1
|
Ehle C, Iyer-Bierhoff A, Wu Y, Xing S, Kiehntopf M, Mosig AS, Godmann M, Heinzel T. Downregulation of HNF4A enables transcriptomic reprogramming during the hepatic acute-phase response. Commun Biol 2024; 7:589. [PMID: 38755249 PMCID: PMC11099168 DOI: 10.1038/s42003-024-06288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
The hepatic acute-phase response is characterized by a massive upregulation of serum proteins, such as haptoglobin and serum amyloid A, at the expense of liver homeostatic functions. Although the transcription factor hepatocyte nuclear factor 4 alpha (HNF4A) has a well-established role in safeguarding liver function and its cistrome spans around 50% of liver-specific genes, its role in the acute-phase response has received little attention so far. We demonstrate that HNF4A binds to and represses acute-phase genes under basal conditions. The reprogramming of hepatic transcription during inflammation necessitates loss of HNF4A function to allow expression of acute-phase genes while liver homeostatic genes are repressed. In a pre-clinical liver organoid model overexpression of HNF4A maintained liver functionality in spite of inflammation-induced cell damage. Conversely, HNF4A overexpression potently impaired the acute-phase response by retaining chromatin at regulatory regions of acute-phase genes inaccessible to transcription. Taken together, our data extend the understanding of dual HNF4A action as transcriptional activator and repressor, establishing HNF4A as gatekeeper for the hepatic acute-phase response.
Collapse
Affiliation(s)
- Charlotte Ehle
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Aishwarya Iyer-Bierhoff
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Yunchen Wu
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena, 07745, Jena, Germany
- Marshall Laboratory of Biomedical Engineering, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shaojun Xing
- Marshall Laboratory of Biomedical Engineering, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Michael Kiehntopf
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, 07747, Jena, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| | - Maren Godmann
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Thorsten Heinzel
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena, 07745, Jena, Germany.
| |
Collapse
|
2
|
Kaci A, Solheim MH, Silgjerd T, Hjaltadottir J, Hornnes LH, Molnes J, Madsen A, Sjøholt G, Bellanné-Chantelot C, Caswell R, Sagen JV, Njølstad PR, Aukrust I, Bjørkhaug L. Functional characterization of HNF4A gene variants identify promoter and cell line specific transactivation effects. Hum Mol Genet 2024; 33:894-904. [PMID: 38433330 PMCID: PMC11070132 DOI: 10.1093/hmg/ddae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/26/2024] [Accepted: 02/11/2024] [Indexed: 03/05/2024] Open
Abstract
Hepatocyte nuclear factor-4 alpha (HNF-4A) regulates genes with roles in glucose metabolism and β-cell development. Although pathogenic HNF4A variants are commonly associated with maturity-onset diabetes of the young (MODY1; HNF4A-MODY), rare phenotypes also include hyperinsulinemic hypoglycemia, renal Fanconi syndrome and liver disease. While the association of rare functionally damaging HNF1A variants with HNF1A-MODY and type 2 diabetes is well established owing to robust functional assays, the impact of HNF4A variants on HNF-4A transactivation in tissues including the liver and kidney is less known, due to lack of similar assays. Our aim was to investigate the functional effects of seven HNF4A variants, located in the HNF-4A DNA binding domain and associated with different clinical phenotypes, by various functional assays and cell lines (transactivation, DNA binding, protein expression, nuclear localization) and in silico protein structure analyses. Variants R85W, S87N and R89W demonstrated reduced DNA binding to the consensus HNF-4A binding elements in the HNF1A promoter (35, 13 and 9%, respectively) and the G6PC promoter (R85W ~10%). While reduced transactivation on the G6PC promoter in HepG2 cells was shown for S87N (33%), R89W (65%) and R136W (35%), increased transactivation by R85W and R85Q was confirmed using several combinations of target promoters and cell lines. R89W showed reduced nuclear levels. In silico analyses supported variant induced structural impact. Our study indicates that cell line specific functional investigations are important to better understand HNF4A-MODY genotype-phenotype correlations, as our data supports ACMG/AMP interpretations of loss-of-function variants and propose assay-specific HNF4A control variants for future functional investigations.
Collapse
Affiliation(s)
- Alba Kaci
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
- Center for Laboratory Medicine, Østfold Hospital Trust, Kalnesveien 300, Grålum 1714, Norway
| | - Marie Holm Solheim
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
| | - Trine Silgjerd
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, Bergen 5020, Norway
| | - Jorunn Hjaltadottir
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, Bergen 5020, Norway
| | - Lorentze Hope Hornnes
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Jonas Lies veg 87, Bergen 5021, Norway
| | - Janne Molnes
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
- Department of Medical Genetics, Haukeland University Hospital, Jonas Lies veg 87, Bergen 5021, Norway
| | - Andre Madsen
- Department of Clinical Science, University of Bergen, Jonas Lies veg 87, Bergen 5020, Norway
| | - Gry Sjøholt
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, Bergen 5020, Norway
| | - Christine Bellanné-Chantelot
- Départment of Medical Genetics, Sorbonne University, AP-HP, Hôpital Pitié-Salpêtriére, 21 rue de l'école de médecine, 75006 Paris, France
| | - Richard Caswell
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Barrack Rd, Exeter EX2 5DW, United Kingdom
| | - Jørn V Sagen
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Jonas Lies veg 87, Bergen 5021, Norway
| | - Pål R Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
- Children and Youth Clinic, Haukeland University Hospital, Haukelandsbakken 1, Bergen 5021, Norway
| | - Ingvild Aukrust
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
- Department of Medical Genetics, Haukeland University Hospital, Jonas Lies veg 87, Bergen 5021, Norway
| | - Lise Bjørkhaug
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, Bergen 5020, Norway
| |
Collapse
|
3
|
Zhang J, Jiang Y, Li J, Zou H, Yin L, Yang Y, Yang L. Identification and precision therapy for three maturity-onset diabetes of the young (MODY) families caused by mutations in the HNF4A gene. Front Endocrinol (Lausanne) 2023; 14:1237553. [PMID: 37711893 PMCID: PMC10498112 DOI: 10.3389/fendo.2023.1237553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
Background Heterozygous pathogenic variants in HNF4A gene cause maturity-onset diabetes of the young type 1 (MODY1). The mutation carriers for MODY1 have been reported to be relatively rare, in contrast to the most frequently reported forms of MODY2 and MODY3. Methods Whole exome sequencing (WES) and Sanger sequencing were performed for genetic analysis of MODY pedigrees. Tertiary structures of the mutated proteins were predicted using PyMOL software. Results Three heterozygous missense mutations in the HNF4A gene, I159T, W179C, and D260N, were identified in the probands of three unrelated MODY families using WES, one of which (W179C) was novel. Cascade genetic screening revealed that the mutations co-segregated with hyperglycemic phenotypes in their families. The molecular diagnosis of MODY1 has partly transformed its management in clinical practice and improved glycemic control. The proband in family A successfully converted to sulfonylureas and achieved good glycemic control. Proband B responded well to metformin combined with diet therapy because of his higher body mass index (BMI). The proband in family C, with paternal-derived mutations, had markedly defective pancreatic β-cell function due to the superposition effect of T2DM susceptibility genes from the maternal grandfather, and he is currently treated with insulin. In silico analysis using PyMOL showed that the I159T and D260N mutations altered polar interactions with the surrounding residues, and W179C resulted in a smaller side chain. Discussion We identified three heterozygous missense mutations of HNF4A from Chinese MODY families. Structural alterations in these mutations may lead to defects in protein function, further contributing to the hyperglycemic phenotype of mutation carriers.
Collapse
Affiliation(s)
- Juan Zhang
- Institute of Monogenic Disease, School of Medicine, Huanghuai University, Zhumadian, China
- Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian, China
| | - Yanyan Jiang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Li
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyin Zou
- Institute of Monogenic Disease, School of Medicine, Huanghuai University, Zhumadian, China
- Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian, China
| | - Li Yin
- Department of Ultrasound Medicine, The 990th Hospital of The People’s Liberation Army, Zhumadian, China
| | - Yang Yang
- Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian, China
| | - Lei Yang
- Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian, China
- Zhumadian Key Laboratory of Chronic Disease Research and Translational Medicine, Institute of Cardiovascular and Cerebrovascular Diseases, School of Medicine, Huanghuai University, Zhumadian, China
| |
Collapse
|
4
|
Abstract
Hepatocyte nuclear factor 4 α (HNF4α) is a highly conserved member of the nuclear receptor superfamily expressed at high levels in the liver, kidney, pancreas, and gut. In the liver, HNF4α is exclusively expressed in hepatocytes, where it is indispensable for embryonic and postnatal liver development and for normal liver function in adults. It is considered a master regulator of hepatic differentiation because it regulates a significant number of genes involved in hepatocyte-specific functions. Loss of HNF4α expression and function is associated with the progression of chronic liver disease. Further, HNF4α is a target of chemical-induced liver injury. In this review, we discuss the role of HNF4α in liver pathophysiology and highlight its potential use as a therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Manasi Kotulkar
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Dakota R Robarts
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Udayan Apte
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
5
|
Feng R, Liebe R, Weng HL. Transcription networks in liver development and acute liver failure. LIVER RESEARCH 2023; 7:47-55. [PMID: 39959701 PMCID: PMC11791834 DOI: 10.1016/j.livres.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/10/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Acute liver failure (ALF) is a medical emergency due to massive hepatocyte loss. In such a harsh condition, maintaining transcriptional regulation in the remaining hepatocytes while activating similar transcription factor networks in liver progenitor cells (LPCs) to ensure essential liver functions are two critical processes to rescue patients from liver failure and death. In this review, we discuss the formation and functions of transcription networks in ALF and liver development. We focus on a hierarchical network of transcription factors that responds to different pathophysiological circumstances: (1) Under normal circumstances, pioneer factor forkhead box protein A2 (FOXA2) coordinates several constitutive hepatic transcription factors, such as hepatic nuclear factor 4 alpha (HNF4α) and CCAAT-enhancer binding protein α (C/EBPα), which ensure normal liver function; (2) When the expression of both HNF4α and C/EBPα in hepatocytes are disrupted by severe inflammation, retinoic acid receptor (RAR) is the alternative transcription factor that compensates for their absence; (3) When massive hepatic necrosis occurs, a similar transcription network including FOXA2 and HNF4α, is activated as a "rescue network" in LPCs to maintain vital liver functions when hepatocytes fail, and thus ensures survival. Expression of these master transcription factors in hepatocytes and LPCs is tightly regulated by hormone signals and inflammation. The performance of this hierarchical transcription network, in particularly the "rescue network" described above, significantly affects the clinical outcome of ALF.
