1
|
Wu J, Xu J, Zhang M, Zhong J, Gao W, Wu M. Chondrocyte Mitochondrial Quality Control: A Novel Insight into Osteoarthritis and Cartilage Regeneration. Adv Wound Care (New Rochelle) 2025. [PMID: 40248893 DOI: 10.1089/wound.2024.0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025] Open
Abstract
Significance: Osteoarthritis (OA), one of the most prevalent joint diseases affecting more than 240 million people, strongly influences human health and reduces life quality. This review aims to fill the current research gap regarding the application and potential of mitochondrial quality control (MQC) based therapies in the treatment of OA, thereby providing guidance for future research and clinical practice. Recent Advances: Chondrocytes respond to the inflammatory microenvironment via an array of signaling pathways and thus are critical in cartilage degeneration and OA progression. Mitochondria, as an important metabolic center in chondrocytes, play a vital role in responding to inflammatory stimuli. Multiple MQC mechanisms, including mitochondrial antioxidant defense, mitochondrial protein quality control, mitochondrial DNA repair, mitochondrial dynamics, mitophagy, and mitochondrial biogenesis, sustain mitochondrial homeostasis under pathological conditions. Critical Issues: Despite extensive OA research, effective therapies remain limited. Elucidating MQC mechanisms in disease progression and post-traumatic cartilage repair is crucial. While preclinical studies demonstrate potential, clinical translation requires addressing protocol standardization, patient stratification, and long-term efficacy, as well as safety validation. Future Directions: Future research should focus on developing personalized MQC-based OA therapies guided by biomarker profiling and signaling pathway modulation. However, translational challenges persist, particularly regarding pervasive off-target effects, inadequate OA-specific targeting capacity, interpatient heterogeneity, and reliable evaluation of long-term therapeutic efficacy. Strategic prioritization of OA-specific MQC targets coupled with delivery system optimization may significantly improve both clinical translatability and therapeutic outcomes.
Collapse
Affiliation(s)
- Jinni Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
| | - Jiawen Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
| | - Menghan Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
| | - Jiahui Zhong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
| | - Weijin Gao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
| | - Mengjie Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
2
|
Omidsalar AA, McCullough CG, Xu L, Boedijono S, Gerke D, Webb MG, Manojlovic Z, Sequeira A, Lew MF, Santorelli M, Serrano GE, Beach TG, Limon A, Vawter MP, Hjelm BE. Common mitochondrial deletions in RNA-Seq: evaluation of bulk, single-cell, and spatial transcriptomic datasets. Commun Biol 2024; 7:200. [PMID: 38368460 PMCID: PMC10874445 DOI: 10.1038/s42003-024-05877-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024] Open
Abstract
Common mitochondrial DNA (mtDNA) deletions are large structural variants in the mitochondrial genome that accumulate in metabolically active tissues with age and have been investigated in various diseases. We applied the Splice-Break2 pipeline (designed for high-throughput quantification of mtDNA deletions) to human RNA-Seq datasets and describe the methodological considerations for evaluating common deletions in bulk, single-cell, and spatial transcriptomics datasets. A robust evaluation of 1570 samples from 14 RNA-Seq studies showed: (i) the abundance of some common deletions detected in PCR-amplified mtDNA correlates with levels observed in RNA-Seq data; (ii) RNA-Seq library preparation method has a strong effect on deletion detection; (iii) deletions had a significant, positive correlation with age in brain and muscle; (iv) deletions were enriched in cortical grey matter, specifically in layers 3 and 5; and (v) brain regions with dopaminergic neurons (i.e., substantia nigra, ventral tegmental area, and caudate nucleus) had remarkable enrichment of common mtDNA deletions.
Collapse
Affiliation(s)
- Audrey A Omidsalar
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Carmel G McCullough
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Lili Xu
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Stanley Boedijono
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Daniel Gerke
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Michelle G Webb
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Zarko Manojlovic
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Adolfo Sequeira
- Department of Psychiatry and Human Behavior, University of California - Irvine (UCI) School of Medicine, Irvine, CA, USA
| | - Mark F Lew
- Department of Neurology, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Marco Santorelli
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Geidy E Serrano
- Banner Sun Health Research Institute (BSHRI), Sun City, AZ, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute (BSHRI), Sun City, AZ, USA
| | - Agenor Limon
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Marquis P Vawter
- Department of Psychiatry and Human Behavior, University of California - Irvine (UCI) School of Medicine, Irvine, CA, USA
| | - Brooke E Hjelm
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Liu Q, Cai YD, Ma L, Liu H, Linghu T, Guo S, Wei S, Song F, Tian L, Cai W, Li H. Relaxed purifying selection pressure drives accelerated and dynamic gene rearrangements in thrips (Insecta: Thysanoptera) mitochondrial genomes. Int J Biol Macromol 2023; 253:126742. [PMID: 37689283 DOI: 10.1016/j.ijbiomac.2023.126742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/06/2023] [Accepted: 08/26/2023] [Indexed: 09/11/2023]
Abstract
Insect mitochondrial genomes (mitogenome) generally present a typical gene order, which is considered as the ancestral arrangement. All sequenced mitogenomes in the Thysanoptera display high levels of gene rearrangement. Due to limited number of thrips mitogenomes sequenced, how gene rearrangement may be shaped by evolution remain unclear. Here, we analyzed 33 thrips mitogenomes, including 14 newly sequenced. These mitogenomes were diverse in organization, nucleotides substitution and gene arrangements. We found 28 highly rearranged gene orders with the breakpoints of gene rearrangements from 25 to 33. Reconstruction of the ancestors mitochondrial gene arrangements states indicated that Tubulifera have more complex pathways than Terebrantia in the gene order evolution. Molecular calibration estimated that divergence of two suborders occurred in the middle Triassic while the radiation of thrips was associated with the arose and flourish of angiosperm. Our evolutionary hypothesis testing suggests that relaxation of selection pressure enabled the early phase of Thysanoptera evolution, followed by a stronger selective pressure fixed diversification. Our analyses found gene inversion increases the nonsynonymous substitution rates and provide an evolutionary hypothesis driving the diverse gene orders.
Collapse
Affiliation(s)
- Qiaoqiao Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hangrui Liu
- Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Tianye Linghu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shaokun Guo
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shujun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Yang J, Liu L, Oda Y, Wada K, Ago M, Matsuda S, Hattori M, Goto T, Ishibashi S, Kawashima-Sonoyama Y, Matsuzaki Y, Taketani T. Extracellular Vesicles and Cx43-Gap Junction Channels Are the Main Routes for Mitochondrial Transfer from Ultra-Purified Mesenchymal Stem Cells, RECs. Int J Mol Sci 2023; 24:10294. [PMID: 37373439 DOI: 10.3390/ijms241210294] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondria are essential organelles for maintaining intracellular homeostasis. Their dysfunction can directly or indirectly affect cell functioning and is linked to multiple diseases. Donation of exogenous mitochondria is potentially a viable therapeutic strategy. For this, selecting appropriate donors of exogenous mitochondria is critical. We previously demonstrated that ultra-purified bone marrow-derived mesenchymal stem cells (RECs) have better stem cell properties and homogeneity than conventionally cultured bone marrow-derived mesenchymal stem cells. Here, we explored the effect of contact and noncontact systems on three possible mitochondrial transfer mechanisms involving tunneling nanotubes, connexin 43 (Cx43)-mediated gap junction channels (GJCs), and extracellular vesicles (Evs). We show that Evs and Cx43-GJCs provide the main mechanism for mitochondrial transfer from RECs. Through these two critical mitochondrial transfer pathways, RECs could transfer a greater number of mitochondria into mitochondria-deficient (ρ0) cells and could significantly restore mitochondrial functional parameters. Furthermore, we analyzed the effect of exosomes (EXO) on the rate of mitochondrial transfer from RECs and recovery of mitochondrial function. REC-derived EXO appeared to promote mitochondrial transfer and slightly improve the recovery of mtDNA content and oxidative phosphorylation in ρ0 cells. Thus, ultrapure, homogenous, and safe stem cell RECs could provide a potential therapeutic tool for diseases associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jiahao Yang
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Lu Liu
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Yasuaki Oda
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Keisuke Wada
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Mako Ago
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Shinichiro Matsuda
- Department of Medical Oncology, Shimane University Hospital, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Miho Hattori
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Tsukimi Goto
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Shuichi Ishibashi
- Department of Digestive and General Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Yuki Kawashima-Sonoyama
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Yumi Matsuzaki
- Department of Life Science, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Takeshi Taketani
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| |
Collapse
|
5
|
Dua N, Seshadri A, Badrinarayanan A. DarT-mediated mtDNA damage induces dynamic reorganization and selective segregation of mitochondria. J Cell Biol 2022; 221:213451. [PMID: 36074064 PMCID: PMC9463037 DOI: 10.1083/jcb.202205104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are dynamic organelles that play essential roles in cell growth and survival. Processes of fission and fusion are critical for the distribution, segregation, and maintenance of mitochondria and their genomes (mtDNA). While recent work has revealed the significance of mitochondrial organization for mtDNA maintenance, the impact of mtDNA perturbations on mitochondrial dynamics remains less understood. Here, we develop a tool to induce mitochondria-specific DNA damage using a mitochondrial-targeted base modifying bacterial toxin, DarT. Following damage, we observe dynamic reorganization of mitochondrial networks, likely driven by mitochondrial dysfunction. Changes in the organization are associated with the loss of mtDNA, independent of mitophagy. Unexpectedly, perturbation to exonuclease function of mtDNA replicative polymerase, Mip1, results in rapid loss of mtDNA. Our data suggest that, under damage, partitioning of defective mtDNA and organelle are de-coupled, with emphasis on mitochondrial segregation independent of its DNA. Together, our work underscores the importance of genome maintenance on mitochondrial function, which can act as a modulator of organelle organization and segregation.
