1
|
Mohammed AS, Uversky VN. Intrinsic Disorder as a Natural Preservative: High Levels of Intrinsic Disorder in Proteins Found in the 2600-Year-Old Human Brain. BIOLOGY 2022; 11:1704. [PMID: 36552214 PMCID: PMC9775155 DOI: 10.3390/biology11121704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Proteomic analysis revealed the preservation of many proteins in the Heslington brain (which is at least 2600-year-old brain tissue uncovered within the skull excavated in 2008 from a pit in Heslington, Yorkshire, England). Five of these proteins-"main proteins": heavy, medium, and light neurofilament proteins (NFH, NFM, and NFL), glial fibrillary acidic protein (GFAP), and myelin basic (MBP) protein-are engaged in the formation of non-amyloid protein aggregates, such as intermediate filaments and myelin sheath. We used a wide spectrum of bioinformatics tools to evaluate the prevalence of functional disorder in several related sets of proteins, such as the main proteins and their 44 interactors, all other proteins identified in the Heslington brain, as well as the entire human proteome (20,317 manually curated proteins), and 10,611 brain proteins. These analyses revealed that all five main proteins, half of their interactors and almost one third of the Heslington brain proteins are expected to be mostly disordered. Furthermore, most of the remaining Heslington brain proteins are expected to contain sizable levels of disorder. This is contrary to the expected substantial (if not complete) elimination of the disordered proteins from the Heslington brain. Therefore, it seems that the intrinsic disorder of NFH, NFM, NFL, GFAP, and MBP, their interactors, and many other proteins might play a crucial role in preserving the Heslington brain by forming tightly folded brain protein aggregates, in which different parts are glued together via the disorder-to-order transitions.
Collapse
Affiliation(s)
- Aaron S. Mohammed
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
2
|
Viedma-Poyatos Á, González-Jiménez P, Pajares MA, Pérez-Sala D. Alexander disease GFAP R239C mutant shows increased susceptibility to lipoxidation and elicits mitochondrial dysfunction and oxidative stress. Redox Biol 2022; 55:102415. [PMID: 35933901 PMCID: PMC9364016 DOI: 10.1016/j.redox.2022.102415] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/04/2023] Open
Abstract
Alexander disease is a fatal neurological disorder caused by mutations in the intermediate filament protein Glial Fibrillary Acidic Protein (GFAP), which is key for astrocyte homeostasis. These mutations cause GFAP aggregation, astrocyte dysfunction and neurodegeneration. Remarkably, most of the known GFAP mutations imply a change by more nucleophilic amino acids, mainly cysteine or histidine, which are more susceptible to oxidation and lipoxidation. Therefore, we hypothesized that a higher susceptibility of Alexander disease GFAP mutants to oxidative or electrophilic damage, which frequently occurs during neurodegeneration, could contribute to disease pathogenesis. To address this point, we have expressed GFP-GFAP wild type or the harmful Alexander disease GFP-GFAP R239C mutant in astrocytic cells. Interestingly, GFAP R239C appears more oxidized than the wild type under control conditions, as indicated both by its lower cysteine residue accessibility and increased presence of disulfide-bonded oligomers. Moreover, GFP-GFAP R239C undergoes lipoxidation to a higher extent than GFAP wild type upon treatment with the electrophilic mediator 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2). Importantly, GFAP R239C filament organization is altered in untreated cells and is earlier and more severely disrupted than GFAP wild type upon exposure to oxidants (diamide, H2O2) or electrophiles (4-hydroxynonenal, 15d-PGJ2), which exacerbate GFAP R239C aggregation. Furthermore, H2O2 causes reversible alterations in GFAP wild type, but irreversible damage in GFAP R239C expressing cells. Finally, we show that GFAP R239C expression induces a more oxidized cellular status, with decreased free thiol content and increased mitochondrial superoxide generation. In addition, mitochondria show decreased mass, increased colocalization with GFAP and altered morphology. Notably, a GFP-GFAP R239H mutant recapitulates R239C-elicited alterations whereas an R239G mutant induces a milder phenotype. Together, our results outline a deleterious cycle involving altered GFAP R239C organization, mitochondrial dysfunction, oxidative stress, and further GFAP R239C protein damage and network disruption, which could contribute to astrocyte derangement in Alexander disease.
Collapse
Affiliation(s)
- Álvaro Viedma-Poyatos
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Patricia González-Jiménez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain.
| |
Collapse
|
3
|
ROCK ‘n TOR: An Outlook on Keratinocyte Stem Cell Expansion in Regenerative Medicine via Protein Kinase Inhibition. Cells 2022; 11:cells11071130. [PMID: 35406693 PMCID: PMC8997668 DOI: 10.3390/cells11071130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
Keratinocyte stem cells play a fundamental role in homeostasis and repair of stratified epithelial tissues. Transplantation of cultured keratinocytes autografts provides a landmark example of successful cellular therapies by restoring durable integrity in stratified epithelia lost to devastating tissue conditions. Despite the overall success of such procedures, failures still occur in case of paucity of cultured stem cells in therapeutic grafts. Strategies aiming at a further amplification of stem cells during keratinocyte ex vivo expansion may thus extend the applicability of these treatments to subjects in which endogenous stem cells pools are depauperated by aging, trauma, or disease. Pharmacological targeting of stem cell signaling pathways is recently emerging as a powerful strategy for improving stem cell maintenance and/or amplification. Recent experimental data indicate that pharmacological inhibition of two prominent keratinocyte signaling pathways governed by apical mTOR and ROCK protein kinases favor stem cell maintenance and/or amplification ex vivo and may improve the effectiveness of stem cell-based therapeutic procedures. In this review, we highlight the pathophysiological roles of mTOR and ROCK in keratinocyte biology and evaluate existing pre-clinical data on the effects of their inhibition in epithelial stem cell expansion for transplantation purposes.
Collapse
|
4
|
Type III intermediate filaments as targets and effectors of electrophiles and oxidants. Redox Biol 2020; 36:101582. [PMID: 32711378 PMCID: PMC7381704 DOI: 10.1016/j.redox.2020.101582] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Intermediate filaments (IFs) play key roles in cell mechanics, signaling and homeostasis. Their assembly and dynamics are finely regulated by posttranslational modifications. The type III IFs, vimentin, desmin, peripherin and glial fibrillary acidic protein (GFAP), are targets for diverse modifications by oxidants and electrophiles, for which their conserved cysteine residue emerges as a hot spot. Pathophysiological examples of these modifications include lipoxidation in cell senescence and rheumatoid arthritis, disulfide formation in cataracts and nitrosation in endothelial shear stress, although some oxidative modifications can also be detected under basal conditions. We previously proposed that cysteine residues of vimentin and GFAP act as sensors for oxidative and electrophilic stress, and as hinges influencing filament assembly. Accumulating evidence indicates that the structurally diverse cysteine modifications, either per se or in combination with other posttranslational modifications, elicit specific functional outcomes inducing distinct assemblies or network rearrangements, including filament stabilization, bundling or fragmentation. Cysteine-deficient mutants are protected from these alterations but show compromised cellular performance in network assembly and expansion, organelle positioning and aggresome formation, revealing the importance of this residue. Therefore, the high susceptibility to modification of the conserved cysteine of type III IFs and its cornerstone position in filament architecture sustains their role in redox sensing and integration of cellular responses. This has deep pathophysiological implications and supports the potential of this residue as a drug target. Type III intermediate filaments can be modified by many oxidants and electrophiles. Oxidative modifications of type III IFs occur in normal and pathological conditions. The conserved cysteine residue acts as a hub for redox/electrophilic modifications. Cysteine modifications elicit structure-dependent type III IF rearrangements. Type III intermediate filaments act as sensors for oxidative and electrophilic stress.
Collapse
|
5
|
Hwang B, Ise H. Multimeric conformation of type III intermediate filaments but not the filamentous conformation exhibits high affinity to lipid bilayers. Genes Cells 2020; 25:413-426. [DOI: 10.1111/gtc.12768] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 01/16/2023]
Affiliation(s)
- Beomju Hwang
- Graduate School of Engineering Kyushu University Fukuoka Japan
| | - Hirohiko Ise
- Institute for Materials Chemistry and Engineering Kyushu University Fukuoka Japan
| |
Collapse
|
6
|
de Pablo Y, Marasek P, Pozo-Rodrigálvarez A, Wilhelmsson U, Inagaki M, Pekna M, Pekny M. Vimentin Phosphorylation Is Required for Normal Cell Division of Immature Astrocytes. Cells 2019; 8:cells8091016. [PMID: 31480524 PMCID: PMC6769829 DOI: 10.3390/cells8091016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Vimentin (VIM) is an intermediate filament (nanofilament) protein expressed in multiple cell types, including astrocytes. Mice with VIM mutations of serine sites phosphorylated during mitosis (VIMSA/SA) show cytokinetic failure in fibroblasts and lens epithelial cells, chromosomal instability, facilitated cell senescence, and increased neuronal differentiation of neural progenitor cells. Here we report that in vitro immature VIMSA/SA astrocytes exhibit cytokinetic failure and contain vimentin accumulations that co-localize with mitochondria. This phenotype is transient and disappears with VIMSA/SA astrocyte maturation and expression of glial fibrillary acidic protein (GFAP); it is also alleviated by the inhibition of cell proliferation. To test the hypothesis that GFAP compensates for the effect of VIMSA/SA in astrocytes, we crossed the VIMSA/SA and GFAP−/− mice. Surprisingly, the fraction of VIMSA/SA immature astrocytes with abundant vimentin accumulations was reduced when on GFAP−/− background. This indicates that the disappearance of vimentin accumulations and cytokinetic failure in mature astrocyte cultures are independent of GFAP expression. Both VIMSA/SA and VIMSA/SAGFAP−/− astrocytes showed normal mitochondrial membrane potential and vulnerability to H2O2, oxygen/glucose deprivation, and chemical ischemia. Thus, mutation of mitotic phosphorylation sites in vimentin triggers formation of vimentin accumulations and cytokinetic failure in immature astrocytes without altering their vulnerability to oxidative stress.
