1
|
Dempsey CE, Bigotti MG, Adams JC, Brancaccio A. Analysis of α-Dystroglycan/LG Domain Binding Modes: Investigating Protein Motifs That Regulate the Affinity of Isolated LG Domains. Front Mol Biosci 2019; 6:18. [PMID: 30984766 PMCID: PMC6450144 DOI: 10.3389/fmolb.2019.00018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/07/2019] [Indexed: 12/25/2022] Open
Abstract
Dystroglycan (DG) is an adhesion complex that links the cytoskeleton to the surrounding extracellular matrix in skeletal muscle and a wide variety of other tissues. It is composed of a highly glycosylated extracellular α-DG associated noncovalently with a transmembrane β-DG whose cytodomain interacts with dystrophin and its isoforms. Alpha-dystroglycan (α-DG) binds tightly and in a calcium-dependent fashion to multiple extracellular proteins and proteoglycans, each of which harbors at least one, or, more frequently, tandem arrays of laminin-globular (LG) domains. Considerable biochemical and structural work has accumulated on the α-DG-binding LG domains, highlighting a significant heterogeneity in ligand-binding properties of domains from different proteins as well as between single and multiple LG domains within the same protein. Here we review biochemical, structural, and functional information on the LG domains reported to bind α-dystroglycan. In addition, we have incorporated bioinformatics and modeling to explore whether specific motifs responsible for α-dystroglycan recognition can be identified within isolated LG domains. In particular, we analyzed the LG domains of slits and agrin as well as those of paradigmatic α-DG non-binders such as laminin-α3. While some stretches of basic residues may be important, no universally conserved motifs could be identified. However, the data confirm that the coordinated calcium atom within the LG domain is needed to establish an interaction with the sugars of α-DG, although it appears that this alone is insufficient to mediate significant α-DG binding. We develop a scenario involving different binding modes of a single LG domain unit, or tandemly repeated units, with α-DG. A variability of binding modes might be important to generate a range of affinities to allow physiological regulation of this interaction, reflecting its crucial biological importance.
Collapse
Affiliation(s)
| | | | - Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Andrea Brancaccio
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.,Istituto di Chimica del Riconoscimento Molecolare - CNR, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
2
|
Fundamental Molecules and Mechanisms for Forming and Maintaining Neuromuscular Synapses. Int J Mol Sci 2018; 19:ijms19020490. [PMID: 29415504 PMCID: PMC5855712 DOI: 10.3390/ijms19020490] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 02/08/2023] Open
Abstract
The neuromuscular synapse is a relatively large synapse with hundreds of active zones in presynaptic motor nerve terminals and more than ten million acetylcholine receptors (AChRs) in the postsynaptic membrane. The enrichment of proteins in presynaptic and postsynaptic membranes ensures a rapid, robust, and reliable synaptic transmission. Over fifty years ago, classic studies of the neuromuscular synapse led to a comprehensive understanding of how a synapse looks and works, but these landmark studies did not reveal the molecular mechanisms responsible for building and maintaining a synapse. During the past two-dozen years, the critical molecular players, responsible for assembling the specialized postsynaptic membrane and regulating nerve terminal differentiation, have begun to be identified and their mechanism of action better understood. Here, we describe and discuss five of these key molecular players, paying heed to their discovery as well as describing their currently understood mechanisms of action. In addition, we discuss the important gaps that remain to better understand how these proteins act to control synaptic differentiation and maintenance.
Collapse
|
3
|
Gumerson JD, Davis CS, Kabaeva ZT, Hayes JM, Brooks SV, Michele DE. Muscle-specific expression of LARGE restores neuromuscular transmission deficits in dystrophic LARGE(myd) mice. Hum Mol Genet 2012; 22:757-68. [PMID: 23222475 DOI: 10.1093/hmg/dds483] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in several glycosyltransferases underlie a group of muscular dystrophies known as glycosylation-deficient muscular dystrophy. A common feature of these diseases is loss of glycosylation and consequent dystroglycan function that is correlated with severe pathology in muscle, brain and other tissues. Although glycosylation of dystroglycan is essential for function in skeletal muscle, whether glycosylation-dependent function of dystroglycan is sufficient to explain all complex pathological features associated with these diseases is less clear. Dystroglycan glycosylation is defective in LARGE(myd) (myd) mice as a result of a mutation in like-acetylglucosaminyltransferase (LARGE), a glycosyltransferase known to cause muscle disease in humans. We generated animals with restored dystroglycan function exclusively in skeletal muscle by crossing myd animals to a recently created transgenic line that expresses LARGE selectively in differentiated muscle. Transgenic myd mice were indistinguishable from wild-type littermates and demonstrated an amelioration of muscle disease as evidenced by an absence of muscle pathology, restored contractile function and a reduction in serum creatine kinase activity. Moreover, although deficits in nerve conduction and neuromuscular transmission were observed in myd animals, these deficits were fully rescued by muscle-specific expression of LARGE, which resulted in restored structure of the neuromuscular junction (NMJ). These data demonstrate that, in addition to muscle degeneration and dystrophy, impaired neuromuscular transmission contributes to muscle weakness in dystrophic myd mice and that the noted defects are primarily due to the effects of LARGE and glycosylated dystroglycan in stabilizing the endplate of the NMJ.
Collapse
Affiliation(s)
- Jessica D Gumerson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
4
|
Bian W, Bursac N. Soluble miniagrin enhances contractile function of engineered skeletal muscle. FASEB J 2011; 26:955-65. [PMID: 22075647 DOI: 10.1096/fj.11-187575] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neural agrin plays a pleiotropic role in skeletal muscle innervation and maturation, but its specific effects on the contractile function of aneural engineered muscle remain unknown. In this study, neonatal rat skeletal myoblasts cultured within 3-dimensional engineered muscle tissue constructs were treated with 10 nM soluble recombinant miniagrin and assessed using histological, biochemical, and functional assays. Depending on the treatment duration and onset time relative to the stage of myogenic differentiation, miniagrin was found to induce up to 1.7-fold increase in twitch and tetanus force amplitude. This effect was associated with the 2.3-fold up-regulation of dystrophin gene expression at 6 d after agrin removal and enhanced ACh receptor (AChR) cluster formation, but no change in cell number, expression of muscle myosin, or important aspects of intracellular Ca(2+) handling. In muscle constructs with endogenous ACh levels suppressed by the application of α-NETA, miniagrin increased AChR clustering and twitch force amplitude but failed to improve intracellular Ca(2+) handling and increase tetanus-to-twitch ratio. Overall, our studies suggest that besides its synaptogenic function that could promote integration of engineered muscle constructs in vivo, neural agrin can directly promote the contractile function of aneural engineered muscle via mechanisms distinct from those involving endogenous ACh.
Collapse
Affiliation(s)
- Weining Bian
- Department of Anesthesia and Medicine and Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
5
|
Patel TR, Meier M, Li J, Morris G, Rowe AJ, Stetefeld J. T-shaped arrangement of the recombinant agrin G3-IgG Fc protein. Protein Sci 2011; 20:931-40. [PMID: 21448912 PMCID: PMC3104224 DOI: 10.1002/pro.628] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/14/2011] [Accepted: 03/16/2011] [Indexed: 12/12/2022]
Abstract
Agrin is a large heparin sulphate proteoglycan with multiple domains, which is located in the extracellular matrix. The C-terminal G3 domain of agrin is functionally one of the most important domains. It harbors an α-dystroglycan binding site and carries out acetylcholine receptor clustering activities. In the present study, we have fused the G3 domain of agrin to an IgG Fc domain to produce a G3-Fc fusion protein that we intend to use as a tool to investigate new binding partners of agrin. As a first step of the study, we have characterized the recombinant fusion protein using a multidisciplinary approach using dynamic light scattering, analytical ultracentrifugation and small angle X-ray scattering (SAXS). Interestingly, our SAXS analysis using the high-resolution structures of G3 and Fc domain as models indicates that the G3-Fc protein forms a T-shaped molecule with the G3 domains extruding perpendicularly from the Fc scaffold. To validate our models, we have used the program HYDROPRO to calculate the hydrodynamic properties of the solution models. The calculated values are in excellent agreement with those determined experimentally.
Collapse
Affiliation(s)
- Trushar R Patel
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | | | | | | | | | | |
Collapse
|
6
|
Porten E, Seliger B, Schneider VA, Wöll S, Stangel D, Ramseger R, Kröger S. The process-inducing activity of transmembrane agrin requires follistatin-like domains. J Biol Chem 2009; 285:3114-25. [PMID: 19940118 DOI: 10.1074/jbc.m109.039420] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clustering or overexpression of the transmembrane form of the extracellular matrix proteoglycan agrin in neurons results in the formation of numerous highly motile filopodia-like processes extending from axons and dendrites. Here we show that similar processes can be induced by overexpression of transmembrane-agrin in several non-neuronal cell lines. Mapping of the process-inducing activity in neurons and non-neuronal cells demonstrates that the cytoplasmic part of transmembrane agrin is dispensable and that the extracellular region is necessary for process formation. Site-directed mutagenesis reveals an essential role for the loop between beta-sheets 3 and 4 within the Kazal subdomain of the seventh follistatin-like domain of TM-agrin. An aspartic acid residue within this loop is critical for process formation. The seventh follistatin-like domain could be functionally replaced by the first and sixth but not by the eighth follistatin-like domain, demonstrating a functional redundancy among some follistatin-like domains of agrin. Moreover, a critical distance of the seventh follistatin-like domain to the plasma membrane appears to be required for process formation. These results demonstrate that different regions within the agrin protein are responsible for synapse formation at the neuromuscular junction and for process formation in central nervous system neurons and suggest a role for agrin's follistatin-like domains in the developing central nervous system.