Collapse
Affiliation(s)
- Rilu Feng
- Department of Medicine II, Section Molecular Hepatology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Roman Liebe
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, Düsseldorf, Germany
- Department of Medicine II, Saarland University Medical Centre, Saarland University, Homburg, Germany
| | - Hong-Lei Weng
- Department of Medicine II, Section Molecular Hepatology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
6
|
Ramatchandirin B, Pearah A, He L. Regulation of Liver Glucose and Lipid Metabolism by Transcriptional Factors and Coactivators. Life (Basel) 2023; 13:life13020515. [PMID: 36836874 PMCID: PMC9962321 DOI: 10.3390/life13020515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) worldwide is on the rise and NAFLD is becoming the most common cause of chronic liver disease. In the USA, NAFLD affects over 30% of the population, with similar occurrence rates reported from Europe and Asia. This is due to the global increase in obesity and type 2 diabetes mellitus (T2DM) because patients with obesity and T2DM commonly have NAFLD, and patients with NAFLD are often obese and have T2DM with insulin resistance and dyslipidemia as well as hypertriglyceridemia. Excessive accumulation of triglycerides is a hallmark of NAFLD and NAFLD is now recognized as the liver disease component of metabolic syndrome. Liver glucose and lipid metabolisms are intertwined and carbon flux can be used to generate glucose or lipids; therefore, in this review we discuss the important transcription factors and coactivators that regulate glucose and lipid metabolism.
Collapse
Affiliation(s)
| | - Alexia Pearah
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ling He
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD 21287, USA
- Correspondence: ; Tel.: +1-410-502-5765; Fax: +1-410-502-5779
| |
Collapse
|
7
|
Diaz-Aragon R, Coard MC, Amirneni S, Faccioli L, Haep N, Malizio MR, Motomura T, Kocas-Kilicarslan ZN, Ostrowska A, Florentino RM, Frau C. Therapeutic Potential of HNF4α in End-stage Liver Disease. Organogenesis 2021; 17:126-135. [PMID: 35114889 DOI: 10.1080/15476278.2021.1994273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The prevalence of end-stage liver disease (ESLD) in the US is increasing at an alarming rate. It can be caused by several factors; however, one of the most common routes begins with nonalcoholic fatty liver disease (NAFLD). ESLD is diagnosed by the presence of irreversible damage to the liver. Currently, the only definitive treatment for ESLD is orthotopic liver transplantation (OLT). Nevertheless, OLT is limited due to a shortage of donor livers. Several promising alternative treatment options are under investigation. Researchers have focused on the effect of liver-enriched transcription factors (LETFs) on disease progression. Specifically, hepatocyte nuclear factor 4-alpha (HNF4α) has been reported to reset the liver transcription network and possibly play a role in the regression of fibrosis and cirrhosis. In this review, we describe the function of HNF4α, along with its regulation at various levels. In addition, we summarize the role of HNF4α in ESLD and its potential as a therapeutic target in the treatment of ESLD.
Collapse
Affiliation(s)
- Ricardo Diaz-Aragon
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michael C Coard
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sriram Amirneni
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lanuza Faccioli
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nils Haep
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michelle R Malizio
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Takashi Motomura
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Alina Ostrowska
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rodrigo M Florentino
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Carla Frau
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Tachmatzidi EC, Galanopoulou O, Talianidis I. Transcription Control of Liver Development. Cells 2021; 10:cells10082026. [PMID: 34440795 PMCID: PMC8391549 DOI: 10.3390/cells10082026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
During liver organogenesis, cellular transcriptional profiles are constantly reshaped by the action of hepatic transcriptional regulators, including FoxA1-3, GATA4/6, HNF1α/β, HNF4α, HNF6, OC-2, C/EBPα/β, Hex, and Prox1. These factors are crucial for the activation of hepatic genes that, in the context of compact chromatin, cannot access their targets. The initial opening of highly condensed chromatin is executed by a special class of transcription factors known as pioneer factors. They bind and destabilize highly condensed chromatin and facilitate access to other "non-pioneer" factors. The association of target genes with pioneer and non-pioneer transcription factors takes place long before gene activation. In this way, the underlying gene regulatory regions are marked for future activation. The process is called "bookmarking", which confers transcriptional competence on target genes. Developmental bookmarking is accompanied by a dynamic maturation process, which prepares the genomic loci for stable and efficient transcription. Stable hepatic expression profiles are maintained during development and adulthood by the constant availability of the main regulators. This is achieved by a self-sustaining regulatory network that is established by complex cross-regulatory interactions between the major regulators. This network gradually grows during liver development and provides an epigenetic memory mechanism for safeguarding the optimal expression of the regulators.
Collapse
Affiliation(s)
- Evangelia C. Tachmatzidi
- Institute of Molecular Biology and Biotechnology, FORTH, 70013 Herakleion, Crete, Greece; (E.C.T.); (O.G.)
- Department of Biology, University of Crete, 70013 Herakleion, Crete, Greece
| | - Ourania Galanopoulou
- Institute of Molecular Biology and Biotechnology, FORTH, 70013 Herakleion, Crete, Greece; (E.C.T.); (O.G.)
- Department of Biology, University of Crete, 70013 Herakleion, Crete, Greece
| | - Iannis Talianidis
- Institute of Molecular Biology and Biotechnology, FORTH, 70013 Herakleion, Crete, Greece; (E.C.T.); (O.G.)
- Correspondence:
| |
Collapse
|
9
|
SOX9 represses hepatitis B virus replication through binding to HBV EnhII/Cp and inhibiting the promoter activity. Antiviral Res 2020; 177:104761. [PMID: 32147495 DOI: 10.1016/j.antiviral.2020.104761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus (HBV) infection affects 364 million people worldwide and causes a serious global public health problem. The SRY-related high mobility group-box 9 (SOX9) is a risk of developing cirrhosis in patients with chronic hepatitis B and a cancer stem cell marker. However, the role of SOX9 in HBV replication has not been reported. This study revealed a distinct mechanism underling the regulation of HBV replication mediated by SOX9. HBV induces SOX9 mRNA and protein expression in human hepatoma cells, including HepG2.2.15, HepG2, Huh7, and HepG2-NTCP cells. Further study demonstrated that HBV activates SOX9 expression at the transcriptional level through inducing SOX9 promoter activity and HBc could induce the activity of SOX9 promoter. Interestingly, SOX9 in turn represses HBV replication in human hepatoma cells. More importantly, SOX9 inhibits HBV infection in HepG2-NTCP cells and C57/BL6 mice. Detailed study revealed that SOX9 suppresses HBV replication through directly binding to HBV EnhII/Cp (HBV 1667-1672 nt) to inhibit EnhII/Cp activation. Results from deletion mutant analysis, ChIP assay, nuclear and cytoplasmic extraction analysis, and immunofluorescence demonstrated that SOX9 high mobility group (HMG) domain is required for SOX9 anti-HBV activity. Moreover, we demonstrated that SOX9 and hepatocyte nuclear factor 4 alpha (HNF4α) can bind to HBV EnhII/Cp (HBV 1667-1672 nt) individually and simultaneously to regulate the promoter activity. Collectively, the results revealed a distinct negative feedback mechanism underlying HBV replication and SOX9 expression, and identified SOX9 as a new host restriction factor in HBV replication and infection. IMPORTANCE: HBV infection is a global public health problem by causing serious liver diseases, but the mechanisms underlying HBV pathogenesis remain largely unknown. SOX9 is a risk of developing cirrhosis and a cancer stem cell marker, however, the role of SOX9 in HBV infection has not been reported. The authors revealed a distinct mechanism underling the regulation of HBV replication and SOX9 expression. On the one hand, HBV induces SOX9 expression in human hepatoma cells through activating SOX9 promoter. On the other hand, SOX9 in turn represses HBV replication in human hepatoma cells by binding to and inhibiting HBV EnhII/Cp through its HMG domain. More importantly, SOX9 inhibits HBV infection in HepG2-NTCP cells and C57/BL6 mice. Therefore, this study identifies SOX9 as a novel and potential therapeutic reagent for the prevention and treatment of HBV-associated diseases.
Collapse
|
10
|
Piskacek M, Havelka M, Jendruchova K, Knight A. Nuclear hormone receptors: Ancient 9aaTAD and evolutionally gained NCoA activation pathways. J Steroid Biochem Mol Biol 2019; 187:118-123. [PMID: 30468856 DOI: 10.1016/j.jsbmb.2018.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/18/2018] [Accepted: 11/18/2018] [Indexed: 12/12/2022]
Abstract
In higher metazoans, the nuclear hormone receptors activate transcription trough their specific adaptors, nuclear hormone receptor adaptors NCoA, which are absent in lower metazoans. The Nine amino acid TransActivation Domain, 9aaTAD, was reported for a large number of the transcription activators that recruit general mediators of transcription. In this study, we demonstrated that the 9aaTAD from NHR-49 receptor of nematode C.elegans activates transcription as a small peptide. We showed that the ancient 9aaTAD domains are conserved in the nuclear hormone receptors including human HNF4, RARa, VDR and PPARg. Also their small 9aaTAD peptides effectively activated transcription in absence of the NCoA adaptors. We also showed that adjacent H11 domains in ancient and modern hormone receptors have an inhibitory effect on their 9aaTAD function.
Collapse
Affiliation(s)
- Martin Piskacek
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Czech Republic; Laboratory of Cancer Biology and Genetics, Czech Republic; Gamma Delta T Cell Laboratory, Czech Republic.
| | - Marek Havelka
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Czech Republic; Laboratory of Cancer Biology and Genetics, Czech Republic; Gamma Delta T Cell Laboratory, Czech Republic
| | - Kristina Jendruchova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Czech Republic; Laboratory of Cancer Biology and Genetics, Czech Republic; Gamma Delta T Cell Laboratory, Czech Republic
| | - Andrea Knight
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Czech Republic; Laboratory of Cancer Biology and Genetics, Czech Republic; Gamma Delta T Cell Laboratory, Czech Republic
| |
Collapse
|
11
|
Qu M, Duffy T, Hirota T, Kay SA. Nuclear receptor HNF4A transrepresses CLOCK:BMAL1 and modulates tissue-specific circadian networks. Proc Natl Acad Sci U S A 2018; 115:E12305-E12312. [PMID: 30530698 PMCID: PMC6310821 DOI: 10.1073/pnas.1816411115] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Either expression level or transcriptional activity of various nuclear receptors (NRs) have been demonstrated to be under circadian control. With a few exceptions, little is known about the roles of NRs as direct regulators of the circadian circuitry. Here we show that the nuclear receptor HNF4A strongly transrepresses the transcriptional activity of the CLOCK:BMAL1 heterodimer. We define a central role for HNF4A in maintaining cell-autonomous circadian oscillations in a tissue-specific manner in liver and colon cells. Not only transcript level but also genome-wide chromosome binding of HNF4A is rhythmically regulated in the mouse liver. ChIP-seq analyses revealed cooccupancy of HNF4A and CLOCK:BMAL1 at a wide array of metabolic genes involved in lipid, glucose, and amino acid homeostasis. Taken together, we establish that HNF4A defines a feedback loop in tissue-specific mammalian oscillators and demonstrate its recruitment in the circadian regulation of metabolic pathways.
