1
|
Sphingolipids and Cholesterol. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:1-14. [DOI: 10.1007/978-981-19-0394-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Li Z, Chiang YP, He M, Zhang K, Zheng J, Wu W, Cai J, Chen Y, Chen G, Chen Y, Dong J, Worgall TS, Jiang XC. Effect of liver total sphingomyelin synthase deficiency on plasma lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158898. [PMID: 33545384 DOI: 10.1016/j.bbalip.2021.158898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 11/26/2022]
Abstract
Sphingomyelin (SM) is one major phospholipids on lipoproteins. It is enriched on apolipoprotein B-containing particles, including very low-density lipoprotein (VLDL) and its catabolites, low-density lipoprotein (LDL). SM is synthesized by sphingomyelin synthase 1 and 2 (SMS1 and SMS2) which utilizes ceramide and phosphatidylcholine, as two substrates, to produce SM and diacylglyceride. SMS1 and SMS2 activities are co-expressed in all tested tissues, including the liver where VLDL is produced. Thus, neither Sms1 gene knockout (KO) nor Sms2 KO approach is sufficient to evaluate the effect of SMS on VLDL metabolism. We prepared liver-specific Sms1 KO/global Sms2 KO mice to evaluate the effect of hepatocyte SM biosynthesis in lipoprotein metabolism. We found that hepatocyte total SMS depletion significantly reduces cellular sphingomyelin levels. Also, we found that the deficiency induces cellular glycosphingolipid levels which is specifically related with SMS1 but not SMS2 deficiency. To our surprise, hepatocyte total SMS deficiency has marginal effect on hepatocyte ceramide, diacylglyceride, and phosphatidylcholine levels. Importantly, total SMS deficiency decreases plasma triglyceride but not apoB levels and reduces larger VLDL concentration. The reduction of triglyceride levels also was observed when the animals were on a high fat diet. Our results show that hepatocyte total SMS blocking can reduce VLDL-triglyceride production and plasma triglyceride levels. This phenomenon could be related with a reduction of atherogenicity.
Collapse
Affiliation(s)
- Zhiqiang Li
- Department of Cell Biology, SUNY Downstate Medical Center, United States of America
| | - Yeun-Po Chiang
- Department of Cell Biology, SUNY Downstate Medical Center, United States of America
| | - Mulin He
- Department of Cell Biology, SUNY Downstate Medical Center, United States of America
| | - Ke Zhang
- Department of Cell Biology, SUNY Downstate Medical Center, United States of America
| | - Jiao Zheng
- Department of Cell Biology, SUNY Downstate Medical Center, United States of America
| | - Weihua Wu
- Department of Cell Biology, SUNY Downstate Medical Center, United States of America
| | - Jiajia Cai
- Department of Cell Biology, SUNY Downstate Medical Center, United States of America
| | - Yong Chen
- Department of Cell Biology, SUNY Downstate Medical Center, United States of America
| | - Guangzhi Chen
- Department of Cell Biology, SUNY Downstate Medical Center, United States of America
| | | | | | - Tilla S Worgall
- Department of Medicine, Columbia University, United States of America
| | - Xian-Cheng Jiang
- Department of Cell Biology, SUNY Downstate Medical Center, United States of America; Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, Brooklyn, United States of America.
