycopene and soluble sugars in fruit juice sacs. Due to carboxylic acid metabolism connects other metabolite biosynthesis and/or catabolism networks, we therefore focused analyzing citrate accumulation-related gene expression profiles and/or enzyme activities, along with metabolic fingerprinting between 'HAL' and 'AL'. Compared with 'AL', the transcript levels of citrate biosynthesis- and utilization-related genes and/or the activities of their respective enzymes such as citrate synthase, cytosol aconitase and ATP-citrate lyase were significantly higher in 'HAL'. Nevertheless, the mitochondrial aconitase activity, the gene transcript levels of proton pumps, including vacuolar H(+)-ATPase, vacuolar H(+)-PPase, and the juice sac-predominant p-type proton pump gene (CsPH8) were significantly lower in 'HAL'. These results implied that 'HAL' has higher abilities for citrate biosynthesis and utilization, but lower ability for the citrate uptake into vacuole compared with 'AL'. Combined with the metabolites-analyzing results, a model was then established and suggested that the reduction in proton pump activity is the key factor for the low citrate accumulation and the comprehensive metabolite alterations as well in 'HAL'.
Collapse
Affiliation(s)
- Ling-Xia Guo
- Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, P.R. China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Cai-Yun Shi
- Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, P.R. China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Xiao Liu
- Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, P.R. China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Dong-Yuan Ning
- Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, P.R. China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Long-Fei Jing
- Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, P.R. China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Huan Yang
- Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, P.R. China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yong-Zhong Liu
- Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, P.R. China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
17
|
Huang D, Zhao Y, Cao M, Qiao L, Zheng ZL. Integrated Systems Biology Analysis of Transcriptomes Reveals Candidate Genes for Acidity Control in Developing Fruits of Sweet Orange (Citrus sinensis L. Osbeck). FRONTIERS IN PLANT SCIENCE 2016; 7:486. [PMID: 27092171 PMCID: PMC4824782 DOI: 10.3389/fpls.2016.00486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/25/2016] [Indexed: 05/18/2023]
Abstract
Organic acids, such as citrate and malate, are important contributors for the sensory traits of fleshy fruits. Although their biosynthesis has been illustrated, regulatory mechanisms of acid accumulation remain to be dissected. To provide transcriptional architecture and identify candidate genes for citrate accumulation in fruits, we have selected for transcriptome analysis four varieties of sweet orange (Citrus sinensis L. Osbeck) with varying fruit acidity, Succari (acidless), Bingtang (low acid), and Newhall and Xinhui (normal acid). Fruits of these varieties at 45 days post anthesis (DPA), which corresponds to Stage I (cell division), had similar acidity, but they displayed differential acid accumulation at 142 DPA (Stage II, cell expansion). Transcriptomes of fruits at 45 and 142 DPA were profiled using RNA sequencing and analyzed with three different algorithms (Pearson correlation, gene coexpression network and surrogate variable analysis). Our network analysis shows that the acid-correlated genes belong to three distinct network modules. Several of these candidate fruit acidity genes encode regulatory proteins involved in transport (such as AHA10), degradation (such as APD2) and transcription (such as AIL6) and act as hubs in the citrate accumulation gene networks. Taken together, our integrated systems biology analysis has provided new insights into the fruit citrate accumulation gene network and led to the identification of candidate genes likely associated with the fruit acidity control.
Collapse
Affiliation(s)
- Dingquan Huang
- Plant Nutrient Signaling and Fruit Quality Improvement Laboratory, National Citrus Engineering Research Center, Citrus Research Institute, Southwest UniversityChongqing, China
| | - Yihong Zhao
- Division of Biostatistics, Department of Child Psychiatry, New York University Langone Medical Center, New YorkNY, USA
- *Correspondence: Yihong Zhao, ; Zhi-Liang Zheng,
| | - Minghao Cao
- Plant Nutrient Signaling and Fruit Quality Improvement Laboratory, National Citrus Engineering Research Center, Citrus Research Institute, Southwest UniversityChongqing, China
| | - Liang Qiao
- Plant Nutrient Signaling and Fruit Quality Improvement Laboratory, National Citrus Engineering Research Center, Citrus Research Institute, Southwest UniversityChongqing, China
| | - Zhi-Liang Zheng
- Plant Nutrient Signaling and Fruit Quality Improvement Laboratory, National Citrus Engineering Research Center, Citrus Research Institute, Southwest UniversityChongqing, China
- Department of Biological Sciences, Lehman College, City University of New York, BronxNY, USA
- *Correspondence: Yihong Zhao, ; Zhi-Liang Zheng,
| |
Collapse
|
18
|
Amato A, Cavallini E, Zenoni S, Finezzo L, Begheldo M, Ruperti B, Tornielli GB. A Grapevine TTG2-Like WRKY Transcription Factor Is Involved in Regulating Vacuolar Transport and Flavonoid Biosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:1979. [PMID: 28105033 PMCID: PMC5214514 DOI: 10.3389/fpls.2016.01979] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/13/2016] [Indexed: 05/20/2023]
Abstract
A small set of TTG2-like homolog proteins from different species belonging to the WRKY family of transcription factors were shown to share a similar mechanism of action and to control partially conserved biochemical/developmental processes in their native species. In particular, by activating P-ATPases residing on the tonoplast, PH3 from Petunia hybrida promotes vacuolar acidification in petal epidermal cells whereas TTG2 from Arabidopsis thaliana enables the accumulation of proanthocyanidins in the seed coat. In this work we functionally characterized VvWRKY26 identified as the closest grapevine homolog of PhPH3 and AtTTG2. When constitutively expressed in petunia ph3 mutant, VvWRKY26 can fulfill the PH3 function in the regulation of vacuolar pH and restores the wild type pigmentation phenotype. By a global correlation analysis of gene expression and by transient over-expression in Vitis vinifera, we showed transcriptomic relationships of VvWRKY26 with many genes related to vacuolar acidification and transport in grapevine. Moreover, our results indicate an involvement in flavonoid pathway possibly restricted to the control of proanthocyanidin biosynthesis that is consistent with its expression pattern in grape berry tissues. Overall, the results show that, in addition to regulative mechanisms and biological roles shared with TTG2-like orthologs, VvWRKY26 can play roles in fleshy fruit development that have not been previously reported in studies from dry fruit species. This study paves the way toward the comprehension of the regulatory network controlling vacuolar acidification and flavonoid accumulation mechanisms that contribute to the final berry quality traits in grapevine.