Collapse
Affiliation(s)
- Meng Qu
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90089
| | - Tomas Duffy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules, Nagoya University, 464-8602 Nagoya, Japan
| | - Steve A Kay
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90089;
| |
Collapse
|
12
|
Induction of Hepatic Metabolic Functions by a Novel Variant of Hepatocyte Nuclear Factor 4γ. Mol Cell Biol 2018; 38:MCB.00213-18. [PMID: 30224520 DOI: 10.1128/mcb.00213-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 09/04/2018] [Indexed: 12/13/2022] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α) is a critical factor for hepatocyte differentiation. HNF4α expression is decreased in hepatocellular carcinoma (HCC), which suggests a role in repression of hepatocyte dedifferentiation. In the present study, hepatic expression of HNF4γ was increased in liver-specific Hnf4a-null mice. The HNF4γ whose expression was increased contained two variants, a known short variant, designated HNF4γ1, and a novel long variant, designated HNF4γ2. HNF4G2 mRNA was highly expressed in small intestine, and the transactivation potential of HNF4γ2 was the strongest among these variants, but the potential of HNF4γ1 was the lowest. Cotransfection experiments revealed that HNF4γ1 repressed HNF4α- and HNF4γ2-dependent transactivation, while HNF4γ2 promoted HNF4α-dependent transactivation. HNF4γ1 and HNF4γ2 were able to bind to the HNF4α binding sites with an affinity similar to that of HNF4α. Furthermore, HNF4γ2, but not HNF4γ1, robustly induced the expression of typical HNF4α target genes to a greater degree than HNF4α. Additionally, HNF4γ2 suppressed proliferation of hepatoma cells as well as HNF4α and HNF4γ1 did, and HNF4γ2 induced critical hepatic functions, such as glucose and urea production, and cytochrome P450 1A2 activity more strongly than HNF4α and HNF4γ1 did. These results indicate that HNF4γ2 has potential for redifferentiation of HCC and thus may be explored as a target for HCC therapy.
Collapse
|
13
|
Braverman-Gross C, Nudel N, Ronen D, Beer NL, McCarthy MI, Benvenisty N. Derivation and molecular characterization of pancreatic differentiated MODY1-iPSCs. Stem Cell Res 2018; 31:16-26. [PMID: 29990710 DOI: 10.1016/j.scr.2018.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 05/01/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022] Open
Abstract
Maturity onset diabetes of the young (MODY) is a hereditary form of diabetes mellitus presenting at childhood or adolescence, which eventually leads to pancreatic β-cells dysfunction. The underlying genetic basis of MODY disorders is haploinsufficiency, where loss-of-function mutations in a single allele cause the diabetic phenotype in heterozygous patients. MODY1 is a type of MODY disorder resulting from a mutation in the transcription factor hepatocyte nuclear factor 4 alpha (HNF4α). In order to establish a human based model to study MODY1, we generated patient-derived induced pluripotent stem cells (iPSCs). Differentiation of these pluripotent cells towards the pancreatic lineage enabled to evaluate the effects of the MODY1 mutation and its impact on endodermal and pancreatic cells. Analyzing the gene expression profiles of differentiated MODY1 cells, revealed the outcome of HNF4α haploinsufficiency on its targets. This molecular analysis suggests that the differential expression of HNF4α target genes in MODY1 is affected by the number of HNF4α binding sites, their distance from the transcription start site, and the number of other transcription factor binding sites. These features may help explain the molecular manifestations of haploinsufficiency in MODY1 disease.
Collapse
Affiliation(s)
- Carmel Braverman-Gross
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Neta Nudel
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Daniel Ronen
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Nicola L Beer
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel.
| |
Collapse
|
14
|
p300/CBP as a Key Nutritional Sensor for Hepatic Energy Homeostasis and Liver Fibrosis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8168791. [PMID: 29862292 PMCID: PMC5976926 DOI: 10.1155/2018/8168791] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/14/2018] [Accepted: 04/12/2018] [Indexed: 12/23/2022]
Abstract
The overwhelming frequency of metabolic diseases such as obesity and diabetes are closely related to liver diseases, which might share common pathogenic signaling processes. These metabolic disorders in the presence of inflammatory response seem to be triggered by and to reside in the liver, which is the central metabolic organ that plays primary roles in regulating lipid and glucose homeostasis upon alterations of metabolic conditions. Recently, abundant emerging researches suggested that p300 and CREB binding protein (CBP) are crucial regulators of energy homeostasis and liver fibrosis through both their acetyltransferase activities and transcriptional coactivators. Plenty of recent findings demonstrated the potential roles of p300/CBP in mammalian metabolic homeostasis in response to nutrients. This review is focused on the different targets and functions of p300/CBP in physiological and pathological processes, including lipogenesis, lipid export, gluconeogenesis, and liver fibrosis, also provided some nutrients as the regulator of p300/CBP for nutritional therapeutic approaches to treat liver diseases.
Collapse
|
15
|
The molecular functions of hepatocyte nuclear factors - In and beyond the liver. J Hepatol 2018; 68:1033-1048. [PMID: 29175243 DOI: 10.1016/j.jhep.2017.11.026] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/27/2022]
Abstract
The hepatocyte nuclear factors (HNFs) namely HNF1α/β, FOXA1/2/3, HNF4α/γ and ONECUT1/2 are expressed in a variety of tissues and organs, including the liver, pancreas and kidney. The spatial and temporal manner of HNF expression regulates embryonic development and subsequently the development of multiple tissues during adulthood. Though the HNFs were initially identified individually based on their roles in the liver, numerous studies have now revealed that the HNFs cross-regulate one another and exhibit synergistic relationships in the regulation of tissue development and function. The complex HNF transcriptional regulatory networks have largely been elucidated in rodent models, but less so in human biological systems. Several heterozygous mutations in these HNFs were found to cause diseases in humans but not in rodents, suggesting clear species-specific differences in mutational mechanisms that remain to be uncovered. In this review, we compare and contrast the expression patterns of the HNFs, the HNF cross-regulatory networks and how these liver-enriched transcription factors serve multiple functions in the liver and beyond, extending our focus to the pancreas and kidney. We also summarise the insights gained from both human and rodent studies of mutations in several HNFs that are known to lead to different disease conditions.
Collapse
|
16
|
RNA helicase DDX3 maintains lipid homeostasis through upregulation of the microsomal triglyceride transfer protein by interacting with HNF4 and SHP. Sci Rep 2017; 7:41452. [PMID: 28128295 PMCID: PMC5269733 DOI: 10.1038/srep41452] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/19/2016] [Indexed: 01/06/2023] Open
Abstract
Multifunctional RNA helicase DDX3 participates in HCV infection, one of the major causes of hepatic steatosis. Here, we investigated the role of DDX3 in hepatic lipid metabolism. We found that HCV infection severely reduced DDX3 expression. Analysis of intracellular triglyceride and secreted ApoB indicated that lipid accumulations were increased while ApoB secretion were decreased in DDX3 knockdown HuH7 and HepG2 cell lines. Down-regulation of DDX3 significantly decreased protein and transcript expression of microsomal triglyceride transfer protein (MTP), a key regulator of liver lipid homeostasis. Moreover, DDX3 interacted with hepatocyte nuclear factor 4 (HNF4) and small heterodimer partner (SHP), and synergistically up-regulated HNF4-mediated transactivation of MTP promoter via its ATPase activity. Further investigation revealed that DDX3 interacted with CBP/p300 and increased the promoter binding affinity of HNF4 by enhancing HNF4 acetylation. Additionally, DDX3 partially relieved the SHP-mediated suppression on MTP promoter by competing with SHP for HNF4 binding which disrupted the inactive HNF4/SHP heterodimer while promoted the formation of the active HNF4 homodimer. Collectively, these results imply that DDX3 regulates MTP gene expression and lipid homeostasis through interplay with HNF4 and SHP, which may also reveal a novel mechanism of HCV-induced steatosis.
Collapse
|
17
|
Patel SR, Skafar DF. Modulation of nuclear receptor activity by the F domain. Mol Cell Endocrinol 2015; 418 Pt 3:298-305. [PMID: 26184856 DOI: 10.1016/j.mce.2015.07.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/09/2015] [Accepted: 07/09/2015] [Indexed: 10/23/2022]
Abstract
The F domain located at the C-terminus of proteins is one of the least conserved regions of the estrogen receptors alpha and beta, members of the nuclear hormone receptor superfamily. Indeed, many members of the superfamily lack the F domain. However, when present, removing the F domain entirely or mutating it alters transactivation, dimerization, and the responses to agonist and antagonist ligands. This review focuses on the functions of the F domain of the estrogen receptors, particularly in relation to other members of the superfamily.
Collapse
Affiliation(s)
- Shivali R Patel
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Debra F Skafar
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
18
|
Yamagata K. Roles of HNF1α and HNF4α in pancreatic β-cells: lessons from a monogenic form of diabetes (MODY). VITAMINS AND HORMONES 2015; 95:407-23. [PMID: 24559927 DOI: 10.1016/b978-0-12-800174-5.00016-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mutations in the genes encoding hepatocyte nuclear factor (HNF)1α and HNF4α cause a monogenic form of diabetes mellitus known as maturity-onset diabetes of the young (MODY). The primary cause of MODY is an impairment of glucose-stimulated insulin secretion by pancreatic β-cells, indicating the important roles of HNF1α and HNF4α in β-cells. Large-scale genetic studies have clarified that the common variants of HNF1α and HNF4α genes are also associated with type 2 diabetes, suggesting that they are involved in the pathogenesis of both diseases. Recent experimental studies revealed that HNF1α controls both β-cell function and growth by regulating target genes such as glucose transporter 2, pyruvate kinase, collectrin, hepatocyte growth factor activator, and HNF4α. In contrast, HNF4α mainly regulates the function of β-cells. Although direct target genes of HNF4α in β-cells are largely unknown, we recently identified Anks4b as a novel target of HNF4α that regulates β-cell susceptibility to endoplasmic reticulum stress. Studies of MODY have led to a better understanding of the molecular mechanism of glucose-stimulated insulin secretion by pancreatic β-cells.
Collapse
Affiliation(s)
- Kazuya Yamagata
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
19
|
Martínez-Jiménez CP, Jover R, Gómez-Lechón MJ, Castell JV. Can hepatoma cell lines be redifferentiated to be used in drug metabolism studies? Altern Lab Anim 2013; 32 Suppl 1A:65-74. [PMID: 23577436 DOI: 10.1177/026119290403201s11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Knowledge of metabolism, enzymes so far involved, and potential enzyme-inhibiting or enzyme-inducing properties of new compounds is a key issue in drug development. Primary cultured hepatocytes, cytochrome P450 (CYP)-engineered cells and hepatoma cell lines are currently being used for this purpose, but only primary cultures can produce a metabolic profile of a drug similar to that found in vivo and can respond to inducers. Because of their limited accessibility, alternatives to replace human hepatocytes are currently being explored, including the immortalisation of hepatocytes by using different strategies (i.e. SV40 T-large antigen, conditionally immortalised hepatocytes, transfection with c-myc, cH-ras, N-ras oncogenes, transgenic animals over-expressing growth factors or oncogenes and cre-lox recombination/excision). However, none of the resulting cells has the desirable phenotypic characteristics to replace primary cultures in drug metabolisms studies. We investigated why these differentiated human hepatomas do not express CYP genes and found that the levels of certain key transcription factors clearly differ from those found in hepatocytes. It was then conceivable that re-expression of one (or more) of these transcription factors could lead to an efficient transcription of CYP genes. The feasibility of this hypothesis was demonstrated by genetic engineering of Hep G2 cells with liver-enriched transcription factors followed by the analysis of the expression of the most relevant human CYPs.