Collapse
Affiliation(s)
- Nitish Dua
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Akshaya Seshadri
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, Bangalore, Karnataka, India.,SASTRA University, Thanjavur, Tamil Nadu, India
| | - Anjana Badrinarayanan
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| |
Collapse
|
6
|
Wagner A, Kosnacova H, Chovanec M, Jurkovicova D. Mitochondrial Genetic and Epigenetic Regulations in Cancer: Therapeutic Potential. Int J Mol Sci 2022; 23:ijms23147897. [PMID: 35887244 PMCID: PMC9321253 DOI: 10.3390/ijms23147897] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are dynamic organelles managing crucial processes of cellular metabolism and bioenergetics. Enabling rapid cellular adaptation to altered endogenous and exogenous environments, mitochondria play an important role in many pathophysiological states, including cancer. Being under the control of mitochondrial and nuclear DNA (mtDNA and nDNA), mitochondria adjust their activity and biogenesis to cell demands. In cancer, numerous mutations in mtDNA have been detected, which do not inactivate mitochondrial functions but rather alter energy metabolism to support cancer cell growth. Increasing evidence suggests that mtDNA mutations, mtDNA epigenetics and miRNA regulations dynamically modify signalling pathways in an altered microenvironment, resulting in cancer initiation and progression and aberrant therapy response. In this review, we discuss mitochondria as organelles importantly involved in tumorigenesis and anti-cancer therapy response. Tumour treatment unresponsiveness still represents a serious drawback in current drug therapies. Therefore, studying aspects related to genetic and epigenetic control of mitochondria can open a new field for understanding cancer therapy response. The urgency of finding new therapeutic regimens with better treatment outcomes underlines the targeting of mitochondria as a suitable candidate with new therapeutic potential. Understanding the role of mitochondria and their regulation in cancer development, progression and treatment is essential for the development of new safe and effective mitochondria-based therapeutic regimens.
Collapse
Affiliation(s)
- Alexandra Wagner
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Helena Kosnacova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Miroslav Chovanec
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Correspondence:
| |
Collapse
|
7
|
Ye Z, Zhao C, Raborn RT, Lin M, Wei W, Hao Y, Lynch M. Genetic Diversity, Heteroplasmy, and Recombination in Mitochondrial Genomes of Daphnia pulex, Daphnia pulicaria, and Daphnia obtusa. Mol Biol Evol 2022; 39:msac059. [PMID: 35325186 PMCID: PMC9004417 DOI: 10.1093/molbev/msac059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic variants of mitochondrial DNA at the individual (heteroplasmy) and population (polymorphism) levels provide insight into their roles in multiple cellular and evolutionary processes. However, owing to the paucity of genome-wide data at the within-individual and population levels, the broad patterns of these two forms of variation remain poorly understood. Here, we analyze 1,804 complete mitochondrial genome sequences from Daphnia pulex, Daphnia pulicaria, and Daphnia obtusa. Extensive heteroplasmy is observed in D. obtusa, where the high level of intraclonal divergence must have resulted from a biparental-inheritance event, and recombination in the mitochondrial genome is apparent, although perhaps not widespread. Global samples of D. pulex reveal remarkably low mitochondrial effective population sizes, <3% of those for the nuclear genome. In addition, levels of population diversity in mitochondrial and nuclear genomes are uncorrelated across populations, suggesting an idiosyncratic evolutionary history of mitochondria in D. pulex. These population-genetic features appear to be a consequence of background selection associated with highly deleterious mutations arising in the strongly linked mitochondrial genome, which is consistent with polymorphism and divergence data suggesting a predominance of strong purifying selection. Nonetheless, the fixation of mildly deleterious mutations in the mitochondrial genome also appears to be driving positive selection on genes encoded in the nuclear genome whose products are deployed in the mitochondrion.
Collapse
Affiliation(s)
- Zhiqiang Ye
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Chaoxian Zhao
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - R. Taylor Raborn
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Man Lin
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Wen Wei
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Yue Hao
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Michael Lynch
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
8
|
Different gene rearrangements of the genus Dardanus (Anomura: Diogenidae) and insights into the phylogeny of Paguroidea. Sci Rep 2021; 11:21833. [PMID: 34750431 PMCID: PMC8576005 DOI: 10.1038/s41598-021-01338-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 11/27/2022] Open
Abstract
Complete mitochondrial genomes (mitogenomes) can provide useful information for phylogenetic relationships, gene rearrangement, and molecular evolution. In this study, the complete mitogenomes of two hermit crabs, Dardanus arrosor and Dardanus aspersus, were sequenced for the first time and compared with other published mitogenomes of Paguroidea. Each of the two mitogenomes contains an entire set of 37 genes and a putative control region, but they display different gene arrangements. The different arrangements of the two mitogenomes might be the result of transposition, reversal, and tandem duplication/random loss events from the ancestral pancrustacean pattern. Genome sequence similarity analysis reveals the gene rearrangement in 15 Paguroidea mitogenomes. After synteny analysis between the 15 Paguroidea mitogenomes, an obvious rearranged region is found in D. aspersus mitogenome. Across the 13 protein-coding genes (PCGs) tested, COI has the least and ND6 has the largest genetic distances among the 15 hermit crabs, indicating varied evolution rates of PCGs. In addition, the dN/dS ratio analysis shows that all PCGs are evolving under purifying selection. The phylogenetic analyses based on both gene order and sequence data present the monophyly of three families (Paguridae, Coenobitidae, and Pylochelidae) and the paraphyly of the family Diogenidae. Meanwhile, the phylogenetic tree based on the nucleotide sequences of 13 PCGs shows that two Dardanus species formed a sister group with five Coenobitidae species. These findings help to better understand the gene rearrangement and phylogeny of Paguroidea, as well as provide new insights into the usefulness of mitochondrial gene order as a phylogenetic marker.
Collapse
|
9
|
Allkanjari K, Baldock RA. Beyond base excision repair: an evolving picture of mitochondrial DNA repair. Biosci Rep 2021; 41:BSR20211320. [PMID: 34608928 PMCID: PMC8527207 DOI: 10.1042/bsr20211320] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are highly specialised organelles required for key cellular processes including ATP production through cellular respiration and controlling cell death via apoptosis. Unlike other organelles, mitochondria contain their own DNA genome which encodes both protein and RNA required for cellular respiration. Each cell may contain hundreds to thousands of copies of the mitochondrial genome, which is essential for normal cellular function - deviation of mitochondrial DNA (mtDNA) copy number is associated with cellular ageing and disease. Furthermore, mtDNA lesions can arise from both endogenous or exogenous sources and must either be tolerated or corrected to preserve mitochondrial function. Importantly, replication of damaged mtDNA can lead to stalling and introduction of mutations or genetic loss, mitochondria have adapted mechanisms to repair damaged DNA. These mechanisms rely on nuclear-encoded DNA repair proteins that are translocated into the mitochondria. Despite the presence of many known nuclear DNA repair proteins being found in the mitochondrial proteome, it remains to be established which DNA repair mechanisms are functional in mammalian mitochondria. Here, we summarise the existing and emerging research, alongside examining proteomic evidence, demonstrating that mtDNA damage can be repaired using Base Excision Repair (BER), Homologous Recombination (HR) and Microhomology-mediated End Joining (MMEJ). Critically, these repair mechanisms do not operate in isolation and evidence for interplay between pathways and repair associated with replication is discussed. Importantly, characterising non-canonical functions of key proteins and understanding the bespoke pathways used to tolerate, repair or bypass DNA damage will be fundamental in fully understanding the causes of mitochondrial genome mutations and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Kathrin Allkanjari
- Formerly: Solent University Southampton, East Park Terrace, Southampton, SO14 0YN, UK
| | - Robert A. Baldock
- School of Natural and Social Sciences, University of Gloucestershire, Francis Close Hall, Swindon Road, Cheltenham GL50 4AZ, UK
| |
Collapse
|
10
|
Trapped topoisomerase-DNA covalent complexes in the mitochondria and their role in human diseases. Mitochondrion 2021; 60:234-244. [PMID: 34500116 DOI: 10.1016/j.mito.2021.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022]
Abstract
Topoisomerases regulate DNA topology, organization of the intracellular DNA, the transmission of genetic materials, and gene expressions. Other than the nuclear genome, mitochondria also harbor the small, circular DNA (mtDNA) that encodes a critical subset of proteins for the production of cellular ATP; however, mitochondria are solely dependent on the nucleus for all the mitochondrial proteins necessary for mtDNA replication, repair, and maintenance. Mitochondrial genome compiles topological stress from bidirectional transcription and replication, therefore imports four nuclear encoded topoisomerases (Top1mt, Top2α, Top2β, and Top3α) in the mitochondria to relax mtDNA supercoiling generated during these processes. Trapping of topoisomerase on DNA results in the formation of protein-linked DNA adducts (PDAs), which are widely exploited by topoisomerase-targeting anticancer drugs. Intriguingly mtDNA is potentially exposed to DNA damage that has been attributed to a variety of human diseases, including neurodegeneration, cancer, and premature aging. In this review, we focus on the role of different topoisomerases in the mitochondria and our current understanding of the mitochondrial DNA damage through trapped protein-DNA complexes, and the progress in the molecular mechanisms of the repair for trapped topoisomerase covalent complexes (Topcc). Finally, we have discussed how the pathological DNA lesions that cause mtDNA damage,trigger mitochondrial fission and mitophagy, which serve as quality control events for clearing damaged mtDNA.
Collapse
|
11
|
Abstract
Genetic diseases cause numerous complex and intractable pathologies. DNA sequences encoding each human's complexity and many disease risks are contained in the mitochondrial genome, nuclear genome, and microbial metagenome. Diagnosis of these diseases has unified around applications of next-generation DNA sequencing. However, translating specific genetic diagnoses into targeted genetic therapies remains a central goal. To date, genetic therapies have fallen into three broad categories: bulk replacement of affected genetic compartments with a new exogenous genome, nontargeted addition of exogenous genetic material to compensate for genetic errors, and most recently, direct correction of causative genetic alterations using gene editing. Generalized methods of diagnosis, therapy, and reagent delivery into each genetic compartment will accelerate the next generations of curative genetic therapies. We discuss the structure and variability of the mitochondrial, nuclear, and microbial metagenomic compartments, as well as the historical development and current practice of genetic diagnostics and gene therapies targeting each compartment.