Collapse
Affiliation(s)
- Elmar Porten
- Department of Physiological Chemistry, University of Mainz, D-55128 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Rigoard P, Lapierre F. Rappels sur le nerf périphérique. Neurochirurgie 2009; 55:360-74. [DOI: 10.1016/j.neuchi.2009.08.156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 12/20/2022]
|
8
|
Rigoard P, Buffenoir K, Bauche S, Giot JP, Koenig J, Hantaï D, Lapierre F, Wager M. [Structural and molecular organization, development and maturation of the neuromuscular junction]. Neurochirurgie 2009; 55 Suppl 1:S34-42. [PMID: 19233436 DOI: 10.1016/j.neuchi.2008.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 03/24/2008] [Indexed: 10/21/2022]
Abstract
The neuromuscular junction is made up of the apposition of highly differentiated domains of three types of cell: the motor neuronal ending, the terminal Schwann cell and the muscle postsynaptic membrane. These three components are surrounded by a basal lamina, dedicated to molecular signal exchanges controlling neuromuscular formation, maturation and maintenance. This functional and structural differentiated complex conducts synaptic neurotransmission to the skeletal muscle fiber. Nerve and muscle have distinct roles in synaptic compartment differentiation. The initial steps of this differentiation and the motor endplate formation require several postsynaptic molecular agents including agrin, the tyrosine kinase receptor MuSK. Neuregulin is essentially involved in Schwann cell survival and guidance for axonal growth.
Collapse
Affiliation(s)
- P Rigoard
- Service de neurochirurgie, CHU La-Milètrie, 2, rue de la Milètrie, BP 577, 86021 Poitiers cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The heparan sulfate proteoglycan agrin is best known for its essential role during formation, maintenance and regeneration of the neuromuscular junction. Mutations in agrin-interacting proteins are the genetic basis for a number of neuromuscular disorders. However, agrin is widely expressed in many tissues including neurons and glial cells of the brain, where its precise function is much less understood. Fewer synapses develop in brains that lack agrin, consistent with a function of agrin during CNS synaptogenesis. Recently, a specific transmembrane form of agrin (TM-agrin) was identified that is concentrated at that interneuronal synapses in the brain. Clustering or overexpression of TM-agrin leads to the formation of filopodia-like processes, which might be precursors for CNS synapses. Agrin is subject to defined and activity-dependent proteolytic cleavage by neurotrypsin at synapses and dysregulation of agrin processing might contribute to the development of mental retardation. This review summarizes what is known about the role of agrin during synapse formation at the neuromuscular junction and in the developing CNS and will discuss additional functions of agrin in the adult CNS, in particular during BBB formation, during recovery after traumatic brain injury and in the etiology of diseases, including Alzheimer’s disease and mental retardation.
Collapse
Affiliation(s)
- Stephan Kröger
- Department of Physiological Genomics, Ludwig-Maximilians University, Schillerstrasse 46, D-80336 Munich, Germany
| | - Heike Pfister
- Department of Physiological Genomics, Ludwig-Maximilians University, Schillerstrasse 46, D-80336 Munich, Germany
| |
Collapse
|
10
|
Zhang B, Luo S, Wang Q, Suzuki T, Xiong WC, Mei L. LRP4 serves as a coreceptor of agrin. Neuron 2008; 60:285-97. [PMID: 18957220 DOI: 10.1016/j.neuron.2008.10.006] [Citation(s) in RCA: 421] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/09/2008] [Accepted: 10/08/2008] [Indexed: 11/17/2022]
Abstract
Neuromuscular junction (NMJ) formation requires agrin, a factor released from motoneurons, and MuSK, a transmembrane tyrosine kinase that is activated by agrin. However, how signal is transduced from agrin to MuSK remains unclear. We report that LRP4, a low-density lipoprotein receptor (LDLR)-related protein, is expressed specifically in myotubes and binds to neuronal agrin. Its expression enables agrin binding and MuSK signaling in cells that otherwise do not respond to agrin. Suppression of LRP4 expression in muscle cells attenuates agrin binding, agrin-induced MuSK tyrosine phosphorylation, and AChR clustering. LRP4 also forms a complex with MuSK in a manner that is stimulated by agrin. Finally, we showed that LRP4 becomes tyrosine-phosphorylated in agrin-stimulated muscle cells. These observations indicate that LRP4 is a coreceptor of agrin that is necessary for MuSK signaling and AChR clustering and identify a potential target protein whose mutation and/or autoimmunization may cause muscular dystrophies.
Collapse
Affiliation(s)
- Bin Zhang
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
11
|
Costain WJ, Rasquinha I, Sandhu JK, Rippstein P, Zurakowski B, Slinn J, MacManus JP, Stanimirovic DB. Cerebral ischemia causes dysregulation of synaptic adhesion in mouse synaptosomes. J Cereb Blood Flow Metab 2008; 28:99-110. [PMID: 17519975 DOI: 10.1038/sj.jcbfm.9600510] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Synaptic pathology is observed during hypoxic events in the central nervous system in the form of altered dendrite structure and conductance changes. These alterations are rapidly reversible, on the return of normoxia, but are thought to initiate subsequent neuronal cell death. To characterize the effects of hypoxia on regulators of synaptic stability, we examined the temporal expression of cell adhesion molecules (CAMs) in synaptosomes after transient middle cerebral artery occlusion (MCAO) in mice. We focused on events preceding the onset of ischemic neuronal cell death (<48 h). Synaptosome preparations were enriched in synaptically localized proteins and were free of endoplasmic reticulum and nuclear contamination. Electron microscopy showed that the synaptosome preparation was enriched in spheres (approximately 650 nm in diameter) containing secretory vesicles and postsynaptic densities. Forebrain mRNA levels of synaptically located CAMs was unaffected at 3 h after MCAO. This is contrasted by the observation of consistent downregulation of synaptic CAMs at 20 h after MCAO. Examination of synaptosomal CAM protein content indicated that certain adhesion molecules were decreased as early as 3 h after MCAO. For comparison, synaptosomal Agrn protein levels were unaffected by cerebral ischemia. Furthermore, a marked increase in the levels of p-Ctnnb1 in ischemic synaptosomes was observed. p-Ctnnb1 was detected in hippocampal fiber tracts and in cornu ammonis 1 neuronal nuclei. These results indicate that ischemia induces a dysregulation of a subset of synaptic proteins that are important regulators of synaptic plasticity before the onset of ischemic neuronal cell death.
Collapse
Affiliation(s)
- Willard J Costain
- Glycosyltransferase and Neuroglycomics, Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Seng KY, Figueroa-Masot X, Folch A, Vicini P. Objective quantification of acetylcholine receptor aggregation using fast Fourier transforms. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2007; 85:220-8. [PMID: 17275946 DOI: 10.1016/j.cmpb.2006.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 11/07/2006] [Accepted: 11/30/2006] [Indexed: 05/13/2023]
Abstract
A new approach for objectively analyzing the aggregation of acetylcholine receptors (AChRs) through power spectrum analysis derived from fast Fourier transform (FFT) of images has been developed. Presently, detection of AChR aggregates at neuromuscular junctions is not easily accomplished. Though the formation of AChR clusters results in periodic gray-level variations that differ with time, no study reporting their correlation with frequency information in the Fourier domain for aggregates' detection purposes exists. To this end, we processed time-lapse images of AChR aggregates' formation on murine myotubes to extract peak values of power spectra. To validate interpretation of the Fourier spectra analysis, a computer routine was developed to semi-automatically count AChR aggregates. We found: (1) logarithmic maxima of Fourier spectra correlated significantly with experimentation time; (2) cluster count correlated significantly with time only after clusters were discernable from images, signifying that this method heavily depended on definitive growth data and thresholding values; (3) exponents of Fourier maxima versus time and cluster count versus time profiles during this phase compared favorably, indicating that both methods were analyzing identical cluster growth rates. Our observations suggest that analysis via FFT power spectrum is sensitive and robust enough to automatically quantify AChR aggregates.
Collapse
Affiliation(s)
- Kok-Yong Seng
- Department of Bioengineering, Box 355061, University of Washington, Seattle, WA 98195-5061, United States
| | | | | | | |
Collapse
|
13
|
Wang Q, Zhang B, Xiong WC, Mei L. MuSK signaling at the neuromuscular junction. J Mol Neurosci 2007; 30:223-6. [PMID: 17192681 DOI: 10.1385/jmn:30:1:223] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
The neuromuscular junction (NMJ) is a peripheral cholinergic synapse that conveys signals from motor neurons to muscle cells (Sanes and Lichtman, 1999; Sanes and Lichtman, 2001). The formation of the NMJ requires communication between motoneurons and muscle fibers. Three molecules are essential for NMJ formation: agrin, MuSK, and rapsyn. MuSK appears to be involved in every aspect of NMJ development and maintenance. The paper reviews agrin-MuSK cascades and its potential cross talk with Wnt signaling pathways.
Collapse
Affiliation(s)
- Qiang Wang
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, GA, USA
| | | | | | | |
Collapse
|
14
|
Lefebvre JL, Jing L, Becaficco S, Franzini-Armstrong C, Granato M. Differential requirement for MuSK and dystroglycan in generating patterns of neuromuscular innervation. Proc Natl Acad Sci U S A 2007; 104:2483-8. [PMID: 17284594 PMCID: PMC1892914 DOI: 10.1073/pnas.0610822104] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Vertebrates display diverse patterns of neuromuscular innervation, but little is known about how such diversity is generated. In mammals, neuromuscular junctions form predominantly at equatorial locations, giving rise to a focal innervation pattern along a central endplate band. In addition, vertebrate striated muscles exhibit two nonfocal neuromuscular patterns, myoseptal and distributed innervation. Although agrin-MuSK-rapsyn signaling is essential for the focal innervation pattern, it is unknown whether the same genetic program also controls synaptogenesis at nonfocal innervation sites. Here we show that one of three transcripts generated by the zebrafish unplugged locus, unplugged FL, encodes the zebrafish MuSK ortholog. We demonstrate that UnpFL/MuSK is critical for the assembly of focal synapses in zebrafish and that it cooperates with dystroglycan in the formation of nonfocal myoseptal and distributed synapses. Our results provide the first genetic evidence that neuromuscular synapse formation can occur in the absence of MuSK and that the combinatorial function of UnpFL/MuSK and dystroglycan generates diverse patterns of vertebrate neuromuscular innervation.