Collapse
Affiliation(s)
| | - Erika Cavallini
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Sara Zenoni
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Laura Finezzo
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Maura Begheldo
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of PadovaPadova, Italy
| | - Benedetto Ruperti
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of PadovaPadova, Italy
| | | |
Collapse
|
19
|
Hedrich R, Sauer N, Neuhaus HE. Sugar transport across the plant vacuolar membrane: nature and regulation of carrier proteins. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:63-70. [PMID: 26000864 DOI: 10.1016/j.pbi.2015.04.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/16/2015] [Accepted: 04/30/2015] [Indexed: 05/06/2023]
Abstract
The ability of higher plants to store sugars is of crucial importance for plant development, adaption to endogenous or environmental cues and for the economic value of crop species. Sugar storage and accumulation, and its homeostasis in plant cells are managed by the vacuole. Although transport of sugars across the vacuolar membrane has been monitored for about four decades, the molecular entities of the transporters involved have been identified in the last 10 years only. Thus, it is just recently that our pictures of the transporters that channel the sugar load across the tonoplast have gained real shape. Here we describe the molecular nature and regulation of an important group of tonoplast sugar transporter (TST) allowing accumulation of sugars against large concentration gradients. In addition, we report on proton-driven tonoplast sugar exporters and on facilitators, which are also involved in balancing cytosolic and vacuolar sugar levels.
Collapse
Affiliation(s)
- Rainer Hedrich
- Molecular Plant Physiology and Biophysics, University of Würzburg, Germany
| | - Norbert Sauer
- Molecular Plant Physiology, University of Erlangen-Nuremberg, Germany
| | | |
Collapse
|
20
|
Barott KL, Venn AA, Perez SO, Tambutté S, Tresguerres M. Coral host cells acidify symbiotic algal microenvironment to promote photosynthesis. Proc Natl Acad Sci U S A 2015; 112:607-12. [PMID: 25548188 PMCID: PMC4299235 DOI: 10.1073/pnas.1413483112] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Symbiotic dinoflagellate algae residing inside coral tissues supply the host with the majority of their energy requirements through the translocation of photosynthetically fixed carbon. The algae, in turn, rely on the host for the supply of inorganic carbon. Carbon must be concentrated as CO2 in order for photosynthesis to proceed, and here we show that the coral host plays an active role in this process. The host-derived symbiosome membrane surrounding the algae abundantly expresses vacuolar H(+)-ATPase (VHA), which acidifies the symbiosome space down to pH ∼ 4. Inhibition of VHA results in a significant decrease in average H(+) activity in the symbiosome of up to 75% and a significant reduction in O2 production rate, a measure of photosynthetic activity. These results suggest that host VHA is part of a previously unidentified carbon concentrating mechanism for algal photosynthesis and provide mechanistic evidence that coral host cells can actively modulate the physiology of their symbionts.
Collapse
Affiliation(s)
- Katie L Barott
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093
| | - Alexander A Venn
- Marine Biology Department, Centre Scientifique de Monaco, MC-98000 Monaco, Monaco; and Laboratoire Européen Associé 647 "Biosensib," Centre Scientifique de Monaco-Centre National de la Recherche Scientifique, MC-98000 Monaco, Monaco
| | - Sidney O Perez
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, MC-98000 Monaco, Monaco; and
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093;
| |
Collapse
|
21
|
Shi CY, Song RQ, Hu XM, Liu X, Jin LF, Liu YZ. Citrus PH5-like H(+)-ATPase genes: identification and transcript analysis to investigate their possible relationship with citrate accumulation in fruits. FRONTIERS IN PLANT SCIENCE 2015; 6:135. [PMID: 25806039 PMCID: PMC4353184 DOI: 10.3389/fpls.2015.00135] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 02/19/2015] [Indexed: 05/18/2023]
Abstract
PH5 is a petunia gene that encodes a plasma membrane H(+)-ATPase and determines the vacuolar pH. The citrate content of fruit cell vacuoles influences citrus organoleptic qualities. Although citrus could have PH5-like homologs that are involved in citrate accumulation, the details are still unknown. In this study, extensive data-mining with the PH5 sequence and PCR amplification confirmed that there are at least eight PH5-like genes (CsPH1-8) in the citrus genome. CsPHs have a molecular mass of approximately 100 kDa, and they have high similarity to PhPH5, AtAHA10 or AtAHA2 (from 64.6 to 80.9%). They contain 13-21 exons and 12-20 introns and were evenly distributed into four subgroups of the P3A-subfamily (CsPH1, CsPH2, and CsPH3 in Group I, CsPH4 and CsPH5 in Group II, CsPH6 in Group IV, and CsPH7 and CsPH8 in Group III together with PhPH5). A transcript analysis showed that CsPH1, 3, and 4 were predominantly expressed in mature leaves, whereas CsPH2 and 7 were predominantly expressed in roots, CsPH5 and 6 were predominantly expressed in flowers, and CsPH8 was predominantly expressed in fruit juice sacs (JS). Moreover, the CsPH transcript profiles differed between orange and pummelo, as well as between high-acid and low-acid cultivars. The low-acid orange "Honganliu" exhibits low transcript levels of CsPH3, CsPH4, CsPH5, and CsPH8, whereas the acid-free pummelo (AFP) has only a low transcript level of CsPH8. In addition, ABA injection increased the citrate content significantly, which was accompanied by the obvious induction of CsPH2, 6, 7, and 8 transcript levels. Taken together, we suggest that CsPH8 seems likely to regulate citrate accumulation in the citrus fruit vacuole.
Collapse
Affiliation(s)
- Cai-Yun Shi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), Ministry of EducationWuhan, China
| | - Rui-Qin Song
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), Ministry of EducationWuhan, China
| | - Xiao-Mei Hu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), Ministry of EducationWuhan, China
| | - Xiao Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), Ministry of EducationWuhan, China
| | - Long-Fei Jin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), Ministry of EducationWuhan, China
| | - Yong-Zhong Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), Ministry of EducationWuhan, China
- *Correspondence: Yong-Zhong Liu, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Shizishan Road 1#, Wuhan 430070, China
| |
Collapse
|
22
|
Schumacher K. pH in the plant endomembrane system-an import and export business. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:71-76. [PMID: 25282587 DOI: 10.1016/j.pbi.2014.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 05/06/2023]
Abstract
pH homeostasis is an essential process in all plant cells and the maintenance of correct luminal pH in the compartments of the endomembrane system is important not only for secondary active transport but also for a variety of cellular functions including protein modification, sorting, and trafficking. Due to their electrogenicity primary H(+)-pumps cannot establish and control the often large proton-gradients single-handedly but require the co-action of other ion transporters that serve as either shunt conductances or proton-leaks. Here, I will thus focus on recent results that highlight the interplay of proton-pumps and proton-coupled transporters in controlling pH in the compartments of the plant endomembrane system.