Collapse
Affiliation(s)
- Theodore L Roth
- Medical Scientist Training Program, University of California, San Francisco, California 94143, USA; .,Department of Microbiology and Immunology and Diabetes Center, University of California, San Francisco, California 94143, USA.,Innovative Genomics Institute, University of California, Berkeley, California 94720, USA.,Gladstone Institutes, San Francisco, California 94158, USA
| | - Alexander Marson
- Department of Microbiology and Immunology and Diabetes Center, University of California, San Francisco, California 94143, USA.,Innovative Genomics Institute, University of California, Berkeley, California 94720, USA.,Gladstone Institutes, San Francisco, California 94158, USA.,Department of Medicine, University of California, San Francisco, California 94143, USA.,Parker Institute for Cancer Immunotherapy, San Francisco, California 94129, USA.,Chan Zuckerberg Biohub, San Francisco, California 94158, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94158, USA
| |
Collapse
|
12
|
Lakshmanan LN, Yee Z, Halliwell B, Gruber J, Gunawan R. Thermodynamic analysis of DNA hybridization signatures near mitochondrial DNA deletion breakpoints. iScience 2021; 24:102138. [PMID: 33665557 PMCID: PMC7900216 DOI: 10.1016/j.isci.2021.102138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022] Open
Abstract
Broad evidence in the literature supports double-strand breaks (DSBs) as initiators of mitochondrial DNA (mtDNA) deletion mutations. While DNA misalignment during DSB repair is commonly proposed as the mechanism by which DSBs cause deletion mutations, details such as the specific DNA repair errors are still lacking. Here, we used DNA hybridization thermodynamics to infer the sequence lengths of mtDNA misalignments that are associated with mtDNA deletions. We gathered and analyzed 9,921 previously reported mtDNA deletion breakpoints in human, rhesus monkey, mouse, rat, and Caenorhabditis elegans. Our analysis shows that a large fraction of mtDNA breakpoint positions can be explained by the thermodynamics of short ≤ 5-nt misalignments. The significance of short DNA misalignments supports an important role for erroneous non-homologous and micro-homology-dependent DSB repair in mtDNA deletion formation. The consistency of the results of our analysis across species further suggests a shared mode of mtDNA deletion mutagenesis.
Collapse
Affiliation(s)
- Lakshmi Narayanan Lakshmanan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Zhuangli Yee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, Singapore
| | - Rudiyanto Gunawan
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, USA
- Corresponding author
| |
Collapse
|
13
|
Fontana GA, Gahlon HL. Mechanisms of replication and repair in mitochondrial DNA deletion formation. Nucleic Acids Res 2020; 48:11244-11258. [PMID: 33021629 PMCID: PMC7672454 DOI: 10.1093/nar/gkaa804] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/07/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Deletions in mitochondrial DNA (mtDNA) are associated with diverse human pathologies including cancer, aging and mitochondrial disorders. Large-scale deletions span kilobases in length and the loss of these associated genes contributes to crippled oxidative phosphorylation and overall decline in mitochondrial fitness. There is not a united view for how mtDNA deletions are generated and the molecular mechanisms underlying this process are poorly understood. This review discusses the role of replication and repair in mtDNA deletion formation as well as nucleic acid motifs such as repeats, secondary structures, and DNA damage associated with deletion formation in the mitochondrial genome. We propose that while erroneous replication and repair can separately contribute to deletion formation, crosstalk between these pathways is also involved in generating deletions.
Collapse
Affiliation(s)
- Gabriele A Fontana
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Hailey L Gahlon
- To whom correspondence should be addressed. Tel: +41 44 632 3731;
| |
Collapse
|
14
|
Chesner LN, Essawy M, Warner C, Campbell C. DNA-protein crosslinks are repaired via homologous recombination in mammalian mitochondria. DNA Repair (Amst) 2020; 97:103026. [PMID: 33316746 PMCID: PMC7855827 DOI: 10.1016/j.dnarep.2020.103026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/24/2020] [Accepted: 11/12/2020] [Indexed: 11/19/2022]
Abstract
While mammalian mitochondria are known to possess a robust base excision repair system, direct evidence for the existence of additional mitochondrial DNA repair pathways is elusive. Herein a PCR-based assay was employed to demonstrate that plasmids containing DNA-protein crosslinks are rapidly repaired following electroporation into isolated mammalian mitochondria. Several lines of evidence argue that this repair occurs via homologous recombination. First, DNA-protein crosslinks present on plasmid DNA homologous to the mitochondrial genome were efficiently repaired (21 % repair in three hours), whereas a DNA-protein crosslink present on DNA that lacked homology to the mitochondrial genome remained unrepaired. Second, DNA-protein crosslinks present on plasmid DNA lacking homology to the mitochondrial genome were repaired when they were co-electroporated into mitochondria with an undamaged, homologous plasmid DNA molecule. Third, no repair was observed when DNA-protein crosslink-containing plasmids were electroporated into mitochondria isolated from cells pre-treated with the Rad51 inhibitor B02. These findings suggest that mitochondria utilize homologous recombination to repair endogenous and xenobiotic-induced DNA-protein crosslinks. Consistent with this interpretation, cisplatin-induced mitochondrial DNA-protein crosslinks accumulated to higher levels in cells pre-treated with B02 than in control cisplatin-treated cells. These results represent the first evidence of how spontaneous and xenobiotic-induced DNA-protein crosslinks are removed from mitochondrial DNA.
Collapse
Affiliation(s)
- Lisa N Chesner
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Maram Essawy
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Cecilia Warner
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Colin Campbell
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
15
|
Lu J, Li Y, Mollinari C, Garaci E, Merlo D, Pei G. Amyloid-β Oligomers-induced Mitochondrial DNA Repair Impairment Contributes to Altered Human Neural Stem Cell Differentiation. Curr Alzheimer Res 2020; 16:934-949. [PMID: 31642778 DOI: 10.2174/1567205016666191023104036] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/25/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Amyloid-β42 oligomers (Aβ42O), the proximate effectors of neurotoxicity observed in Alzheimer's disease (AD), can induce mitochondrial oxidative stress and impair mitochondrial function besides causing mitochondrial DNA (mtDNA) damage. Aβ42O also regulate the proliferative and differentiative properties of stem cells. OBJECTIVE We aimed to study whether Aβ42O-induced mtDNA damage is involved in the regulation of stem cell differentiation. METHOD Human iPSCs-derived neural stem cell (NSC) was applied to investigate the effect of Aβ42O on reactive oxygen species (ROS) production and DNA damage using mitoSOX staining and long-range PCR lesion assay, respectively. mtDNA repair activity was measured by non-homologous end joining (NHEJ) in vitro assay using mitochondria isolates and the expression and localization of NHEJ components were determined by Western blot and immunofluorescence assay. The expressions of Tuj-1 and GFAP, detected by immunofluorescence and qPCR, respectively, were examined as an index of neurons and astrocytes production. RESULTS We show that in NSC Aβ42O treatment induces ROS production and mtDNA damage and impairs DNA end joining activity. NHEJ components, such as Ku70/80, DNA-PKcs, and XRCC4, are localized in mitochondria and silencing of XRCC4 significantly exacerbates the effect of Aβ42O on mtDNA integrity. On the contrary, pre-treatment with Phytic Acid (IP6), which specifically stimulates DNA-PK-dependent end-joining, inhibits Aβ42O-induced mtDNA damage and neuronal differentiation alteration. CONCLUSION Aβ42O-induced mtDNA repair impairment may change cell fate thus shifting human NSC differentiation toward an astrocytic lineage. Repair stimulation counteracts Aβ42O neurotoxicity, suggesting mtDNA repair pathway as a potential target for the treatment of neurodegenerative disorders like AD.
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yi Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Cristiana Mollinari
- Department of Neuroscience, Istituto Superiore di Sanita, Rome, Italy.,Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Enrico Garaci
- IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.,Telematic University San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Daniela Merlo
- Department of Neuroscience, Istituto Superiore di Sanita, Rome, Italy
| | - Gang Pei
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.,Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Luo Y, Ma J, Lu W. The Significance of Mitochondrial Dysfunction in Cancer. Int J Mol Sci 2020; 21:ijms21165598. [PMID: 32764295 PMCID: PMC7460667 DOI: 10.3390/ijms21165598] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
As an essential organelle in nucleated eukaryotic cells, mitochondria play a central role in energy metabolism, maintenance of redox balance, and regulation of apoptosis. Mitochondrial dysfunction, either due to the TCA cycle enzyme defects, mitochondrial DNA genetic mutations, defective mitochondrial electron transport chain, oxidative stress, or aberrant oncogene and tumor suppressor signaling, has been observed in a wide spectrum of human cancers. In this review, we summarize mitochondrial dysfunction induced by these alterations that promote human cancers.
Collapse
Affiliation(s)
- Yongde Luo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence: (Y.L.); (W.L.)
| | - Jianjia Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Weiqin Lu
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence: (Y.L.); (W.L.)
| |
Collapse
|
17
|
Mitochondria, spermatogenesis, and male infertility - An update. Mitochondrion 2020; 54:26-40. [PMID: 32534048 DOI: 10.1016/j.mito.2020.06.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022]
Abstract
The incorporation of mitochondria in the eukaryotic cell is one of the most enigmatic events in the course of evolution. This important organelle was thought to be only the powerhouse of the cell, but was later learnt to perform many other indispensable functions in the cell. Two major contributions of mitochondria in spermatogenesis concern energy production and apoptosis. Apart from this, mitochondria also participate in a number of other processes affecting spermatogenesis and fertility. Mitochondria in sperm are arranged in the periphery of the tail microtubules to serve to energy demand for motility. Apart from this, the role of mitochondria in germ cell proliferation, mitotic regulation, and the elimination of germ cells by apoptosis are now well recognized. Eventually, mutations in the mitochondrial genome have been reported in male infertility, particularly in sluggish sperm (asthenozoospermia); however, heteroplasmy in the mtDNA and a complex interplay between the nucleus and mitochondria affect their penetrance. In this article, we have provided an update on the role of mitochondria in various events of spermatogenesis and male fertility and on the correlation of mitochondrial DNA mutations with male infertility.
Collapse
|
18
|
Rolling-Circle Replication in Mitochondrial DNA Inheritance: Scientific Evidence and Significance from Yeast to Human Cells. Genes (Basel) 2020; 11:genes11050514. [PMID: 32384722 PMCID: PMC7288456 DOI: 10.3390/genes11050514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022] Open
Abstract
Studies of mitochondrial (mt)DNA replication, which forms the basis of mitochondrial inheritance, have demonstrated that a rolling-circle replication mode exists in yeasts and human cells. In yeast, rolling-circle mtDNA replication mediated by homologous recombination is the predominant pathway for replication of wild-type mtDNA. In human cells, reactive oxygen species (ROS) induce rolling-circle replication to produce concatemers, linear tandem multimers linked by head-to-tail unit-sized mtDNA that promote restoration of homoplasmy from heteroplasmy. The event occurs ahead of mtDNA replication mechanisms observed in mammalian cells, especially under higher ROS load, as newly synthesized mtDNA is concatemeric in hydrogen peroxide-treated human cells. Rolling-circle replication holds promise for treatment of mtDNA heteroplasmy-attributed diseases, which are regarded as incurable. This review highlights the potential therapeutic value of rolling-circle mtDNA replication.