Collapse
Affiliation(s)
- Yolanda de Pablo
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
| | - Pavel Marasek
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
| | - Andrea Pozo-Rodrigálvarez
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
| | - Ulrika Wilhelmsson
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, Mie 5148507, Japan
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
- University of Newcastle, New South Wales 2308, Australia
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden.
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.
- University of Newcastle, New South Wales 2308, Australia.
| |
Collapse
|
7
|
ROCK inhibition in models of neurodegeneration and its potential for clinical translation. Pharmacol Ther 2018; 189:1-21. [DOI: 10.1016/j.pharmthera.2018.03.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Inaba H, Yamakawa D, Tomono Y, Enomoto A, Mii S, Kasahara K, Goto H, Inagaki M. Regulation of keratin 5/14 intermediate filaments by CDK1, Aurora-B, and Rho-kinase. Biochem Biophys Res Commun 2018. [DOI: 10.1016/j.bbrc.2018.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Chen M, Puschmann TB, Marasek P, Inagaki M, Pekna M, Wilhelmsson U, Pekny M. Increased Neuronal Differentiation of Neural Progenitor Cells Derived from Phosphovimentin-Deficient Mice. Mol Neurobiol 2017; 55:5478-5489. [PMID: 28956310 PMCID: PMC5994207 DOI: 10.1007/s12035-017-0759-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/27/2017] [Indexed: 01/06/2023]
Abstract
Vimentin is an intermediate filament (also known as nanofilament) protein expressed in several cell types of the central nervous system, including astrocytes and neural stem/progenitor cells. Mutation of the vimentin serine sites that are phosphorylated during mitosis (VIMSA/SA) leads to cytokinetic failures in fibroblasts and lens epithelial cells, resulting in chromosomal instability and increased expression of cell senescence markers. In this study, we investigated morphology, proliferative capacity, and motility of VIMSA/SA astrocytes, and their effect on the differentiation of neural stem/progenitor cells. VIMSA/SA astrocytes expressed less vimentin and more GFAP but showed a well-developed intermediate filament network, exhibited normal cell morphology, proliferation, and motility in an in vitro wound closing assay. Interestingly, we found a two- to fourfold increased neuronal differentiation of VIMSA/SA neurosphere cells, both in a standard 2D and in Bioactive3D cell culture systems, and determined that this effect was neurosphere cell autonomous and not dependent on cocultured astrocytes. Using BrdU in vivo labeling to assess neural stem/progenitor cell proliferation and differentiation in the hippocampus of adult mice, one of the two major adult neurogenic regions, we found a modest increase (by 8%) in the fraction of newly born and surviving neurons. Thus, mutation of the serine sites phosphorylated in vimentin during mitosis alters intermediate filament protein expression but has no effect on astrocyte morphology or proliferation, and leads to increased neuronal differentiation of neural progenitor cells.
Collapse
Affiliation(s)
- Meng Chen
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Till B Puschmann
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Pavel Marasek
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,University of Newcastle, Newcastle, NSW, Australia
| | - Ulrika Wilhelmsson
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden. .,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia. .,University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|
10
|
Li C, Imanishi A, Komatsu N, Terai K, Amano M, Kaibuchi K, Matsuda M. A FRET Biosensor for ROCK Based on a Consensus Substrate Sequence Identified by KISS Technology. Cell Struct Funct 2017; 42:1-13. [DOI: 10.1247/csf.16016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Chunjie Li
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University
| | - Ayako Imanishi
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University
| | - Naoki Komatsu
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University
| | - Kenta Terai
- Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University
| | - Mutsuki Amano
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University
| |
Collapse
|
11
|
Makihara H, Inaba H, Enomoto A, Tanaka H, Tomono Y, Ushida K, Goto M, Kurita K, Nishida Y, Kasahara K, Goto H, Inagaki M. Desmin phosphorylation by Cdk1 is required for efficient separation of desmin intermediate filaments in mitosis and detected in murine embryonic/newborn muscle and human rhabdomyosarcoma tissues. Biochem Biophys Res Commun 2016; 478:1323-9. [PMID: 27565725 DOI: 10.1016/j.bbrc.2016.08.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/21/2016] [Indexed: 11/25/2022]
Abstract
Desmin is a type III intermediate filament (IF) component protein expressed specifically in muscular cells. Desmin is phosphorylated by Aurora-B and Rho-kinase specifically at the cleavage furrow from anaphase to telophase. The disturbance of this phosphorylation results in the formation of unusual long bridge-like IF structures (IF-bridge) between two post-mitotic (daughter) cells. Here, we report that desmin also serves as an excellent substrate for the other type of mitotic kinase, Cdk1. Desmin phosphorylation by Cdk1 loses its ability to form IFs in vitro. We have identified Ser6, Ser27, and Ser31 on murine desmin as phosphorylation sites for Cdk1. Using a site- and phosphorylation-state-specific antibody for Ser31 on desmin, we have demonstrated that Cdk1 phosphorylates desmin in entire cytoplasm from prometaphase to metaphase. Desmin mutations at Cdk1 sites exhibit IF-bridge phenotype, the frequency of which is significantly increased by the addition of Aurora-B and Rho-kinase site mutations to Cdk1 site mutations. In addition, Cdk1-induced desmin phosphorylation is detected in mitotic muscular cells of murine embryonic/newborn muscles and human rhabdomyosarcoma specimens. Therefore, Cdk1-induced desmin phosphorylation is required for efficient separation of desmin-IFs and generally detected in muscular mitotic cells in vivo.
Collapse
Affiliation(s)
- Hiroyuki Makihara
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan; Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, 464-8651, Japan
| | - Hironori Inaba
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hiroki Tanaka
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
| | - Yasuko Tomono
- Division of Molecular and Cell Biology, Shigei Medical Research Institute, Okayama, 701-0202, Japan
| | - Kaori Ushida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Mitsuo Goto
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, 464-8651, Japan
| | - Kenichi Kurita
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, 464-8651, Japan
| | - Yoshihiro Nishida
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Kousuke Kasahara
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan; Department of Physiology, Mie University School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Hidemasa Goto
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan; Department of Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Masaki Inagaki
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan; Department of Physiology, Mie University School of Medicine, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
12
|
Monaco A, Grimaldi MC, Ferrandino I. Neuroglial alterations in the zebrafish brain exposed to cadmium chloride. J Appl Toxicol 2016; 36:1629-1638. [PMID: 27080906 DOI: 10.1002/jat.3328] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 12/15/2022]
Abstract
Cadmium is an extremely toxic heavy metal that widely occurs in industrial workplaces with various hazardous effects on brain functions. The cytotoxic effects of cadmium chloride (CdCl2 ) on the neuroglial components of the zebrafish brain were analysed by detecting the glial fibrillary acidic protein (GFAP) expression and the mRNA levels of myelin genes mbp, mpz and plp1 in adult specimens exposed to cadmium for 2, 7 and 16 days. A significant decrease in the GFAP protein by Western blotting experiments was observed after 2 days of treatment, reaching 55% after 16 days. No change was observed in the mRNA levels. Using immunohistochemistry, a reduction in GFAP-positive structures was revealed with a progressive trend in all the brains at 2, 7 and 16 days of treatment. In particular, a considerable reduction in GFAP-positive fibres, with a different course, was observed in the ventricle areas and at the pial surface and in blood vessels after 16 days. Our experiments also showed a structural and chemical alteration of myelin and upregulation of mpz mRNA levels, the oligodendrocyte gene that is upregulated in experiments of neuronal injury, but not of plp1 and mbp mRNA levels, other myelin structural genes. These data confirm the toxic action of cadmium on the zebrafish brain. This action is time-dependent and involves the glial cells, key components of the protection and function of nerve cells, hence the basis for many neurological diseases. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Antonio Monaco
- University of Naples Federico II, Department of Biology, Naples, Italy
| | - Maria C Grimaldi
- University of Naples Federico II, Department of Biology, Naples, Italy
| | - Ida Ferrandino
- University of Naples Federico II, Department of Biology, Naples, Italy.