Collapse
|
20
|
Cronin KR, Mangan TP, Carew JA. Upregulation of the coagulation factor VII gene during glucose deprivation is mediated by activating transcription factor 4. PLoS One 2012; 7:e40994. [PMID: 22848420 PMCID: PMC3407153 DOI: 10.1371/journal.pone.0040994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/15/2012] [Indexed: 12/20/2022] Open
Abstract
Background Constitutive production of blood coagulation proteins by hepatocytes is necessary for hemostasis. Stressful conditions trigger adaptive cellular responses and delay processing of most proteins, potentially affecting plasma levels of proteins secreted exclusively by hepatocytes. We examined the effect of glucose deprivation on expression of coagulation proteins by the human hepatoma cell line, HepG2. Methodology/Principal Findings Expression of coagulation factor VII, which is required for initiation of blood coagulation, was elevated by glucose deprivation, while expression of other coagulation proteins decreased. Realtime PCR and ELISA demonstrated that the relative percentage expression +/− SD of steady-state F7 mRNA and secreted factor VII antigen were significantly increased (from 100+/−15% to 188+/−27% and 100+/−8.8% to 176.3+/−17.3% respectively, p<0.001) at 24 hr of treatment. The integrated stress response was induced, as indicated by upregulation of transcription factor ATF4 and of additional stress-responsive genes. Small interfering RNAs directed against ATF4 potently reduced basal F7 expression, and prevented F7 upregulation by glucose deprivation. The response of the endogenous F7 gene was replicated in reporter gene assays, which further indicated that ATF4 effects were mediated via interaction with an amino acid response element in the F7 promoter. Conclusions/Significance Our data indicated that glucose deprivation enhanced F7 expression in a mechanism reliant on prior ATF4 upregulation primarily due to increased transcription from the ATF4 gene. Of five coagulation protein genes examined, only F7 was upregulated, suggesting that its functions may be important in a systemic response to glucose deprivation stress.
Collapse
Affiliation(s)
- Katherine R. Cronin
- Department of Research, VA Boston Healthcare System, West Roxbury, Massachusetts, United States of America
| | - Thomas P. Mangan
- Department of Research, VA Boston Healthcare System, West Roxbury, Massachusetts, United States of America
| | - Josephine A. Carew
- Department of Research, VA Boston Healthcare System, West Roxbury, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
21
|
Sato Y, Hatta M, Karim MF, Sawa T, Wei FY, Sato S, Magnuson MA, Gonzalez FJ, Tomizawa K, Akaike T, Yoshizawa T, Yamagata K. Anks4b, a novel target of HNF4α protein, interacts with GRP78 protein and regulates endoplasmic reticulum stress-induced apoptosis in pancreatic β-cells. J Biol Chem 2012; 287:23236-45. [PMID: 22589549 DOI: 10.1074/jbc.m112.368779] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations of the HNF4A gene cause a form of maturity-onset diabetes of the young (MODY1) that is characterized by impairment of pancreatic β-cell function. HNF4α is a transcription factor belonging to the nuclear receptor superfamily (NR2A1), but its target genes in pancreatic β-cells are largely unknown. Here, we report that ankyrin repeat and sterile α motif domain containing 4b (Anks4b) is a target of HNF4α in pancreatic β-cells. Expression of Anks4b was decreased in both βHNF4α KO islets and HNF4α knockdown MIN6 β-cells, and HNF4α activated Anks4b promoter activity. Anks4b bound to glucose-regulated protein 78 (GRP78), a major endoplasmic reticulum (ER) chaperone protein, and overexpression of Anks4b enhanced the ER stress response and ER stress-associated apoptosis of MIN6 cells. Conversely, suppression of Anks4b reduced β-cell susceptibility to ER stress-induced apoptosis. These results indicate that Anks4b is a HNF4α target gene that regulates ER stress in β-cells by interacting with GRP78, thus suggesting that HNF4α is involved in maintenance of the ER.
Collapse
Affiliation(s)
- Yoshifumi Sato
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang SH, Yeh SH, Lin WH, Yeh KH, Yuan Q, Xia NS, Chen DS, Chen PJ. Estrogen receptor α represses transcription of HBV genes via interaction with hepatocyte nuclear factor 4α. Gastroenterology 2012; 142:989-998.e4. [PMID: 22240483 DOI: 10.1053/j.gastro.2011.12.045] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/08/2011] [Accepted: 12/26/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Women with hepatitis B virus (HBV) infection usually have lower viral loads than men, reducing their risk of liver cancer. There are 2 androgen-responsive elements in the HBV enhancer I that contribute to higher viral titers in men. We investigated whether and how estrogen signaling affects progression of HBV infection. METHODS Ovariectomy and estrogen supplementation were used to evaluate the effect of estrogen on HBV titers in transgenic mice with replicating HBV in hepatocytes. The effect of estrogen signaling on transcription of HBV genes, and the mechanisms of regulation, were studied in HepG2 cells. RESULTS HBV titers increased in female mice after ovariectomy and decreased in male mice supplemented with estrogen. Hepatic expression of estrogen receptor (ER)-α was increased by estrogen exposure. In HepG2 cells, up-regulation of ER-α reduced HBV transcription, which required a specific region within enhancer I. Direct DNA binding of ER-α and histone deacetylase activity were not required for ER-α-mediated repression of HBV genes. Overexpression of hepatocyte nuclear factor (HNF)-4α, which binds to this region, overcame the repressive effect of ER-α. ER-α did not repress transcription of an HBV replicon with a mutant HNF-4α binding site within enhancer I. Coimmunoprecipitation assays showed an interaction between ER-α and HNF-4α; this interaction prevented HNF-4α binding to enhancer I and activation of HBV transcription. CONCLUSIONS Estrogen can repress transcription of HBV genes by up-regulating ER-α, which interacts with and alters binding of HNF-4α to the HBV enhancer I. These findings might account for the lower viral load and reduced incidence of liver cancer in HBV-infected women than men.
Collapse
Affiliation(s)
- Sheng-Han Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Salgado MC, Metón I, Anemaet IG, González JD, Fernández F, Baanante IV. Hepatocyte nuclear factor 4α transactivates the mitochondrial alanine aminotransferase gene in the kidney of Sparus aurata. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:46-62. [PMID: 21607544 DOI: 10.1007/s10126-011-9386-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 05/03/2011] [Indexed: 05/30/2023]
Abstract
Alanine aminotransferase (ALT) plays an important role in amino acid metabolism and gluconeogenesis. The preference of carnivorous fish for protein amino acids instead of carbohydrates as a source of energy lead us to study the transcriptional regulation of the mitochondrial ALT (mALT) gene and to characterize the enzyme kinetics and modulation of mALT expression in the kidney of gilthead sea bream (Sparus aurata) under different nutritional and hormonal conditions. 5'-Deletion analysis of mALT promoter in transiently transfected HEK293 cells, site-directed mutagenesis and electrophoretic mobility shift assays allowed us to identify HNF4α as a new factor involved in the transcriptional regulation of mALT expression. Quantitative RT-PCR assays showed that starvation and the administration of streptozotocin (STZ) decreased HNF4α levels in the kidney of S. aurata, leading to the downregulation of mALT transcription. Analysis of the tissue distribution showed that kidney, liver, and intestine were the tissues with higher mALT and HNF4α expression. Kinetic analysis indicates that mALT enzyme is more efficient in catalyzing the conversion of L: -alanine to pyruvate than the reverse reaction. From these results, we conclude that HNF4α transactivates the mALT promoter and that the low levels of mALT expression found in the kidney of starved and STZ-treated fish result from a decreased expression of HNF4α. Our findings suggest that the mALT isoenzyme plays a major role in oxidazing dietary amino acids, and points to ALT as a target for a biotechnological action to spare protein and optimize the use of dietary nutrients for fish culture.
Collapse
Affiliation(s)
- María C Salgado
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Joan XXIII s/n, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Yokoyama A, Katsura S, Ito R, Hashiba W, Sekine H, Fujiki R, Kato S. Multiple post-translational modifications in hepatocyte nuclear factor 4α. Biochem Biophys Res Commun 2011; 410:749-53. [PMID: 21708125 DOI: 10.1016/j.bbrc.2011.06.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 06/03/2011] [Indexed: 01/03/2023]
Abstract
To investigate the role of post-translational modifications (PTMs) in the hepatocyte nuclear factor 4α (HNF4α)-mediated transcription, we took a comprehensive survey of PTMs in HNF4α protein by mass-spectrometry and identified totally 8 PTM sites including newly identified ubiquitilation and acetylation sites. To assess the impact of identified PTMs in HNF4α-function, we introduced point mutations at the identified PTM sites and, tested transcriptional activity of the HNF4α. Among the point-mutations, an acetylation site at lysine 458 was found significant in the HNF4α-mediated transcriptional control. An acetylation negative mutant at lysine 458 showed an increased transcriptional activity by about 2-fold, while an acetylation mimic mutant had a lowered transcriptional activation. Furthermore, this acetylation appeared to be fluctuated in response to extracellular nutrient conditions. Thus, by applying an comprehensive analysis of PTMs, multiple PTMs were newly identified in HNF4α and unexpected role of an HNF4α acetylation could be uncovered.
Collapse
Affiliation(s)
- Atsushi Yokoyama
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Wang Z, Salih E, Burke PA. Quantitative analysis of cytokine-induced hepatocyte nuclear factor-4α phosphorylation by mass spectrometry. Biochemistry 2011; 50:5292-300. [PMID: 21598922 DOI: 10.1021/bi200540w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocyte nuclear factor-4α (HNF-4α), a liver-enriched transcription factor, is essential for liver development and function. HNF-4α regulates a large number of liver-specific genes, many of which are modulated by injury. While HNF-4α function is regulated by phosphorylation, only a limited number of phosphorylation sites in HNF-4α have been identified, and the roles of HNF-4α phosphorylation after injury are unexplored. To address these issues, we have carried out an extensive quantitative mass spectrometry (MS)-based analysis of HNF-4α serine and threonine phosphorylation in response to cytokine stimulation. Studies were performed in HNF-4α-enriched HepG2 cells treated with cytokines for 3 h or left untreated, followed by chemical derivatization of the phosphoserine and phosphothreonine residues using stable isotopic variants of dithiothreitol (DTT) and MS analysis. This has allowed the identification and relative quantification of 12 serine/threonine phosphorylation sites in HNF-4α. Eight of these phosphorylation sites and their sensitivity to cytokine stimulation have not been previously reported. We found that cytokine treatment leads to an increase of HNF-4α phosphorylation in several phosphopeptides. The phosphorylation of HNF-4α mediated by protein kinase A (PKA) significantly reduces HNF-4α binding activity, which mimics the repressive effect of cytokines on HNF-4α binding, and the inhibition of PKA activity by PKA inhibitor can partially recover the reduced HNF-4α binding activity induced by cytokines. These results suggest that the mechanism that alters HNF-4α binding after cytokine stimulation involves modulation of specific HNF-4α phosphorylation dependent, in part, on a PKA signaling pathway.