Collapse
Affiliation(s)
- Julie L. Lefebvre
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058
| | - Lili Jing
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058
| | - Sara Becaficco
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058
| | - Clara Franzini-Armstrong
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
15
|
Fuerst PG, Rauch SM, Burgess RW. Defects in eye development in transgenic mice overexpressing the heparan sulfate proteoglycan agrin. Dev Biol 2006; 303:165-80. [PMID: 17196957 PMCID: PMC1831846 DOI: 10.1016/j.ydbio.2006.11.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 11/10/2006] [Accepted: 11/23/2006] [Indexed: 11/17/2022]
Abstract
The importance of heparan sulfate proteoglycans (HSPGs) in neurodevelopment is becoming increasingly clear. However, studies on HSPGs are hampered by pleiotropic effects when synthesis or modification of heparan sulfate itself is targeted, and by redundancy when the core proteins are altered. Gain-of-function experiments can sometimes circumvent these issues. Here we establish that transgenic mice overexpressing the HSPG agrin have severe ocular dysgenesis. The defects occur through a gain-of-function mechanism and penetrance is dependent on agrin dosage. The agrin-induced developmental defects are highly variable, and include anophthalmia, persistence of vitreous vessels, and fusion of anterior chamber structures. A frequently observed defect is an optic stalk coloboma leading to the misdifferentiation of the optic stalk as retina, which becomes continuous with the forebrain. The defects in optic-stalk differentiation correlate with reduced sonic hedgehog immunoreactivity and overexpansion of the PAX6 domain from the retina into the optic stalk. The ocular phenotypes associated with agrin overexpression are dependent on genetic background, occurring with high penetrance in inbred C57BL/6J mice. Distinct loci sensitizing C57BL/6J mice to agrin-induced dysgenesis were identified. These results indicate that agrin overexpression will provide a tool to explore the molecular interactions of the extracellular matrix and cell surface in eye development, and provide a means for identifying modifier loci that sensitize mice to developmental eye defects.
Collapse
Affiliation(s)
| | | | - Robert W. Burgess
- *Corresponding author: Robert W. Burgess, The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA, , Phone: 1-207-288-6706; Fax: 207-288-6077
| |
Collapse
|
16
|
Scotton P, Bleckmann D, Stebler M, Sciandra F, Brancaccio A, Meier T, Stetefeld J, Ruegg MA. Activation of Muscle-specific Receptor Tyrosine Kinase and Binding to Dystroglycan Are Regulated by Alternative mRNA Splicing of Agrin. J Biol Chem 2006; 281:36835-45. [PMID: 17012237 DOI: 10.1074/jbc.m607887200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agrin induces the aggregation of postsynaptic proteins at the neuromuscular junction (NMJ). This activity requires the receptor-tyrosine kinase MuSK. Agrin isoforms differ in short amino acid stretches at two sites, called A and B, that are localized in the two most C-terminal laminin G (LG) domains. Importantly, agrin isoforms greatly differ in their activities of inducing MuSK phosphorylation and of binding to alpha-dystroglycan. By using site-directed mutagenesis, we characterized the amino acids important for these activities of agrin. We find that the conserved tripeptide asparagineglutamate-isoleucine in the eight-amino acid long insert at the B-site is necessary and sufficient for full MuSK phosphorylation activity. However, even if all eight amino acids were replaced by alanines, this agrin mutant still has significantly higher MuSK phosphorylation activity than the splice version lacking any insert. We also show that binding to alpha-dystroglycan requires at least two LG domains and that amino acid inserts at the A and the B splice sites negatively affect binding.
Collapse
Affiliation(s)
- Patrick Scotton
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Sheckler LR, Henry L, Sugita S, Südhof TC, Rudenko G. Crystal structure of the second LNS/LG domain from neurexin 1alpha: Ca2+ binding and the effects of alternative splicing. J Biol Chem 2006; 281:22896-905. [PMID: 16772286 PMCID: PMC2293330 DOI: 10.1074/jbc.m603464200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurexins mediate protein interactions at the synapse, playing an essential role in synaptic function. Extracellular domains of neurexins, and their fragments, bind a distinct profile of different proteins regulated by alternative splicing and Ca2+. The crystal structure of n1alpha_LNS#2 (the second LNS/LG domain of bovine neurexin 1alpha) reveals large structural differences compared with n1alpha_LNS#6 (or n1beta_LNS), the only other LNS/LG domain for which a structure has been determined. The differences overlap the so-called hyper-variable surface, the putative protein interaction surface that is reshaped as a result of alternative splicing. A Ca2+-binding site is revealed at the center of the hyper-variable surface next to splice insertion sites. Isothermal titration calorimetry indicates that the Ca2+-binding site in n1alpha_LNS#2 has low affinity (Kd approximately 400 microm). Ca2+ binding ceases to be measurable when an 8- or 15-residue splice insert is present at the splice site SS#2 indicating that alternative splicing can affect Ca2+-binding sites of neurexin LNS/LG domains. Our studies initiate a framework for the putative protein interaction sites of neurexin LNS/LG domains. This framework is essential to understand how incorporation of alternative splice inserts expands the information from a limited set of neurexin genes to produce a large array of synaptic adhesion molecules with potentially very different synaptic function.
Collapse
Affiliation(s)
- Lauren R. Sheckler
- Life Sciences Institute and Department of Pharmacology, The University of Michigan, Ann Arbor, Michigan 48109-2216
| | - Lisa Henry
- Department of Biochemistry, University of Texas Southwestern Medical Center, Howard Hughes Medical Institute, Dallas, Texas 75390-9111
| | - Shuzo Sugita
- Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Howard Hughes Medical Institute, Dallas, Texas 75390-9111
| | - Thomas C. Südhof
- Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Howard Hughes Medical Institute, Dallas, Texas 75390-9111
| | - Gabby Rudenko
- Life Sciences Institute and Department of Pharmacology, The University of Michigan, Ann Arbor, Michigan 48109-2216
| |
Collapse
|
18
|
Stetefeld J, Ruegg MA. Structural and functional diversity generated by alternative mRNA splicing. Trends Biochem Sci 2005; 30:515-21. [PMID: 16023350 DOI: 10.1016/j.tibs.2005.07.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 06/22/2005] [Accepted: 07/01/2005] [Indexed: 12/25/2022]
Abstract
Alternative mRNA splicing is becoming increasingly recognized as an important mechanism for the generation of structural and functional diversity in proteins. Recent estimations predict that approximately 50% of all eukaryotic proteins can be alternatively spliced. Several lines of evidence suggest that alternative mRNA splicing results in small changes in protein structure and is likely to fine-tune the function and specificity of the affected protein. However, knowledge of how alternative splicing regulates cellular processes on the molecular level is still limited. It is only recently that structures of alternatively spliced proteins have been solved. These studies have shown that alternative splicing affects the structure not only in the vicinity of the splice site but also at long distance.
Collapse
Affiliation(s)
- Jörg Stetefeld
- Biozentrum, University Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
19
|
Noël G, Belda M, Guadagno E, Micoud J, Klöcker N, Moukhles H. Dystroglycan and Kir4.1 coclustering in retinal Müller glia is regulated by laminin-1 and requires the PDZ-ligand domain of Kir4.1. J Neurochem 2005; 94:691-702. [PMID: 16033419 DOI: 10.1111/j.1471-4159.2005.03191.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Inwardly rectifying potassium (Kir) channels in Müller glia play a critical role in the spatial buffering of potassium ions that accumulate during retinal activity. To this end, Kir channels show a polarized subcellular distribution with the predominant channel subunit in Müller glia, Kir4.1, clustered in the endfeet of these cells at the inner limiting membrane. However, the molecular mechanisms underlying their distribution have yet to be identified. Here, we show that laminin, agrin and alpha-dystroglycan (DG) codistribute with Kir4.1 at the inner limiting membrane in the retina and that laminin-1 induces the clustering of alpha-DG, syntrophin and Kir4.1 in Müller cell cultures. In addition, we found that alpha-DG clusters were enriched for agrin and sought to investigate the role of agrin in their formation using recombinant C-agrins. Both C-agrin 4,8 and C-agrin 0,0 failed to induce alpha-DG clustering and neither of them potentiated the alpha-DG clustering induced by laminin-1. Finally, our data reveal that deletion of the PDZ-ligand domain of Kir4.1 prevents their laminin-induced clustering. These findings indicate that both laminin-1 and alpha-DG are involved in the distribution of Kir4.1 to specific Müller cell membrane domains and that this process occurs via a PDZ-domain-mediated interaction. Thus, in the basal lamina laminin is an essential regulator involved in clearing excess potassium released during neuronal activity, thereby contributing to the maintenance of normal synaptic transmission in the retina.
Collapse
Affiliation(s)
- Geoffrey Noël
- Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Baerwald-de la Torre K, Winzen U, Halfter W, Bixby JL. Glycosaminoglycan-dependent and -independent inhibition of neurite outgrowth by agrin. J Neurochem 2004; 90:50-61. [PMID: 15198666 DOI: 10.1111/j.1471-4159.2004.02454.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Agrin is a proteoglycan that can inhibit neurite outgrowth from multiple neuronal types when present as a substrate. Agrin's neurite inhibitory activity is confined to the N-terminal segment of the protein (agrin N150), which contains heparan sulfate (HS) and chondroitin sulfate (CS) side chains. We have examined the activities of various purified recombinant agrin fragments and their glycosaminoglycan (GAG) side chains in neurite outgrowth inhibition. Inhibitory activity was tested using dissociated chick ciliary ganglion neurons or dorsal root ganglion explants growing on laminin or N-cadherin. Initial experiments demonstrated that agrin N150 lacking GAG chains inhibited neurite outgrowth. Both halves of N150, each containing HS and/or CS side chains, could also inhibit neurite growth. Experiments using agrin fragments in which the GAG acceptor residues were mutated, or using agrin fragments purified from cells deficient in GAG synthesis, demonstrated that inhibition by the N-terminal portion of N150 requires GAGs, but that inhibition from the C-terminal part of N150 does not. Thus, the core protein or other types of glycosylation are important for inhibition from the more C-terminal region. Our results suggest that there are two distinct mechanisms for neurite outgrowth inhibition by agrin, one that is GAG-dependent and one that is GAG-independent.