| |
Collapse
|
13
|
Spinal cord injury repair by implantation of structured hyaluronic acid scaffold with PLGA microspheres in the rat. Cell Tissue Res 2015; 364:17-28. [DOI: 10.1007/s00441-015-2298-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/25/2015] [Indexed: 11/26/2022]
|
14
|
The regulatory roles of ROCK and MRCK kinases in the plasticity of cancer cell migration. Cancer Lett 2015; 361:185-96. [DOI: 10.1016/j.canlet.2015.03.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 12/29/2022]
|
15
|
Identification of Glioblastoma Phosphotyrosine-Containing Proteins with Two-Dimensional Western Blotting and Tandem Mass Spectrometry. BIOMED RESEARCH INTERNATIONAL 2015; 2015:134050. [PMID: 26090378 PMCID: PMC4450212 DOI: 10.1155/2015/134050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/25/2014] [Accepted: 08/25/2014] [Indexed: 12/24/2022]
Abstract
To investigate the presence of, and the potential biological roles of, protein tyrosine phosphorylation in the glioblastoma pathogenesis, two-dimensional gel electrophoresis- (2DGE-) based Western blotting coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis was used to detect and identify the phosphotyrosine immunoreaction-positive proteins in a glioblastoma tissue. MS/MS and Mascot analyses were used to determine the phosphotyrosine sites of each phosphopeptide. Protein domain and motif analysis and systems pathway analysis were used to determine the protein domains/motifs that contained phosphotyrosine residue and signal pathway networks to clarify the potential biological functions of protein tyrosine phosphorylation. A total of 24 phosphotyrosine-containing proteins were identified. Each phosphotyrosine-containing protein contained at least one tyrosine kinase phosphorylation motif and a certain structural and functional domains. Those phosphotyrosine-containing proteins were involved in the multiple signal pathway systems such as oxidative stress, stress response, and cell migration. Those data show 2DGE-based Western blotting, MS/MS, and bioinformatics are a set of effective approaches to detect and identify glioblastoma tyrosine-phosphorylated proteome and to effectively rationalize the biological roles of tyrosine phosphorylation in the glioblastoma biological systems. It provides novel insights regarding tyrosine phosphorylation and its potential role in the molecular mechanism of a glioblastoma.
Collapse
|
16
|
Sukhorukova EG, Korzhevskii DE, Alekseeva OS. Glial fibrillary acidic protein: The component of iintermediate filaments in the vertebrate brain astrocytes. J EVOL BIOCHEM PHYS+ 2015. [DOI: 10.1134/s0022093015010019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Goto H, Inagaki M. New insights into roles of intermediate filament phosphorylation and progeria pathogenesis. IUBMB Life 2014; 66:195-200. [PMID: 24659572 DOI: 10.1002/iub.1260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/06/2014] [Indexed: 01/20/2023]
Abstract
Intermediate filaments (IFs) form one of the major cytoskeletal systems in the cytoplasm or beneath the nuclear membrane. Because of their insoluble nature, cellular IFs had been considered to be stable for a long time. The discovery that a purified protein kinase phosphorylated a purified IF protein and in turn induced the disassembly of IF structure in vitro led to the novel concept of dynamic IF regulation. Since then, a variety of protein kinases have been identified to phosphorylate IF proteins such as vimentin in a spatiotemporal regulated manner. A series of studies using cultured cells have demonstrated that preventing IF phosphorylation during mitosis inhibits cytokinesis by the retention of an IF bridge-like structure (IF-bridge) connecting the two daughter cells. Knock-in mice expressing phosphodeficient vimentin variants developed binucleation/aneuploidy in lens epithelial cells, which promoted microophthalmia and lens cataract. Therefore, mitotic phosphorylation of vimentin is of great importance in the completion of cytokinesis, the impairment of which promotes chromosomal instability and premature aging. © 2014 IUBMB Life, 66(3):195-200, 2014.
Collapse
Affiliation(s)
- Hidemasa Goto
- Division of Biochemistry, Aichi Cancer Center Research Institute, Kanokoden, Chikusa-Ku, Nagoya, Japan.,Department of Cellular Oncology, Graduate School of Medicine, Nagoya University, Showa-Ku, Nagoya, Japan
| | - Masaki Inagaki
- Division of Biochemistry, Aichi Cancer Center Research Institute, Kanokoden, Chikusa-Ku, Nagoya, Japan.,Department of Cellular Oncology, Graduate School of Medicine, Nagoya University, Showa-Ku, Nagoya, Japan
| |
Collapse
|
18
|
Matsuyama M, Tanaka H, Inoko A, Goto H, Yonemura S, Kobori K, Hayashi Y, Kondo E, Itohara S, Izawa I, Inagaki M. Defect of mitotic vimentin phosphorylation causes microophthalmia and cataract via aneuploidy and senescence in lens epithelial cells. J Biol Chem 2013; 288:35626-35. [PMID: 24142690 PMCID: PMC3861614 DOI: 10.1074/jbc.m113.514737] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vimentin, a type III intermediate filament (IF) protein, is phosphorylated predominantly in mitosis. The expression of a phosphorylation-compromised vimentin mutant in T24 cultured cells leads to cytokinetic failure, resulting in binucleation (multinucleation). The physiological significance of intermediate filament phosphorylation during mitosis for organogenesis and tissue homeostasis was uncertain. Here, we generated knock-in mice expressing vimentin that have had the serine sites phosphorylated during mitosis substituted by alanine residues. Homozygotic mice (VIM(SA/SA)) presented with microophthalmia and cataracts in the lens, whereas heterozygotic mice (VIM(WT/SA)) were indistinguishable from WT (VIM(WT/WT)) mice. In VIM(SA/SA) mice, lens epithelial cell number was not only reduced but the cells also exhibited chromosomal instability, including binucleation and aneuploidy. Electron microscopy revealed fiber membranes that were disorganized in the lenses of VIM(SA/SA), reminiscent of similar characteristic changes seen in age-related cataracts. Because the mRNA level of the senescence (aging)-related gene was significantly elevated in samples from VIM(SA/SA), the lens phenotype suggests a possible causal relationship between chromosomal instability and premature aging.
Collapse
|
19
|
Lopez J, Mikaelian I, Gonzalo P. Amniotic fluid glial fibrillary acidic protein (AF-GFAP), a biomarker of open neural tube defects. Prenat Diagn 2013; 33:990-5. [PMID: 23784867 DOI: 10.1002/pd.4181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/26/2013] [Accepted: 06/17/2013] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Neural tube defects (NTDs) are usually identified by ultrasonography and confirmed by alpha-fetoprotein (AFP) assay and acetylcholinesterase (AchE) electrophoresis in amniotic fluid. Yet, both of these biomarkers can be found positive in other etiologies. Here, amniotic fluid glial fibrillary acidic protein (AF-GFAP), which was identified by a proteomic study, is shown to be a useful biomarker for NTD diagnosis. METHOD Amniotic fluid glial fibrillary acidic protein was measured by an ELISA assay in 138 cases of NTDs. Seventy samples from normal pregnancies used as controls and 27 samples giving false positive or false negative results either for AchE or AFP and corresponding to fetal death (n = 8), gastroschisis (n = 8), and unexplained etiologies (n = 11) were also tested. RESULTS Whatever the gestational age, GFAP was below 0.2 ng/mL in control samples, whereas 99.1% of open NTDs (29/29 in the anterior NTD group and 80/81 in the spina bifida group) were above this threshold. Closed NTDs were all negative (28/28). None of the other samples tested were positive, except in case of fetal death (8/8). CONCLUSIONS Amniotic fluid glial fibrillary acidic protein is a sensitive biomarker for open NTD diagnosis with a good negative predictive value for closed NTD. Compared with AFP and AchE, our results indicate that AF-GFAP alone is more efficient than this classical association.
Collapse
Affiliation(s)
- Jonathan Lopez
- Centre de Recherche en Cancérologie de Lyon, Université Lyon 1 - Inserm U1052 - CNRS UMR5286 - Centre Léon Bérard, Lyon, France; Hospices Civils de Lyon, Hôpital de la Croix Rousse, Lyon, France; UFR de Médecine Lyon Sud, Université de Lyon, Lyon, France
| | | | | |
Collapse
|
20
|
Schofield AV, Bernard O. Rho-associated coiled-coil kinase (ROCK) signaling and disease. Crit Rev Biochem Mol Biol 2013; 48:301-16. [PMID: 23601011 DOI: 10.3109/10409238.2013.786671] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The small Rho GTPase family of proteins, encompassing the three major G-protein classes Rho, Rac and cell division control protein 42, are key mitogenic signaling molecules that regulate multiple cancer-associated cellular phenotypes including cell proliferation and motility. These proteins are known for their role in the regulation of actin cytoskeletal dynamics, which is achieved through modulating the activity of their downstream effector molecules. The Rho-associated coiled-coil kinase 1 and 2 (ROCK1 and ROCK2) proteins were the first discovered Rho effectors that were primarily established as players in RhoA-mediated stress fiber formation and focal adhesion assembly. It has since been discovered that the ROCK kinases actively phosphorylate a large cohort of actin-binding proteins and intermediate filament proteins to modulate their functions. It is well established that global cellular morphology, as modulated by the three cytoskeletal networks: actin filaments, intermediate filaments and microtubules, is regulated by a variety of accessory proteins whose activities are dependent on their phosphorylation by the Rho-kinases. As a consequence, they regulate many key cellular functions associated with malignancy, including cell proliferation, motility and viability. In this current review, we focus on the role of the ROCK-signaling pathways in disease including cancer.