Collapse
Affiliation(s)
- Zhongyan Wang
- Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
26
|
KANAZAWA T, ICHII O, OTSUKA S, NAMIKI Y, HASHIMOTO Y, KON Y. Hepatocyte Nuclear Factor 4 Alpha is Associated with Mesenchymal-Epithelial Transition in Developing Kidneys of C57BL/6 Mice. J Vet Med Sci 2011; 73:601-7. [DOI: 10.1292/jvms.10-0493] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Tomonori KANAZAWA
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University
| | - Osamu ICHII
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University
| | - Saori OTSUKA
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University
| | - Yuka NAMIKI
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University
| | - Yoshiharu HASHIMOTO
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University
| | - Yasuhiro KON
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University
| |
Collapse
|
27
|
Med25 is required for RNA polymerase II recruitment to specific promoters, thus regulating xenobiotic and lipid metabolism in human liver. Mol Cell Biol 2010; 31:466-81. [PMID: 21135126 DOI: 10.1128/mcb.00847-10] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α) controls the expression of many critical metabolic pathways, and the Mediator complex occupies a central role in recruiting RNA polymerase II (Pol II) to these gene promoters. An impaired transcriptional HNF4α network in human liver is responsible for many pathological conditions, such as altered drug metabolism, fatty liver, and diabetes. Here, we report that Med25, an associated member of the Mediator complex, is required for the association of HNF4α with Mediator, its several cofactors, and RNA Pol II. Further, increases and decreases in endogenous Med25 levels are reflected in the composition of the transcriptional complex, Pol II recruitment, and the expression of HNF4α-bound target genes. A novel feature of Med25 is that it imparts "selectivity." Med25 affects only a significant subset of HNF4α target genes that selectively regulate drug and lipid metabolism. These results define a role for Med25 and the Mediator complex in the regulation of xenobiotic metabolism and lipid homeostasis.
Collapse
|
28
|
Mosialou I, Zannis VI, Kardassis D. Regulation of human apolipoprotein m gene expression by orphan and ligand-dependent nuclear receptors. J Biol Chem 2010; 285:30719-30. [PMID: 20660599 DOI: 10.1074/jbc.m110.131771] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Apolipoprotein M (apoM) plays an important role in the biogenesis and the metabolism of anti-atherogenic HDL particles in plasma and is expressed primarily in the liver and the kidney. We investigated the role of hormone nuclear receptors in apoM gene regulation in hepatic cells. Overexpression via adenovirus-mediated gene transfer and siRNA-mediated gene silencing established that hepatocyte nuclear factor 4 (HNF-4) is an important regulator of apoM gene transcription in hepatic cells. apoM promoter deletion analysis combined with DNA affinity precipitation and chromatin immunoprecipitation assays revealed that HNF-4 binds to a hormone-response element (HRE) in the proximal apoM promoter (nucleotides -33 to -21). Mutagenesis of this HRE decreased basal hepatic apoM promoter activity to 10% of control and abolished the HNF4-mediated transactivation of the apoM promoter. In addition to HNF-4, homodimers of retinoid X receptor and heterodimers of retinoid X receptor with receptors for retinoic acid, thyroid hormone, fibrates (peroxisome proliferator-activated receptor), and oxysterols (liver X receptor) were shown to bind with different affinities to the proximal HRE in vitro and in vivo. Ligands of these receptors strongly induced human apoM gene transcription and apoM promoter activity in HepG2 cells, whereas mutations in the proximal HRE abolished this induction. These findings provide novel insights into the role of apoM in the regulation of HDL by steroid hormones and into the development of novel HDL-based therapies for diseases such as diabetes, obesity, metabolic syndrome, and coronary artery disease that affect a large proportion of the population in Western countries.
Collapse
Affiliation(s)
- Ioanna Mosialou
- Department of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Heraklion 71003, Greece
| | | | | |
Collapse
|
29
|
Kanazawa T, Konno A, Hashimoto Y, Kon Y. Hepatocyte nuclear factor 4 alpha is related to survival of the condensed mesenchyme in the developing mouse kidney. Dev Dyn 2010; 239:1145-54. [DOI: 10.1002/dvdy.22276] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
30
|
Takahashi H, Martin-Brown S, Washburn MP, Florens L, Conaway JW, Conaway RC. Proteomics reveals a physical and functional link between hepatocyte nuclear factor 4alpha and transcription factor IID. J Biol Chem 2009; 284:32405-12. [PMID: 19805548 DOI: 10.1074/jbc.m109.017954] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Proteomic analyses have contributed substantially to our understanding of diverse cellular processes. Improvements in the sensitivity of mass spectrometry approaches are enabling more in-depth analyses of protein-protein networks and, in some cases, are providing surprising new insights into well established, longstanding problems. Here, we describe such a proteomic analysis that exploits MudPIT mass spectrometry and has led to the discovery of a physical and functional link between the orphan nuclear receptor hepatocyte nuclear factor 4alpha (HNF4alpha) and transcription factor IID (TFIID). A systematic characterization of the HNF4alpha-TFIID link revealed that the HNF4alpha DNA-binding domain binds directly to the TATA box-binding protein (TBP) and, through this interaction, can target TBP or TFIID to promoters containing HNF4alpha-binding sites in vitro. Supporting the functional significance of this interaction, an HNF4alpha mutation that blocks binding of TBP to HNF4alpha interferes with HNF4alpha transactivation activity in cells. These findings identify an unexpected role for the HNF4alpha DNA-binding domain in mediating key regulatory interactions and provide new insights into the roles of HNF4alpha and TFIID in RNA polymerase II transcription.
Collapse
Affiliation(s)
- Hidehisa Takahashi
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | | | | | | | |
Collapse
|
31
|
Nedumaran B, Hong S, Xie YB, Kim YH, Seo WY, Lee MW, Lee CH, Koo SH, Choi HS. DAX-1 acts as a novel corepressor of orphan nuclear receptor HNF4alpha and negatively regulates gluconeogenic enzyme gene expression. J Biol Chem 2009; 284:27511-23. [PMID: 19651776 DOI: 10.1074/jbc.m109.034660] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
DAX-1 (dosage-sensitive sex reversal adrenal hypoplasia congenital critical region on X chromosome, gene 1) is an atypical member of the nuclear receptor family and acts as a corepressor of a number of nuclear receptors. HNF4alpha (hepatocyte nuclear factor 4alpha) is a liver-enriched transcription factor that controls the expression of a variety of genes involved in cholesterol, fatty acid, and glucose metabolism. Here we show that DAX-1 inhibits transcriptional activity of HNF4alpha and modulates hepatic gluconeogenic gene expression. Hepatic DAX-1 expression is increased by insulin and SIK1 (salt-inducible kinase 1), whereas it is decreased in high fat diet-fed and diabetic mice. Coimmunoprecipitation assay from mouse liver samples depicts that endogenous DAX-1 interacts with HNF4alpha in vivo. In vivo chromatin immunoprecipitation assay affirms that the recruitment of DAX-1 on the phosphoenolpyruvate carboxykinase (PEPCK) gene promoter is inversely correlated with the recruitment of PGC-1alpha and HNF4alpha under fasting and refeeding, showing that DAX-1 could compete with the coactivator PGC-1alpha for binding to HNF4alpha. Adenovirus-mediated expression of DAX-1 decreased both HNF4alpha- and forskolin-mediated gluconeogenic gene expressions. In addition, knockdown of DAX-1 partially reverses the insulin-mediated inhibition of gluconeogenic gene expression in primary hepatocytes. Finally, DAX-1 inhibits PEPCK and glucose-6-phosphatase gene expression and significantly lowers fasting blood glucose level in high fat diet-fed mice, suggesting that DAX-1 can modulate hepatic gluconeogenesis in vivo. Overall, this study demonstrates that DAX-1 acts as a corepressor of HNF4alpha to negatively regulate hepatic gluconeogenic gene expression in liver.
Collapse
Affiliation(s)
- Balachandar Nedumaran
- Hormone Research Center, School of Biological Science and Technology, Chonnam National University, Gwangju 500-757, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yuan X, Ta TC, Lin M, Evans JR, Dong Y, Bolotin E, Sherman MA, Forman BM, Sladek FM. Identification of an endogenous ligand bound to a native orphan nuclear receptor. PLoS One 2009; 4:e5609. [PMID: 19440305 PMCID: PMC2680617 DOI: 10.1371/journal.pone.0005609] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 04/22/2009] [Indexed: 12/25/2022] Open
Abstract
Orphan nuclear receptors have been instrumental in identifying novel signaling pathways and therapeutic targets. However, identification of ligands for these receptors has often been based on random compound screens or other biased approaches. As a result, it remains unclear in many cases if the reported ligands are the true endogenous ligands, – i.e., the ligand that is bound to the receptor in an unperturbed in vivo setting. Technical limitations have limited our ability to identify ligands based on this rigorous definition. The orphan receptor hepatocyte nuclear factor 4 α (HNF4α) is a key regulator of many metabolic pathways and linked to several diseases including diabetes, atherosclerosis, hemophilia and cancer. Here we utilize an affinity isolation/mass-spectrometry (AIMS) approach to demonstrate that HNF4α is selectively occupied by linoleic acid (LA, C18:2ω6) in mammalian cells and in the liver of fed mice. Receptor occupancy is dramatically reduced in the fasted state and in a receptor carrying a mutation derived from patients with Maturity Onset Diabetes of the Young 1 (MODY1). Interestingly, however, ligand occupancy does not appear to have a significant effect on HNF4α transcriptional activity, as evidenced by genome-wide expression profiling in cells derived from human colon. We also use AIMS to show that LA binding is reversible in intact cells, indicating that HNF4α could be a viable drug target. This study establishes a general method to identify true endogenous ligands for nuclear receptors (and other lipid binding proteins), independent of transcriptional function, and to track in vivo receptor occupancy under physiologically relevant conditions.