Collapse
Affiliation(s)
- Kristine Baerwald-de la Torre
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Lois Pope Life Center, Miami, Florida, USA
| | | | | | | |
Collapse
|
21
|
Abstract
MuSK is a receptor tyrosine kinase essential for neuromuscular junction formation. Expression of the MuSK gene is tightly regulated during development and at the neuromuscular junction. However, little is known about molecular mechanisms regulating its gene expression. Here we report a characterization of the promoter of the mouse MuSK gene. The transcription of MuSK starts at multiple sites with a major site 51 nt upstream of the translation start site. We have identified an E-box-like cis-element that is both required and sufficient for differentiation-dependent transcription. Interestingly, the promoter activity of the MuSK gene did not respond to neuregulin, a factor believed to mediate the synapse-specific transcription of acetylcholine receptor subunit genes. Rather, MuSK expression is increased in muscle cells stimulated with Wnt or at conditions when the Wnt signaling was activated. These results suggest a novel mechanism for the MuSK synapse-specific expression.
Collapse
Affiliation(s)
- Chang-Hoon Kim
- Department of Neurobiology, University of Alabama at Birmingham, Civitan International Research Center, 35294, USA
| | | | | |
Collapse
|
22
|
Hoover CL, Hilgenberg LGW, Smith MA. The COOH-terminal domain of agrin signals via a synaptic receptor in central nervous system neurons. J Cell Biol 2003; 161:923-32. [PMID: 12796478 PMCID: PMC2172957 DOI: 10.1083/jcb.200301013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Agrin is a motor neuron-derived factor that directs formation of the postsynaptic apparatus of the neuromuscular junction. Agrin is also expressed in the brain, raising the possibility that it might serve a related function at neuron-neuron synapses. Previously, we identified an agrin signaling pathway in central nervous system (CNS) neurons, establishing the existence of a neural receptor that mediates responses to agrin. As a step toward identifying this agrin receptor, we have characterized the minimal domains in agrin that bind and activate it. Structures required for agrin signaling in CNS neurons are contained within a 20-kD COOH-terminal fragment of the protein. Agrin signaling is independent of alternative splicing at the z site, but requires sequences that flank it because their deletion results in a 15-kD fragment that acts as an agrin antagonist. Thus, distinct regions within agrin are responsible for receptor binding and activation. Using the minimal agrin fragments as affinity probes, we also studied the expression of the agrin receptor on CNS neurons. Our results show that both agrin and its receptor are concentrated at neuron-neuron synapses. These data support the hypothesis that agrin plays a role in formation and/or function of CNS synapses.
Collapse
Affiliation(s)
- Cameron L Hoover
- Department of Anatomy and Neurobiology, University of California, Irvine, 92697, USA
| | | | | |
Collapse
|
23
|
A role for the juxtamembrane domain of beta-dystroglycan in agrin-induced acetylcholine receptor clustering. J Neurosci 2003. [PMID: 12533599 DOI: 10.1523/jneurosci.23-02-00392.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic differentiation results from an exchange of informational molecules between synaptic partners during development. At the vertebrate neuromuscular junction, agrin is one molecule presented by the presynaptic motor neuron that plays an instructive role in postsynaptic differentiation of the muscle cell, most notably in aggregation of acetylcholine receptors (AChRs). Although agrin is the best-characterized synaptogenic molecule, its mechanism of action remains uncertain, but clearly, it requires the receptor tyrosine kinase MuSK (muscle-specific kinase), the intracellular protein rapsyn, an Src-like kinase, and cytoskeletal components. In addition, the transmembrane protein dystroglycan interacts with the cytoskeleton and is implicated in agrin responsiveness. This alpha-beta heterodimer can bind agrin via its extracellular alpha subunit and associates with the membrane cytoskeleton via its beta subunit. In this study, we demonstrate that overexpression of the beta subunit of dystroglycan in cultured muscle cells inhibits agrin-induced AChR clustering. Deletion analysis and point mutagenesis demonstrate that the inhibition is mediated by an intracellular, juxtamembrane region composed of basic amino acids. Finally, the inhibition mediated by beta-dystroglycan extends to the minimal agrin fragment required for AChR clustering, suggesting that dystroglycan plays an important role in postsynaptic differentiation in response to agrin.
Collapse
|
24
|
Burgess RW, Dickman DK, Nunez L, Glass DJ, Sanes JR. Mapping sites responsible for interactions of agrin with neurons. J Neurochem 2002; 83:271-84. [PMID: 12423238 DOI: 10.1046/j.1471-4159.2002.01102.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The multidomain proteoglycan agrin is a critical organizer of postsynaptic differentiation at the skeletal neuromuscular junction. Agrin is also abundant in the brain, but its roles there are unknown. As a step toward understanding these roles, we mapped sites responsible for interactions of neurons with agrin. First, we used a series of recombinant agrin fragments to show that at least four sites on agrin interact with chick ciliary neurons. Use of blocking antibodies and peptides indicated that neurons adhere to a site in the second of three G domains by means of alphaVbeta1 integrin, and to a site in the last of four epidermal growth factor (EGF) repeats via a distinct beta1 integrin. A third, integrin-independent adhesion site is near to but distinct from the site that induces postsynaptic differentiation in muscles. These domains are insufficient, however, to account for neurite outgrowth-inhibiting properties of full-length agrin, which are mediated by the N-terminal half of the molecule. We then used a second set of agrin mutants to demonstrate and map a transmembrane domain in the amino-terminus of the SN-isoform of agrin. The extracellular matrix-bound form of agrin, called LN, bears an amino-terminus required for secretion and binding to laminin. The SN form, which is selectively expressed by neurons, bears a variant amino terminus that converts agrin from a secreted, matrix-associated protein to a type-II transmembrane protein, providing a mechanism for presenting agrin in central, as opposed to neuromuscular, synaptic clefts. The SN-amino terminus can mediate externalization and membrane anchoring of heterologous proteins, but is insufficient to target them to the synapse. Together, these studies define sites that contribute to the subcellular localization of and signaling by neuronal agrin.
Collapse
Affiliation(s)
- Robert W Burgess
- Department of Anatomy and Neurobiology, Washington University Medical School, St Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
25
|
Huh KH, Fuhrer C. Clustering of nicotinic acetylcholine receptors: from the neuromuscular junction to interneuronal synapses. Mol Neurobiol 2002; 25:79-112. [PMID: 11890459 DOI: 10.1385/mn:25:1:079] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fast and accurate synaptic transmission requires high-density accumulation of neurotransmitter receptors in the postsynaptic membrane. During development of the neuromuscular junction, clustering of acetylcholine receptors (AChR) is one of the first signs of postsynaptic specialization and is induced by nerve-released agrin. Recent studies have revealed that different mechanisms regulate assembly vs stabilization of AChR clusters and of the postsynaptic apparatus. MuSK, a receptor tyrosine kinase and component of the agrin receptor, and rapsyn, an AChR-associated anchoring protein, play crucial roles in the postsynaptic assembly. Once formed, AChR clusters and the postsynaptic membrane are stabilized by components of the dystrophin/utrophin glycoprotein complex, some of which also direct aspects of synaptic maturation such as formation of postjunctional folds. Nicotinic receptors are also expressed across the peripheral and central nervous system (PNS/CNS). These receptors are localized not only at the pre- but also at the postsynaptic sites where they carry out major synaptic transmission. In neurons, they are found as clusters at synaptic or extrasynaptic sites, suggesting that different mechanisms might underlie this specific localization of nicotinic receptors. This review summarizes the current knowledge about formation and stabilization of the postsynaptic apparatus at the neuromuscular junction and extends this to explore the synaptic structures of interneuronal cholinergic synapses.
Collapse
Affiliation(s)
- Kyung-Hye Huh
- Department of Neurochemistry, Brain Research Institute, University of Zürich, Switzerland
| | | |
Collapse
|
26
|
Bezakova G, Lømo T. Muscle activity and muscle agrin regulate the organization of cytoskeletal proteins and attached acetylcholine receptor (AchR) aggregates in skeletal muscle fibers. J Cell Biol 2001; 153:1453-63. [PMID: 11425875 PMCID: PMC2150728 DOI: 10.1083/jcb.153.7.1453] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In innervated skeletal muscle fibers, dystrophin and beta-dystroglycan form rib-like structures (costameres) that appear as predominantly transverse stripes over Z and M lines. Here, we show that the orientation of these stripes becomes longitudinal in denervated muscles and transverse again in denervated electrically stimulated muscles. Skeletal muscle fibers express nonneural (muscle) agrin whose function is not well understood. In this work, a single application of > or = 10 nM purified recombinant muscle agrin into denervated muscles preserved the transverse orientation of costameric proteins that is typical for innervated muscles, as did a single application of > or = 1 microM neural agrin. At lower concentration, neural agrin induced acetylcholine receptor aggregates, which colocalized with longitudinally oriented beta-dystroglycan, dystrophin, utrophin, syntrophin, rapsyn, and beta 2-laminin in denervated unstimulated fibers and with the same but transversely oriented proteins in innervated or denervated stimulated fibers. The results indicate that costameres are plastic structures whose organization depends on electrical muscle activity and/or muscle agrin.