Collapse
Affiliation(s)
- Alice V Schofield
- St Vincent's Institute of Medical Research, Cytoskeleton and Cancer Unit and Department of Medicine, St Vincent's Hospital, University of Melbourne, Victoria 3065, Australia
| | | |
Collapse
|
21
|
Tönges L, Koch JC, Bähr M, Lingor P. ROCKing Regeneration: Rho Kinase Inhibition as Molecular Target for Neurorestoration. Front Mol Neurosci 2011; 4:39. [PMID: 22065949 PMCID: PMC3207219 DOI: 10.3389/fnmol.2011.00039] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 10/16/2011] [Indexed: 12/31/2022] Open
Abstract
Regenerative failure in the CNS largely depends on pronounced growth inhibitory signaling and reduced cellular survival after a lesion stimulus. One key mediator of growth inhibitory signaling is Rho-associated kinase (ROCK), which has been shown to modulate growth cone stability by regulation of actin dynamics. Recently, there is accumulating evidence the ROCK also plays a deleterious role for cellular survival. In this manuscript we illustrate that ROCK is involved in a variety of intracellular signaling pathways that comprise far more than those involved in neurite growth inhibition alone. Although ROCK function is currently studied in many different disease contexts, our review focuses on neurorestorative approaches in the CNS, especially in models of neurotrauma. Promising strategies to target ROCK by pharmacological small molecule inhibitors and RNAi approaches are evaluated for their outcome on regenerative growth and cellular protection both in preclinical and in clinical studies.
Collapse
Affiliation(s)
- Lars Tönges
- Department of Neurology, University Medicine Göttingen Göttingen, Germany
| | | | | | | |
Collapse
|
22
|
Kang JH, Asai D, Tsuchiya A, Mori T, Niidome T, Katayama Y. Peptide substrates for Rho-associated kinase 2 (Rho-kinase 2/ROCK2). PLoS One 2011; 6:e22699. [PMID: 21818369 PMCID: PMC3144920 DOI: 10.1371/journal.pone.0022699] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 06/30/2011] [Indexed: 12/20/2022] Open
Abstract
Peptide substrates sensitive for a certain protein kinase could be important for new-drug development and to understand the mechanism of diseases. Rho-associated kinase (Rho-kinase/ROCK) is a serine/threonine kinase, and plays an important part in cardiovascular disease, migration and invasion of tumor cells, and in neurological disorders. The purpose of this study was to find substrates with high affinity and sensitivity for ROCK2. We synthesized 136 peptide substrates from protein substrates for ROCK2 with different lengths and charged peptides. Incorporation of (32)P [counts per minute (CPM)] for each peptide substrate was determined by the radiolabel assay using [γ-(32)P]ATP. When the top five peptide substrates showing high CPMs (R4, R22, R133, R134, and R135) were phosphorylated by other enzymes (PKA, PKCα, and ERK1), R22, R133, and R135 displayed the highest CPM level for ROCK2 compared with other enzymes, whereas R4 and R134 showed similar CPM levels for ROCK2 and PKCα. We hypothesize that R22, R133, and R135 can be useful peptide substrates for ROCK2.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Daisuke Asai
- Department of Microbiology St. Marianna University School of Medicine, Kawasaki, Japan
| | - Akira Tsuchiya
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Takeshi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Center for Future Chemistry, Kyushu University, Fukuoka, Japan
| | - Takuro Niidome
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Center for Future Chemistry, Kyushu University, Fukuoka, Japan
| | - Yoshiki Katayama
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Center for Future Chemistry, Kyushu University, Fukuoka, Japan
| |
Collapse
|
23
|
Abstract
This review addresses the roles of Rho/Rho-kinase (ROCK) pathway in the pathogenesis of diabetes complications. Diabetes can cause many serious complications and can result in physical disability or even increased mortality. However, there are not many effective ways to treat these complications. The small guanosine-5'-triphosphate-binding protein Rho and its downstream target Rho-kinase mediate important cellular functions, such as cell morphology, motility, secretion, proliferation, and gene expression. Recently, the Rho/Rho-kinase pathway has attracted a great deal of attention in diabetes-related research. These studies have provided evidence that the activity and gene expression of Rho-kinase are upregulated in some tissues in animal models of type 1 or type 2 diabetes and in cell lines cultured with high concentrations of glucose. Inhibitors of Rho-kinase could prevent or ameliorate the pathological changes in diabetic complications. The inhibitory effects of statins on the Rho/Rho-kinase signalling pathway may also play a role in the prevention of diabetic complications. However, the precise molecular mechanism by which the Rho/Roh-kinase pathway participates in the development or progression of diabetic complications has not been extensively investigated. This article evaluates the relationship between Rho/Roh-kinase activation and diabetic complications, as well as the roles of Roh-kinase inhibitors and statins in the complications of diabetes, with the objective of providing a novel target for the treatment of long-term diabetic complications.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Endocrinology, The Second Hospital of He Bei Medical University, Shijiazhuang, China
| | | |
Collapse
|
24
|
Helfand BT, Mendez MG, Murthy SNP, Shumaker DK, Grin B, Mahammad S, Aebi U, Wedig T, Wu YI, Hahn KM, Inagaki M, Herrmann H, Goldman RD. Vimentin organization modulates the formation of lamellipodia. Mol Biol Cell 2011; 22:1274-89. [PMID: 21346197 PMCID: PMC3078081 DOI: 10.1091/mbc.e10-08-0699] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The disassembly and withdrawal of vimentin intermediate filaments (VIF) from the plasma membrane induces membrane ruffling and the formation of a lamellipodium. Conversely, lamellipodium formation is inhibited when VIF are present. Vimentin intermediate filaments (VIF) extend throughout the rear and perinuclear regions of migrating fibroblasts, but only nonfilamentous vimentin particles are present in lamellipodial regions. In contrast, VIF networks extend to the entire cell periphery in serum-starved or nonmotile fibroblasts. Upon serum addition or activation of Rac1, VIF are rapidly phosphorylated at Ser-38, a p21-activated kinase phosphorylation site. This phosphorylation of vimentin is coincident with VIF disassembly at and retraction from the cell surface where lamellipodia form. Furthermore, local induction of photoactivatable Rac1 or the microinjection of a vimentin mimetic peptide (2B2) disassemble VIF at sites where lamellipodia subsequently form. When vimentin organization is disrupted by a dominant-negative mutant or by silencing, there is a loss of polarity, as evidenced by the formation of lamellipodia encircling the entire cell, as well as reduced cell motility. These findings demonstrate an antagonistic relationship between VIF and the formation of lamellipodia.
Collapse
Affiliation(s)
- Brian T Helfand
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jain A, McKeon RJ, Brady-Kalnay SM, Bellamkonda RV. Sustained delivery of activated Rho GTPases and BDNF promotes axon growth in CSPG-rich regions following spinal cord injury. PLoS One 2011; 6:e16135. [PMID: 21283639 PMCID: PMC3026041 DOI: 10.1371/journal.pone.0016135] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 12/14/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) often results in permanent functional loss. This physical trauma leads to secondary events, such as the deposition of inhibitory chondroitin sulfate proteoglycan (CSPG) within astroglial scar tissue at the lesion. METHODOLOGY/PRINCIPAL FINDINGS We examined whether local delivery of constitutively active (CA) Rho GTPases, Cdc42 and Rac1 to the lesion site alleviated CSPG-mediated inhibition of regenerating axons. A dorsal over-hemisection lesion was created in the rat spinal cord and the resulting cavity was conformally filled with an in situ gelling hydrogel combined with lipid microtubes that slowly released constitutively active (CA) Cdc42, Rac1, or Brain-derived neurotrophic factor (BDNF). Treatment with BDNF, CA-Cdc42, or CA-Rac1 reduced the number of GFAP-positive astrocytes, as well as CSPG deposition, at the interface of the implanted hydrogel and host tissue. Neurofilament 160kDa positively stained axons traversed the glial scar extensively, entering the hydrogel-filled cavity in the treatments with BDNF and CA-Rho GTPases. The treated animals had a higher percentage of axons from the corticospinal tract that traversed the CSPG-rich regions located proximal to the lesion site. CONCLUSION Local delivery of CA-Cdc42, CA-Rac1, and BDNF may have a significant therapeutic role in overcoming CSPG-mediated regenerative failure after SCI.
Collapse
Affiliation(s)
- Anjana Jain
- Neurological Biomaterials and Therapeutics, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, United States of America
| | - Robert J. McKeon
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Susann M. Brady-Kalnay
- Department of Molecular Biology and Microbiology and Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Ravi V. Bellamkonda
- Neurological Biomaterials and Therapeutics, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
26
|
Manneville JB, Jehanno M, Etienne-Manneville S. Dlg1 binds GKAP to control dynein association with microtubules, centrosome positioning, and cell polarity. ACTA ACUST UNITED AC 2010; 191:585-98. [PMID: 21041448 PMCID: PMC3003329 DOI: 10.1083/jcb.201002151] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The small GTPase Cdc42 regulates interactions of dynein with microtubules through the polarity protein Dlg1 and the scaffolding protein GKAP. Centrosome positioning is crucial during cell division, cell differentiation, and for a wide range of cell-polarized functions including migration. In multicellular organisms, centrosome movement across the cytoplasm is thought to result from a balance of forces exerted by the microtubule-associated motor dynein. However, the mechanisms regulating dynein-mediated forces are still unknown. We show here that during wound-induced cell migration, the small G protein Cdc42 acts through the polarity protein Dlg1 to regulate the interaction of dynein with microtubules of the cell front. Dlg1 interacts with dynein via the scaffolding protein GKAP and together, Dlg1, GKAP, and dynein control microtubule dynamics and organization near the cell cortex and promote centrosome positioning. Our results suggest that, by modulating dynein interaction with leading edge microtubules, the evolutionary conserved proteins Dlg1 and GKAP control the forces operating on microtubules and play a fundamental role in centrosome positioning and cell polarity.