Collapse
Affiliation(s)
- Karin Schumacher
- Dep. of Cell Biology, Centre for Organismal Studies (COS), Universität Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
23
|
Eisenach C, Baetz U, Martinoia E. Vacuolar proton pumping: more than the sum of its parts? TRENDS IN PLANT SCIENCE 2014; 19:344-6. [PMID: 24703550 DOI: 10.1016/j.tplants.2014.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/12/2014] [Accepted: 03/18/2014] [Indexed: 05/21/2023]
Abstract
Petunia flower colour is dependent on vacuolar pH and is therefore used to study acidification mechanisms. Recently, it was shown that the concerted action of two tonoplast-localised P3-ATPases is required to hyperacidify vacuoles of petunia petal epidermis cells. Here we discuss how steep cross-tonoplast pH gradients may be established in specific cells.
Collapse
Affiliation(s)
- Cornelia Eisenach
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland.
| | - Ulrike Baetz
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Enrico Martinoia
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| |
Collapse
|
24
|
Wheat V-H+-ATPase subunit genes significantly affect salt tolerance in Arabidopsis thaliana. PLoS One 2014; 9:e86982. [PMID: 24498005 PMCID: PMC3907383 DOI: 10.1371/journal.pone.0086982] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 12/19/2013] [Indexed: 11/25/2022] Open
Abstract
Genes for V-H+-ATPase subunits were identified and cloned from the salt-tolerant wheat mutant RH8706-49. Sequences of these genes are highly conserved in plants. Overexpression of these genes in Arabidopsis thaliana improved its salt tolerance, and increased the activities of V-H+-ATPase and Na+/H+ exchange, with the largest increase in plants carrying the c subunit of V-H+-ATPase. Results from quantitative RT-PCR analysis indicated that the mRNA level of each V-H+-ATPase subunit in the Arabidopsis increased under salt stress. Overall, our results suggest that each V-H+-ATPase subunit plays a key role in enhancing salt tolerance in plants.
Collapse
|
25
|
Etienne A, Génard M, Lobit P, Mbeguié-A-Mbéguié D, Bugaud C. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1451-69. [PMID: 23408829 DOI: 10.1093/jxb/ert035] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fleshy fruit acidity is an important component of fruit organoleptic quality and is mainly due to the presence of malic and citric acids, the main organic acids found in most ripe fruits. The accumulation of these two acids in fruit cells is the result of several interlinked processes that take place in different compartments of the cell and appear to be under the control of many factors. This review combines analyses of transcriptomic, metabolomic, and proteomic data, and fruit process-based simulation models of the accumulation of citric and malic acids, to further our understanding of the physiological mechanisms likely to control the accumulation of these two acids during fruit development. The effects of agro-environmental factors, such as the source:sink ratio, water supply, mineral nutrition, and temperature, on citric and malic acid accumulation in fruit cells have been reported in several agronomic studies. This review sheds light on the interactions between these factors and the metabolism and storage of organic acids in the cell.
Collapse
Affiliation(s)
- A Etienne
- Centre de Coopération International en Recherche Agronomique pour le Développement (CIRAD), UMR QUALISUD, Pôle de Recherche Agronomique de Martinique, BP 214, 97 285 Lamentin Cedex 2, France
| | | | | | | | | |
Collapse
|
26
|
Enhanced expression of vacuolar H+-ATPase subunit E in the roots is associated with the adaptation of Broussonetia papyrifera to salt stress. PLoS One 2012; 7:e48183. [PMID: 23133565 PMCID: PMC3485061 DOI: 10.1371/journal.pone.0048183] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 09/21/2012] [Indexed: 02/07/2023] Open
Abstract
Vacuolar H+-ATPase (V-H+-ATPase) may play a pivotal role in maintenance of ion homeostasis inside plant cells. In the present study, the expression of V-H+-ATPase genes was analyzed in the roots and leaves of a woody plant, Broussonetia papyrifera, which was stressed with 50, 100 and 150 mM NaCl. Moreover, the expression and distribution of the subunit E protein were investigated by Western blot and immunocytochemistry. These showed that treatment of B. papyrifera with NaCl distinctly changed the hydrolytic activity of V-H+-ATPase in the roots and leaves. Salinity induced a dramatic increase in V-H+-ATPase hydrolytic activity in the roots. However, only slight changes in V-H+-ATPase hydrolytic activity were observed in the leaves. In contrast, increased H+ pumping activity of V-H+-ATPase was observed in both the roots and leaves. In addition, NaCl treatment led to an increase in H+-pyrophosphatase (V-H+-PPase) activity in the roots. Moreover, NaCl treatment triggered the enhancement of mRNA levels for subunits A, E and c of V-H+-ATPase in the roots, whereas only subunit c mRNA was observed to increase in the leaves. By Western blot and immunocytological analysis, subunit E was shown to be augmented in response to salinity stress in the roots. These findings provide evidence that under salt stress, increased V-H+-ATPase activity in the roots was positively correlated with higher transcript and protein levels of V-H+-ATPase subunit E. Altogether, our results suggest an essential role for V-H+-ATPase subunit E in the response of plants to salinity stress.
Collapse
|
27
|
Ohno S, Hosokawa M, Kojima M, Kitamura Y, Hoshino A, Tatsuzawa F, Doi M, Yazawa S. Simultaneous post-transcriptional gene silencing of two different chalcone synthase genes resulting in pure white flowers in the octoploid dahlia. PLANTA 2011; 234:1-7. [PMID: 21344312 DOI: 10.1007/s00425-011-1383-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Accepted: 01/26/2011] [Indexed: 05/08/2023]
Abstract
Garden dahlias (Dahlia variabilis) are autoallooctoploids with redundant genes producing wide color variations in flowers. There are no pure white dahlia cultivars, despite its long breeding history. However, the white areas of bicolor flower petals appear to be pure white. The objective of this experiment was to elucidate the mechanism by which the pure white color is expressed in the petals of some bicolor cultivars. A pigment analysis showed that no flavonoid derivatives were detected in the white areas of petals in a star-type cultivar 'Yuino' and the two seedling cultivars 'OriW1' and 'OriW2' borne from a red-white bicolor cultivar, 'Orihime', indicating that their white areas are pure white. Semi-quantitative RT-PCR showed that in the pure white areas, transcripts of two chalcone synthases (CHS), DvCHS1 and DvCHS2 which share 69% nucleotide similarity with each other, were barely detected. Premature mRNA of DvCHS1 and DvCHS2 were detected, indicating that these two CHS genes are silenced post-transcriptionally. RNA gel blot analysis revealed that small interfering RNAs (siRNAs) derived from CHSs were produced in these pure white areas. By high-throughput sequence analysis of small RNAs in the pure white areas with no mismatch acceptance, small RNAs were mapped to two alleles of DvCHS1 and two alleles of DvCHS2 expressed in 'Yuino' petals. Therefore, we concluded that simultaneous siRNA-mediated post-transcriptional gene silencing of redundant CHS genes results in the appearance of pure white color in dahlias.