| |
Collapse
|
3
|
Wilson MH, Rajan S, Danoff A, White RJ, Hensley MR, Quinlivan VH, Recacha R, Thierer JH, Tan FJ, Busch-Nentwich EM, Ruddock L, Hussain MM, Farber SA. A point mutation decouples the lipid transfer activities of microsomal triglyceride transfer protein. PLoS Genet 2020; 16:e1008941. [PMID: 32760060 PMCID: PMC7444587 DOI: 10.1371/journal.pgen.1008941] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/18/2020] [Accepted: 06/17/2020] [Indexed: 01/08/2023] Open
Abstract
Apolipoprotein B-containing lipoproteins (B-lps) are essential for the transport of hydrophobic dietary and endogenous lipids through the circulation in vertebrates. Zebrafish embryos produce large numbers of B-lps in the yolk syncytial layer (YSL) to move lipids from yolk to growing tissues. Disruptions in B-lp production perturb yolk morphology, readily allowing for visual identification of mutants with altered B-lp metabolism. Here we report the discovery of a missense mutation in microsomal triglyceride transfer protein (Mtp), a protein that is essential for B-lp production. This mutation of a conserved glycine residue to valine (zebrafish G863V, human G865V) reduces B-lp production and results in yolk opacity due to aberrant accumulation of cytoplasmic lipid droplets in the YSL. However, this phenotype is milder than that of the previously reported L475P stalactite (stl) mutation. MTP transfers lipids, including triglycerides and phospholipids, to apolipoprotein B in the ER for B-lp assembly. In vitro lipid transfer assays reveal that while both MTP mutations eliminate triglyceride transfer activity, the G863V mutant protein unexpectedly retains ~80% of phospholipid transfer activity. This residual phospholipid transfer activity of the G863V mttp mutant protein is sufficient to support the secretion of small B-lps, which prevents intestinal fat malabsorption and growth defects observed in the mttpstl/stl mutant zebrafish. Modeling based on the recent crystal structure of the heterodimeric human MTP complex suggests the G865V mutation may block triglyceride entry into the lipid-binding cavity. Together, these data argue that selective inhibition of MTP triglyceride transfer activity may be a feasible therapeutic approach to treat dyslipidemia and provide structural insight for drug design. These data also highlight the power of yolk transport studies to identify proteins critical for B-lp biology.
Collapse
Affiliation(s)
- Meredith H. Wilson
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Sujith Rajan
- New York University Long Island School of Medicine, Mineola, New York, United States of America
| | - Aidan Danoff
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Richard J. White
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Monica R. Hensley
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Vanessa H. Quinlivan
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Rosario Recacha
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - James H. Thierer
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Frederick J. Tan
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Elisabeth M. Busch-Nentwich
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lloyd Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - M. Mahmood Hussain
- New York University Long Island School of Medicine, Mineola, New York, United States of America
| | - Steven A. Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
4
|
He P, Tian N. Curcumin modulates the apolipoprotein B mRNA editing by coordinating the expression of cytidine deamination to uridine editosome components in primary mouse hepatocytes. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2019; 23:181-189. [PMID: 31080349 PMCID: PMC6488708 DOI: 10.4196/kjpp.2019.23.3.181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/14/2018] [Accepted: 09/12/2018] [Indexed: 11/15/2022]
Abstract
Curcumin, an active ingredient of Curcuma longa L., can reduce the concentration of low-density lipoproteins in plasma, in different ways. We had first reported that curcumin exhibits hypocholesterolemic properties by improving the apolipoprotein B (apoB) mRNA editing in primary rat hepatocytes. However, the role of curcumin in the regulation of apoB mRNA editing is not clear. Thus, we investigated the effect of curcumin on the expression of multiple editing components of apoB mRNA cytidine deamination to uridine (C-to-U) editosome. Our results demonstrated that treatment with 50 µM curcumin markedly increased the amount of edited apoB mRNA in primary mouse hepatocytes from 5.13%–8.05% to 27.63%–35.61%, and significantly elevated the levels of the core components apoB editing catalytic polypeptide-1 (APOBEC-1), apobec-1 complementation factor (ACF), and RNA-binding-motif-protein-47 (RBM47), as well as suppressed the level of the inhibitory component glycine-arginine-tyrosine-rich RNA binding protein. Moreover, the increased apoB RNA editing by 50 µM curcumin was significantly reduced by siRNA-mediated APOBEC-1, ACF, and RBM47 knockdown. These findings suggest that curcumin modulates apoB mRNA editing by coordinating the multiple editing components of the editosome in primary hepatocytes. Our data provided evidence for curcumin to be used therapeutically to prevent atherosclerosis.