Collapse
|
27
|
Herskowitz JH, Seyfried NT, Gearing M, Kahn RA, Peng J, Levey AI, Lah JJ. Rho kinase II phosphorylation of the lipoprotein receptor LR11/SORLA alters amyloid-beta production. J Biol Chem 2010; 286:6117-27. [PMID: 21147781 DOI: 10.1074/jbc.m110.167239] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LR11, also known as SorLA, is a mosaic low-density lipoprotein receptor that exerts multiple influences on Alzheimer disease susceptibility. LR11 interacts with the amyloid-β precursor protein (APP) and regulates APP traffic and processing to amyloid-β peptide (Aβ). The functional domains of LR11 suggest that it can act as a cell surface receptor and as an intracellular sorting receptor for trans-Golgi network to endosome traffic. We show that LR11 over-expressed in HEK293 cells is radiolabeled following incubation of cells with [(32)P(i)]orthophosphate. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used to discover putative LR11 interacting kinases. Rho-associated coiled-coil containing protein kinase (ROCK) 2 was identified as a binding partner and a candidate kinase acting on LR11. LR11 and ROCK2 co-immunoprecipitate from post-mortem human brain tissue and drug inhibition of ROCK activity reduces LR11 phosphorylation in vivo. Targeted knockdown of ROCK2 with siRNA decreased LR11 ectodomain shedding while simultaneously increasing intracellular LR11 protein level. Site-directed mutagenesis of serine 2206 in the LR11 cytoplasmic tail reduced LR11 shedding, decreased LR11 phosphorylation in vitro, and abrogated LR11 mediated Aβ reduction. These findings provide direct evidence that LR11 is phosphorylated in vivo and indicate that ROCK2 phosphorylation of LR11 may enhance LR11 mediated processing of APP and amyloid production.
Collapse
Affiliation(s)
- Jeremy H Herskowitz
- Department of Neurology, the Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Herskowitz JH, Seyfried NT, Duong DM, Xia Q, Rees HD, Gearing M, Peng J, Lah JJ, Levey AI. Phosphoproteomic analysis reveals site-specific changes in GFAP and NDRG2 phosphorylation in frontotemporal lobar degeneration. J Proteome Res 2010; 9:6368-79. [PMID: 20886841 DOI: 10.1021/pr100666c] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) is a progressive neurodegenerative disease characterized by behavioral abnormalities, personality changes, language dysfunction, and can co-occur with the development of motor neuron disease. One major pathological form of FTLD is characterized by intracellular deposition of ubiquitinated and phosphorylated TAR DNA binding protein-43 (TDP-43), suggesting that dysregulation in phosphorylation events may contribute to disease progression. However, to date systematic analysis of the phosphoproteome in FTLD brains has not been reported. In this study, we employed immobilized metal affinity chromatography (IMAC) followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify phosphopeptides from FTLD and age-matched control post-mortem human brain tissue. Using this approach, we identified 786 phosphopeptides in frontal cortex (control and FTLD), in which the population of phosphopeptides represented approximately 50% of the total peptides analyzed. Label-free quantification using spectral counts revealed six proteins with significant changes in the FTLD phosphoproteome. N-myc-Downstream regulated gene 2 (NDRG2) and glial fibrillary acidic protein (GFAP) had an increased number of phosphospectra in FTLD, whereas microtubule associated protein 1A (MAP1A), reticulon 4 (RTN4; also referred to as neurite outgrowth inhibitor (Nogo)), protein kinase C gamma (PRKCG), and heat shock protein 90 kDa alpha, class A member 1(HSP90AA1) had significantly fewer phosphospectra compared to control brain. To validate these differences, we examined NDRG2 phosphorylation in FTLD brain by immunoblot analyses, and using a phosphoserine-13 (pSer13) GFAP monoclonal antibody we show an increase in pSer13 GFAP levels by immunoblot concomitant with increased overall GFAP levels in FTLD cases. These data highlight the utility of combining proteomic and phosphoproteomic strategies to characterize post-mortem human brain tissue.
Collapse
Affiliation(s)
- Jeremy H Herskowitz
- Department of Neurology, the Center for Neurodegenerative Diseases, Laboratory Medicine, and Proteomics Service Center, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ohira K, Hagihara H, Toyama K, Takao K, Kanai M, Funakoshi H, Nakamura T, Miyakawa T. Expression of tryptophan 2,3-dioxygenase in mature granule cells of the adult mouse dentate gyrus. Mol Brain 2010; 3:26. [PMID: 20815922 PMCID: PMC2945337 DOI: 10.1186/1756-6606-3-26] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 09/05/2010] [Indexed: 12/20/2022] Open
Abstract
New granule cells are continuously generated in the dentate gyrus of the adult hippocampus. During granule cell maturation, the mechanisms that differentiate new cells not only describe the degree of cell differentiation, but also crucially regulate the progression of cell differentiation. Here, we describe a gene, tryptophan 2,3-dioxygenase (TDO), whose expression distinguishes stem cells from more differentiated cells among the granule cells of the adult mouse dentate gyrus. The use of markers for proliferation, neural progenitors, and immature and mature granule cells indicated that TDO was expressed in mature cells and in some immature cells. In mice heterozygous for the alpha-isoform of calcium/calmodulin-dependent protein kinase II, in which dentate gyrus granule cells fail to mature normally, TDO immunoreactivity was substantially downregulated in the dentate gyrus granule cells. Moreover, a 5-bromo-2'-deoxyuridine labeling experiment revealed that new neurons began to express TDO between 2 and 4 wk after the neurons were generated, when the axons and dendrites of the granule cells developed and synaptogenesis occurred. These findings indicate that TDO might be required at a late-stage of granule cell development, such as during axonal and dendritic growth, synaptogenesis and its maturation.
Collapse
Affiliation(s)
- Koji Ohira
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Accelerated neurite growth from spiral ganglion neurons exposed to the Rho kinase inhibitor H-1152. Neuroscience 2010; 169:855-62. [PMID: 20478368 DOI: 10.1016/j.neuroscience.2010.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/07/2010] [Accepted: 05/11/2010] [Indexed: 12/18/2022]
Abstract
Upon the death of their hair cell synaptic partners, bipolar cochlear spiral ganglion neurons either die or retract their peripheral nerve fibers. Efforts to induce the regrowth of the peripheral neurites have had to rely on limited knowledge of the mechanisms underlying spiral ganglion neurite regeneration and have been restricted by the impracticality of undertaking large numbers of manual analyses of neurite growth responses. Here we have used dissociated cultures of postnatal mouse spiral ganglia to assess the effects of the Rho kinase inhibitor H-1152 on neurite growth and to determine the utility of automated high content analysis for evaluating neurite length from spiral ganglion neurons in vitro. In cultures of postnatal mouse spiral ganglion, greater than 95% of the neurons develop bipolar, monopolar or neurite-free morphologies in ratios dependent on whether the initial medium composition contains leukemia inhibitory factor or bone morphogenetic protein 4. Cultures under both conditions were maintained for 24 h, then exposed for 18 h to H-1152. None of the cultures exposed to H-1152 showed decreased neuronal survival or alterations in the ratios of different neuronal morphologies. However, as measured manually, the population of neurite lengths was increased in the presence of H-1152 in both types of cultures. High content analysis using the Arrayscan VTi imager and Cellomics software confirmed the rank order differences in neurite lengths among culture conditions. These data suggest the presence of an inhibitory regulatory mechanism(s) in the signaling pathway of Rho kinase that slows the growth of spiral ganglion neurites. The automated analysis demonstrates the feasibility of using primary cultures of dissociated mouse spiral ganglion for large scale screens of chemicals, genes or other factors that regulate neurite growth.
Collapse
|
31
|
Wong CCL, Wong CM, Au SLK, Ng IOL. RhoGTPases and Rho-effectors in hepatocellular carcinoma metastasis: ROCK N'Rho move it. Liver Int 2010; 30:642-56. [PMID: 20726051 DOI: 10.1111/j.1478-3231.2010.02232.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is an intractable disease with an extremely high mortality rate. Metastasis is the major factor of liver failure, tumour recurrence and death in HCC patients. Unfortunately, no promising curative therapy for HCC metastasis is available as yet; therefore, treatment for advanced HCC still remains a formidable challenge. A large body of evidence has demonstrated that the RhoGTPases/Rho-effector pathway plays important roles in mediating HCC metastasis based on their foremost functions in orchestrating the cell cytoskeletal reorganization. This review will first discuss the general principles of cancer metastasis and cancer cell movement with a particular focus on HCC.We will then summarize the implications of various members in the RhoGTPases/Rho-effectors signalling cascade including the upstream RhoGTPase regulators RhoGTPases and Rho-effectors and their downstream targets in HCC metastasis. Finally, we will discuss the therapeutic insight of targeting the RhoGTPases/Rho-effector pathway in HCC. Taken together, the literature demonstrates the importance of the RhoGTPases/Rho-effector signalling pathway in HCC metastasis and marks the necessity to have a more thorough knowledge of this complicated signalling network in order to develop novel therapeutic strategies for HCC patients.