Collapse
Affiliation(s)
- Xiaohui Yuan
- Department of Gene Regulation and Drug Discovery, Gonda Diabetes Research Center, The Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
| | - Tuong Chi Ta
- Cell, Molecular and Developmental Biology Graduate Program, University of California Riverside, Riverside, California, United States of America
| | - Min Lin
- Department of Gene Regulation and Drug Discovery, Gonda Diabetes Research Center, The Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
| | - Jane R. Evans
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, California, United States of America
| | - Yinchen Dong
- Department of Gene Regulation and Drug Discovery, Gonda Diabetes Research Center, The Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
| | - Eugene Bolotin
- Genetics, Genomics and Bioinformatics Graduate Program, University of California Riverside, Riverside, California, United States of America
| | - Mark A. Sherman
- Department of Biomedical Informatics, The Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
| | - Barry M. Forman
- Department of Gene Regulation and Drug Discovery, Gonda Diabetes Research Center, The Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail: (BMF); (FMS)
| | - Frances M. Sladek
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, California, United States of America
- * E-mail: (BMF); (FMS)
| |
Collapse
|
33
|
Huang J, Levitsky LL, Rhoads DB. Novel P2 promoter-derived HNF4alpha isoforms with different N-terminus generated by alternate exon insertion. Exp Cell Res 2009; 315:1200-11. [PMID: 19353766 DOI: 10.1016/j.yexcr.2009.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha) is a critical transcription factor for pancreas and liver development and functions in islet beta cells to maintain glucose homeostasis. Mutations in the human HNF4A gene lead to maturity onset diabetes of the young (MODY1) and polymorphisms are associated with increased risk for type 2 diabetes mellitus (T2DM). Expression of six HNF4alpha variants, three each from two developmentally regulated promoters, has been firmly established. We have now detected a new set of HNF4alpha variants designated HNF4alpha10-12 expressed from distal promoter P2. These variants, generated by inclusion of previously undetected exon 1E (human=222 nt, rodent=136 nt) following exon 1D have an altered N-terminus but identical remaining reading frame. HNF4alpha10-alpha12 are expressed in pancreatic islets (and liver) and exhibit transactivation potentials similar to the corresponding alpha7-alpha9 isoforms. DNA-binding analyses implied much higher protein levels of HNF4alpha10-alpha12 in liver than expected from the RT-PCR data. Our results provide evidence for a more complex expression pattern of HNF4alpha than previously appreciated. We recommend inclusion of exon 1E and nearby DNA sequences in screening for HNF4alpha mutations and polymorphisms in genetic analyses of MODY1 and T2DM.
Collapse
Affiliation(s)
- Jianmin Huang
- MassGeneral Hospital for Children, Harvard Medical School, Boston, Massachusetts 02114-2696, USA.
| | | | | |
Collapse
|
34
|
|
35
|
Lei NZ, Zhang XY, Chen HZ, Wang Y, Zhan YY, Zheng ZH, Shen YM, Wu Q. A feedback regulatory loop between methyltransferase PRMT1 and orphan receptor TR3. Nucleic Acids Res 2008; 37:832-48. [PMID: 19095693 PMCID: PMC2647306 DOI: 10.1093/nar/gkn941] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PRMT1, an arginine methyltransferase, plays an important role in numerous cellular processes. In this study, we demonstrate a feedback regulatory loop between PRMT1 and the orphan receptor TR3. Unlike another orphan receptor HNF4, TR3 is not methylated by PRMT1 although they physically interact with each other. By delaying the TR3 protein degradation, PRMT1 binding leads to the elevation of TR3 cellular protein level, thereby enhances the DNA binding and transactivation activity of TR3 in a non-methyltransferase manner. Another coactivator SRC-2 acts synergistically with PRMT1 to regulate TR3 functions. In turn, TR3 binding to the catalytic domain of PRMT1 causes an inhibition of the PRMT1 methyltransferase activity. This repression results in the functional changes in some of PRMT1 substrates, including STAT3 and Sam68. The negative regulation of PRMT1 by TR3 was further confirmed in both TR3-knockdown cells and TR3-knockout mice with the use of an agonist for TR3. Taken together, our study not only identifies a regulatory role of PRMT1, independent on methyltransferase activity, in TR3 transactivation, but also characterizes a novel function of TR3 in the repression of PRMT1 methyltransferase activity.
Collapse
Affiliation(s)
- Na-zi Lei
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian Province, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Huang J, Karakucuk V, Levitsky LL, Rhoads DB. Expression of HNF4alpha variants in pancreatic islets and Ins-1 beta cells. Diabetes Metab Res Rev 2008; 24:533-43. [PMID: 18561282 DOI: 10.1002/dmrr.870] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Hepatocyte nuclear factor (HNF4alpha) is a nuclear receptor essential for endodermal differentiation and cell functions in the adult pancreas, liver, and other tissues. Mutations in the HNF4A gene cause MODY1. Up to nine protein variants arise from two developmentally regulated promoters. Because some variants lack the N-terminal activation function 1 (AF-1) and/or C-terminal inhibitory F domain, defining their tissue-specific regulation and function is important for understanding pancreatic beta cell behaviour. METHODS Expression of HNF4alpha variants in islets, rat Ins-1 insulinoma cells, and human Hep3B hepatocellular carcinoma cells was assessed using a long-range reverse transcription-polymerase chain reaction (RT-PCR) strategy capable of recognizing each combination of mRNA termini. Protein expression was verified by immuno-blotting with terminus-specific antibodies and DNA-binding assays. RESULTS Mouse islets and both cell lines express HNF4alpha9, which lacks both AF-1 and the F domain. Islets also expressed the HNF4alpha P1 promoter variants HNF4alpha1/alpha2, and Hep3B cells expressed HNF4alpha3. When ectopically expressed in COS-7 cells, HNF4alpha1, alpha3, alpha7, and alpha9 each stimulated an HNF4alpha-dependent promoter. Variants containing exon 1B (HNF4alpha4 - alpha6) were not detected. Lack of canonical splicing signals and species conservation argues against exon 1B usage. CONCLUSIONS This is the first report of HNF4alpha9 expression in any tissue. Our findings extend our understanding of HNF4alpha gene transcription and function. This knowledge may be useful in efforts to recover or establish regulated insulin secretion.
Collapse
Affiliation(s)
- Jianmin Huang
- Pediatric Endocrine Unit, MassGeneral Hospital for Children and Harvard Medical School, Boston, MA 02114-2696, USA
| | | | | | | |
Collapse
|
37
|
Harries LW, Locke JM, Shields B, Hanley NA, Hanley KP, Steele A, Njølstad PR, Ellard S, Hattersley AT. The diabetic phenotype in HNF4A mutation carriers is moderated by the expression of HNF4A isoforms from the P1 promoter during fetal development. Diabetes 2008; 57:1745-52. [PMID: 18356407 DOI: 10.2337/db07-1742] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Mutations in the alternatively spliced HNF4A gene cause maturity-onset diabetes of the young (MODY). We characterized the spatial and developmental expression patterns of HNF4A transcripts in human tissues and investigated their role as potential moderators of the MODY phenotype. RESEARCH DESIGN AND METHODS We measured the expression of HNF4A isoforms in human adult tissues and gestationally staged fetal pancreas by isoform-specific real-time PCR. The correlation between mutation position and age of diagnosis or age-related penetrance was assessed in a cohort of 190 patients with HNF4A mutations. RESULTS HNF4A was expressed exclusively from the P2 promoter in adult pancreas, but from 9 weeks until at least 26 weeks after conception, up to 23% of expression in fetal pancreas was of P1 origin. HNF4A4-6 transcripts were not detected in any tissue. In whole pancreas, HNF4A9 expression was greater than in islets isolated from the endocrine pancreas (relative level 22 vs. 7%). Patients with mutations in exons 9 and 10 (absent from HNF4A3, HNF4A6, and HNF4A9 isoforms) developed diabetes later than those with mutations in exons 2-8, where all isoforms were affected (40 vs. 24 years; P = 0.029). Exon 9/10 mutations were also associated with a reduced age-related penetrance (53 vs. 10% without diabetes at age 55 years; P < 0.00001). CONCLUSIONS We conclude that isoforms derived from the HNF4A P1 promoter are expressed in human fetal, but not adult, pancreas, and that their presence during pancreatic development may moderate the diabetic phenotype in individuals with mutations in the HNF4A gene.
Collapse
Affiliation(s)
- Lorna W Harries
- Institute of Biomedical and Clinical Sciences, Peninsula Medical School, Exeter, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jackson AA, Cronin KR, Zachariah R, Carew JA. CCAAT/enhancer-binding protein-beta participates in insulin-responsive expression of the factor VII gene. J Biol Chem 2007; 282:31156-65. [PMID: 17675296 DOI: 10.1074/jbc.m704694200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Expression of the human coagulation factor VII (FVII) gene by hepatoma cells was modulated in concert with levels of glucose and insulin in the culture medium. In low glucose medium without insulin, amounts of both FVII mRNA and secreted FVII protein were coordinately increased; in the presence of glucose with insulin, both were decreased. Analysis of the FVII promoter showed that these effects could be reproduced in a reporter-gene system, and a small promoter element immediately upstream of the translation start site of the gene, which mediated these effects, was identified. Mutation of this element largely abrogated the glucose/insulin-responsive change in expression of the reporter gene. Several members of the CCAAT/enhancer-binding protein family were found to be capable of binding the identified sequence element but not the mutated element. The expression of a FVII minigene directed by a segment of the native FVII promoter responded to co-expressed activating and inhibiting forms of CCAAT/enhancer-binding protein beta.
Collapse
Affiliation(s)
- Audrey A Jackson
- Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts 02132, USA
| | | | | | | |
Collapse
|
39
|
Ponugoti B, Fang S, Kemper JK. Functional interaction of hepatic nuclear factor-4 and peroxisome proliferator-activated receptor-gamma coactivator 1alpha in CYP7A1 regulation is inhibited by a key lipogenic activator, sterol regulatory element-binding protein-1c. Mol Endocrinol 2007; 21:2698-712. [PMID: 17636037 DOI: 10.1210/me.2007-0196] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Insulin inhibits transcription of cholesterol 7alpha-hydroxylase (Cyp7a1), a key gene in bile acid synthesis, and the hepatic nuclear factor-4 (HNF-4) site in the promoter was identified as a negative insulin response sequence. Using a fasting/feeding protocol in mice and insulin treatment in HepG2 cells, we explored the inhibition mechanisms. Expression of sterol regulatory element-binding protein-1c (SREBP-1c), an insulin-induced lipogenic factor, inversely correlated with Cyp7a1 expression in mouse liver. Interaction of HNF-4 with its coactivator, peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha), was observed in livers of fasted mice and was reduced after feeding. Conversely, HNF-4 interaction with SREBP-1c was increased after feeding. In vitro studies suggested that SREBP-1c competed with PGC-1alpha for direct interaction with the AF2 domain of HNF-4. Reporter assays showed that SREBP-1c, but not of a SREBP-1c mutant lacking the HNF-4 interacting domain, inhibited HNF-4/PGC-1alpha transactivation of Cyp7a1. SREBP-1c also inhibited PGC-1alpha-coactivation of estrogen receptor, constitutive androstane receptor, pregnane X receptor, and farnesoid X receptor, implying inhibition of HNF-4 by SREBP-1c could extend to other nuclear receptors. In chromatin immunoprecipitation studies, HNF-4 binding to the promoter was not altered, but PGC-1alpha was dissociated, SREBP-1c and histone deacetylase-2 (HDAC2) were recruited, and acetylation of histone H3 was decreased upon feeding. Adenovirus-mediated expression of a SREBP-1c dominant-negative mutant, which blocks the interaction of SREBP-1c and HNF-4, partially but significantly reversed the inhibition of Cyp7a1 after feeding. Our data show that SREBP-1c functions as a non-DNA-binding inhibitor and mediates, in part, suppression of Cyp7a1 by blocking functional interaction of HNF-4 and PGC-1alpha. This mechanism may be relevant to known repression of many other HNF-4 target genes upon feeding.