Collapse
|
19
|
Kodavati M, Wang H, Hegde ML. Altered Mitochondrial Dynamics in Motor Neuron Disease: An Emerging Perspective. Cells 2020; 9:cells9041065. [PMID: 32344665 PMCID: PMC7226538 DOI: 10.3390/cells9041065] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria plays privotal role in diverse pathways that regulate cellular function and survival, and have emerged as a prime focus in aging and age-associated motor neuron diseases (MNDs), such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Accumulating evidence suggests that many amyloidogenic proteins, including MND-associated RNA/DNA-binding proteins fused in sarcoma (FUS) and TAR DNA binding protein (TDP)-43, are strongly linked to mitochondrial dysfunction. Animal model and patient studies have highlighted changes in mitochondrial structure, plasticity, replication/copy number, mitochondrial DNA instability, and altered membrane potential in several subsets of MNDs, and these observations are consistent with the evidence of increased excitotoxicity, induction of reactive oxygen species, and activation of intrinsic apoptotic pathways. Studies in MND rodent models also indicate that mitochondrial abnormalities begin prior to the clinical and pathological onset of the disease, suggesting a causal role of mitochondrial dysfunction. Our recent studies, which demonstrated the involvement of specific defects in DNA break-ligation mediated by DNA ligase 3 (LIG3) in FUS-associated ALS, raised a key question of its potential implication in mitochondrial DNA transactions because LIG3 is essential for both mitochondrial DNA replication and repair. This question, as well as how wild-type and mutant MND-associated factors affect mitochondria, remain to be elucidated. These new investigation avenues into the mechanistic role of mitochondrial dysfunction in MNDs are critical to identify therapeutic targets to alleviate mitochondrial toxicity and its consequences. In this article, we critically review recent advances in our understanding of mitochondrial dysfunction in diverse subgroups of MNDs and discuss challenges and future directions.
Collapse
Affiliation(s)
- Manohar Kodavati
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (M.K.); (H.W.)
| | - Haibo Wang
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (M.K.); (H.W.)
| | - Muralidhar L. Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (M.K.); (H.W.)
- Department of Neurosurgery, Weill Medical College, New York, NY 10065, USA
- Correspondence:
| |
Collapse
|
20
|
Repolês BM, Machado CR, Florentino PTV. DNA lesions and repair in trypanosomatids infection. Genet Mol Biol 2020; 43:e20190163. [PMID: 32236391 PMCID: PMC7197992 DOI: 10.1590/1678-4685-gmb-2019-0163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022] Open
Abstract
Pathological processes such as bacterial, viral and parasitic infections can generate a plethora of responses such as, but not restricted to, oxidative stress that can be harmful to the host and the pathogen. This stress occurs when there is an imbalance between reactive oxygen species produced and antioxidant factors produced in response to the infection. This imbalance can lead to DNA lesions in both infected cells as well as in the pathogen. The effects of the host response on the parasite lead to several kinds of DNA damage, causing alterations in the parasite's metabolism; the reaction and sensitivity of the parasite to these responses are related to the DNA metabolism and life cycle of each parasite. The present review will discuss the survival strategies developed by host cells and Trypanosoma cruzi, focusing on the DNA repair mechanisms of these organisms throughout infection including the relationship between DNA damage, stress response features, and the unique characteristics of these diseases.
Collapse
Affiliation(s)
- Bruno M Repolês
- Universidade Federal de Minas Gerais, Departamento de Bioquímica e Imunologia, Belo Horizonte MG, Brazil
| | - Carlos Renato Machado
- Universidade Federal de Minas Gerais, Departamento de Bioquímica e Imunologia, Belo Horizonte MG, Brazil
| | | |
Collapse
|
21
|
Passamonti M, Plazzi F. Doubly Uniparental Inheritance and beyond: The contribution of the Manila clamRuditapes philippinarum. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Marco Passamonti
- Department of Biological, Geological, and Environmental Sciences University of Bologna Bologna Italy
| | - Federico Plazzi
- Department of Biological, Geological, and Environmental Sciences University of Bologna Bologna Italy
| |
Collapse
|
22
|
Wang S, Jiao N, Zhao L, Zhang M, Zhou P, Huang X, Hu F, Yang C, Shu Y, Li W, Zhang C, Tao M, Chen B, Ma M, Liu S. Evidence for the paternal mitochondrial DNA in the crucian carp-like fish lineage with hybrid origin. SCIENCE CHINA. LIFE SCIENCES 2020; 63:102-115. [PMID: 31728830 DOI: 10.1007/s11427-019-9528-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/11/2019] [Indexed: 01/05/2023]
Abstract
In terms of taxonomic status, common carp (Cyprinus carpio, Cyprininae) and crucian carp (Carassius auratus, Cyprininae) are different species; however, in this study, a newborn homodiploid crucian carp-like fish (2n=100) (2nNCRC) lineage (F1-F3) was established from the interspecific hybridization of female common carp (2n=100)×male blunt snout bream (Megalobrama amblycephala, Cultrinae, 2n=48). The phenotypes and genotypes of 2nNCRC differed from those of its parents but were closely related to those of the existing diploid crucian carp. We further sequenced the whole mitochondrial (mt) genomes of the 2nNCRC lineage from F1 to F3. The paternal mtDNA fragments were stably embedded in the mt-genomes of F1-F3 generations of 2nNCRC to form chimeric DNA fragments. Along with this chimeric process, numerous base sites of F1-F3 generations of 2nNCRC underwent mutations. Most of these mutation sites were consistent with the existing diploid crucian carp. Moreover, the mtDNA organization and nucleotide composition of 2nNCRC were more similar to those of the existing diploid crucian carp than those of the parents. The inheritable chimeric DNA fragments and mutant loci in the mt-genomes of different generations of 2nNCRC provided important evidence of the mtDNA change process in the newborn lineage derived from hybridization of different species. Our findings demonstrated for the first time that the paternal mtDNA were transmitted into the mt-genomes of homodiploid lineage, which provided new insights into the existence of paternal mtDNA in the mtDNA inheritance.
Collapse
Affiliation(s)
- Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China.,College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Ni Jiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Lu Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Meiwen Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Pei Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xuexue Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China.,College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Conghui Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yuqin Shu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China.,Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Bo Chen
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Ming Ma
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China. .,College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
23
|
Harumoto T, Shigi N, Tsumoto K, Komiyama M. Site-specific Manipulation of Mitochondrial DNA by Artificial Restriction DNA Cutter. CHEM LETT 2019. [DOI: 10.1246/cl.190572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toshimasa Harumoto
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Narumi Shigi
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makoto Komiyama
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
24
|
Luo H, Kong X, Chen S, Shi W. Mechanisms of gene rearrangement in 13 bothids based on comparison with a newly completed mitogenome of the threespot flounder, Grammatobothus polyophthalmus (Pleuronectiformes: Bothidae). BMC Genomics 2019; 20:792. [PMID: 31666003 PMCID: PMC6821024 DOI: 10.1186/s12864-019-6128-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 09/23/2019] [Indexed: 12/03/2022] Open
Abstract
Background The mitogenomes of 12 teleost fish of the bothid family (order Pleuronectiformes) indicated that the genomic-scale rearrangements characterized in previous work. A novel mechanism of genomic rearrangement called the Dimer-Mitogenome and Non-Random Loss (DMNL) model was used to account for the rearrangement found in one of these bothids, Crossorhombus azureus. Results The 18,170 bp mitogenome of G. polyophthalmus contains 37 genes, two control regions (CRs), and the origin of replication of the L-strand (OL). This mitogenome is characterized by genomic-scale rearrangements: genes located on the L-strand are grouped in an 8-gene cluster (Q-A-C-Y-S1-ND6-E-P) that does not include tRNA-N; genes found on the H-strand are grouped together (F-12S … CytB-T) except for tRNA-D that was translocated inside the 8-gene L-strand cluster. Compared to non-rearranged mitogenomes of teleost fishes, gene organization in the mitogenome of G. polyophthalmus and in that of the other 12 bothids characterized thus far is very similar. These rearrangements could be sorted into four types (Type I, II, III and IV), differing in the particular combination of the CR, tRNA-D gene and 8-gene cluster and the shuffling of tRNA-V. The DMNL model was used to account for all but one gene rearrangement found in all 13 bothid mitogenomes. Translocation of tRNA-D most likely occurred after the DMNL process in 10 bothid mitogenomes and could have occurred either before or after DMNL in the three other species. During the DMNL process, the tRNA-N gene was retained rather than the expected tRNA-N′ gene. tRNA-N appears to assist in or act as OL function when the OL secondary structure could not be formed from intergenic sequences. A striking finding was that each of the non-transcribed genes has degenerated to a shorter intergenic spacer during the DMNL process. These findings highlight a rare phenomenon in teleost fish. Conclusions This result provides significant evidence to support the existence of dynamic dimeric mitogenomes and the DMNL model as the mechanism of gene rearrangement in bothid mitogenomes, which not only promotes the understanding of mitogenome structural diversity, but also sheds light on mechanisms of mitochondrial genome rearrangement and replication.
Collapse
Affiliation(s)
- Hairong Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Kong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Guangzhou, 510301, China.
| | - Shixi Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Guangzhou, 510301, China
| |
Collapse
|
25
|
Mitochondrial Homeostasis and Cellular Senescence. Cells 2019; 8:cells8070686. [PMID: 31284597 PMCID: PMC6678662 DOI: 10.3390/cells8070686] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 01/07/2023] Open
Abstract
Cellular senescence refers to a stress response aiming to preserve cellular and, therefore, organismal homeostasis. Importantly, deregulation of mitochondrial homeostatic mechanisms, manifested as impaired mitochondrial biogenesis, metabolism and dynamics, has emerged as a hallmark of cellular senescence. On the other hand, impaired mitostasis has been suggested to induce cellular senescence. This review aims to provide an overview of homeostatic mechanisms operating within mitochondria and a comprehensive insight into the interplay between cellular senescence and mitochondrial dysfunction.
Collapse
|
26
|
Bian WP, Chen YL, Luo JJ, Wang C, Xie SL, Pei DS. Knock-In Strategy for Editing Human and Zebrafish Mitochondrial DNA Using Mito-CRISPR/Cas9 System. ACS Synth Biol 2019; 8:621-632. [PMID: 30955321 DOI: 10.1021/acssynbio.8b00411] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mitochondria DNA (mtDNA) editing tool, zinc finger nucleases (ZFNs), transcription activator-like effector nuclease (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) system, is a promising approach for the treatment of mtDNA diseases by eliminating mutant mitochondrial genomes. However, there have been no reports of repairing the mutant mtDNA with homologous recombination strategy to date. Here, we show a mito-CRISPR/Cas9 system that mito-Cas9 protein can specifically target mtDNA and reduce mtDNA copy number in both human cells and zebrafish. An exogenous single-stranded DNA with short homologous arm was knocked into the targeting loci accurately, and this mutagenesis could be steadily transmitted to F1 generation of zebrafish. Moreover, we found some major factors involved in nuclear DNA repair were upregulated significantly by the mito-CRISPR/Cas9 system. Taken together, our data suggested that the mito-CRISPR/Cas9 system could be a useful method to edit mtDNA by knock-in strategy, providing a potential therapy for the treatment of inherited mitochondrial diseases.