Collapse
Affiliation(s)
- Sho Ohno
- Laboratory of Vegetable and Ornamental Horticulture, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Degu A, Hatew B, Nunes-Nesi A, Shlizerman L, Zur N, Katz E, Fernie AR, Blumwald E, Sadka A. Inhibition of aconitase in citrus fruit callus results in a metabolic shift towards amino acid biosynthesis. PLANTA 2011; 234:501-13. [PMID: 21528417 DOI: 10.1007/s00425-011-1411-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 03/28/2011] [Indexed: 05/08/2023]
Abstract
Citrate, a major determinant of citrus fruit quality, accumulates early in fruit development and declines towards maturation. The isomerization of citrate to isocitrate, catalyzed by aconitase is a key step in acid metabolism. Inhibition of mitochondrial aconitase activity early in fruit development contributes to acid accumulation, whereas increased cytosolic activity of aconitase causes citrate decline. It was previously hypothesized that the block in mitochondrial aconitase activity, inducing acid accumulation, is caused by citramalate. Here, we investigated the effect of citramalate and of another aconitase inhibitor, oxalomalate, on aconitase activity and regulation in callus originated from juice sacs. These compounds significantly increased citrate content and reduced the enzyme's activity, while slightly inducing its protein level. Citramalate inhibited the mitochondrial, but not cytosolic form of the enzyme. Its external application to mandarin fruits resulted in inhibition of aconitase activity, with a transient increase in fruit acidity detected a few weeks later. The endogenous level of citramalate was analyzed in five citrus varieties: its pattern of accumulation challenged the notion of its action as an endogenous inhibitor of mitochondrial aconitase. Metabolite profiling of oxalomalate-treated cells showed significant increases in a few amino acids and organic acids. The activities of alanine transaminase, aspartate transaminase and aspartate kinase, as well as these of two γ-aminobutyrate (GABA)-shunt enzymes, succinic semialdehyde reductase (SSAR) and succinic semialdehyde dehydrogenase (SSAD) were significantly induced in oxalomalate-treated cells. It is suggested that the increase in citrate, caused by aconitase inhibition, induces amino acid synthesis and the GABA shunt, in accordance with the suggested fate of citrate during the acid decline stage in citrus fruit.
Collapse
Affiliation(s)
- Asfaw Degu
- Department of Fruit Tree Sciences, ARO, The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Polysaccharide/Protein Nanomultilayer Coatings: Construction, Characterization and Evaluation of Their Effect on ‘Rocha’ Pear (Pyrus communis L.) Shelf-Life. FOOD BIOPROCESS TECH 2011. [DOI: 10.1007/s11947-010-0508-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Silva P, Gerós H. Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H+ exchange. PLANT SIGNALING & BEHAVIOR 2009; 4:718-26. [PMID: 19820346 PMCID: PMC2801382 DOI: 10.4161/psb.4.8.9236] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 06/09/2009] [Indexed: 05/20/2023]
Abstract
Over the last decades several efforts have been carried out to determine the mechanisms of salt homeostasis in plants and, more recently, to identify genes implicated in salt tolerance, with some plants being successfully genetically engineered to improve resistance to salt. It is well established that the efficient exclusion of Na(+) excess from the cytoplasm and vacuolar Na(+) accumulation are the most important steps towards the maintenance of ion homeostasis inside the cell. Therefore, the vacuole of plant cells plays a pivotal role in the storage of salt. After the identification of the vacuolar Na(+)/H(+) antiporter Nhx1 in Saccharomyces cerevisiae, the first plant Na(+)/H(+) antiporter, AtNHX1, was isolated from Arabidopsis and its overexpression resulted in plants exhibiting increased salt tolerance. Also, the identification of the plasma membrane Na(+)/H(+) exchanger SOS1 and how it is regulated by a protein kinase SOS2 and a calcium binding protein SOS3 were great achievements in the understanding of plant salt resistance. Both tonoplast and plasma membrane antiporters exclude Na+ from the cytosol driven by the proton-motive force generated by the plasma membrane H(+)-ATPase and by the vacuolar membrane H(+)-ATPase and H(+)-pyrophosphatase and it has been shown that the activity of these proteins responds to salinity. In this review we focus on the transcriptional and post-transcriptional regulation by salt of tonoplast proton pumps and Na(+)/H(+) exchangers and on the signalling pathways involved in salt sensing.
Collapse
Affiliation(s)
- Paulo Silva
- Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas (CITAB); Portugal
- Departamento de Biologia; Universidade do Minho; Braga, Portugal
| | - Hernâni Gerós
- Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas (CITAB); Portugal
- Departamento de Biologia; Universidade do Minho; Braga, Portugal
| |
Collapse
|
31
|
Queirós F, Fontes N, Silva P, Almeida D, Maeshima M, Gerós H, Fidalgo F. Activity of tonoplast proton pumps and Na+/H+ exchange in potato cell cultures is modulated by salt. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1363-74. [PMID: 19213810 DOI: 10.1093/jxb/erp011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The efficient exclusion of excess Na from the cytoplasm and vacuolar Na(+) accumulation are the main mechanisms for the adaptation of plants to salt stress. This is typically carried out by transmembrane transport proteins that exclude Na(+) from the cytosol in exchange for H(+), a secondary transport process which is energy-dependent and driven by the proton-motive force generated by plasma-membrane and tonoplast proton pumps. Tonoplast enriched-vesicles from control and 150 mM NaCl-tolerant calli lines were used as a model system to study the activity of V-H(+)-PPase and V-H(+)-ATPase and the involvement of Na(+) compartmentalization into the vacuole as a mechanism of salt tolerance in Solanum tuberosum. Both ATP- and pyrophosphate (PP(i))-dependent H(+)-transport were higher in tonoplast vesicles from the salt-tolerant line than in vesicles from control cells. Western blotting of tonoplast proteins confirmed that changes in V-H(+)-PPase activity are correlated with increased protein amount. Conversely, immunodetection of the A-subunit of V-H(+)-ATPase revealed that a mechanism of post-translational regulation is probably involved. Na(+)-dependent dissipation of a pre-established pH gradient was used to measure Na(+)/H(+) exchange in tonoplast vesicles. The initial rates of proton efflux followed Michaelis-Menten kinetics and the V(max) of proton dissipation was 2-fold higher in NaCl-tolerant calli when compared to the control. H(+)-coupled exchange was specific for Na(+) and Li(+) and not for K(+). The increase of both the pH gradient across the tonoplast and the Na(+)/H(+) antiport activity in response to salt strongly suggests that Na(+) sequestration into the vacuole contributes to salt tolerance in potato.