Collapse
Affiliation(s)
- G Bezakova
- Department of Physiology, University of Oslo, 0317 Oslo, Norway.
| | | |
Collapse
|
27
|
Heathcote RD, Ekman JM, Campbell KP, Godfrey EW. Dystroglycan overexpression in vivo alters acetylcholine receptor aggregation at the neuromuscular junction. Dev Biol 2000; 227:595-605. [PMID: 11071777 DOI: 10.1006/dbio.2000.9906] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dystroglycan is a member of the transmembrane dystrophin glycoprotein complex in muscle that binds to the synapse-organizing molecule agrin. Dystroglycan binding and AChR aggregation are mediated by two separate domains of agrin. To test whether dystroglycan plays a role in receptor aggregation at the neuromuscular junction, we overexpressed it by injecting rabbit dystroglycan RNA into one- or two-celled Xenopus embryos. We measured AChR aggregation in myotomes by labeling them with rhodamine-alpha-bungarotoxin followed by confocal microscopy and image analysis. Dystroglycan overexpression decreased AChR aggregation at the neuromuscular junction. This result is consistent with dystroglycan competition for agrin without signaling AChR aggregation. It also supports the hypothesis that dystroglycan is not the myotube-associated specificity component, (MASC) a putative coreceptor needed for agrin to activate muscle-specific kinase (MuSK) and signal AChR aggregation. Dystroglycan was distributed along the surface of muscle membranes, but was concentrated at the ends of myotomes, where AChRs normally aggregate at synapses. Overexpressed dystroglycan altered AChR aggregation in a rostral-caudal gradient, consistent with the sequential development of neuromuscular synapses along the embryo. Increasing concentrations of dystroglycan RNA did not further decrease AChR aggregation, but decreased embryo survival. Development often stopped during gastrulation, suggesting an essential, nonsynaptic role of dystroglycan during this early period of development.
Collapse
Affiliation(s)
- R D Heathcote
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA
| | | | | | | |
Collapse
|
28
|
Lück G, Hoch W, Hopf C, Blottner D. Nitric oxide synthase (NOS-1) coclustered with agrin-induced AChR-specializations on cultured skeletal myotubes. Mol Cell Neurosci 2000; 16:269-81. [PMID: 10995553 DOI: 10.1006/mcne.2000.0873] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously we reported that neuronal nitric oxide synthase type-1 (NOS-1) is expressed in skeletal myotubes in vitro. In the present paper we sought to determine whether agrin-induced membrane specializations known to include the nicotinic acetylcholine receptor (AChR) on cultured myotubes may also contain NOS-1 and related molecules. After treatment with various agrin constructs containing the full C-terminally AChR-clustering domain (fragments N2, N4), but not with fragment C2 (truncated), NOS-1 expressed in the cytosol of mouse C2C12 skeletal myotubes coclustered with AChR, 43K rapsyn, MuSK, and the dystrophin/utrophin glycoprotein-complex (DUGC). Agrin-induced specializations also included coaggregates of N-methyl-d-aspartic acid (NMDA)-receptor, alpha-sodium (NaCh), or Shaker-type K+ channel (KCh)/PSD-95 complexes, and NOS-1. We conclude that agrin is crucial for recruitment of preassembled multimolecular membrane clusters, including AChR, NMDAR, and ion channels linked to NOS-1. Coassembly of NOS-1 to postsynaptic molecules may reflect site-specific NO-signaling pathways in neuromuscular junction formation and functions.
Collapse
Affiliation(s)
- G Lück
- Department of Anatomy 1, Neurobiology Unit, University Hospital Benjamin Franklin, Freie Universität Berlin, Königin-Luise-Strasse 15, Berlin, D-14195, Germany
| | | | | | | |
Collapse
|
29
|
Piluso G, Mirabella M, Ricci E, Belsito A, Abbondanza C, Servidei S, Puca AA, Tonali P, Puca GA, Nigro V. Gamma1- and gamma2-syntrophins, two novel dystrophin-binding proteins localized in neuronal cells. J Biol Chem 2000; 275:15851-60. [PMID: 10747910 DOI: 10.1074/jbc.m000439200] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dystrophin is the scaffold of a protein complex, disrupted in inherited muscular dystrophies. At the last 3' terminus of the gene, a protein domain is encoded, where syntrophins are tightly bound. These are a family of cytoplasmic peripheral membrane proteins. Three genes have been described encoding one acidic (alpha1) and two basic (beta1 and beta2) proteins of approximately 57-60 kDa. Here, we describe the characterization of two novel putative members of the syntrophin family, named gamma1- and gamma2-syntrophins. The human gamma1-syntrophin gene is composed of 19 exons and encodes a brain-specific protein of 517 amino acids. The human gamma2-syntrophin gene is composed of at least 17 exons, and its transcript is expressed in brain and, to a lesser degree, in other tissues. We mapped the gamma1-syntrophin gene to human chromosome 8q11 and the gamma2-syntrophin gene to chromosome 2p25. Yeast two-hybrid experiments and pull-down studies showed that both proteins can bind the C-terminal region of dystrophin and related proteins. We raised antibodies against these proteins and recognized expression in both rat and human central neurons, coincident with RNA in situ hybridization of adjacent sections. Our present findings suggest a differentiated role of a modified dystrophin-associated complex in the central nervous system.
Collapse
Affiliation(s)
- G Piluso
- Istituto di Patologia Generale ed Oncologia, Facoltà di Medicina, Seconda Università degli Studi di Napoli, 80138 Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bowe MA, Mendis DB, Fallon JR. The small leucine-rich repeat proteoglycan biglycan binds to alpha-dystroglycan and is upregulated in dystrophic muscle. J Cell Biol 2000; 148:801-10. [PMID: 10684260 PMCID: PMC2169361 DOI: 10.1083/jcb.148.4.801] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dystrophin-associated protein complex (DAPC) is necessary for maintaining the integrity of the muscle cell plasma membrane and may also play a role in coordinating signaling events at the cell surface. The alpha-/beta-dystroglycan subcomplex of the DAPC forms a critical link between the cytoskeleton and the extracellular matrix. A ligand blot overlay assay was used to search for novel dystroglycan binding partners in postsynaptic membranes from Torpedo electric organ. An approximately 125-kD dystroglycan-binding polypeptide was purified and shown by peptide microsequencing to be the Torpedo ortholog of the small leucine-rich repeat chondroitin sulfate proteoglycan biglycan. Biglycan binding to alpha-dystroglycan was confirmed by coimmunoprecipitation with both native and recombinant alpha-dystroglycan. The biglycan binding site was mapped to the COOH-terminal third of alpha-dystroglycan. Glycosylation of alpha-dystroglycan is not necessary for this interaction, but binding is dependent upon the chondroitin sulfate side chains of biglycan. In muscle, biglycan is detected at both synaptic and nonsynaptic regions. Finally, biglycan expression is elevated in muscle from the dystrophic mdx mouse. These findings reveal a novel binding partner for alpha-dystroglycan and demonstrate a novel avenue for interaction of the DAPC and the extracellular matrix. These results also raise the possibility of a role for biglycan in the pathogenesis, and perhaps the treatment, of muscular dystrophy.
Collapse
Affiliation(s)
- Mark A. Bowe
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Duane B. Mendis
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Justin R. Fallon
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
31
|
Grady RM, Zhou H, Cunningham JM, Henry MD, Campbell KP, Sanes JR. Maturation and maintenance of the neuromuscular synapse: genetic evidence for roles of the dystrophin--glycoprotein complex. Neuron 2000; 25:279-93. [PMID: 10719885 DOI: 10.1016/s0896-6273(00)80894-6] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dystrophin-glycoprotein complex (DGC) links the cytoskeleton of muscle fibers to their extracellular matrix. Using knockout mice, we show that a cytoplasmic DGC component, alpha-dystrobrevin (alpha-DB), is dispensable for formation of the neuromuscular junction (NMJ) but required for maturation of its postsynaptic apparatus. We also analyzed double and triple mutants lacking other cytoskeletal DGC components (utrophin and dystrophin) and myotubes lacking a alpha-DB or a transmembrane DGC component (dystroglycan). Our results suggest that alpha-DB acts via its linkage to the DGC to enhance the stability of postsynaptic specializations following their DGC-independent formation; dystroglycan may play additional roles in assembling synaptic basal lamina. Together, these results demonstrate involvement of distinct protein complexes in the formation and maintenance of the synapse and implicate the DGC in the latter process.
Collapse
Affiliation(s)
- R M Grady
- Department of Pediatrics, Washington University Medical School, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
32
|
Hohenester E, Tisi D, Talts JF, Timpl R. The crystal structure of a laminin G-like module reveals the molecular basis of alpha-dystroglycan binding to laminins, perlecan, and agrin. Mol Cell 1999; 4:783-92. [PMID: 10619025 DOI: 10.1016/s1097-2765(00)80388-3] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Laminin G-like (LG) modules in the extracellular matrix glycoproteins laminin, perlecan, and agrin mediate the binding to heparin and the cell surface receptor alpha-dystroglycan (alpha-DG). These interactions are crucial to basement membrane assembly, as well as muscle and nerve cell function. The crystal structure of the laminin alpha 2 chain LG5 module reveals a 14-stranded beta sandwich. A calcium ion is bound to one edge of the sandwich by conserved acidic residues and is surrounded by residues implicated in heparin and alpha-DG binding. A calcium-coordinated sulfate ion is suggested to mimic the binding of anionic oligosaccharides. The structure demonstrates a conserved function of the LG module in calcium-dependent lectin-like alpha-DG binding.