Collapse
Affiliation(s)
- Wan-Ping Bian
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yan-Ling Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Juan-Juan Luo
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Chao Wang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Shao-Lin Xie
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - De-Sheng Pei
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
27
|
Abstract
Mitochondria play a crucial role in a variety of cellular processes ranging from energy metabolism, generation of reactive oxygen species (ROS) and Ca(2+) handling to stress responses, cell survival and death. Malfunction of the organelle may contribute to the pathogenesis of neuromuscular, cancer, premature aging and cardiovascular diseases (CVD), including myocardial ischemia, cardiomyopathy and heart failure (HF). Mitochondria contain their own genome organized into DNA-protein complexes, called "mitochondrial nucleoids," along with multiprotein machineries, which promote mitochondrial DNA (mtDNA) replication, transcription and repair. Although the mammalian organelle possesses almost all known nuclear DNA repair pathways, including base excision repair, mismatch repair and recombinational repair, the proximity of mtDNA to the main sites of ROS production and the lack of protective histones may result in increased susceptibility to various types of mtDNA damage. These include accumulation of mtDNA point mutations and/or deletions and decreased mtDNA copy number, which will impair mitochondrial function and finally, may lead to CVD including HF.
Collapse
Affiliation(s)
- José Marín-García
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue, Highland Park, NJ, 08904, USA.
| |
Collapse
|
28
|
Saccharomyces cerevisiae Mhr1 can bind Xho I-induced mitochondrial DNA double-strand breaks in vivo. Mitochondrion 2017; 42:23-32. [PMID: 29032234 DOI: 10.1016/j.mito.2017.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/30/2017] [Accepted: 10/06/2017] [Indexed: 11/23/2022]
Abstract
Mitochondrial DNA (mtDNA) double-strand break (DSB) repair is essential for maintaining mtDNA integrity, but little is known about the proteins involved in mtDNA DSB repair. Here, we utilize Saccharomyces cerevisiae as a eukaryotic model to identify proteins involved in mtDNA DSB repair. We show that Mhr1, a protein known to possess homologous DNA pairing activity in vitro, binds to mtDNA DSBs in vivo, indicating its involvement in mtDNA DSB repair. Our data also indicate that Yku80, a protein previously implicated in mtDNA DSB repair, does not compete with Mhr1 for binding to mtDNA DSBs. In fact, C-terminally tagged Yku80 could not be detected in yeast mitochondrial extracts. Therefore, we conclude that Mhr1, but not Yku80, is a potential mtDNA DSB repair factor in yeast.
Collapse
|
29
|
Vasileiou PVS, Mourouzis I, Pantos C. Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity. Int J Mol Sci 2017; 18:E1821. [PMID: 28829360 PMCID: PMC5578207 DOI: 10.3390/ijms18081821] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022] Open
Abstract
Mitochondria have emerged as key players regarding cellular homeostasis not only due to their contribution regarding energy production through oxidative phosphorylation, but also due to their involvement in signaling, ion regulation, and programmed cell death. Indeed, current knowledge supports the notion that mitochondrial dysfunction is a hallmark in the pathogenesis of various diseases. Mitochondrial biogenesis and function require the coordinated action of two genomes: nuclear and mitochondrial. Unfortunately, both intrinsic and environmental genotoxic insults constantly threaten the integrity of nuclear as well as mitochondrial DNA. Despite the extensive research that has been made regarding nuclear genome instability, the importance of mitochondrial genome integrity has only recently begun to be elucidated. The specific architecture and repair mechanisms of mitochondrial DNA, as well as the dynamic behavior that mitochondria exert regarding fusion, fission, and autophagy participate in mitochondrial genome stability, and therefore, cell homeostasis.
Collapse
Affiliation(s)
- Panagiotis V S Vasileiou
- Department of Basic Medical Sciences, Laboratory of Histology & Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 MikrasAsias Avenue, Goudi, Athens 11527, Greece.
| | - Iordanis Mourouzis
- Department of Pharmacology, School of Medicine, National and Kapodistrian University of Athens, 75 MikrasAsias Avenue, Goudi, Athens 11527, Greece.
| | - Constantinos Pantos
- Department of Pharmacology, School of Medicine, National and Kapodistrian University of Athens, 75 MikrasAsias Avenue, Goudi, Athens 11527, Greece.
| |
Collapse
|
30
|
Saki M, Prakash A. DNA damage related crosstalk between the nucleus and mitochondria. Free Radic Biol Med 2017; 107:216-227. [PMID: 27915046 PMCID: PMC5449269 DOI: 10.1016/j.freeradbiomed.2016.11.050] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/25/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022]
Abstract
The electron transport chain is the primary pathway by which a cell generates energy in the form of ATP. Byproducts of this process produce reactive oxygen species that can cause damage to mitochondrial DNA. If not properly repaired, the accumulation of DNA damage can lead to mitochondrial dysfunction linked to several human disorders including neurodegenerative diseases and cancer. Mitochondria are able to combat oxidative DNA damage via repair mechanisms that are analogous to those found in the nucleus. Of the repair pathways currently reported in the mitochondria, the base excision repair pathway is the most comprehensively described. Proteins that are involved with the maintenance of mtDNA are encoded by nuclear genes and translocate to the mitochondria making signaling between the nucleus and mitochondria imperative. In this review, we discuss the current understanding of mitochondrial DNA repair mechanisms and also highlight the sensors and signaling pathways that mediate crosstalk between the nucleus and mitochondria in the event of mitochondrial stress.
Collapse
Affiliation(s)
- Mohammad Saki
- Mitchell Cancer Institute, The University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, United States
| | - Aishwarya Prakash
- Mitchell Cancer Institute, The University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, United States.
| |
Collapse
|
31
|
Evolution and inheritance of animal mitochondrial DNA: rules and exceptions. ACTA ACUST UNITED AC 2017; 24:2. [PMID: 28164041 PMCID: PMC5282644 DOI: 10.1186/s40709-017-0060-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/10/2017] [Indexed: 12/17/2022]
Abstract
Mitochondrial DNA (mtDNA) has been studied intensely for “its own” merit. Its role for the function of the cell and the organism remains a fertile field, its origin and evolution is an indispensable part of the evolution of life and its interaction with the nuclear DNA is among the most important cases of genome synergism and co-evolution. Also, mtDNA was proven one of the most useful tools in population genetics and molecular phylogenetics. In this article we focus on animal mtDNA and discuss briefly how our views about its structure, function and transmission have changed, how these changes affect the information we have accumulated through its use in the fields of phylogeny and population structure and what are the most important questions that remain open for future research.
Collapse
|
32
|
Smith KJ, Germain M, Skelton H. Histopathologic Features Seen with Radiation Recall or Enhancement Eruptions. J Cutan Med Surg 2016. [DOI: 10.1177/120347540200600603] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Although a radiation recall or enhancement eruption has been associated with a number of chemotherapeutic drugs, the histologic features have rarely been described. Objective: Our goal was to define the histologic features of radiation recall and enhancement eruptions in order to better understand their pathogenesis. Methods: We present ten patients on chemotherapeutic agents who developed erythematous maculopapular to psoriasiform eruptions often with associated follicular pustules. These eruptions occurred at the sites of prior or concurrent radiation therapy. Results: The most common class of drugs inducing these reactions were antibiotic chemotherapeutic agents alone or in combination with other chemotherapeutic drugs. In addition to routine histology, in four patients immunohistochemical staining for p53 was performed at the sites of the eruptions after resolution and at noninvolved sites matched for ultraviolet radiation (UVR) exposure. Histologic features in patients receiving concurrent radiation therapy included epidermal dysplasia, keratinocytes showing features of necrosis, increased mitotic figures, and a mixed inflammatory infiltrate. At sites of prior radiation therapy, the biopsy specimens showed a similar spectrum of epidermal changes and, in some cases, psoriasiform dermatitis with clearing within cells in the upper layers of the epidermis. Additional dermal changes included dermal fibrosis, vasodilatation, and atypical fibroblasts. Moderate to marked solar elastosis was seen in the majority of biopsy specimens. Immunohistochemical studies after resolution showed only a modest increase in p53 staining in epidermal keratinocytes in 3 of 4 sites of recall and enhancement eruptions after resolution of the reactions compared to skin that was matched for similar UVR exposure. Conclusion: Cumulative direct DNA damage and oxidative stress are probably important in radiation recall and enhancement eruptions, and these changes may be modulated by underlying nutritional deficits. Cumulative p53 mutations may play some role but are probably not a major factor in these eruptions. Mitochondrial dysfunction, which is known to occur with prior and concurrent radiation and chemotherapy, may be important in these eruptions. In addition to improvements in general nutrition, topical or oral antioxidant therapy may be a potential therapy to avoid radiation enhancement and recall reactions.
Collapse
Affiliation(s)
- Kathleen J. Smith
- Department of Dermatology and Pathology, University of Alabama, Birmingham, Alabama, USA
| | - Marguerite Germain
- Department of Dermatology, National Naval Medical Center, Bethesda Maryland, USA
| | - Henry Skelton
- Department of Dermatology and Pathology, University of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
33
|
Sen A, Cox RT. Fly Models of Human Diseases: Drosophila as a Model for Understanding Human Mitochondrial Mutations and Disease. Curr Top Dev Biol 2016; 121:1-27. [PMID: 28057297 DOI: 10.1016/bs.ctdb.2016.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases are a prevalent, heterogeneous class of diseases caused by defects in oxidative phosphorylation, whose severity depends upon particular genetic mutations. These diseases can be difficult to diagnose, and current therapeutics have limited efficacy, primarily treating only symptoms. Because mitochondria play a pivotal role in numerous cellular functions, especially ATP production, their diminished activity has dramatic physiological consequences. While this in and of itself makes treating mitochondrial disease complex, these organelles contain their own DNA, mtDNA, whose products are required for ATP production, in addition to the hundreds of nucleus-encoded proteins. Drosophila offers a tractable whole-animal model to understand the mechanisms underlying loss of mitochondrial function, the subsequent cellular and tissue damage that results, and how these organelles are inherited. Human and Drosophila mtDNAs encode the same set of products, and the homologous nucleus-encoded genes required for mitochondrial function are conserved. In addition, Drosophila contain sufficiently complex organ systems to effectively recapitulate many basic symptoms of mitochondrial diseases, yet are relatively easy and fast to genetically manipulate. There are several Drosophila models for specific mitochondrial diseases, which have been recently reviewed (Foriel, Willems, Smeitink, Schenck, & Beyrath, 2015). In this review, we highlight the conservation between human and Drosophila mtDNA, the present and future techniques for creating mtDNA mutations for further study, and how Drosophila has contributed to our current understanding of mitochondrial inheritance.