Collapse
Affiliation(s)
- Filipa Queirós
- Departamento de Botânica, Faculdade de Ciências, Universidade do Porto, Ed. FC4, Rua do Campo Alegre, s/n masculine, 4169-007 Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
32
|
Penniston KL, Nakada SY, Holmes RP, Assimos DG. Quantitative assessment of citric acid in lemon juice, lime juice, and commercially-available fruit juice products. J Endourol 2008; 22:567-70. [PMID: 18290732 DOI: 10.1089/end.2007.0304] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Knowledge of the citric acid content of beverages may be useful in nutrition therapy for calcium urolithiasis, especially among patients with hypocitraturia. Citrate is a naturally-occurring inhibitor of urinary crystallization; achieving therapeutic urinary citrate concentration is one clinical target in the medical management of calcium urolithiasis. When provided as fluids, beverages containing citric acid add to the total volume of urine, reducing its saturation of calcium and other crystals, and may enhance urinary citrate excretion. Information on the citric acid content of fruit juices and commercially-available formulations is not widely known. We evaluated the citric acid concentration of various fruit juices. MATERIALS AND METHODS The citric acid content of 21 commercially-available juices and juice concentrates and the juice of three types of fruits was analyzed using ion chromatography. RESULTS Lemon juice and lime juice are rich sources of citric acid, containing 1.44 and 1.38 g/oz, respectively. Lemon and lime juice concentrates contain 1.10 and 1.06 g/oz, respectively. The citric acid content of commercially available lemonade and other juice products varies widely, ranging from 0.03 to 0.22 g/oz. CONCLUSIONS Lemon and lime juice, both from the fresh fruit and from juice concentrates, provide more citric acid per liter than ready-to-consume grapefruit juice, ready-to-consume orange juice, and orange juice squeezed from the fruit. Ready-to-consume lemonade formulations and those requiring mixing with water contain < or =6 times the citric acid, on an ounce-for-ounce basis, of lemon and lime juice.
Collapse
Affiliation(s)
- Kristina L Penniston
- Department of Surgery, Division of Urology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792-3236, USA.
| | | | | | | |
Collapse
|
33
|
Markov D, Mosharov EV, Setlik W, Gershon MD, Sulzer D. Secretory vesicle rebound hyperacidification and increased quantal size resulting from prolonged methamphetamine exposure. J Neurochem 2008; 107:1709-21. [PMID: 19014382 DOI: 10.1111/j.1471-4159.2008.05737.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acute exposure to amphetamines (AMPHs) collapses secretory vesicle pH gradients, which increases cytosolic catecholamine levels while decreasing the quantal size of catecholamine release during fusion events. AMPH and methamphetamine (METH), however, are retained in tissues over long durations. We used optical and electron microscopic probes to measure the effects of long-term METH exposure on secretory vesicle pH, and amperometry and intracellular patch electrochemistry to observe the effects on neurosecretion and cytosolic catecholamines in cultured rat chromaffin cells. In contrast to acute METH effects, exposure to the drug for 6-48 h at 10 microM and higher concentrations produced a concentration-dependent rebound hyperacidification of secretory vesicles. At 5-10 microM levels, prolonged METH increased the quantal size and reinstated exocytotic catecholamine release, although very high (> 100 microM) levels of the drug, while continuing to produce rebound hyperacidification, did not increase quantal size. Secretory vesicle rebound hyperacidification was temperature dependent with optimal response at approximately 37 degrees C, was not blocked by the transcription inhibitor, puromycin, and appears to be a general compensatory response to prolonged exposure with membranophilic weak bases, including AMPHs, methylphenidate, cocaine, and ammonia. Thus, under some conditions of prolonged exposure, AMPHs and other weak bases can enhance, rather than deplete, the vesicular release of catecholamines via a compensatory response resulting in vesicle acidification.
Collapse
Affiliation(s)
- Dmitriy Markov
- Department of Neurology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
34
|
Penniston KL, Steele TH, Nakada SY. Lemonade therapy increases urinary citrate and urine volumes in patients with recurrent calcium oxalate stone formation. Urology 2007; 70:856-60. [PMID: 17919696 DOI: 10.1016/j.urology.2007.06.1115] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Revised: 03/26/2007] [Accepted: 06/29/2007] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Potassium citrate is prescribed to patients with calcium oxalate (CaOx) stone formation to increase urinary citrate and pH, thus reducing CaOx crystal formation. Lemonade therapy (LT) might also increase urinary citrate and the total urine volume. We compared the effects of LT alone (group 1, n = 63) and potassium citrate plus LT (group 2, n = 37) in patients with CaOx stone formation on the urinary citrate and total urine volume to determine the efficacy of LT. METHODS Adult patients with CaOx stone formation and three or more clinic visits from 1996 to 2005 and three or more UroRisk profiles were included in our retrospective analysis. RESULTS Urinary citrate increased maximally by 203 and 346 mg/day for groups 1 and 2, respectively. The maximal total urine volume increase was 763 and 860 mL/day for groups 1 and 2, respectively. The urinary citrate and total urine volume increased sooner during follow-up for group 1. By the last clinic visit, the urinary citrate and total urine volume had decreased in both groups. However, group 1 sustained a greater total urine volume than did group 2 (2.35 +/- 0.10 standard error versus 2.17 +/- 0.12 L/day). Urinary citrate was greater in group 1 (765 +/- 56 standard error versus 548 +/- 56 mg/day for group 2), but the change from baseline to the last visit was significant (P = 0.008) only in group 2. CONCLUSIONS LT resulted in favorable changes in urinary citrate and total urine volume in our series. Potassium citrate with LT was more effective than LT alone at increasing urinary citrate. Because maximal changes for urinary citrate and total urine volume were achieved earlier in follow-up, individualized encouragement and motivation should be provided to patients at each visit for sustained prevention.
Collapse
Affiliation(s)
- Kristina L Penniston
- Department of Surgery, Division of Urology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792-3236, USA
| | | | | |
Collapse
|
35
|
Tatsuki M, Endo A. Analyses of Expression Patterns of Ethylene Receptor Genes in Apple (Malus domestica Borkh.) Fruits Treated with or without 1-Methylcyclopropene (1-MCP). ACTA ACUST UNITED AC 2006. [DOI: 10.2503/jjshs.75.481] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
A structural model of the vacuolar ATPase from transmission electron microscopy. Micron 2005; 36:109-26. [PMID: 15629643 DOI: 10.1016/j.micron.2004.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 10/11/2004] [Indexed: 11/19/2022]
Abstract
Vacuolar ATPases (V-ATPases) are large, membrane bound, multisubunit protein complexes which function as ATP hydrolysis driven proton pumps. V-ATPases and related enzymes are found in the endomembrane system of eukaryotic organsims, the plasma membrane of specialized cells in higher eukaryotes, and the plasma membrane of prokaryotes. The proton pumping action of the vacuolar ATPase is involved in a variety of vital intra- and inter-cellular processes such as receptor mediated endocytosis, protein trafficking, active transport of metabolites, homeostasis and neurotransmitter release. This review summarizes recent progress in the structure determination of the vacuolar ATPase focusing on studies by transmission electron microscopy. A model of the subunit architecture of the vacuolar ATPase is presented which is based on the electron microscopic images and the available information from genetic, biochemical and biophysical experiments.