Collapse
Affiliation(s)
- Carmen Chak-Lui Wong
- Liver Cancer and Hepatitis Research Laboratory, Department of Pathology, University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | |
Collapse
|
32
|
Puschmann TB, Turnley AM. Eph receptor tyrosine kinases regulate astrocyte cytoskeletal rearrangement and focal adhesion formation. J Neurochem 2010; 113:881-94. [PMID: 20202079 DOI: 10.1111/j.1471-4159.2010.06655.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
EphA4 null mice have impaired astrocytic gliosis following spinal cord injury. This may be because of altered cytoskeletal regulation and is examined herein using cultured astrocytes from wildtype and EphA4 null mice. Under basal conditions EphA4 null astrocytes appeared relatively normal but following stimuli resulting in cytoskeletal rearrangement, EphA4 null cells responded more slowly. When F-actin stress fibers were collapsed using the Rho kinase inhibitor HA1077, fewer EphA4 null cells showed stress fiber collapse in response to HA1077 and recovered stress fibers more slowly following HA1077 removal. EphA4 null astrocytes were less adherent and had smaller focal adhesions, while activation of Eph receptors with ephrin-A5-Fc increased the numbers of focal adhesions in both wildtype and knockout astrocytes following serum starvation. Using scratch wound assays, EphA4 null astrocytes invading the scratch showed impaired glial fibrillary acidic protein expression, particularly in proliferative cells. Astrocytes did not express Ephexin, a major Eph-interacting Rho guanine exchange factor, but they expressed Vav proteins, with lower levels of phospho-Vav in EphA4 null compared to wildtype astrocytes. This may contribute to the slower cytoskeletal responses generally observed in the EphA4 null astrocytes. Eph receptor signaling therefore regulates astrocyte reactivity through modulation of cytoskeletal responses.
Collapse
Affiliation(s)
- Till B Puschmann
- Centre for Neuroscience, The University of Melbourne, Victoria, Australia
| | | |
Collapse
|
33
|
Tumusiime S, Rana MK, Kher SS, Kurella VB, Williams KA, Guidry JJ, Worthylake DK, Worthylake RA. Regulation of ROCKII by localization to membrane compartments and binding to DynaminI. Biochem Biophys Res Commun 2009; 381:393-6. [PMID: 19222995 DOI: 10.1016/j.bbrc.2009.02.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Accepted: 02/12/2009] [Indexed: 11/25/2022]
Abstract
ROCKII kinase activity is known to be regulated by Rho GTPase binding; however, the context-specific regulation of ROCKII is not clearly understood. We pursued the C-terminal PH domain as a candidate domain for regulating ROCKII function. A proteomics-based screen identified potential ROCKII signaling partners, a large number of which were associated with membrane dynamics. We used subcellular fractionation to demonstrate that ROCKII is localized to both the plasma membrane and internal endosomal membrane fractions, and then used microscopy to show that the C-terminal PH domain can localize to internal or peripheral membrane compartments, depending on the cellular context. Co-immunoprecipitation demonstrated that Dynamin1 is a novel ROCKII binding partner. Furthermore, blocking Dynamin function with a dominant negative mutant mimicked the effect of inhibiting ROCK activity on the actin cytoskeleton. Our data suggest that ROCKII is regulated by localization to specific membrane compartments and its novel binding partner, Dynamin1.
Collapse
Affiliation(s)
- Sylvester Tumusiime
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, 1901 Perdido St., 5th Floor MEB, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Shin HK, Salomone S, Ayata C. Targeting cerebrovascular Rho-kinase in stroke. Expert Opin Ther Targets 2009; 12:1547-64. [PMID: 19007322 DOI: 10.1517/14728220802539244] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Rho and Rho-associated kinase (ROCK) play pivotal roles in pathogenesis of vascular diseases including stroke. ROCK is expressed in all cell types relevant to stroke, and regulates a range of physiological processes. OBJECTIVE To provide an overview of ROCK as an experimental therapeutic target in cerebral ischemia, and the translational opportunities and obstacles in the prophylaxis and treatment of stroke. METHODS Relevant literature was reviewed. RESULTS ROCK activity is upregulated in chronic vascular risk factors such as diabetes, hyperlipidemia and hypertension, and more acutely by cerebral ischemia. ROCK activation is predicted to increase the risk of cerebral ischemia, and worsen the ischemic tissue outcome and functional recovery. Evidence suggests that ROCK inhibition is protective in models of cerebral ischemia. The benefit is mediated through multiple mechanisms. CONCLUSION ROCK is a promising therapeutic target in all stages of stroke.
Collapse
Affiliation(s)
- Hwa Kyoung Shin
- Pusan National University, Medical Research Center for Ischemic Tissue Regeneration, 10 Ami-dong, 1-Ga, Seo-Gu, Busan 602-739, Korea
| | | | | |
Collapse
|
35
|
Mondal S, Dirks P, Rutka JT. Immunolocalization of fascin, an actin-bundling protein and glial fibrillary acidic protein in human astrocytoma cells. Brain Pathol 2009; 20:190-9. [PMID: 19170683 DOI: 10.1111/j.1750-3639.2008.00261.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fascin is a 55-kDa globular protein that functions to organize filamentous-actin into parallel bundles. A role for fascin in cell migration has led to its study in many tumor types. In this report, we investigate fascin in astrocytomas. We show that fascin is expressed in astrocytes and in a panel of human astrocytoma cell lines. Immunofluorescence analysis demonstrates that fascin and the intermediate filament protein, glial fibrillary acidic protein (GFAP), are both expressed in the perinuclear region and within cytoplasmic processes of astrocytes and astrocytoma cells. Amino acid residues within the NH2 terminus of GFAP can undergo phosphorylation; these modifications regulate intermediate filament disassembly and occur during cytokinesis. We show that fascin and specific phosphorylated species of GFAP colocalize within dividing cells. Finally, we demonstrate that fascin co-immunoprecipitates with GFAP and that immunocomplex formation is preferential for GFAP phosphorylated at serine residues 8 and 13. These data show that fascin and GFAP are immunolocalized regionally within cells and tumors of astrocytic origin and suggest that their binding may occur during dynamic reorganization of intermediate filaments.
Collapse
Affiliation(s)
- Soma Mondal
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Division of Neurosurgery, The Hospital for Sick Children, The University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
36
|
Cho W, Messing A. Properties of astrocytes cultured from GFAP over-expressing and GFAP mutant mice. Exp Cell Res 2008; 315:1260-72. [PMID: 19146851 DOI: 10.1016/j.yexcr.2008.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 12/12/2008] [Accepted: 12/14/2008] [Indexed: 11/29/2022]
Abstract
Alexander disease is a fatal leukoencephalopathy caused by dominantly-acting coding mutations in GFAP. Previous work has also implicated elevations in absolute levels of GFAP as central to the pathogenesis of the disease. However, identification of the critical astrocyte functions that are compromised by mis-expression of GFAP has not yet been possible. To provide new tools for investigating the nature of astrocyte dysfunction in Alexander disease, we have established primary astrocyte cultures from two mouse models of Alexander disease, a transgenic that over-expresses wild type human GFAP, and a knock-in at the endogenous mouse locus that mimics a common Alexander disease mutation. We find that mutant GFAP, as well as excess wild type GFAP, promotes formation of cytoplasmic inclusions, disrupts the cytoskeleton, decreases cell proliferation, increases cell death, reduces proteasomal function, and compromises astrocyte resistance to stress.
Collapse
Affiliation(s)
- Woosung Cho
- Waisman Center, Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | |
Collapse
|
37
|
Wen ZH, Wu GJ, Hsu LC, Chen WF, Chen JY, Shui HA, Chou AK, Wong CS. N-Methyl-D-aspartate receptor antagonist MK-801 attenuates morphine tolerance and associated glial fibrillary acid protein up-regulation: a proteomic approach. Acta Anaesthesiol Scand 2008; 52:499-508. [PMID: 18339156 DOI: 10.1111/j.1399-6576.2008.01605.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND It is well known that long-term morphine administration results in tolerance, which limits the clinical use of this drug in pain management. METHODS Male Wistar rats were randomly assigned to receive one of four different infusions: morphine [15 microg/h, intrathecal (i.t.)], saline, MK-801 (5 microg/h, i.t.) plus morphine (15 microg/h, i.t.), or MK-801 (5 microg/h, i.t.) alone. RESULTS Morphine infusion induced a maximal antinociceptive effect on day 1 and tolerance on day 3, and the maximal anti-receptive tolerance was observed on day 5. Co-infusing MK-801 with morphine attenuated morphine's anti-receptive tolerance. Two-dimensional gel electrophoretic analysis of spinal proteins revealed that eight protein spots were up-regulated in morphine-tolerant rats, and that they were significantly inhibited by MK-801 co-infusion. Among the up-regulated proteins, glial fibrillary acid protein (GFAP), a glial-specific maker, was identified by mass spectrometry. This finding was also confirmed by Western blot analysis. CONCLUSION Using proteomic analysis, we identified eight GFAP protein spots that were up-regulated in the dorsal horn of morphine-tolerant rat spinal cords. This up-regulation was partly inhibited by N-methyl-D-aspartate receptor antagonist MK-801 co-infusion, which suggests that GFAP protein can be considered to be a pathogenesis marker of morphine tolerance.