Collapse
Affiliation(s)
- A Sen
- Uniformed Services University, Bethesda, MD, United States
| | - R T Cox
- Uniformed Services University, Bethesda, MD, United States.
| |
Collapse
|
34
|
Strakova A, Ní Leathlobhair M, Wang GD, Yin TT, Airikkala-Otter I, Allen JL, Allum KM, Bansse-Issa L, Bisson JL, Castillo Domracheva A, de Castro KF, Corrigan AM, Cran HR, Crawford JT, Cutter SM, Delgadillo Keenan L, Donelan EM, Faramade IA, Flores Reynoso E, Fotopoulou E, Fruean SN, Gallardo-Arrieta F, Glebova O, Häfelin Manrique RF, Henriques JJ, Ignatenko N, Koenig D, Lanza-Perea M, Lobetti R, Lopez Quintana AM, Losfelt T, Marino G, Martincorena I, Martínez Castañeda S, Martínez-López MF, Meyer M, Nakanwagi B, De Nardi AB, Neunzig W, Nixon SJ, Onsare MM, Ortega-Pacheco A, Peleteiro MC, Pye RJ, Reece JF, Rojas Gutierrez J, Sadia H, Schmeling SK, Shamanova O, Ssuna RK, Steenland-Smit AE, Svitich A, Thoya Ngoka I, Vițălaru BA, de Vos AP, de Vos JP, Walkinton O, Wedge DC, Wehrle-Martinez AS, van der Wel MG, Widdowson SA, Murchison EP. Mitochondrial genetic diversity, selection and recombination in a canine transmissible cancer. eLife 2016; 5. [PMID: 27185408 PMCID: PMC4869914 DOI: 10.7554/elife.14552] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/08/2016] [Indexed: 01/11/2023] Open
Abstract
Canine transmissible venereal tumour (CTVT) is a clonally transmissible cancer that originated approximately 11,000 years ago and affects dogs worldwide. Despite the clonal origin of the CTVT nuclear genome, CTVT mitochondrial genomes (mtDNAs) have been acquired by periodic capture from transient hosts. We sequenced 449 complete mtDNAs from a global population of CTVTs, and show that mtDNA horizontal transfer has occurred at least five times, delineating five tumour clades whose distributions track two millennia of dog global migration. Negative selection has operated to prevent accumulation of deleterious mutations in captured mtDNA, and recombination has caused occasional mtDNA re-assortment. These findings implicate functional mtDNA as a driver of CTVT global metastatic spread, further highlighting the important role of mtDNA in cancer evolution. DOI:http://dx.doi.org/10.7554/eLife.14552.001 A unique cancer called canine transmissible venereal tumour (CTVT) causes ugly tumours to form on the genitals of dogs. Unlike most other cancers, CTVT is contagious: the cancer cells can be directly transferred from one dog to another when they mate. The disease originated from the cancer cells of one individual dog that lived approximately 11,000 years ago. CTVT now affects dogs all over the world, which makes it the oldest and most widespread cancer known in nature. Like healthy cells, cancer cells contain compartments known as mitochondria that produce the chemical energy needed to power vital processes. Inside the mitochondria, there is some DNA that encodes the proteins that mitochondria need to perform this role. Changes (or mutations) to this mitochondrial DNA (mtDNA) may stop the mitochondria from working properly. CTVT cells have previously been found to occasionally capture mtDNA from normal dog cells, which suggests that replenishing their mtDNA may help promote CTVT cell growth. Furthermore, these captured mtDNAs act as genetic "flags" that can help trace the spread of the disease. Here, Strakova, Ní Leathlobhair et al. analysed the mtDNA in CTVT tumours collected from over 400 dogs in 39 countries. The analysis shows that CTVT cells have captured mtDNA from normal dog cells on at least five occasions. Over the last 2,000 years, the disease appears to have spread rapidly around the world, perhaps transported by dogs travelling on ships along historic trade routes. CTVT may have only reached the Americas within the last 500 years, possibly carried there by dogs brought by Europeans. Likewise, CTVT probably only came to Australia after European contact. The experiments also revealed that the most damaging types of mutations were absent from the mtDNA of CTVT, which suggests that fully functioning mitochondria play an important role in CTVT. Unexpectedly, Strakova, Ní Leathlobhair et al. found evidence that certain sections of mtDNA in some CTVT cells have been exchanged, or shuffled, with the mtDNA captured from normal dog cells. This type of “recombination” is not usually thought to occur in mtDNA, and has not previously been detected in cancer. Future studies will determine if this process is widespread in other types of cancer, including in humans. DOI:http://dx.doi.org/10.7554/eLife.14552.002
Collapse
Affiliation(s)
- Andrea Strakova
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Máire Ní Leathlobhair
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ting-Ting Yin
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | | | - Janice L Allen
- Animal Management in Rural and Remote Indigenous Communities, Darwin, Australia
| | | | | | - Jocelyn L Bisson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Karina F de Castro
- Department of Clinical and Veterinary Surgery, São Paulo State University, São Paulo, Brazil
| | | | - Hugh R Cran
- The Nakuru District Veterinary Scheme Ltd, Nakuru, Kenya
| | | | - Stephen M Cutter
- Animal Management in Rural and Remote Indigenous Communities, Darwin, Australia
| | | | - Edward M Donelan
- Animal Management in Rural and Remote Indigenous Communities, Darwin, Australia
| | | | | | | | | | | | | | | | | | | | | | | | - Remo Lobetti
- Bryanston Veterinary Hospital, Bryanston, South Africa
| | | | - Thibault Losfelt
- Clinique Veterinaire de Grand Fond, Saint Gilles les Bains, France
| | - Gabriele Marino
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | | | - Simón Martínez Castañeda
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| | | | | | | | - Andrigo B De Nardi
- Department of Clinical and Veterinary Surgery, São Paulo State University, São Paulo, Brazil
| | | | | | | | | | - Maria C Peleteiro
- Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisboa, Portugal
| | - Ruth J Pye
- Vets Beyond Borders, The Rocks, Australia
| | | | | | - Haleema Sadia
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | | | - Richard K Ssuna
- Lilongwe Society for Protection and Care of Animals, Lilongwe, Malawi
| | | | - Alla Svitich
- State Hospital of Veterinary Medicine, Dniprodzerzhynsk, Ukraine
| | | | - Bogdan A Vițălaru
- Clinical Sciences Department, Faculty of Veterinary Medicine, Bucharest, Romania
| | | | - Johan P de Vos
- Veterinary Oncology Referral Centre De Ottenhorst, Terneuzen, Netherlands
| | | | - David C Wedge
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | | | | | - Elizabeth P Murchison
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
35
|
Yeast mitochondrial HMG proteins: DNA-binding properties of the most evolutionarily divergent component of mitochondrial nucleoids. Biosci Rep 2015; 36:e00288. [PMID: 26647378 PMCID: PMC4725248 DOI: 10.1042/bsr20150275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023] Open
Abstract
Comparative biochemical analysis of mtHMG proteins from distantly related yeast species revealed that they exhibit a preference for recombination/replication intermediates. We discuss how these biochemical characteristics relate to the role of mtHMG proteins in mtDNA compaction and evolution. Yeast mtDNA is compacted into nucleoprotein structures called mitochondrial nucleoids (mt-nucleoids). The principal mediators of nucleoid formation are mitochondrial high-mobility group (HMG)-box containing (mtHMG) proteins. Although these proteins are some of the fastest evolving components of mt-nucleoids, it is not known whether the divergence of mtHMG proteins on the level of their amino acid sequences is accompanied by diversification of their biochemical properties. In the present study we performed a comparative biochemical analysis of yeast mtHMG proteins from Saccharomyces cerevisiae (ScAbf2p), Yarrowia lipolytica (YlMhb1p) and Candida parapsilosis (CpGcf1p). We found that all three proteins exhibit relatively weak binding to intact dsDNA. In fact, ScAbf2p and YlMhb1p bind quantitatively to this substrate only at very high protein to DNA ratios and CpGcf1p shows only negligible binding to dsDNA. In contrast, the proteins exhibit much higher preference for recombination intermediates such as Holliday junctions (HJ) and replication forks (RF). Therefore, we hypothesize that the roles of the yeast mtHMG proteins in maintenance and compaction of mtDNA in vivo are in large part mediated by their binding to recombination/replication intermediates. We also speculate that the distinct biochemical properties of CpGcf1p may represent one of the prerequisites for frequent evolutionary tinkering with the form of the mitochondrial genome in the CTG-clade of hemiascomycetous yeast species.
Collapse
|
36
|
Stein A, Kalifa L, Sia EA. Members of the RAD52 Epistasis Group Contribute to Mitochondrial Homologous Recombination and Double-Strand Break Repair in Saccharomyces cerevisiae. PLoS Genet 2015; 11:e1005664. [PMID: 26540255 PMCID: PMC4634946 DOI: 10.1371/journal.pgen.1005664] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/22/2015] [Indexed: 11/19/2022] Open
Abstract
Mitochondria contain an independently maintained genome that encodes several proteins required for cellular respiration. Deletions in the mitochondrial genome have been identified that cause several maternally inherited diseases and are associated with certain cancers and neurological disorders. The majority of these deletions in human cells are flanked by short, repetitive sequences, suggesting that these deletions may result from recombination events. Our current understanding of the maintenance and repair of mtDNA is quite limited compared to our understanding of similar events in the nucleus. Many nuclear DNA repair proteins are now known to also localize to mitochondria, but their function and the mechanism of their action remain largely unknown. This study investigated the contribution of the nuclear double-strand break repair (DSBR) proteins Rad51p, Rad52p and Rad59p in mtDNA repair. We have determined that both Rad51p and Rad59p are localized to the matrix of the mitochondria and that Rad51p binds directly to mitochondrial DNA. In addition, a mitochondrially-targeted restriction endonuclease (mtLS-KpnI) was used to produce a unique double-strand break (DSB) in the mitochondrial genome, which allowed direct analysis of DSB repair in vivo in Saccharomyces cerevisiae. We find that loss of these three proteins significantly decreases the rate of spontaneous deletion events and the loss of Rad51p and Rad59p impairs the repair of induced mtDNA DSBs.