Collapse
Affiliation(s)
- E Hohenester
- Biophysics Section, Blackett Laboratory, Imperial College, London, United Kingdom.
| | | | | | | |
Collapse
|
33
|
Hoch W. Formation of the neuromuscular junction. Agrin and its unusual receptors. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:1-10. [PMID: 10491152 DOI: 10.1046/j.1432-1327.1999.00765.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Synapses are essential relay stations for the transmission of information between neurones and other cells. An ordered and tightly regulated formation of these structures is crucial for the functioning of the nervous system. The induction of the intensively studied synapse between nerve and muscle is initiated by the binding of neurone-specific isoforms of the basal membrane protein agrin to receptors on the surface of myotubes. Agrin activates a receptor complex that includes the muscle-specific kinase and most likely additional, yet to be identified, components. Receptor activation leads to the aggregation of acetylcholine receptors (AChR) and other proteins of the postsynaptic apparatus. This activation process has unique features which distinguish it from other receptor tyrosine kinases. In particular, the autophosphorylation of the kinase domain, which usually induces the recruitment of adaptor and signalling molecules, is not sufficient for AChR aggregation. Apparently, interactions of the extracellular domain with unknown components are also required for this process. Agrin binds to a second protein complex on the muscle surface known as the dystrophin-associated glycoprotein complex. This binding forms one end of a molecular link between the extracellular matrix and the cytoskeleton. While many components of the machinery triggering postsynaptic differentiation have now been identified, our picture of the molecular pathway causing the redistribution of synaptic proteins is still incomplete.
Collapse
Affiliation(s)
- W Hoch
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Biochemie, Tübingen, Germany.
| |
Collapse
|
34
|
Cornish T, Chi J, Johnson S, Lu Y, Campanelli JT. Globular domains of agrin are functional units that collaborate to induce acetylcholine receptor clustering. J Cell Sci 1999; 112 ( Pt 8):1213-23. [PMID: 10085256 DOI: 10.1242/jcs.112.8.1213] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrin, an extracellular matrix protein involved in neuromuscular junction formation, directs clustering of postsynaptic molecules, including acetylcholine receptors (AChRs). This activity resides entirely in the C-terminal portion of the protein, which consists of three laminin-like globular domains (G-domains: G1, G2 and G3) and four EGF-like repeats. Additionally, alternate mRNA splicing yields G-domain variants G2(0,4) with 0- or 4-amino-acid inserts, and G3(0, 8,11,19) with 0-, 8-, 11- or 19-amino-acid inserts. In order to better understand the contributions of individual domains and alternate splicing to agrin activity, single G-domains and covalently linked pairs of G-domains were expressed as soluble proteins and their AChR clustering activity measured on cultured C2 myotubes. These analyses reveal the following: (1) While only G3(8) exhibits detectable activity by itself, all G-domains studied (G1, G2(0), G2(4), G3(0) and G3(8)) enhance G3(8) activity when physically linked to G3(8). This effect is most pronounced when G2(4) is linked to G3(8) and is independent of the order of the G-domains. (2) The deletion of EGF-like repeats enhances activity. (3) Increasing the physical separation between linked G1 and G3(8) domains produces a significant increase in activity; similar alterations to linked G2 and G3(8) domains are without effect. (4) Clusters induced by two concatenated G3(8) domains are significantly smaller than all other agrin forms studied. These data suggest that agrin G-domains are the functional units which interact independently of their specific organization to yield AChR clustering. G-domain synergism resulting in biological output could be due to physical interactions between G-domains or, alternatively, independent interactions of G-domains with cell surface receptors which require spatially localized coactivation for optimal signal transduction.
Collapse
Affiliation(s)
- T Cornish
- Department of Biochemistry, Neuroscience Program, Beckman Institute, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
We describe the formation, maturation, elimination, maintenance, and regeneration of vertebrate neuromuscular junctions (NMJs), the best studied of all synapses. The NMJ forms in a series of steps that involve the exchange of signals among its three cellular components--nerve terminal, muscle fiber, and Schwann cell. Although essentially any motor axon can form NMJs with any muscle fiber, an additional set of cues biases synapse formation in favor of appropriate partners. The NMJ is functional at birth but undergoes numerous alterations postnatally. One step in maturation is the elimination of excess inputs, a competitive process in which the muscle is an intermediary. Once elimination is complete, the NMJ is maintained stably in a dynamic equilibrium that can be perturbed to initiate remodeling. NMJs regenerate following damage to nerve or muscle, but this process differs in fundamental ways from embryonic synaptogenesis. Finally, we consider the extent to which the NMJ is a suitable model for development of neuron-neuron synapses.
Collapse
Affiliation(s)
- J R Sanes
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
36
|
Talts JF, Andac Z, Göhring W, Brancaccio A, Timpl R. Binding of the G domains of laminin alpha1 and alpha2 chains and perlecan to heparin, sulfatides, alpha-dystroglycan and several extracellular matrix proteins. EMBO J 1999; 18:863-70. [PMID: 10022829 PMCID: PMC1171179 DOI: 10.1093/emboj/18.4.863] [Citation(s) in RCA: 362] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The C-terminal G domain of the mouse laminin alpha2 chain consists of five lamin-type G domain (LG) modules (alpha2LG1 to alpha2LG5) and was obtained as several recombinant fragments, corresponding to either individual modules or the tandem arrays alpha2LG1-3 and alpha2LG4-5. These fragments were compared with similar modules from the laminin alpha1 chain and from the C-terminal region of perlecan (PGV) in several binding studies. Major heparin-binding sites were located on the two tandem fragments and the individual alpha2LG1, alpha2LG3 and alpha2LG5 modules. The binding epitope on alpha2LG5 could be localized to a cluster of lysines by site-directed mutagenesis. In the alpha1 chain, however, strong heparin binding was found on alpha1LG4 and not on alpha1LG5. Binding to sulfatides correlated to heparin binding in most but not all cases. Fragments alpha2LG1-3 and alpha2LG4-5 also bound to fibulin-1, fibulin-2 and nidogen-2 with Kd = 13-150 nM. Both tandem fragments, but not the individual modules, bound strongly to alpha-dystroglycan and this interaction was abolished by EDTA but not by high concentrations of heparin and NaCl. The binding of perlecan fragment PGV to alpha-dystroglycan was even stronger and was also not sensitive to heparin. This demonstrated similar binding repertoires for the LG modules of three basement membrane proteins involved in cell-matrix interactions and supramolecular assembly.
Collapse
Affiliation(s)
- J F Talts
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18A, D-82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
37
|
Godfrey EW, Roe J, Heathcote RD. Overexpression of agrin isoforms in Xenopus embryos alters the distribution of synaptic acetylcholine receptors during development of the neuromuscular junction. Dev Biol 1999; 205:22-32. [PMID: 9882495 DOI: 10.1006/dbio.1998.9104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synapse formation involves a large number of macromolecules found in both presynaptic nerve terminals and postsynaptic cells. Many of the molecules involved in synaptogenesis of the neuromuscular junction have been discovered through morphological localization to the synapse and functional cell culture assays, but their role in embryonic development has been more difficult to study. One of the best understood of these molecules is agrin, a synaptic extracellular matrix protein secreted by both motor neurons and muscle cells, that organizes the postsynaptic apparatus, including high-density aggregates of acetylcholine receptors (AChRs), at the neuromuscular junction. We tested the specific hypothesis that different agrin isoforms made by neurons and muscle cells contribute to agrin's synapse organizing activity in the embryo. Agrin isoforms were overexpressed by injecting synthetic RNA into Xenopus laevis embryos at the one- or two-cell stage. To mark cells containing agrin RNA, green fluorescent protein (GFP) RNA was coinjected. The relative area of muscle AChR aggregates was measured by confocal microscopy and image analysis in GFP-positive segments of injected embryos. Innervated regions of myotomal muscles were compared in animals injected with a mixture of agrin and GFP RNAs or with GFP RNA alone. Overexpression of COOH-terminal 95-kDa fragments of a rat agrin isoform made only by neurons (4,8) and the major isoform (0,0) made by muscle cells both increased AChR cluster area by 100-200%. Rat agrin protein was colocalized with AChR aggregates in innervated regions of muscles in injected embryos. These results show that agrin derived from both the nerve terminal and the muscle cell could contribute to synaptic differentiation at the embryonic neuromuscular junction. They further demonstrate the usefulness of overexpression by RNA injection as an assay for molecular function in embryonic synapse formation.
Collapse
Affiliation(s)
- E W Godfrey
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | | | | |
Collapse
|
38
|
Meier T, Marangi PA, Moll J, Hauser DM, Brenner HR, Ruegg MA. A minigene of neural agrin encoding the laminin-binding and acetylcholine receptor-aggregating domains is sufficient to induce postsynaptic differentiation in muscle fibres. Eur J Neurosci 1998; 10:3141-52. [PMID: 9786208 DOI: 10.1046/j.1460-9568.1998.00320.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The extracellular matrix molecule agrin is both necessary and sufficient for inducing the formation of postsynaptic specializations at the neuromuscular junction (NMJ). At the mature NMJ, agrin is stably incorporated in synaptic basal lamina. The postsynapse-inducing activity of chick agrin, as assayed by its capability of causing aggregation of acetylcholine receptors (AChRs) on cultured muscle cells, maps to a 21 kDa, C-terminal domain. Binding of chick agrin to muscle basal lamina is mediated by the laminins and maps to a 25 kDa, N-terminal fragment of agrin. Here we show that an expression construct encoding a 'mini'-agrin, in which the laminin-binding fragment was fused to the AChR-clustering domain, is sufficient to induce postsynaptic differentiation in vivo when injected into non-synaptic sites of rat soleus muscle. As shown for ectopic postsynaptic differentiation induced by full-length neural agrin, myonuclei underneath the ectopic sites expressed the gene for the AChR epsilon-subunit. Altogether, our data show that a 'mini'-agrin construct encoding only a small fraction of the entire agrin protein is sufficient to induce postsynapse-like structures that are reminiscent of those induced by full-length neural agrin or innervation by motor neurons.