Collapse
|
37
|
Bageshwar UK, Taneja-Bageshwar S, Moharram HM, Binzel ML. Two isoforms of the A subunit of the vacuolar H(+)-ATPase in Lycopersicon esculentum: highly similar proteins but divergent patterns of tissue localization. PLANTA 2005; 220:632-643. [PMID: 15449061 DOI: 10.1007/s00425-004-1377-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Accepted: 08/07/2004] [Indexed: 05/24/2023]
Abstract
The plant vacuolar H(+)-translocating ATPase (V-ATPase, EC 3.6.1.34) generates a H+ electro-chemical gradient across the tonoplast membrane. We isolated two full-length cDNA clones (VHA-A1 and VHA-A2) from tomato (Lycopersicon esculentum Mill. cv. Large Cherry Red) coding for two isoforms of the V-ATPase catalytic subunit (V-ATPases A1 and A2). The cDNA clones encoding the two isoforms share 90% identity at the nucleotide level and 96% identity at the amino acid level. The 5'- and 3'-untranslated regions, however, are highly diverse. Both V-ATPase A1 and A2 isoforms encode polypeptides of 623 amino acids, with calculated molecular masses of 68,570 and 68,715, respectively. The expression of VHA-A1 and accumulation of V-ATPase A1 polypeptide were ubiquitous in all tissues examined. In response to salinity, the abundances of both transcript (VHA-A1) and protein (V-ATPase A1) of the A1 isoform in leaves were nearly doubled. In contrast to the A1 isoform, VHA-A2 transcript and V-ATPase A2 polypeptide were only detected in abundance in roots, and in minor quantities in mature fruit. In roots, accumulation of transcripts and polypeptides did not change in response to salinity for either isoform. Subcellular localization indicated that the highest levels of both V-ATPase A1 and A2 isoforms were in the tonoplast. However, significant quantities of both isoforms were detected in membranes associated with endoplasmic reticulum and/or Golgi. Immunoprecipitation of dissociated V1 domains using isoform-specific antibodies showed that V1 domains consist of either V-ATPase A1 or A2 catalytic subunit isoforms.
Collapse
Affiliation(s)
- Umesh K Bageshwar
- Institute of Plant Genomics and Biotechnology/Department of Horticulture, Texas A & M University, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
38
|
Kluge C, Lahr J, Hanitzsch M, Bolte S, Golldack D, Dietz KJ. New insight into the structure and regulation of the plant vacuolar H+-ATPase. J Bioenerg Biomembr 2004; 35:377-88. [PMID: 14635783 DOI: 10.1023/a:1025737117382] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plant cells are characterized by a highly active secretory system that includes the large central vacuole found in most differentiated tissues. The plant vacuolar H+-ATPase plays an essential role in maintaining the ionic and metabolic gradients across endomembranes, in activating transport processes and vesicle dynamics, and, hence, is indispensable for plant growth, development, and adaptation to changing environmental conditions. The review summarizes recent advances in elucidating the structure, subunit composition, localization, and regulation of plant V-ATPase. Emerging knowledge on subunit isogenes from Arabidopsis and rice genomic sequences as well as from Mesembryanthemum illustrates another level of complexity, the regulation of isogene expression and function of subunit isoforms. To this end, the review attempts to define directions of future research on plant V-ATPase.
Collapse
Affiliation(s)
- Christoph Kluge
- Department of Biochemistry and Physiology of Plants, University of Bielefeld-W5, D-33501 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Kłobus G, Janicka-Russak M. Modulation by cytosolic components of proton pump activities in plasma membrane and tonoplast from Cucumis sativus roots during salt stress. PHYSIOLOGIA PLANTARUM 2004; 121:84-92. [PMID: 15086821 DOI: 10.1111/j.0031-9317.2004.00306.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The effect of NaCl on the plasma membrane and tonoplast ATPases measured as the hydrolytic and H(+)-pumping activity was studied. Treatment of cucumber seedlings with salt increased the membrane-bound ATPases of the plasma membrane as well as the tonoplast. In both types of membranes the stimulation of ATP-hydrolysis was much higher than the stimulation of H(+)-transport suggesting that the salt- treatment of plants partially uncoupled the membrane proton pumps. It was shown that the soluble fraction obtained from the unstressed or NaCl-stressed roots stimulated the ATPase activities in both membranes isolated from unstressed plants. A stimulatory effect of the soluble fraction on the proton pump activities was considerably enhanced in the salt conditions indicating the presence of a salt-inducible factor (s) in the soluble fraction, which could rapidly modulate the membrane-bound ATPases. Staurosporine, a specific protein kinase inhibitor, totally abolished the stimulatory action of the soluble fractions on the membrane proton pumps, whereas okadaic acid, a phosphatase inhibitor, had no effect. Inclusion of calcium in the mixture of membranes and the soluble fraction from unstressed roots elevated the ATPase activities to the levels determined with the soluble fraction isolated from NaCl-stressed roots. Cation chelators (EGTA), as well as calmodulin antagonist (W7) cancelled the stimulatory effect of calcium ions. The above results strongly suggest the involvement of specific calcium-calmodulin-dependent protein kinases in the activation of the membrane ATPases under salt-stress conditions.
Collapse
Affiliation(s)
- Grazyna Kłobus
- Plant Physiology Department, Institute of Plant Biology, Wrocław University, Kanonia 6/8 50-328 Wrocław, Poland
| | | |
Collapse
|
40
|
Ratajczak R, Lüttge U, Gonzalez P, Etxeberria E. Malate and malate-channel antibodies inhibit electrogenic and ATP-dependent citrate transport across the tonoplast of citrus juice cells. JOURNAL OF PLANT PHYSIOLOGY 2003; 160:1313-1317. [PMID: 14658383 DOI: 10.1078/0176-1617-01147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Citrus juice cells accumulate high levels of citric acid in their vacuoles when compared to other organic ions including malate. Uptake of citrate into tonoplast vesicles from Citrus juice cells was investigated in the presence of malate, and after incubation with antibodies raised against the vacuolar malate-specific channel of Kalanchoë diagremontiana leaves. Antibodies against the vacuolar malate channel immunoreacted with a protein of similar size in tonoplast extracts from three Citrus varieties differing in citric acid content. Malate channel antibodies inhibited both delta MicroH(+)-dependent and delta MicroH(+)-independent ATP-dependent citrate transport, indicating common domains in both transport systems and to the malate-specific channel of Kalanchoë diagremontiana leaves. Malate strongly inhibited electrogenic citrate transport, whereas ATP-dependent citrate uptake was less affected. Kinetic analysis of citrate transport in the presence of malate confirmed the existence of two citrate transport mechanisms and indicated that both citrate and malate share a common transport channel across the tonoplast of Citrus juice cells.