Collapse
Affiliation(s)
- Alexis Stein
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Lidza Kalifa
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Elaine A. Sia
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
37
|
Wang X, Liu N, Zhang H, Yang XJ, Huang Y, Lei F. Extreme variation in patterns of tandem repeats in mitochondrial control region of yellow-browed tits (Sylviparus modestus, Paridae). Sci Rep 2015; 5:13227. [PMID: 26288099 PMCID: PMC4541255 DOI: 10.1038/srep13227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/21/2015] [Indexed: 11/09/2022] Open
Abstract
To investigate the evolutionary pattern and origins of tandem repeats in the mitochondrial control region of the yellow-browed tit (Sylviparus modestus), the control region and another four mitochondrial loci from fifteen individuals were analyzed. A 117-bp tandem repeat unit that repeated once, twice or three times in different individuals was found, and a rarely reported arrangement for this tandem repeats region that a 5' imperfect copy at its downstream and a 3' imperfect copy at its upstream was observed. The haplotype network, phylogenetic trees, and ancestral state reconstruction of the combined dataset of five loci suggested multiple origins of the same repeat number. The turnover model via slipped-strand mispairing was introduced to interpret the results, because mispairing occurred so frequently that multiple origins of certain repeat number were observed. Insertion via recombination should be a better explanation for the origin of this tandem repeat unit, considering characteristics of the combined sequence of the 3' and 5' imperfect copy, including identification of its homolog in other passerines and its predicted secondary structure.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Co-Innovation Center for Qinba regions' sustainable development, College of Life Sciences, Shaanxi Normal University, No. 199, South Chang'an Road, Xi'an 710062, China
| | - Nian Liu
- Co-Innovation Center for Qinba regions' sustainable development, College of Life Sciences, Shaanxi Normal University, No. 199, South Chang'an Road, Xi'an 710062, China
| | - Hongli Zhang
- College of Life Science, Datong University, Xingyun Street, Datong 037009, China
| | - Xiao-Jun Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32, Jiaochang East Road, Kunming 650223, China
| | - Yuan Huang
- Co-Innovation Center for Qinba regions' sustainable development, College of Life Sciences, Shaanxi Normal University, No. 199, South Chang'an Road, Xi'an 710062, China
| | - Fumin Lei
- 1] Co-Innovation Center for Qinba regions' sustainable development, College of Life Sciences, Shaanxi Normal University, No. 199, South Chang'an Road, Xi'an 710062, China [2] Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
38
|
Irisarri I, Eernisse DJ, Zardoya R. Molecular phylogeny of Acanthochitonina (Mollusca: Polyplacophora: Chitonida): three new mitochondrial genomes, rearranged gene orders and systematics. J NAT HIST 2014. [DOI: 10.1080/00222933.2014.963721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Ye F, King SD, Cone DK, You P. The mitochondrial genome of Paragyrodactylus variegatus (Platyhelminthes: Monogenea): differences in major non-coding region and gene order compared to Gyrodactylus. Parasit Vectors 2014; 7:377. [PMID: 25130627 PMCID: PMC4150975 DOI: 10.1186/1756-3305-7-377] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/04/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Paragyrodactylus Gvosdev and Martechov, 1953, a viviparous genus of ectoparasite within the Gyrodactylidae, contains three nominal species all of which infect Asian river loaches. The group is suspected to be a basal lineage within Gyrodactylus Nordmann, 1832 sensu lato although this remains unclear. Further molecular study, beyond characterization of the standard Internal Transcribed Spacer region, is needed to clarify the evolutionary relationships within the family and the placement of this genus. METHODS The mitochondrial genome of Paragyrodactylus variegatus You, King, Ye and Cone, 2014 was amplified in six parts from a single worm, sequenced using primer walking, annotated and analyzed using bioinformatic tools. RESULTS The mitochondrial genome of P. variegatus is 14,517 bp, containing 12 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and a major non-coding region (NCR). The overall A + T content of the mitochondrial genome is 76.3%, which is higher than all reported mitochondrial genomes of monogeneans. All of the 22 tRNAs have the typical cloverleaf secondary structure, except tRNACys, tRNASer1 and tRNASer2 that lack the dihydrouridine (DHU) arm. There are six domains (domain III is absent) and three domains in the inferred secondary structures of the large ribosomal subunit (rrnL) and small ribosomal subunit (rrnS), respectively. The NCR includes six 40 bp tandem repeat units and has the double identical poly-T stretches, stem-loop structure and some surrounding structure elements. The gene order (tRNAGln, tRNAMet and NCR) differs in arrangement compared to the mitochondrial genomes reported from Gyrodactylus spp. CONCLUSION The Duplication and Random Loss Model and Recombination Model together are the most plausible explanations for the variation in gene order. Both morphological characters and characteristics of the mitochondrial genome support Paragyrodactylus as a distinct genus from Gyrodactylus. Considering their specific distribution and known hosts, we believe that Paragyrodactylus is a relict freshwater lineage of viviparous monogenean isolated in the high plateaus of central Asia on closely related river loaches.
Collapse
Affiliation(s)
- Fei Ye
- />Co-Innovation Center for Qinba regions’ sustainable development, College of Life Science, Shaanxi Normal University, Xi’an, 710062 China
| | - Stanley D King
- />Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4 J1 Canada
| | - David K Cone
- />Department of Biology, Saint Mary’s University, Halifax, Nova Scotia B3H 3C3 Canada
| | - Ping You
- />Co-Innovation Center for Qinba regions’ sustainable development, College of Life Science, Shaanxi Normal University, Xi’an, 710062 China
| |
Collapse
|
40
|
Mechanism of homologous recombination and implications for aging-related deletions in mitochondrial DNA. Microbiol Mol Biol Rev 2014; 77:476-96. [PMID: 24006472 DOI: 10.1128/mmbr.00007-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Homologous recombination is a universal process, conserved from bacteriophage to human, which is important for the repair of double-strand DNA breaks. Recombination in mitochondrial DNA (mtDNA) was documented more than 4 decades ago, but the underlying molecular mechanism has remained elusive. Recent studies have revealed the presence of a Rad52-type recombination system of bacteriophage origin in mitochondria, which operates by a single-strand annealing mechanism independent of the canonical RecA/Rad51-type recombinases. Increasing evidence supports the notion that, like in bacteriophages, mtDNA inheritance is a coordinated interplay between recombination, repair, and replication. These findings could have profound implications for understanding the mechanism of mtDNA inheritance and the generation of mtDNA deletions in aging cells.
Collapse
|
41
|
Mao M, Austin AD, Johnson NF, Dowton M. Coexistence of minicircular and a highly rearranged mtDNA molecule suggests that recombination shapes mitochondrial genome organization. Mol Biol Evol 2013; 31:636-44. [PMID: 24336845 DOI: 10.1093/molbev/mst255] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recombination has been proposed as a possible mechanism to explain mitochondrial (mt) gene rearrangements, although the issue of whether mtDNA recombination occurs in animals has been controversial. In this study, we sequenced the entire mt genome of the megaspilid wasp Conostigmus sp., which possessed a highly rearranged mt genome. The sequence of the A+T-rich region contained a number of different types of repeats, similar to those reported previously in the nematode Meloidogyne javanica, in which recombination was discovered. In Conostigmus, we detected the end products of recombination: a range of minicircles. However, using isolated (cloned) fragments of the A+T-rich region, we established that some of these minicircles were found to be polymerase chain reaction (PCR) artifacts. It appears that regions with repeats are prone to PCR template switching or PCR jumping. Nevertheless, there is strong evidence that one minicircle is real, as amplification primers that straddle the putative breakpoint junction produce a single strong amplicon from genomic DNA but not from the cloned A+T-rich region. The results provide support for the direct link between recombination and mt gene rearrangement. Furthermore, we developed a model of recombination which is important for our understanding of mtDNA evolution.
Collapse
Affiliation(s)
- Meng Mao
- Centre for Medical Bioscience, School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
| | | | | | | |
Collapse
|
42
|
Meagher M, Lightowlers RN. The role of TDP1 and APTX in mitochondrial DNA repair. Biochimie 2013; 100:121-4. [PMID: 24161509 PMCID: PMC4356151 DOI: 10.1016/j.biochi.2013.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/12/2013] [Indexed: 02/01/2023]
Abstract
In recent years, our knowledge surrounding mammalian mitochondrial DNA (mtDNA) damage and repair has increased significantly. Greater insights into the factors that govern mtDNA repair are being elucidated, thus contributing to an increase in our understanding year on year. In this short review two enzymes, tyrosyl-DNA-phosphodiesterase 1 (TDP1) and aprataxin (APTX), involved in mitochondrial single strand break repair (SSBR) are discussed. The background into the identification of these enzymes in mtDNA repair is communicated with further deliberation into some of the specifics relating to the import of these enzymes into the mitochondrion. With the discovery of these enzymes in mitochondria comes the probability that other mechanisms underlying mtDNA repair are yet to be fully understood, suggesting there is much left to discover when shaping our understanding of this relatively undefined subject.
Collapse
Affiliation(s)
- Martin Meagher
- The Wellcome Trust Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom.
| | - Robert N Lightowlers
- The Wellcome Trust Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
43
|
McInnes J. Mitochondrial-associated metabolic disorders: foundations, pathologies and recent progress. Nutr Metab (Lond) 2013; 10:63. [PMID: 24499129 PMCID: PMC3853754 DOI: 10.1186/1743-7075-10-63] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/08/2013] [Indexed: 01/06/2023] Open
Abstract
Research in the last decade has revolutionized the way in which we view mitochondria. Mitochondria are no longer viewed solely as cellular powerhouses; rather, mitochondria are now understood to be vibrant, mobile structures, constantly undergoing fusion and fission, and engaging in intimate interactions with other cellular compartments and structures. Findings have implicated mitochondria in a wide variety of cellular processes and molecular interactions, such as calcium buffering, lipid flux, and intracellular signaling. As such, it does not come as a surprise that an increasing number of human pathologies have been associated with functional defects in mitochondria. The difficulty in understanding and treating human pathologies caused by mitochondrial dysfunction arises from the complex relationships between mitochondria and other cellular processes, as well as the genetic background of such diseases. This review attempts to provide a summary of the background knowledge and recent developments in mitochondrial processes relating to mitochondrial-associated metabolic diseases arising from defects or deficiencies in mitochondrial function, as well as insights into current and future avenues for investigation.