Collapse
Affiliation(s)
- Bhaskar Ponugoti
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
40
|
Castell JV, Jover R, Martínez-Jiménez CP, Gómez-Lechón MJ. Hepatocyte cell lines: their use, scope and limitations in drug metabolism studies. Expert Opin Drug Metab Toxicol 2007; 2:183-212. [PMID: 16866607 DOI: 10.1517/17425255.2.2.183] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gaining knowledge on the metabolism of a drug, the enzymes involved and its inhibition or induction potential is a necessary step in pharmaceutical development of new compounds. Primary human hepatocytes are considered a cellular model of reference, as they express the majority of drug-metabolising enzymes, respond to enzyme inducers and are capable of generating in vitro a metabolic profile similar to what is found in vivo. However, hepatocytes show phenotypic instability and have a restricted accessibility. Different alternatives have been explored in the past recent years to overcome the limitations of primary hepatocytes. These include immortalisation of adult or fetal human hepatic cells by means of transforming tumour virus genes, oncogenes, conditionally immortalised hepatocytes, and cell fusion. New strategies are currently being used to upregulate the expression of drug-metabolising enzymes in cell lines or to derive hepatocytes from progenitor cells. This paper reviews the features of liver-derived cell lines, their suitability for drug metabolism studies as well as the state-of-the-art of the strategies pursued in order to generate metabolically competent hepatic cell lines.
Collapse
Affiliation(s)
- José V Castell
- University Hospital La Fe, Research Centre, Avda, Campanar 21, E-46009 Valencia, Spain
| | | | | | | |
Collapse
|
41
|
Barrero MJ, Malik S. Two functional modes of a nuclear receptor-recruited arginine methyltransferase in transcriptional activation. Mol Cell 2006; 24:233-43. [PMID: 17052457 PMCID: PMC1647399 DOI: 10.1016/j.molcel.2006.09.020] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 04/07/2006] [Accepted: 09/29/2006] [Indexed: 11/23/2022]
Abstract
Nuclear receptors, like other transcriptional activators, switch on gene transcription by recruiting a complex network of coregulatory proteins. Here, we have identified the arginine methyltransferase PRMT1 as a coactivator for HNF4, an orphan nuclear receptor that regulates the expression of genes involved in diverse metabolic pathways. Remarkably, PRMT1, whose methylation activity on histone H4 strongly correlates with induction of HNF4 target genes in differentiating enterocytes, regulates HNF4 activity through a bipartite mechanism. First, PRMT1 binds and methylates the HNF4 DNA-binding domain (DBD), thereby enhancing the affinity of HNF4 for its binding site. Second, PRMT1 is recruited to the HNF4 ligand-binding domain (LBD) through a mechanism that involves the p160 family of coactivators and methylates histone H4 at arginine 3. This, together with recruitment of the histone acetyltransferase p300, leads to nucleosomal alterations and subsequent RNA polymerase II preinitiation complex formation.
Collapse
Affiliation(s)
| | - Sohail Malik
- *Correspondence: Tel. (212) 327-7623 FAX (212) 327-7949
| |
Collapse
|
42
|
Nikolaidou-Neokosmidou V, Zannis V, Kardassis D. Inhibition of hepatocyte nuclear factor 4 transcriptional activity by the nuclear factor kappaB pathway. Biochem J 2006; 398:439-50. [PMID: 16771709 PMCID: PMC1559460 DOI: 10.1042/bj20060169] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HNF-4 (hepatocyte nuclear factor 4) is a key regulator of liver-specific gene expression in mammals. We have shown previously that the activity of the human APOC3 (apolipoprotein C-III) promoter is positively regulated by the anti-inflammatory cytokine TGFbeta (transforming growth factor beta) and its effectors Smad3 (similar to mothers against decapentaplegic 3) and Smad4 proteins via physical and functional interactions between Smads and HNF-4. We now show that the pro-inflammatory cytokine TNFalpha (tumour necrosis factor alpha) antagonizes TGFbeta for the regulation of APOC3 gene expression in hepatocytes. TNFalpha was a strong inhibitor of the activity of apolipoprotein promoters that harbour HNF-4 binding sites and this inhibition required HNF-4. Using specific inhibitors of TNFalpha-induced signalling pathways, it was shown that inhibition of the APOC3 promoter by TNFalpha involved NF-kappaB (nuclear factor kappaB). Latent membrane protein 1 of the Epstein-Barr virus, which is an established potent activator of NF-kappaB as well as wild-type forms of various NF-kappaB signalling mediators, also inhibited strongly the APOC3 promoter and the transactivation function of HNF-4. TNFalpha had no effect on the stability or the nuclear localization of HNF-4 in HepG2 cells, but inhibited the binding of HNF-4 to the proximal APOC3 HRE (hormone response element). Using the yeast-transactivator-GAL4 system, we showed that both AF-1 and AF-2 (activation functions 1 and 2) of HNF-4 are inhibited by TNFalpha and that this inhibition was abolished by overexpression of different HNF-4 co-activators, including PGC-1 (peroxisome-proliferator-activated-receptor-gamma co-activator 1), CBP [CREB (cAMP-response-element-binding protein) binding protein] and SRC3 (steroid receptor co-activator 3). In summary, our findings indicate that TNFalpha, or other factors that trigger an NF-kappaB response in hepatic cells, inhibit the transcriptional activity of the APOC3 and other HNF-4-dependent promoters and that this inhibition could be accounted for by a decrease in DNA binding and the down-regulation of the transactivation potential of the AF-1 and AF-2 domains of HNF-4.
Collapse
Affiliation(s)
- Varvara Nikolaidou-Neokosmidou
- Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas (IMBB-FORTH), Heraklion 71003, Crete, Greece
| | - Vassilis I. Zannis
- Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas (IMBB-FORTH), Heraklion 71003, Crete, Greece
| | - Dimitris Kardassis
- Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas (IMBB-FORTH), Heraklion 71003, Crete, Greece
- To whom correspondence should be addressed (email )
| |
Collapse
|
43
|
Eeckhoute J, Briche I, Kurowska M, Formstecher P, Laine B. Hepatocyte nuclear factor 4 alpha ligand binding and F domains mediate interaction and transcriptional synergy with the pancreatic islet LIM HD transcription factor Isl1. J Mol Biol 2006; 364:567-81. [PMID: 17022998 DOI: 10.1016/j.jmb.2006.07.096] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 07/24/2006] [Accepted: 07/25/2006] [Indexed: 12/30/2022]
Abstract
The orphan nuclear receptor HNF4alpha and the LIM homeodomain factor Isl1 are co-expressed in pancreatic beta-cells and are required for the differentiation and function of these endocrine cells. HNF4alpha activates numerous genes and mutations in its gene are associated with maturity onset diabetes of the young. Cofactors and transcription factors that interact with HNF4alpha are crucial to modulate its transcriptional activity, since the latter is not regulated by conventional ligands. These transcriptional partners interact mainly through the HNF4alpha AF-1 module and the ligand binding domain, which contains the AF-2 module. Here, we showed that Isl1 could enhance the HNF4alpha-mediated activation of transcription of the HNF1alpha, PPARalpha and insulin I promoters. Isl1 interacted with the HNF4alpha AF-2 but also required the HNF4alpha carboxy-terminal F domain for optimal interaction and transcriptional synergy. More specifically, we found that naturally occurring HNF4alpha isoforms, differing only in their F domain, exhibited different abilities to interact and synergize with Isl1, extending the crucial transcriptional modulatory role of the HNF4alpha F domain. HNF4alpha interacted with both the homeodomain and the first LIM domain of Isl1. We found that the transcriptional synergy between HNF4alpha and Isl1 involved an increase in HNF4alpha loading on promoter. The effect was more pronounced on the rat insulin I promoter containing binding sites for both HNF4alpha and Isl1 than on the human HNF1alpha promoter lacking an Isl1 binding site. Moreover, Isl1 could mediate the recruitment of the cofactor CLIM2 resulting in a further transcriptional enhancement of the HNF1alpha promoter activity.
Collapse
|
44
|
Ellard S, Colclough K. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha (HNF1A) and 4 alpha (HNF4A) in maturity-onset diabetes of the young. Hum Mutat 2006; 27:854-69. [PMID: 16917892 DOI: 10.1002/humu.20357] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes mellitus characterized by autosomal dominant inheritance, early age of onset (often <25 years of age), and pancreatic beta-cell dysfunction. MODY is both clinically and genetically heterogeneous, with six different genes identified to date; glucokinase (GCK), hepatocyte nuclear factor-1 alpha (HNF1A, or TCF1), hepatocyte nuclear factor-4 alpha (HNF4A), insulin promoter factor-1 (IPF1 or PDX1), hepatocyte nuclear factor-1 beta (HNF1B or TCF2), and neurogenic differentiation 1 (NEUROD1). Mutations in the HNF1A gene are a common cause of MODY in the majority of populations studied. A total of 193 different mutations have been described in 373 families. The most common mutation is Pro291fs (P291fsinsC) in the polycytosine (poly C) tract of exon 4, which has been reported in 65 families. HNF4A mutations are rarer; 31 mutations reported in 40 families. Sensitivity to treatment with sulfonylurea tablets is a feature of both HNF1A and HNF4A mutations. The identification of an HNF1A or 4A gene mutation confirms a diagnosis of MODY and has important implications for clinical management.
Collapse
Affiliation(s)
- Sian Ellard
- Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Exeter, United Kingdom.
| | | |
Collapse
|
45
|
Hu R, Wu W, Niles EG, LoVerde PT. SmTR2/4, a Schistosoma mansoni homologue of TR2/TR4 orphan nuclear receptor. Int J Parasitol 2006; 36:1113-22. [PMID: 16839558 DOI: 10.1016/j.ijpara.2006.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 05/24/2006] [Accepted: 06/01/2006] [Indexed: 11/18/2022]
Abstract
cDNA clones encoding a Schistosoma mansoni homologue of the TR2/TR4 group of nuclear receptors, SmTR2/4, were identified by screening an adult female worm cDNA library. SmTR2/4 is a 1,943 amino acid protein, the largest member of the TR2/TR4 group of nuclear receptors and also the largest nuclear receptor reported to date. SmTR2/4 retains a typical domain organisation of nuclear receptors exhibiting 69-77% sequence identity in the DNA binding domain and 16-22% sequence identity in the ligand binding domain compared with its orthologues. SmTR2/4 contains a large A/B domain and hinge region. SmTR2/4 also contains a 100 amino acid F domain, which is absent from its orthologues. SmTR2/4 mRNA is expressed in every stage of the S. mansoni life cycle, exhibiting an elevated expression level in cercariae. Western blot analysis identified two forms of SmTR2/4 protein in adult worms. Our in vitro DNA binding assay showed that SmTR2/4 binds to the DR-3 consensus hormone response element, suggesting a functional conservation among the TR2/TR4 group members in terms of DNA binding specificity. A yeast-based transactivation assay demonstrated that the A/B domain, F domain and N-terminal part of the hinge region in SmTR2/4, when tethered to a GAL4 DNA binding domain, exhibited an autonomous transcription activation function.