Collapse
Affiliation(s)
- Rafael Ratajczak
- Institute of Botany, Darmstadt University of Technology, Schnittspahnstrasse 3-5, D-64287 Darmstadt, Germany
| | | | | | | |
Collapse
|
41
|
Murata T, Arechaga I, Fearnley IM, Kakinuma Y, Yamato I, Walker JE. The membrane domain of the Na+-motive V-ATPase from Enterococcus hirae contains a heptameric rotor. J Biol Chem 2003; 278:21162-7. [PMID: 12651848 DOI: 10.1074/jbc.m301620200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In F-ATPases, ATP hydrolysis is coupled to translocation of ions through membranes by rotation of a ring of c subunits in the membrane. The ring is attached to a central shaft that penetrates the catalytic domain, which has pseudo-3-fold symmetry. The ion translocation pathway lies between the external circumference of the ring and another hydrophobic protein. The H+ or Na+:ATP ratio depends upon the number of ring protomers, each of which has an essential carboxylate involved directly in ion translocation. This number and the ratio differ according to the source, and 10, 11, and 14 protomers have been found in various enzymes, with corresponding calculated H+ or Na+:ATP ratios of 3.3, 3.7, and 4.7. V-ATPases are related in structure and function to F-ATPases. Oligomers of subunit K from the Na+-motive V-ATPase of Enterococcus hirae also form membrane rings but, as reported here, with 7-fold symmetry. Each protomer has one essential carboxylate. Thus, hydrolysis of one ATP provides energy to extrude 2.3 sodium ions. Symmetry mismatch between the catalytic and membrane domains appears to be an intrinsic feature of both V- and F-ATPases.
Collapse
Affiliation(s)
- Takeshi Murata
- Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | | | |
Collapse
|
42
|
Nelson N, Sacher A, Nelson H. The significance of molecular slips in transport systems. Nat Rev Mol Cell Biol 2002; 3:876-81. [PMID: 12415305 DOI: 10.1038/nrm955] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The advantage of precision in biological processes is obvious; however, in many cases, deviations from the faithful mechanisms occur. Here, we discuss how in-built operating imperfections in transport systems can actually benefit a cell.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | |
Collapse
|
43
|
Etienne C, Moing A, Dirlewanger E, Raymond P, Monet R, Rothan C. Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation: involvement in regulating peach fruit acidity. PHYSIOLOGIA PLANTARUM 2002; 114:259-270. [PMID: 11903973 DOI: 10.1034/j.1399-3054.2002.1140212.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
As in many other fleshy fruits, the predominant organic acids in ripe peach (Prunus persica (L.) Batsch) fruit are malic and citric acids. The accumulation of these metabolites in fruit flesh is regulated during fruit development. Six peach fruit-related genes implicated in organic acid metabolism (mitochondrial citrate synthase; cytosolic NAD-dependent malate dehydrogenase, and cytosolic NADP-dependent isocitrate dehydrogenase) and storage (vacuolar proton translocating pumps: one vacuolar H+-ATPase, and two vacuolar H+-pyrophosphatases) were cloned. Five of these peach genes were homologous to genes isolated from fruit in other fleshy fruit species. Phylogenetic and expression analyses suggested the existence of a particular vacuolar pyrophosphatase highly expressed in fruit. The sixth gene was the first cytosolic NAD-dependent malate dehydrogenase gene isolated from fruit. Gene expression was studied during the fruit development of two peach cultivars, a normal-acid (Fantasia) and a low-acid (Jalousia) cultivar. The overall expression patterns of the organic acid-related genes appeared strikingly similar for the two cultivars. The genes involved in organic acid metabolism showed a stronger expression in ripening fruit than during the earlier phases of development, but their expression patterns were not necessarily correlated with the changes in organic acid contents. The tonoplast proton pumps showed a biphasic expression pattern more consistent with the patterns of organic acid accumulation, and the tonoplast pyrophosphatases were more highly expressed in the fruit of the low-acid cultivar during the second rapid growth phase of the fruit.
Collapse
Affiliation(s)
- Christelle Etienne
- Unité de Recherches sur les Espèces Fruitières et la Vigne, Institut National de la Recherche Agronomique, Centre de Bordeaux, BP 81, F-33883 Villenave d'Ornon, Cedex, France Unité de Physiologie Végétale, UMR PBV, Institut National de la Recherche Agronomique, Centre de Bordeaux, BP 81, F-33883 Villenave d'Ornon, Cedex, France
| | | | | | | | | | | |
Collapse
|
44
|
Senn ME, Rubio F, Bañuelos MA, Rodríguez-Navarro A. Comparative functional features of plant potassium HvHAK1 and HvHAK2 transporters. J Biol Chem 2001; 276:44563-9. [PMID: 11562376 DOI: 10.1074/jbc.m108129200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant K(+) transporters of the HAK family belong to four rather divergent phylogenetic clusters, although most of the transporters belong to clusters I or II. A simple phylogenetic analysis of fungal and plant HAK transporters suggests that an original HAK gene duplicated even before fungi and plants diverged, generating transporters that at present fulfill different functions in the plant. The HvHAK1 transporter belongs to cluster I and mediates high-affinity K(+) uptake in barley roots, but no function is known for the cluster II transporter, HvHAK2, which is not functional in yeast. The function of HvHAK2 was investigated by constructing HvHAK1-HAK2 chimeric transporters, which were not functional even when they included only short fragments of HvHAK2. Then, amino acids characteristic of cluster II in the N terminus and in the first transmembrane domain were introduced into HvHAK1. All of these changes increased the Rb(+) K(m), introducing minimal changes in the Na(+) K(m), which suggested that HvHAK2 is a low-affinity, Na(+)-sensitive K(+) transporter. Using a K(+)-defective Escherichia coli mutant, we functionally expressed HvHAK2 and found that the predicted characteristics were correct, as well as discovering that the bacterial expression of HvHAK2 is functional at pH 5.5 but not at 7.5. We discuss whether HvHAK2 may be a tonoplast transporter effective for vacuolar K(+) depletion in K(+) starved plants.
Collapse
Affiliation(s)
- M E Senn
- Departamento de Biotecnologia, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
45
|
Abstract
In recent years, structural information on the F(1) sector of the ATP synthase has provided an insight into the molecular mechanism of ATP catalysis. The structure strongly supports the proposal that the ATP synthase works as a rotary molecular motor. Insights into the membrane domain have just started to emerge but more detailed structural information is needed if the molecular mechanism of proton translocation coupled to ATP synthesis is to be understood. This review will focus mainly on the ion translocating rotor in the membrane domain of the F-type ATPase, and the related vacuolar and archaeal relatives.