Collapse
Affiliation(s)
- T Meier
- Institute of Physiology, University of Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
39
|
Deyst KA, McKechnie BA, Fallon JR. The role of alternative splicing in regulating agrin binding to muscle cells. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 110:185-91. [PMID: 9748567 DOI: 10.1016/s0165-3806(98)00105-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The binding of agrin to the muscle cell surface can induce radical changes in the topography and physiology of the cell membrane, resulting in the organization of postsynaptic components opposite the nerve terminal. Alternative splicing of agrin mRNA yields several isoforms, which vary in their cellular expression, developmental profile, and acetylcholine receptor (AChR) clustering activity. Neurons and muscle cells express several of these agrin isoforms. To address the role of alternative splicing in regulating agrin's function, we compared the effects of splicing at the y and z sites of agrin (denoted 'Agy,z'). Agrin isoforms bound differently to the myotube surface: Ag0,0 and Ag4,0 showed much higher levels of binding than Ag4,8. The artificial splice form Ag0,8 showed binding levels similar to Ag4,8. Visualization of the bound agrin after an acute incubation revealed that each isoform associated with the cell surface in a distinct pattern. These binding patterns changed following stimulation of the myotubes with Ag4,8 for 4 h (which induces the clustering of AChRs). Ag4,8 binding sites were concentrated at >90% of the induced AChR clusters, while those for Ag4,0, Ag0,8, and Ag0,0 were enriched at 70%, 50% and 25%, respectively. Together, these observations indicate that alternatively spliced forms of agrin recognize at least partially non-overlapping populations of binding sites on the cell surface, and that the eight amino acid insert is the dominant factor influencing the level of the agrin binding to the cell surface. Further, some of these populations redistribute to AChR clusters upon agrin stimulation.
Collapse
Affiliation(s)
- K A Deyst
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
40
|
alpha-Dystroglycan functions in acetylcholine receptor aggregation but is not a coreceptor for agrin-MuSK signaling. J Neurosci 1998. [PMID: 9698325 DOI: 10.1523/jneurosci.18-16-06340.1998] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
alpha-dystroglycan (alpha-DG) is an agrin-binding protein that has been implicated in acetylcholine receptor (AChR) clustering, but it is unclear whether it acts as a coreceptor involved in initial agrin signaling or as a component involved in later events. To investigate its role, we have generated antisense derivatives of the C2 mouse muscle cell line, which have reduced alpha-DG expression. When compared with wild-type cells, the alpha-DG-deficient myotubes have a dramatic reduction in the number of spontaneous and agrin-induced AChR clusters. Several findings suggest that this decrease in AChR clustering is likely not because of a defect in agrin signaling through the MuSK receptor tyrosine kinase. Compared with wild-type cells, the alpha-DG-deficient cell lines showed only a transient reduction in the level of agrin-induced MuSK tyrosine phosphorylation and no reduction in AChR beta-subunit tyrosine phosphorylation. Additionally, agrin-induced phosphorylation of MuSK in wild-type myotubes was not decreased using agrin fragments that lack the domain primarily responsible for binding to alpha-DG. Finally, neural agrin-induced phosphorylation of MuSK was unaffected by treatments such as excess muscle agrin or anti-alpha-DG antibodies, both of which block agrin-alpha-DG binding. Together, these results suggest that alpha-DG is not required for agrin-MuSK signaling but rather that it may play a role elsewhere in the clustering pathway, such as in the downstream consolidation or maintenance of AChR clusters.
Collapse
|
41
|
Gramolini AO, Jasmin BJ. Molecular mechanisms and putative signalling events controlling utrophin expression in mammalian skeletal muscle fibres. Neuromuscul Disord 1998; 8:351-61. [PMID: 9713851 DOI: 10.1016/s0960-8966(98)00052-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The absence of full-length dystrophin molecules in skeletal muscle fibres results in the most severe form of muscular dystrophy, the Duchenne form (DMD). Several years ago, an autosomal homologue to dystrophin, termed utrophin, was identified. Although utrophin is expressed along the sarcolemma in developing, regenerating and DMD muscles, it nonetheless accumulates at the postsynaptic membrane of the neuromuscular junction in both normal and DMD adult muscle fibres. Due to the high degree of sequence identity between dystrophin and utrophin, it has been previously suggested that utrophin could in fact functionally compensate for the lack of dystrophin. Recent studies using transgenic mouse model systems have directly tested this hypothesis and revealed that upregulation of utrophin throughout dystrophic muscle fibres represents indeed, a viable approach for the treatment of DMD. Current studies are therefore focusing on the elucidation of the various regulatory mechanisms presiding over expression of utrophin in muscle fibres in attempts to ultimately identify small molecules which could systematically increase utrophin levels in extrasynaptic compartments of dystrophic muscle fibres. This review presents some of the recent data relevant for our understanding of the transcriptional regulatory mechanisms involved in maintaining expression of utrophin at the neuromuscular junction. In addition, the contribution of specific cues originating from motoneurons and the putative involvement of signalling events are also discussed.
Collapse
Affiliation(s)
- A O Gramolini
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
42
|
Raats CJ, Bakker MA, Hoch W, Tamboer WP, Groffen AJ, van den Heuvel LP, Berden JH, van den Born J. Differential expression of agrin in renal basement membranes as revealed by domain-specific antibodies. J Biol Chem 1998; 273:17832-8. [PMID: 9651386 DOI: 10.1074/jbc.273.28.17832] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We determined the specificity of two hamster monoclonal antibodies and a sheep polyclonal antiserum against heparan sulfate proteoglycan isolated from rat glomerular basement membrane. The antibodies were characterized by enzyme-linked immunosorbent assay on various basement membrane components and immunoprecipitation with heparan sulfate proteoglycan with or without heparitinase pre-treatment. These experiments showed that the antibodies specifically recognize approximately 150-, 105-, and 70-kDa core proteins of rat glomerular basement membrane heparan sulfate proteoglycan. Recently, we showed that agrin is a major heparan sulfate proteoglycan in the glomerular basement membrane (Groffen, A. J. A., Ruegg, M. A., Dijkman, H. B. P. M., Van der Velden, T. J., Buskens, C. A., van den Born, J., Assmann, K. J. M., Monnens, L. A. H., Veerkamp, J. H., and van den Heuvel, L. P. W. J. (1998) J. Histochem. Cytochem. 46, 19-27). Therefore, we tested whether our antibodies recognize agrin. To this end, we evaluated staining of Chinese hamster ovary cells transfected with constructs encoding full-length or the C-terminal half of rat agrin by analysis on a fluorescence-activated cell sorter. Both hamster monoclonals and the sheep antiserum clearly stained cells transfected with the construct encoding full-length agrin, whereas wild type cells and cells transfected with the construct encoding the C-terminal part of agrin were not recognized. A panel of previously characterized monoclonals, directed against C-terminal agrin, clearly stained cells transfected with either of the constructs but not wild type cells. This indicates that both hamster monoclonals and the sheep antiserum recognize epitopes on the N-terminal half of agrin. By immunohistochemistry on rat renal tissue, we compared distribution of N-terminal agrin with that of C-terminal agrin. The monoclonal antibodies against C-terminal agrin stained almost exclusively the glomerular basement membrane, whereas the anti-N-terminal agrin antibodies recognized all renal basement membranes, including tubular basement membranes. Based on these results, we hypothesize that full-length agrin is predominantly expressed in the glomerular basement membrane, whereas in most other renal basement membranes a truncated isoform of agrin is predominantly found that misses (part of) the C terminus, which might be due to alternative splicing and/or posttranslational processing. The possible significance of this finding is discussed.
Collapse
Affiliation(s)
- C J Raats
- Division of Nephrology, University Hospital St. Radboud, 6500 HB, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Meier T, Ruegg MA, Wallace BG. Muscle-specific agrin isoforms reduce phosphorylation of AChR gamma and delta subunits in cultured muscle cells. Mol Cell Neurosci 1998; 11:206-16. [PMID: 9675052 DOI: 10.1006/mcne.1998.0685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The accumulation of nicotinic acetylcholine receptors (AChRs) at neuromuscular synapses is triggered by agrin, a protein that is synthesized by both nerve and muscle. Nerve-derived agrin, which contains an amino acid insert at a conserved splice site in the carboxy-terminal part of the protein, induces AChR aggregation and causes tyrosine phosphorylation of the AChR beta subunit. In contrast, agrin isoforms synthesized by muscle cells lack such an insert and have no effect on AChR distribution. In order to identify possible functional roles of muscle-derived agrin we have analyzed further the effect of various fragments of recombinant agrin on AChR phosphorylation. A carboxy-terminal fragment of muscle agrin, c95A0B0, reduced AChR gamma and delta subunit phosphorylation when added to C2C12 myotubes in culture. Although c95A0B0 had no effect on AChR beta subunit phosphorylation when added alone, it inhibited AChR beta subunit phosphorylation and AChR aggregation by the nerve-specific agrin isoform c95A4B8. We conclude that muscle-derived agrin can influence, both directly and indirectly, AChR phosphorylation. Such changes may play a role in the formation, maintenance, or function of the neuromuscular junction.
Collapse
Affiliation(s)
- T Meier
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | | | | |
Collapse
|
44
|
Abstract
Laminins are a family of multifunctional macromolecules, ubiquitous in basement membranes, and represent the most abundant structural noncollagenous glycoproteins of these highly specialised extracellular matrices. Their discovery started with the difficult task of isolating molecules produced by cultivated cells or extracted from tissues. The development of molecular biology techniques has facilitated and accelerated the identification and the characterisation of new laminin variants making it feasible to identify full-length polypeptides which have not been purified. Further, genetically engineered laminin fragments can be generated for studies of their structure-function relationship, permitting the demonstration that laminins are involved in multiple interactions with themselves, with other components of the basal lamina, and with cells. It endows laminins with a central role in the formation, the architecture, and the stability of basement membranes. In addition, laminins may both separate and connect different tissues, i.e. the parenchymal and the interstitial connective tissues. Laminins also provide adjacent cells with a mechanical scaffold and biological information either directly by interacting with cell surface components, or indirectly by trapping growth factors. In doing so they trigger and control cellular functions. Recently, the structural and biological diversity of the laminins has started to be elucidated by gene targeting and by the identification of laminin defects in acquired or inherited human diseases. The consequent phenotypes highlight the pivotal role of laminins in determining heterogeneity in basement membrane functions.