Collapse
Affiliation(s)
- Z-H Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Schmandke A, Schmandke A, Strittmatter SM. ROCK and Rho: biochemistry and neuronal functions of Rho-associated protein kinases. Neuroscientist 2007; 13:454-69. [PMID: 17901255 PMCID: PMC2849133 DOI: 10.1177/1073858407303611] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rho-associated protein kinases (ROCKs) play key roles in mediating the control of the actin cytoskeleton by Rho family GTPases in response to extracellular signals. Such signaling pathways contribute to diverse neuronal functions from cell migration to axonal guidance to dendritic spine morphology to axonal regeneration to cell survival. In this review, the authors summarize biochemical knowledge of ROCK function and categorize neuronal ROCK-dependent signaling pathways. Further study of ROCK signal transduction mechanisms and specificities will enhance our understanding of brain development, plasticity, and repair. The ROCK pathway also provides a potential site for therapeutic intervention to promote neuronal regeneration and to limit degeneration.
Collapse
Affiliation(s)
- André Schmandke
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neurology Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
39
|
Borán MS, García A. The cyclic GMP-protein kinase G pathway regulates cytoskeleton dynamics and motility in astrocytes. J Neurochem 2007; 102:216-30. [PMID: 17564679 DOI: 10.1111/j.1471-4159.2007.04464.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have previously demonstrated that inflammatory compounds that increase nitric oxide (NO) synthase expression have a biphasic effect on the level of the NO messenger cGMP in astrocytes. In this work, we demonstrate that NO-dependent cGMP formation is involved in the morphological change induced by lipopolysaccharide (LPS) in cultured rat cerebellar astroglia. In agreement with this, dibutyryl-cGMP, a permeable cGMP analogue, and atrial natriuretic peptide, a ligand for particulate guanylyl cyclase, are both able to induce process elongation and branching in astrocytes resulting from a rapid, reversible and concentration-dependent redistribution of glial fibrillary acidic protein (GFAP) and actin filaments without significant change in protein levels. These effects are also observed in astrocytes co-cultured with neurons. The cytoskeleton rearrangement induced by cGMP is prevented by the specific protein kinase G inhibitor Rp-8Br-PET-cGMPS and involves downstream inhibition of RhoA GTPase since is not observed in cells transfected with constitutively active RhoA. Furthermore, dibutyryl-cGMP prevents RhoA-membrane association, a step necessary for its interaction with effectors. Stimulation of the cGMP-protein kinase G pathway also leads to increased astrocyte migration in an in vitro scratch-wound assay resulting in accelerated wound closure, as seen in reactive gliosis following brain injury. These results indicate that cGMP-mediated pathways may regulate physio-pathologically relevant responses in astroglial cells.
Collapse
Affiliation(s)
- Mariela Susana Borán
- Instituto de Biotecnología y Biomedicina, Universidad Autónoma de Barcelona, Bellaterra, Spain
| | | |
Collapse
|
40
|
Sihag RK, Inagaki M, Yamaguchi T, Shea TB, Pant HC. Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments. Exp Cell Res 2007; 313:2098-109. [PMID: 17498690 PMCID: PMC2570114 DOI: 10.1016/j.yexcr.2007.04.010] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 04/04/2007] [Accepted: 04/06/2007] [Indexed: 12/19/2022]
Abstract
Phosphorylation of types III and IV intermediate filaments (IFs) is known to regulate their organization and function. Phosphorylation of the amino-terminal head domain sites on types III and IV IF proteins plays a key role in the assembly/disassembly of IF subunits into 10 nm filaments, and influences the phosphorylation of sites on the carboxyl-terminal tail domain. These phosphorylation events are largely under the control of second messenger-dependent protein kinases and provide the cells a mechanism to reorganize the IFs in response to the changes in second messenger levels. In mitotic cells, Cdk1, Rho kinase, PAK1 and Aurora-B kinase are believed to regulate vimentin and glial fibrillary acidic protein phosphorylation in a spatio-temporal manner. In neurons, the carboxyl-terminal tail domains of the NF-M and NF-H subunits of heteropolymeric neurofilaments (NFs) are highly phosphorylated by proline-directed protein kinases. The phosphorylation of carboxyl-terminal tail domains of NFs has been suspected to play roles in forming cross-bridges between NFs and microtubules, slowing axonal transport and promoting their integration into cytoskeleton lattice and, in doing so, to control axonal caliber and stabilize the axon. The role of IF phosphorylation in disease pathobiology is discussed.
Collapse
Affiliation(s)
- Ram K Sihag
- Laboratory of Neurochemistry, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Bldg. 49 Room 2A28, MD 20892, USA.
| | | | | | | | | |
Collapse
|
41
|
Ohira K, Funatsu N, Homma KJ, Sahara Y, Hayashi M, Kaneko T, Nakamura S. Truncated TrkB-T1 regulates the morphology of neocortical layer I astrocytes in adult rat brain slices. Eur J Neurosci 2007; 25:406-16. [PMID: 17284181 DOI: 10.1111/j.1460-9568.2007.05282.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
By altering their morphology, astrocytes, including those involved in the maintenance and plasticity of neurons and in clearance of transmitter, play important roles in synaptic transmission; however, the mechanism that regulates the morphological plasticity of astrocytes remains unclear. Recently, we reported that T1, a subtype of TrkB (a family of BDNF-specific receptors), altered astrocytic morphology through the control of Rho GTPases in primary astrocyte cultures. In this study, we extended this observation to investigate acute neocortical slices from adult rats. T1 siRNA-expression vectors were electroporated into astrocytes in neocortical layer I of living rats. In both normal slices and control vector-electroporated slices, BDNF induced the elongation of the astrocytic processes and increased the branching of processes in slices after 1 h incubation. In contrast, in T1 siRNA-electroporated slices, no such significant morphological changes were observed in the astrocytes. In addition, the number of synaptophysin+ sites in contact with GFAP+ processes increased in a BDNF-T1-dependent manner without the increase in the total synaptophysin+ sites. Therefore, the present study provides evidence of the regulation of layer I astrocytic morphology by the BDNF-T1 signal in adult rat neocortical slices.
Collapse
Affiliation(s)
- Koji Ohira
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Kang JH, Jiang Y, Toita R, Oishi J, Kawamura K, Han A, Mori T, Niidome T, Ishida M, Tatematsu K, Tanizawa K, Katayama Y. Phosphorylation of Rho-associated kinase (Rho-kinase/ROCK/ROK) substrates by protein kinases A and C. Biochimie 2006; 89:39-47. [PMID: 16996192 DOI: 10.1016/j.biochi.2006.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 08/17/2006] [Indexed: 11/26/2022]
Abstract
Rho-associated kinase (Rho-kinase/ROCK/ROK) is a serine/threonine kinase and plays an important role in various cellular functions. The cAMP-dependent protein kinase (protein kinase A/PKA) and protein kinase C (PKC) are also serine/threonine kinases, and directly and/or indirectly take part in the signal transduction pathways of Rho-kinase. They have similar phosphorylation site motifs, RXXS/T and RXS/T. The purpose of this study was to identify whether sites phosphorylated by Rho-kinase could be targets for PKA and PKC and to find peptide substrates that are specific to Rho-kinase, i.e., with no phosphorylation by PKA and PKC. A total of 18 substrates for Rho-kinase were tested for phosphorylation by PKA and PKC. Twelve of these sites were easily phosphorylated. These results mean that Rho-kinase substrates can be good substrates for PKA and/or PKC. On the other hand, six Rho-kinase substrates showing no or very low phosphorylation efficiency (<20%) for PKA and PKC were identified. Kinetic parameters (K(m) and k(cat)) showed that two of these peptides could be useful as substrates specific to Rho-kinase phosphorylation.
Collapse
|
43
|
Omary MB, Ku NO, Tao GZ, Toivola DM, Liao J. "Heads and tails" of intermediate filament phosphorylation: multiple sites and functional insights. Trends Biochem Sci 2006; 31:383-94. [PMID: 16782342 DOI: 10.1016/j.tibs.2006.05.008] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 05/02/2006] [Accepted: 05/25/2006] [Indexed: 01/19/2023]
Abstract
Intermediate filaments (IFs) are major components of the mammalian cytoskeleton. They are among the most abundant cellular phosphoproteins; their phosphorylation typically involves multiple sites at repeat or unique motifs, preferentially within the "head" or "tail" domains. Phosphorylation and dephosphorylation are essential for the regulation of IF dynamics by modulating the intrinsic properties of IFs: solubility, conformation and filament organization, and, in addition, for the regulation of other IF post-translational modifications. These phosphorylation-regulated properties dictate generalized and context-dependent IF functions that reflect their tissue-specific expression. Most important among IF phosphorylation-mediated functions are the regulation of IF cellular or subcellular compartmentalization, levels and turnover, binding with associated proteins, susceptibility to cell stresses (including apoptosis), tissue-specific functions and IF-associated disease pathogenesis (where IF hyperphosphorylation also serves as a tissue-injury marker).