Collapse
Affiliation(s)
- Joseph McInnes
- School of Engineering and Science, Research Center MOLIFE - Molecular Life Science, Jacobs University Bremen, Campus Ring 1, Research II, Room 120, Bremen D-28759, Germany.
| |
Collapse
|
44
|
Zapico SC, Ubelaker DH. mtDNA Mutations and Their Role in Aging, Diseases and Forensic Sciences. Aging Dis 2013; 4:364-80. [PMID: 24307969 DOI: 10.14336/ad.2013.0400364] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/02/2013] [Accepted: 10/02/2013] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are independent organelles with their own DNA. As a primary function, mitochondria produce the energy for the cell through Oxidative Phosphorylation (OXPHOS) in the Electron Transport Chain (ETC). One of the toxic products of this process is Reactive Oxygen Species (ROS), which can induce oxidative damage in macromolecules like lipids, proteins and DNA. Mitochondrial DNA (mtDNA) is less protected and has fewer reparation mechanisms than nuclear DNA (nDNA), and as such is more exposed to oxidative, mutation-inducing damage. This review analyzes the causes and consequences of mtDNA mutations and their relationship with the aging process. Neurodegenerative diseases, related with the aging, are consequences of mtDNA mutations resulting in a decrease in mitochondrial function. Also described are "mitochondrial diseases", pathologies produced by mtDNA mutations and whose symptoms are related with mitochondrial dysfunction. Finally, mtDNA haplogroups are defined in this review; these groups are important for determination of geographical origin of an individual. Additionally, different haplogroups exhibit variably longevity and risk of certain diseases. mtDNA mutations in aging and haplogroups are of special interest to forensic science research. Therefore this review will help to clarify the key role of mtDNA mutations in these processes and support further research in this area.
Collapse
Affiliation(s)
- Sara C Zapico
- Smithsonian Institution, National Museum of Natural History, Department of Anthropology, Washington, DC 20560, USA
| | | |
Collapse
|
45
|
Kurabayashi A, Sumida M. Afrobatrachian mitochondrial genomes: genome reorganization, gene rearrangement mechanisms, and evolutionary trends of duplicated and rearranged genes. BMC Genomics 2013; 14:633. [PMID: 24053406 PMCID: PMC3852066 DOI: 10.1186/1471-2164-14-633] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/13/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrial genomic (mitogenomic) reorganizations are rarely found in closely-related animals, yet drastic reorganizations have been found in the Ranoides frogs. The phylogenetic relationships of the three major ranoid taxa (Natatanura, Microhylidae, and Afrobatrachia) have been problematic, and mitogenomic information for afrobatrachians has not been available. Several molecular models for mitochondrial (mt) gene rearrangements have been proposed, but observational evidence has been insufficient to evaluate them. Furthermore, evolutionary trends in rearranged mt genes have not been well understood. To gain molecular and phylogenetic insights into these issues, we analyzed the mt genomes of four afrobatrachian species (Breviceps adspersus, Hemisus marmoratus, Hyperolius marmoratus, and Trichobatrachus robustus) and performed molecular phylogenetic analyses. Furthermore we searched for two evolutionary patterns expected in the rearranged mt genes of ranoids. RESULTS Extensively reorganized mt genomes having many duplicated and rearranged genes were found in three of the four afrobatrachians analyzed. In fact, Breviceps has the largest known mt genome among vertebrates. Although the kinds of duplicated and rearranged genes differed among these species, a remarkable gene rearrangement pattern of non-tandemly copied genes situated within tandemly-copied regions was commonly found. Furthermore, the existence of concerted evolution was observed between non-neighboring copies of triplicated 12S and 16S ribosomal RNA regions. CONCLUSIONS Phylogenetic analyses based on mitogenomic data support a close relationship between Afrobatrachia and Microhylidae, with their estimated divergence 100 million years ago consistent with present-day endemism of afrobatrachians on the African continent. The afrobatrachian mt data supported the first tandem and second non-tandem duplication model for mt gene rearrangements and the recombination-based model for concerted evolution of duplicated mt regions. We also showed that specific nucleotide substitution and compositional patterns expected in duplicated and rearranged mt genes did not occur, suggesting no disadvantage in employing these genes for phylogenetic inference.
Collapse
Affiliation(s)
- Atsushi Kurabayashi
- Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, 739-8526 Hiroshima, Japan
| | - Masayuki Sumida
- Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, 739-8526 Hiroshima, Japan
| |
Collapse
|
46
|
Abstract
Empirical proof of human mitochondrial DNA (mtDNA) recombination in somatic tissues was obtained in 2004; however, a lack of irrefutable evidence exists for recombination in human mtDNA at the population level. Our inability to demonstrate convincingly a signal of recombination in population data sets of human mtDNA sequence may be due, in part, to the ineffectiveness of current indirect tests. Previously, we tested some well-established indirect tests of recombination (linkage disequilibrium vs. distance using D' and r(2), Homoplasy Test, Pairwise Homoplasy Index, Neighborhood Similarity Score, and Max χ(2)) on sequence data derived from the only empirically confirmed case of human mtDNA recombination thus far and demonstrated that some methods were unable to detect recombination. Here, we assess the performance of these six well-established tests and explore what characteristics specific to human mtDNA sequence may affect their efficacy by simulating sequence under various parameters with levels of recombination (ρ) that vary around an empirically derived estimate for human mtDNA (population parameter ρ = 5.492). No test performed infallibly under any of our scenarios, and error rates varied across tests, whereas detection rates increased substantially with ρ values > 5.492. Under a model of evolution that incorporates parameters specific to human mtDNA, including rate heterogeneity, population expansion, and ρ = 5.492, successful detection rates are limited to a range of 7-70% across tests with an acceptable level of false-positive results: the neighborhood similarity score incompatibility test performed best overall under these parameters. Population growth seems to have the greatest impact on recombination detection probabilities across all models tested, likely due to its impact on sequence diversity. The implications of our findings on our current understanding of mtDNA recombination in humans are discussed.
Collapse
|
47
|
Abstract
Protection from reactive oxygen species (ROS) and from mitochondrial oxidative damage is well known to be necessary to longevity. The relevance of mitochondrial DNA (mtDNA) to aging is suggested by the fact that the two most commonly measured forms of mtDNA damage, deletions and the oxidatively induced lesion 8-oxo-dG, increase with age. The rate of increase is species-specific and correlates with maximum lifespan. It is less clear that failure or inadequacies in the protection from reactive oxygen species (ROS) and from mitochondrial oxidative damage are sufficient to explain senescence. DNA containing 8-oxo-dG is repaired by mitochondria, and the high ratio of mitochondrial to nuclear levels of 8-oxo-dG previously reported are now suspected to be due to methodological difficulties. Furthermore, MnSOD -/+ mice incur higher than wild type levels of oxidative damage, but do not display an aging phenotype. Together, these findings suggest that oxidative damage to mitochondria is lower than previously thought, and that higher levels can be tolerated without physiological consequence. A great deal of work remains before it will be known whether mitochondrial oxidative damage is a "clock" which controls the rate of aging. The increased level of 8-oxo-dG seen with age in isolated mitochondria needs explanation. It could be that a subset of cells lose the ability to protect or repair mitochondria, resulting in their incurring disproportionate levels of damage. Such an uneven distribution could exceed the reserve capacity of these cells and have serious physiological consequences. Measurements of damage need to focus more on distribution, both within tissues and within cells. In addition, study must be given to the incidence and repair of other DNA lesions, and to the possibility that repair varies from species to species, tissue to tissue, and young to old.
Collapse
Affiliation(s)
- R M Anson
- Laboratory of Molecular Genetics, National Institute on Aging, Baltimore, MD
| | | |
Collapse
|
48
|
Nunes MDS, Dolezal M, Schlötterer C. Extensive paternal mtDNA leakage in natural populations of Drosophila melanogaster. Mol Ecol 2013; 22:2106-17. [PMID: 23452233 PMCID: PMC3659417 DOI: 10.1111/mec.12256] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/04/2013] [Accepted: 01/09/2013] [Indexed: 12/01/2022]
Abstract
Strict maternal inheritance is considered a hallmark of animal mtDNA. Although recent reports suggest that paternal leakage occurs in a broad range of species, it is still considered an exceptionally rare event. To evaluate the impact of paternal leakage on the evolution of mtDNA, it is essential to reliably estimate the frequency of paternal leakage in natural populations. Using allele-specific real-time quantitative PCR (RT-qPCR), we show that heteroplasmy is common in natural populations with at least 14% of the individuals carrying multiple mitochondrial haplotypes. However, the average frequency of the minor mtDNA haplotype is low (0.8%), which suggests that this pervasive heteroplasmy has not been noticed before due to a lack of power in sequencing surveys. Based on the distribution of mtDNA haplotypes in the offspring of heteroplasmic mothers, we found no evidence for strong selection against one of the haplotypes. We estimated that the rate of paternal leakage is 6% and that at least 100 generations are required for complete sorting of mtDNA haplotypes. Despite the high proportion of heteroplasmic individuals in natural populations, we found no evidence for recombination between mtDNA molecules, suggesting that either recombination is rare or recombinant haplotypes are counter-selected. Our results indicate that evolutionary studies using mtDNA as a marker might be biased by paternal leakage in this species.
Collapse
Affiliation(s)
- Maria D S Nunes
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | | | | |
Collapse
|
49
|
Chatterjee N, Pabla R, Siede W. Role of polymerase η in mitochondrial mutagenesis of Saccharomyces cerevisiae. Biochem Biophys Res Commun 2013; 431:270-3. [PMID: 23313845 DOI: 10.1016/j.bbrc.2012.12.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 11/19/2022]
Abstract
DNA polymerase η mostly catalyzes an error-free bypass of the most frequent UV lesions, pyrimidine dimers of the cyclobutane-type. In addition to its nuclear localization, we show here for the first time its mitochondrial localization in budding yeast. In mitochondria, this polymerase improves bypass replication fidelity opposite UV damage as shown in base pair substitution and frameshift assays. For base pair substitutions, polymerase η appears to be related in function and epistatic to DNA polymerase ζ which, however, plays the opposite role in the nucleus.
Collapse
Affiliation(s)
- Nimrat Chatterjee
- Dept. of Cell Biology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | | | | |
Collapse
|
50
|
The human MSH5 (MutS Homolog 5) protein localizes to mitochondria and protects the mitochondrial genome from oxidative damage. Mitochondrion 2012; 12:654-65. [DOI: 10.1016/j.mito.2012.07.111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 07/14/2012] [Accepted: 07/20/2012] [Indexed: 01/07/2023]
|