Collapse
Affiliation(s)
- M Aumailley
- Institut für Biochemie II, Medical Faculty, Cologne, Germany.
| | | |
Collapse
|
45
|
Sanes JR, Apel ED, Gautam M, Glass D, Grady RM, Martin PT, Nichol MC, Yancopoulos GD. Agrin receptors at the skeletal neuromuscular junction. Ann N Y Acad Sci 1998; 841:1-13. [PMID: 9668217 DOI: 10.1111/j.1749-6632.1998.tb10905.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J R Sanes
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Cartaud A, Coutant S, Petrucci TC, Cartaud J. Evidence for in situ and in vitro association between beta-dystroglycan and the subsynaptic 43K rapsyn protein. Consequence for acetylcholine receptor clustering at the synapse. J Biol Chem 1998; 273:11321-6. [PMID: 9556625 DOI: 10.1074/jbc.273.18.11321] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The accumulation of dystrophin and associated proteins at the postsynaptic membrane of the neuromuscular junction and their co-distribution with nicotinic acetylcholine receptor (AChR) clusters in vitro suggested a role for the dystrophin complex in synaptogenesis. Co-transfection experiments in which alpha- and beta-dystroglycan form a complex with AChR and rapsyn, a peripheral protein required for AChR clustering (Apel, D. A., Roberds, S. L., Campbell, K. P., and Merlie, J. P. (1995) Neuron 15, 115-126), suggested that rapsyn functions as a link between AChR and the dystrophin complex. We have investigated the interaction between rapsyn and beta-dystroglycan in Torpedo AChR-rich membranes using in situ and in vitro approaches. Cross-linking experiments were carried out to study the topography of postsynaptic membrane polypeptides. A cross-linked product of 90 kDa was labeled by antibodies to rapsyn and beta-dystroglycan; this demonstrates that these polypeptides are in close proximity to one another. Affinity chromatography experiments and ligand blot assays using rapsyn solubilized from Torpedo AChR-rich membranes and constructs containing beta-dystroglycan C-terminal fragments show that a rapsyn-binding site is present in the juxtamembranous region of the cytoplasmic tail of beta-dystroglycan. These data point out that rapsyn and dystroglycan interact in the postsynaptic membrane and thus reinforce the notion that dystroglycan could be involved in synaptogenesis.
Collapse
Affiliation(s)
- A Cartaud
- Biologie Cellulaire des Membranes, Département de Biologie Supramoléculaire et Cellulaire, Institut Jacques Monod, UMR 9922, CNRS et Université Paris VII, 2 Place Jussieu, 75251 Paris Cédex 05, France
| | | | | | | |
Collapse
|
47
|
Hopf C, Hoch W. Dimerization of the muscle-specific kinase induces tyrosine phosphorylation of acetylcholine receptors and their aggregation on the surface of myotubes. J Biol Chem 1998; 273:6467-73. [PMID: 9497380 DOI: 10.1074/jbc.273.11.6467] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
During development of the neuromuscular junction, neuronal splice variants of agrin initiate the aggregation of acetylcholine receptors on the myotube surface. The muscle-specific kinase is thought to be part of an agrin receptor complex, although the recombinant protein does not bind agrin with high affinity. To specify its function, we induced phosphorylation and activation of this kinase in the absence of agrin by incubating myotubes with antibodies directed against its N-terminal sequence. Antibody-induced dimerization of the muscle-specific kinase but not treatment with Fab fragments was sufficient to trigger two key events of early postsynaptic development: acetylcholine receptors accumulated into aggregates, and their beta-subunits became phosphorylated on tyrosine residues. Heparin partially inhibited receptor aggregation induced by both agrin and anti-muscle-specific kinase antibodies. In contrast, it did not affect kinase or acetylcholine receptor phosphorylation. These data indicate that agrin induces postsynaptic differentiation by dimerizing the muscle-specific kinase. They also suggest that activation of the kinase domain can account for only part of agrin's effects. Dimerization of this molecule appears to activate an additional signal, most likely by organizing a scaffold for other postsynaptic proteins.
Collapse
Affiliation(s)
- C Hopf
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Biochemie, Spemannstrasse 35, D-72076 Tübingen, Germany
| | | |
Collapse
|
48
|
Gesemann M, Brancaccio A, Schumacher B, Ruegg MA. Agrin is a high-affinity binding protein of dystroglycan in non-muscle tissue. J Biol Chem 1998; 273:600-5. [PMID: 9417121 DOI: 10.1074/jbc.273.1.600] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Agrin is a basement membrane-associated proteoglycan that induces the formation of postsynaptic specializations at the neuromuscular junction. This activity is modulated by alternative splicing and is thought to be mediated by receptors expressed in muscle fibers. An isoform of agrin that does not induce postsynaptic specializations binds with high affinity to dystroglycan, a component of the dystrophin-glycoprotein complex. Transcripts encoding this agrin isoform are expressed in a variety of non-muscle tissues. Here, we analyzed the tissue distribution of agrin and dystroglycan on the protein level and determined their binding affinities. We found that agrin is most abundant in lung, kidney, and brain. Only a little agrin was detected in skeletal muscle, and no agrin was found in liver. Dystroglycan was highly expressed in all tissues examined except in liver. In a solid-phase radioligand binding assay, agrin bound to dystroglycan from lung, kidney, and skeletal muscle with a dissociation constant between 1.8 and 2.2 nM, while the affinity to brain-derived dystroglycan was 4.6 nM. In adult kidney and lung, agrin co-purified and co-immunoprecipitated with dystroglycan, and both molecules were co-localized in embryonic tissue. These data show that the agrin isoform expressed in non-muscle tissue is a high-affinity binding partner of dystroglycan and they suggest that this interaction, like that between laminin and dystroglycan, may be important for the mechanical integrity of the tissue.
Collapse
Affiliation(s)
- M Gesemann
- Department of Pharmacology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
49
|
Ruegg MA, Bixby JL. Agrin orchestrates synaptic differentiation at the vertebrate neuromuscular junction. Trends Neurosci 1998; 21:22-7. [PMID: 9464682 DOI: 10.1016/s0166-2236(97)01154-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The synapse is a key structure that is involved in perception, learning and memory. Understanding the sequence of steps that is involved in establishing synapses during development might also help to understand mechanisms that cause changes in synapses during learning and memory. For practical reasons, most of our current knowledge of synapse development is derived from studies of the vertebrate neuromuscular junction (NMJ). Several lines of evidence strongly suggest that motor axons release the molecule agrin to induce the formation of the postsynaptic apparatus in muscle fibers. Recent advances implicate proteins such as dystroglycan, MuSK, and rapsyn in the transduction of agrin signals. Recently, additional functions of agrin have been discovered, including the upregulation of gene transcription in myonuclei and the control of presynaptic differentiation. Agrin therefore appears to play a unique role in controlling synaptic differentiation on both sides of the NMJ.
Collapse
Affiliation(s)
- M A Ruegg
- Dept of Pharmacology, Biozentrum, University of Basel, Switzerland
| | | |
Collapse
|
50
|
Abstract
Dystrophin is a plasma membrane-associated cytoskeletal protein of the spectrin superfamily. The dystrophin cytoskeleton has been first characterized in muscle. Muscular 427 kDa dystrophin binds to subplasmalemmal actin filaments via its amino-terminal domain. The carboxy-terminus of dystrophin binds to a plasma membrane anchor, beta-dystroglycan, which is associated on the external side with the extracellular matrix receptor, alpha-dystroglycan, that binds to the basal lamina proteins laminin-1, laminin-2, and agrin. In the muscle, the dystroglycan complex is associated with the sarcoglycan complex that consists of several glycosylated, integral membrane proteins. The absence or functional deficiency of the dystrophin cytoskeleton is the cause of several types of muscular dystrophies including the lethal Duchenne muscular dystrophy (DMD), one of the most severe and most common genetic disorders of man. The dystrophin complex is believed to stabilize the plasma membrane during cycles of contraction and relaxation. Muscular dystrophin and several types of dystrophin variants are also present in extramuscular tissues, e.g. in distinct regions of the central nervous systems including the retina. Absence of dystrophin from these sites is believed to be responsible for some extramuscular symptoms of DMD, e.g. mental retardation and disturbances in retinal electrophysiology (reduced b-wave in electroretinograms). The reduced b-wave in electroretinograms indicated a disturbance of neurotransmission between photoreceptors and ON-bipolar cells. At least two different dystrophin variants are present in photoreceptor synaptic complexes. One of these dystrophins (Dp260) is virtually exclusively expressed in the retina. In the neuroretina, dystrophin is found in significant amounts in the invaginated photoreceptor synaptic complexes. At this location dystrophin colocalizes with dystroglycan. Agrin, an extracellular ligand of alpha-dystroglycan, is also present at this location whereas the proteins of the sarcoglycan complex appear to be absent in photoreceptor synaptic complexes. Dystrophin and dystroglycan are located distal from the ribbon-containing active synaptic zones where both proteins are restricted to the photoreceptor plasma membrane bordering on the lateral sides of the synaptic invagination. In addition, some neuronal profiles of the postsynaptic complex also contain dystrophin and beta-dystroglycan. These profiles appear to belong at least in part to projections of the photoreceptor terminals into the postsynaptic dendritic complex. In view of the abnormal neurotransmission between photoreceptors and ON-bipolar cells in DMD patients the dystrophin/beta-dystroglycan-containing projections of photoreceptor presynaptic terminals into the postsynaptic dendritic plexus might somehow modify the ON-bipolar pathway. Another retinal site associated with dystrophin/beta-dystropglycan is the plasma membrane of Müller cells where dystrophin/beta-dystroglycan appear to be present at particular high concentrations. At this location the dystrophin/dystroglycan complex may play a role in the attachment of the retina to the vitreous, and, under pathological conditions, in traction-induced retinal detachment.
Collapse
Affiliation(s)
- F Schmitz
- Max-Planck-Institut für Experimentelle Medizin, Göttingen, Germany
| | | |
Collapse
|