Collapse
Affiliation(s)
- M Bishr Omary
- Department of Medicine, Palo Alto VA Medical Center and Stanford University School of Medicine, 3801 Miranda Avenue, Palo Alto, CA 94304, USA.
| | | | | | | | | |
Collapse
|
44
|
Izawa I, Inagaki M. Regulatory mechanisms and functions of intermediate filaments: a study using site- and phosphorylation state-specific antibodies. Cancer Sci 2006; 97:167-74. [PMID: 16542212 PMCID: PMC11159468 DOI: 10.1111/j.1349-7006.2006.00161.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Intermediate filaments (IF) form the structural framework of the cytoskeleton. Although histopathological detection of IF proteins is utilized for examining cancer specimens as reliable markers, the molecular mechanisms by which IF are involved in the biology of cancer cells are still unclear. We found that site-specific phosphorylation of IF proteins induces the disassembly of filament structures. To further dissect the in vivo spatiotemporal dynamics of IF phosphorylation, we developed site- and phosphorylation state-specific antibodies. Using these antibodies, we detected kinase activities that specifically phosphorylate type III IF, including vimentin, glial fibrillary acidic protein and desmin, during mitosis. Cdk1 phosphorylates vimentin-Ser55 from prometaphase to metaphase, leading to the recruitment of Polo-like kinase 1 (Plk1) to vimentin. Upon binding to Phospho-Ser55 of vimentin, Plk1 is activated, and then phosphorylates vimentin-Ser82. During cytokinesis, Rho-kinase and Aurora-B specifically phosphorylate IF at the cleavage furrow. IF phosphorylation by Cdk1, Plk1, Rho-kinase and Aurora-B plays an important role in the local IF breakdown, and is essential for the efficient segregation of IF networks into daughter cells. As another part of our research on IF, we have set out to find the binding partners with simple epithelial keratin 8/18. We identified tumor necrosis factor receptor type 1-associated death domain protein (TRADD) as a keratin 18-binding protein. Together with data from other laboratories, it is proposed that simple epithelial keratins may play a role in modulating the response to some apoptotic signals. Elucidation of the precise molecular functions of IF is expected to improve our understanding of tumor development, invasion and metastasis.
Collapse
Affiliation(s)
- Ichiro Izawa
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | | |
Collapse
|
45
|
Yokoyama T, Goto H, Izawa I, Mizutani H, Inagaki M. Aurora-B and Rho-kinase/ROCK, the two cleavage furrow kinases, independently regulate the progression of cytokinesis: possible existence of a novel cleavage furrow kinase phosphorylates ezrin/radixin/moesin (ERM). Genes Cells 2005; 10:127-37. [PMID: 15676024 DOI: 10.1111/j.1365-2443.2005.00824.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cytokinesis is regulated by several protein kinases, such as Aurora-B and Rho-kinase/ROCK. We have indicated that these two kinases are the cleavage furrow (CF) kinases that accumulate at the cleavage furrow and phosphorylate several intermediate filament (IF) proteins into two daughter cells. It has been reported that Aurora-B phosphorylates MgcRacGAP to functionally convert to a RhoGAP during cytokinesis. Therefore, we investigated here the relationship between Aurora-B and Rho-kinase/ROCK in cytokinesis, by using small interfering RNA (siRNA) technique. Aurora-B depletion did not alter the cleavage furrow-specific localization of Rho-kinase/ROCK and vice versa. Treatment of Aurora-B or Rho-kinase/ROCK siRNA increased multinucleate cells, and the effect of double depletion was additive. Aurora-B depletion induced the reduction of cleavage furrow-specific phosphorylation of vimentin at Ser72 but not vimentin at Ser71, myosin light chain (MLC) at Ser19, and myosin binding subunit of myosin phosphatase (MBS) at Ser852. In contrast, Rho-kinase/ROCK depletion led to the reduction of cleavage furrow-specific phosphorylation of MLC at Ser19, MBS at Ser852, and vimentin at Ser71 but not vimentin at Ser72. Cleavage furrow-specific ezrin/radixin/moesin (ERM) phosphorylation was not altered in the Aurora-B- and/or Rho-kinase/ROCK-depleted cells. In addition, C3 or toxin B treatment did not abolish ERM phosphorylation at the cleavage furrow in cells attaining cytokinesis. These results suggest that Aurora-B and Rho-kinase/ROCK regulate the progression of cytokinesis without communicating to each other, and there may exist a novel protein kinase which phosphorylates ERM at the cleavage furrow.
Collapse
Affiliation(s)
- Tomoya Yokoyama
- Division of Biochemistry, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Aichi 464-8681, Japan
| | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Y Capetanaki
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
47
|
Qi M, Yu W, Liu S, Jia H, Tang L, Shen M, Yan X, Saiyin H, Lang Q, Wan B, Zhao S, Yu L. Septin1, a new interaction partner for human serine/threonine kinase aurora-B. Biochem Biophys Res Commun 2005; 336:994-1000. [PMID: 16179162 DOI: 10.1016/j.bbrc.2005.06.212] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 06/12/2005] [Indexed: 12/30/2022]
Abstract
Several families of kinases work together to ensure the rate and precision of mitosis. Aurora-B is an important serine/threonine kinase required for chromosome segregation and cytokinesis. Identification of Aurora-B substrates will help to enhance our understanding of the molecular mechanism of mitosis. Through a yeast two-hybrid screen, we found a novel partner of Aurora-B, Septin1, belonging to a conserved family of GTPase proteins that localize to the cleavage furrow and are involved in cytokinesis. We confirmed this interaction using Co-immunoprecipitation experiments in mammalian cells and GST-pull-down analysis in vitro. Moreover, Aurora-B can phosphorylate Septin1 in vitro. We identified that Ser248, Ser307, and Ser315 are the main phosphorylation sites in Septin1. These two proteins partially co-localize to the midbody during cytokinesis. So, it is possible that Septin1's role in the regulation of cytokinesis is related to its phosphorylation by Aurora-B. Unlike previous reports that Septins function in cytokinesis and localize to the cleavage furrow, we found that Septin1 localizes to the spindle pole throughout mitosis, indicating that Septin1 may function in chromosome segregation as well.
Collapse
Affiliation(s)
- Meiyan Qi
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Rho kinases (ROCKs), the first Rho effectors to be described, are serine/threonine kinases that are important in fundamental processes of cell migration, cell proliferation and cell survival. Abnormal activation of the Rho/ROCK pathway has been observed in various disorders of the central nervous system. Injury to the adult vertebrate brain and spinal cord activates ROCKs, thereby inhibiting neurite growth and sprouting. Inhibition of ROCKs results in accelerated regeneration and enhanced functional recovery after spinal-cord injury in mammals, and inhibition of the Rho/ROCK pathway has also proved to be efficacious in animal models of stroke, inflammatory and demyelinating diseases, Alzheimer's disease and neuropathic pain. ROCK inhibitors therefore have potential for preventing neurodegeneration and stimulating neuroregeneration in various neurological disorders.
Collapse
|
49
|
Utermark T, Schubert SJA, Hanemann CO. Rearrangements of the intermediate filament GFAP in primary human schwannoma cells. Neurobiol Dis 2005; 19:1-9. [PMID: 15837555 DOI: 10.1016/j.nbd.2004.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 11/22/2004] [Accepted: 11/24/2004] [Indexed: 11/25/2022] Open
Abstract
Loss of the tumor suppressor protein merlin causes a variety of benign tumors such as schwannomas, meningiomas, and gliomas in man. We previously reported primary human schwannoma cells to show enhanced integrin-dependent adhesion and a hyperactivation of the small RhoGTPase Rac1. Here we show that the main intermediate filament protein of Schwann cells, the glial fibrillary acidic protein, is collapsed to the perinuclear region instead of being well-spread from the nucleus to the cell periphery. This cytoskeletal reorganization is accompanied by changes in cell shape and increased cell motility. Moreover, we report tyrosine phosphorylation to be enhanced in schwannoma cells, already described earlier in intermediate filament breakdown. Thus, we believe that Rac activation via tyrosine kinase stimulation leads to GFAP collapse in human schwannoma cells, and suggest that this process plays an important role in vivo where schwannoma cells become motile, unspecifically ensheathing extracellular matrix and forming pseudomesaxons.
Collapse
Affiliation(s)
- Tamara Utermark
- Department of Neurology, Zentrum für klinische Forschung, University of Ulm, Helmholtzstr. 8/1, 89081 Ulm, Germany
| | | | | |
Collapse
|
50
|
Hashimoto R, Okada T, Kato T, Kosuga A, Tatsumi M, Kamijima K, Kunugi H. The breakpoint cluster region gene on chromosome 22q11 is associated with bipolar disorder. Biol Psychiatry 2005; 57:1097-102. [PMID: 15866548 DOI: 10.1016/j.biopsych.2005.02.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 02/02/2005] [Accepted: 02/14/2005] [Indexed: 01/29/2023]
Abstract
BACKGROUND Although the pathogenesis of bipolar disorder remains unclear, heritable factors have been shown to be involved. The breakpoint cluster region (BCR) gene is located on chromosome 22q11, one of the most significant susceptibility loci in bipolar disorder linkage studies. The BCR gene encodes a Rho GTPase activating protein, which is known to play important roles in neurite growth and axonal guidance. METHODS We examined patients with bipolar disorder (n = 171), major depressive disorder (n = 329) and controls (n = 351) in Japanese ethnicity for genetic association using eleven single nucleotide polymorphisms (SNPs), including a missense one (A2387G; N796S), in the genomic region of BCR. RESULTS Significant allelic associations with bipolar disorder were observed for three SNPs, and associations with bipolar II disorder were observed in ten SNPs including N796S SNP (bipolar disorder, p = .0054; bipolar II disorder p = .0014). There was a significant association with major depression in six SNPs. S796 allele carriers were in excess in bipolar II patients (p = .0046, odds ratio = 3.1, 95% CI 1.53-8.76). Furthermore, we found a stronger evidence for association with bipolar II disorder in a multi-marker haplotype analysis (p = .0002). CONCLUSIONS Our results suggest that genetic variations in the BCR gene could confer susceptibility to bipolar disorder and major depressive disorder.
Collapse
Affiliation(s)
- Ryota Hashimoto
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|