Collapse
Affiliation(s)
- Rong Hu
- Department of Microbiology and Immunology, School of Medicine, State University of New York, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
46
|
Hanniman EA, Lambert G, Inoue Y, Gonzalez FJ, Sinal CJ. Apolipoprotein A-IV is regulated by nutritional and metabolic stress: involvement of glucocorticoids, HNF-4 alpha, and PGC-1 alpha. J Lipid Res 2006; 47:2503-14. [PMID: 16929032 DOI: 10.1194/jlr.m600303-jlr200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein A-IV (apoA-IV) is a 46 kDa glycoprotein that associates with triglyceride-rich and high density lipoproteins. Blood levels of apoA-IV generally correlate with triglyceride levels and are increased in diabetic patients. This study investigated the mechanisms regulating the in vivo expression of apoA-IV in the liver and intestine of mice in response to changes in nutritional status. Fasting markedly increased liver and ileal apoA-IV mRNA and plasma protein concentrations. This induction was associated with increased serum glucocorticoid levels and was abolished by adrenalectomy. Treatment with dexamethasone increased apoA-IV expression in adrenalectomized mice. Marked increases of apoA-IV expression were also observed in two murine models of diabetes. Reporter gene analysis of the murine and human apoA-IV/C-III promoters revealed a conserved cooperative activation by the hepatic nuclear factor-4 alpha (HNF-4 alpha) and the peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1 alpha) but no evidence of a direct regulatory role for the glucocorticoid receptor. Consistent with these in vitro data, induction of apoA-IV in response to fasting was accompanied by increases in HNF-4 alpha and PGC-1 alpha expression and was abolished in liver-specific HNF-4 alpha-deficient mice. Together, these results indicate that the induction of apoA-IV expression in fasting and diabetes likely involves PGC-1 alpha-mediated coactivation of HNF-4 alpha in addition to glucocorticoid-dependent actions.
Collapse
Affiliation(s)
- Elyhisha A Hanniman
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|
47
|
Hu R, Niles EG, LoVerde PT. DNA binding and transactivation properties of the Schistosoma mansoni constitutive androstane receptor homologue. Mol Biochem Parasitol 2006; 150:174-85. [PMID: 16962182 DOI: 10.1016/j.molbiopara.2006.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 07/21/2006] [Accepted: 07/25/2006] [Indexed: 11/21/2022]
Abstract
SmCAR (Schistosoma mansoni constitutive androstane receptor) is a schistosome homologue of the CAR/PXR/VDR group of nuclear receptors. The P box sequence in the DNA binding domain (DBD) of SmCAR, which is essential in determining the DNA binding specificity of nuclear receptors, is different from its vertebrate homologues. Previous data demonstrates that SmCAR binds to a hormone response element containing a single half site AGTGCA as a monomer. SmRXR1 and SmRXR2 are two S. mansoni homologues of vertebrate retinoid X receptors (RXRs). RXRs usually heterodimerize with various nuclear receptors. Yeast-two hybrid analyses, in vitro pull-down and co-immunoprecipitation assays demonstrated that SmCAR interacts with SmRXR1 but not SmRXR2. Using chimeras consisting of the DBD of SmCAR and the ligand binding domain (LBD) of mouse (m) CAR, we show that despite a different P box, SmCAR DBD shares DNA binding specificity with mCAR. However, the SmCAR DBD does exhibit some of the DNA binding properties specific to SmCAR. Studies of the chimeras also demonstrated that the SmCAR DBD is able to heterodimerize with the DBD of human RXR, allowing high affinity DNA binding. Based on this study and previous results, we conclude that SmCAR may recognize its cognate hormone response element via two mechanisms: binding to DNA monomerically or heterodimerizing with SmRXR1. We also demonstrate that a transcription activation function-1 (AF-1) is located in the SmCAR A/B domain.
Collapse
Affiliation(s)
- Rong Hu
- Department of Microbiology and Immunology, School of Medicine, State University of New York, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
48
|
Aggelidou E, Iordanidou P, Demetriades C, Piltsi O, Hadzopoulou-Cladaras M. Functional characterization of hepatocyte nuclear factor-4 alpha dimerization interface mutants. FEBS J 2006; 273:1948-58. [PMID: 16640558 DOI: 10.1111/j.1742-4658.2006.05208.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hepatocyte nuclear factor-4 (HNF-4alpha), a member of the nuclear receptor superfamily, binds DNA exclusively as a homodimer. Dimerization controls important aspects of receptor function, such as DNA binding, protein stability, ligand binding and interaction with coactivators. Crystallographic data of the HNF-4alpha ligand-binding domain (LBD) demonstrated that the homodimer interface is composed of residues in helices 7, 9 and 10 with intermolecular salt bridges, hydrogen bonds and hydrophobic interactions contributing to the stability of the interface. To investigate the importance of the proposed ionic interactions for HNF-4alpha dimerization, interactions critical for formation of the LBD homodimer interface were disrupted by introducing point mutations in residues D261N (H7), E269Q (H7), Q307L (H9), D312N (H9) and Q336L (H10). Mutants were analysed for transactivation, coactivator interaction, DNA binding and dimerization. EMSA analysis showed that the mutants are able to bind DNA as dimers and coimmunoprecipitation assays confirmed dimerization in solution. Furthermore, the mutations do not compromise HNF-4alpha activity and are responsive to PPAR-gamma coactivator-1 (PGC-1). Finally, residue R324, located in the H9/H10 loop, which was suspected to be involved in dimer stabilization via an ionic interaction with residue E276, was studied. In contrast to the conservative substitution R324H the mutation R324L abolishes HNF-4alpha transcriptional activity and coactivator recruitment, revealing that the nature of substitution may play an important role in HNF-4alpha function.
Collapse
Affiliation(s)
- Eleni Aggelidou
- Department of Genetics, Development and Molecular Biology, Laboratory of Developmental Biology, School of Biology, Aristotle University of Thessaloniki, Greece
| | | | | | | | | |
Collapse
|
49
|
Xu J, Christian B, Jump DB. Regulation of rat hepatic L-pyruvate kinase promoter composition and activity by glucose, n-3 polyunsaturated fatty acids, and peroxisome proliferator-activated receptor-alpha agonist. J Biol Chem 2006; 281:18351-62. [PMID: 16644726 PMCID: PMC2766394 DOI: 10.1074/jbc.m601277200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Carbohydrate regulatory element-binding protein (ChREBP), MAX-like factor X (MLX), and hepatic nuclear factor-4alpha (HNF-4alpha) are key transcription factors involved in the glucose-mediated induction of hepatic L-type pyruvate kinase (L-PK) gene transcription. n-3 polyunsaturated fatty acids (PUFA) and WY14643 (peroxisome proliferator-activated receptor alpha (PPARalpha) agonist) interfere with glucose-stimulated L-PK gene transcription in vivo and in rat primary hepatocytes. Feeding rats a diet containing n-3 PUFA or WY14643 suppressed hepatic mRNA(L-PK) but did not suppress hepatic ChREBP or HNF-4alpha nuclear abundance. Hepatic MLX nuclear abundance, however, was suppressed by n-3 PUFA but not WY14643. In rat primary hepatocytes, glucose-stimulated accumulation of mRNA(LPK) and L-PK promoter activity correlated with increased ChREBP nuclear abundance. This treatment also increased L-PK promoter occupancy by RNA polymerase II (RNA pol II), acetylated histone H3 (Ac-H3), and acetylated histone H4 (Ac-H4) but did not significantly impact L-PK promoter occupancy by ChREBP or HNF-4alpha. Inhibition of L-PK promoter activity by n-3 PUFA correlated with suppressed RNA pol II, Ac-H3, and Ac-H4 occupancy on the L-PK promoter. Although n-3 PUFA transiently suppressed ChREBP and MLX nuclear abundance, this treatment did not impact ChREBP-LPK promoter interaction. HNF4alpha-LPK promoter interaction was transiently suppressed by n-3 PUFA. Inhibition of L-PK promoter activity by WY14643 correlated with a transient decline in ChREBP nuclear abundance and decreased Ac-H4 interaction with the L-PK promoter. WY14643, however, had no impact on MLX nuclear abundance or HNF4alpha-LPK promoter interaction. Although overexpressed ChREBP or HNF-4alpha did not relieve n-3 PUFA suppression of L-PK gene expression, overexpressed MLX fully abrogated n-3 PUFA suppression of L-PK promoter activity and mRNA(L-PK) abundance. Overexpressed ChREBP, but not MLX, relieved the WY14643 inhibition of L-PK. In conclusion, n-3 PUFA and WY14643/PPARalpha target different transcription factors to control L-PK gene transcription. MLX, the heterodimer partner for ChREBP, has emerged as a novel target for n-3 PUFA regulation.
Collapse
Affiliation(s)
| | | | - Donald B. Jump
- To whom correspondence should be addressed: Dept. of Physiology, 3165 Biomedical and Physical Sciences Bldg., Michigan State University, East Lansing, MI 48824. Tel.: 517-355-6475 (ext. 1133); Fax: 517-355-5125;
| |
Collapse
|
50
|
Briançon N, Weiss MC. In vivo role of the HNF4alpha AF-1 activation domain revealed by exon swapping. EMBO J 2006; 25:1253-62. [PMID: 16498401 PMCID: PMC1422155 DOI: 10.1038/sj.emboj.7601021] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 02/02/2006] [Indexed: 12/17/2022] Open
Abstract
The gene encoding the nuclear receptor hepatocyte nuclear factor 4alpha (HNF4alpha) generates isoforms HNF4alpha1 and HNF4alpha7 from usage of alternative promoters. In particular, HNF4alpha7 is expressed in the pancreas whereas HNF4alpha1 is found in liver, and mutations affecting HNF4alpha function cause impaired insulin secretion and/or hepatic defects in humans and in tissue-specific 'knockout' mice. HNF4alpha1 and alpha7 isoforms differ exclusively by amino acids encoded by the first exon which, in HNF4alpha1 but not in HNF4alpha7, includes the activating function (AF)-1 transactivation domain. To investigate the roles of HNF4alpha1 and HNF4alpha7 in vivo, we generated mice expressing only one isoform under control of both promoters, via reciprocal swapping of the isoform-specific first exons. Unlike Hnf4alpha gene disruption which causes embryonic lethality, these 'alpha7-only' and 'alpha1-only' mice are viable, indicating functional redundancy of the isoforms. However, the former show dyslipidemia and preliminary results indicate impaired glucose tolerance for the latter, revealing functional specificities of the isoforms. These 'knock-in' mice provide the first test in vivo of the HNF4alpha AF-1 function and have permitted identification of AF-1-dependent target genes.
Collapse
Affiliation(s)
- Nadège Briançon
- Unité de Génétique de la Différenciation, URA 2578 du CNRS, Département de Biologie du Développement, Institut Pasteur, Paris, France
| | - Mary C Weiss
- Unité de Génétique de la Différenciation, URA 2578 du CNRS, Département de Biologie du Développement, Institut Pasteur, Paris, France
- Unité de Génétique de la Différenciation, URA 2578 du CNRS, Département de Biologie du Développement, Institut Pasteur, 75724 Paris Cedex 15, France. Tel.: +33 1 4568 8500; Fax: +33 1 4061 3231; E-mail:
| |
Collapse
|