Collapse
Affiliation(s)
- I Arechaga
- The Medical Research Council Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, CB2 2XY, Cambridge, UK.
| | | |
Collapse
|
46
|
Abstract
Intracellular organelles have characteristic pH ranges that are set and maintained by a balance between ion pumps, leaks, and internal ionic equilibria. Previously, a thermodynamic study by Rybak et al. (Rybak, S., F. Lanni, and R. Murphy. 1997. Biophys. J. 73:674-687) identified the key elements involved in pH regulation; however, recent experiments show that cellular compartments are not in thermodynamic equilibrium. We present here a nonequilibrium model of lumenal acidification based on the interplay of ion pumps and channels, the physical properties of the lumenal matrix, and the organelle geometry. The model successfully predicts experimentally measured steady-state and transient pH values and membrane potentials. We conclude that morphological differences among organelles are insufficient to explain the wide range of pHs present in the cell. Using sensitivity analysis, we quantified the influence of pH regulatory elements on the dynamics of acidification. We found that V-ATPase proton pump and proton leak densities are the two parameters that most strongly influence resting pH. Additionally, we modeled the pH response of the Golgi complex to varying external solutions, and our findings suggest that the membrane is permeable to more than one dominant counter ion. From this data, we determined a Golgi complex proton permeability of 8.1 x 10(-6) cm/s. Furthermore, we analyzed the early-to-late transition in the endosomal pathway where Na,K-ATPases have been shown to limit acidification by an entire pH unit. Our model supports the role of the Na,K-ATPase in regulating endosomal pH by affecting the membrane potential. However, experimental data can only be reproduced by (1) positing the existence of a hypothetical voltage-gated chloride channel or (2) that newly formed vesicles have especially high potassium concentrations and small chloride conductance.
Collapse
Affiliation(s)
- Michael Grabe
- Department of Physics, University of California, Berkeley, Berkeley, California 94720
| | - George Oster
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, California 94720
- College of Natural Resources, University of California, Berkeley, Berkeley, California 94720
| |
Collapse
|
47
|
Marsh K, González P, Echeverría E. Partial characterization of H-translocating inorganic pyrophosphatase from 3 citrus varieties differing in vacuolar pH. PHYSIOLOGIA PLANTARUM 2001; 111:519-526. [PMID: 11299017 DOI: 10.1034/j.1399-3054.2001.1110412.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Vacuolar pyrophosphatase (V-PPase) from juice cells of 3 citrus varieties (differing in their vacuolar pH) were partially characterized using purified tonoplast vesicles. Total V-PPase activity was highest in vesicle samples from sweet limes with vacuolar pH of 5.0, while samples from acid limes (with lowest vacuolar pH of 2.0) had the minimal total V-PPase activity. Samples from 'Valencia' orange had intermediate V-PPase levels. When assayed at equal V-PPase activity (measured as Pi production), V-PPase was not able to generate a pH gradient (DeltapH) in vesicles from acid lime, despite its capacity to form a DeltapH in the presence of ATP. Vesicles from sweet lime and 'Valencia' orange were able to form similar DeltapHs in the presence of PPi and ATP supplied together or separately. Antibodies raised against a peptide corresponding to the catalytic site of mung bean V-PPase reacted with samples from all varieties, coinciding with their capacity to hydrolyze PPi. However, antibodies raised against the entire V-PPase polypeptide from mung bean recognized V-PPase from sweet lime and 'Valencia' orange, but did not recognize acid lime samples even at elevated protein concentrations. The structural differences highlighted by antibody recognition, substrate affinity and proton-pumping reactions of V-PPase presented here may reflect evolutionary adaptations related to its reduced function under in vivo conditions and are in agreement with our understanding of acid, sugar accumulation and vacuolar pH changes during the development and maturation of citrus fruits.
Collapse
Affiliation(s)
- Kenneth Marsh
- The Horticulture and Food Research Institute of New Zealand Ltd., Mt Albert Research Centre, Private Bag 92169, Auckland, New Zealand; Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | | | | |
Collapse
|
48
|
Aviezer-Hagai K, Nelson H, Nelson N. Cloning and expression of cDNAs encoding plant V-ATPase subunits in the corresponding yeast null mutants. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:489-98. [PMID: 11004467 DOI: 10.1016/s0005-2728(00)00188-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Complementation of yeast null mutants is widely used for cloning of homologous genes from heterologous sources. We have used this method to clone the relevant V-ATPase genes from lemon fruit and Arabidopsis thaliana cDNA libraries. The pH levels are very different in the vacuoles of the lemon fruit and the A. thaliana, yet both are the result of the activity of the same enzyme complex, namely the V-ATPase. In order to investigate the mechanism that enables the enzyme to maintain such differences in pH values, we have compared the subunit composition of the V-ATPase complex from both sources. Towards this end, we have constructed a cDNA library from lemon fruit and cloned it into a similar shuttle vector to the one of the A. thaliana cDNA library, which is commercially available. In this work, we report the cloning and expression of VMA10 from both sources, two isoforms of the lemon proteolipid (VMA3) and the lemon homologue of yeast VPH1/STV1 subunit, LEMAC.
Collapse
Affiliation(s)
- K Aviezer-Hagai
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | |
Collapse
|
49
|
Nakayasu T, Kawauchi K, Hirata H, Shimmen T. Demonstration of Cl- requirement for inhibition of vacuolar acidification by cycloprodigiosin in situ. PLANT & CELL PHYSIOLOGY 2000; 41:857-63. [PMID: 10965942 DOI: 10.1093/pcp/pcd004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Applying vacuole-perfusion and plasma membrane permeabilization techniques to internodal cells of Chara, we analyzed the requirement of Cl- for the action of cycloprodigiosin (cPrG) to inhibit vacuole acidification in situ. By combining the two techniques, the Cl- concentration on both sides of the tonoplast could be controlled. In permeabilized cell fragments lacking Cl- in the vacuole, the inhibitory effect of cPrG on vacuole acidification was cancelled. On the other hand, Cl- in the cytoplasm was not needed for the cPrG action. These results supported the function of cPrG as a H+/Cl- symporter. Requirement of Cl- for the cPrG action was also demonstrated in vacuole-perfused living cells. This is the first report on the mechanism of cPrG action in situ.
Collapse
Affiliation(s)
- T Nakayasu
- Department of Life Science, Faculty of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo, Japan
| | | | | | | |
Collapse
|
50
|
Abstract
The vacuolar H(+)-ATPases (V-ATPases) are a universal class of proton pumps that are structurally similar to the F-ATPases. Both protein families are characterized by a membrane-bound segment (V(o), F(o)) responsible for the translocation of protons, and a soluble portion, (V(1), F(1)), which supplies the energy for translocation by hydrolyzing ATP. Here we present a mechanochemical model for the functioning of the V(o) ion pump that is consistent with the known structural features and biochemistry. The model reproduces a variety of experimental measurements of performance and provides a unified view of the many mechanisms of intracellular pH regulation.
Collapse
Affiliation(s)
- M Grabe
- Departments of Physics, University of California, Berkeley 94720-3112, USA
| | | | | |
Collapse
|