Collapse
Affiliation(s)
- Pan He
- Institute of Molecular Medicine, Life Science College, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Nan Tian
- Institute of Molecular Medicine, Life Science College, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| |
Collapse
|
5
|
Mulligan C, Kondakala S, Yang EJ, Stokes JV, Stewart JA, Kaplan BLF, Howell GE. Exposure to an environmentally relevant mixture of organochlorine compounds and polychlorinated biphenyls Promotes hepatic steatosis in male Ob/Ob mice. ENVIRONMENTAL TOXICOLOGY 2017; 32:1399-1411. [PMID: 27533883 DOI: 10.1002/tox.22334] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/25/2016] [Accepted: 07/30/2016] [Indexed: 05/19/2023]
Abstract
Hepatic steatosis is recognized as an independent risk factor for the development of cardiovascular disease. While obesity and type 2 diabetes are well-established risk factors in the development of hepatic steatosis, recent studies have revealed exposure to mixtures of persistent organic pollutants (POPs), which are environmental contaminants in various fatty foods, can promote steatosis. Thus, the present study was designed to determine if exposure to a defined mixture of prevalent polychlorinated biphenyls (PCBs) and organochlorine (OC) pesticides or their metabolites promote hepatic steatosis in a genetically induced model of type 2 diabetes, the leptin-deficient ob/ob mouse. Male C57BL/6J wild type (WT) or ob/ob mice were administered an environmentally relevant mixture of PCBs and OCs for 7 weeks via oral gavage. Exposure to POPs did not significantly alter fasting serum glucose or insulin levels. However, POPs exposure significantly increased hepatic triglyceride content in ob/ob animals, while decreasing serum triglyceride levels. This POPs-mediated increase in hepatic triglyceride content did not appear to be associated with significantly increased inflammation in either the liver or adipose. Exposure to POPs significantly induced the expression of cytochrome P450 3a11 in WT animals, yet the expression of this cytochrome was significantly downregulated in ob/ob animals regardless of POPs exposure. Taken together, the present data indicate exposure to an environmentally relevant mixture of both PCBs and OC pesticides in ob/ob mice promotes hepatic steatosis while decreasing hypertriglyceridemia, which demonstrates exposure to a defined mixture of POPs alters systemic lipid metabolism in a genetically induced model of obesity and type 2 diabetes. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1399-1411, 2017.
Collapse
Affiliation(s)
- Charlee Mulligan
- Department of Basic Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi, 39762
| | - Sandeep Kondakala
- Department of Basic Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi, 39762
| | - Eun-Ju Yang
- Department of Basic Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi, 39762
| | - John V Stokes
- Department of Basic Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi, 39762
| | - James A Stewart
- Department of Basic Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi, 39762
| | - Barbara L F Kaplan
- Department of Basic Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi, 39762
| | - George E Howell
- Department of Basic Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi, 39762
| |
Collapse
|
6
|
Levy E. Insights from human congenital disorders of intestinal lipid metabolism. J Lipid Res 2014; 56:945-62. [PMID: 25387865 DOI: 10.1194/jlr.r052415] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Indexed: 12/24/2022] Open
Abstract
The intestine must challenge the profuse daily flux of dietary fat that serves as a vital source of energy and as an essential component of cell membranes. The fat absorption process takes place in a series of orderly and interrelated steps, including the uptake and translocation of lipolytic products from the brush border membrane to the endoplasmic reticulum, lipid esterification, Apo synthesis, and ultimately the packaging of lipid and Apo components into chylomicrons (CMs). Deciphering inherited disorders of intracellular CM elaboration afforded new insight into the key functions of crucial intracellular proteins, such as Apo B, microsomal TG transfer protein, and Sar1b GTPase, the defects of which lead to hypobetalipoproteinemia, abetalipoproteinemia, and CM retention disease, respectively. These "experiments of nature" are characterized by fat malabsorption, steatorrhea, failure to thrive, low plasma levels of TGs and cholesterol, and deficiency of liposoluble vitamins and essential FAs. After summarizing and discussing the functions and regulation of these proteins for reader's comprehension, the current review focuses on their specific roles in malabsorptions and dyslipidemia-related intestinal fat hyperabsorption while dissecting the spectrum of clinical manifestations and managements. The influence of newly discovered proteins (proprotein convertase subtilisin/kexin type 9 and angiopoietin-like 3 protein) on fat absorption has also been provided. Finally, it is stressed how the overexpression or polymorphism status of the critical intracellular proteins promotes dyslipidemia and cardiometabolic disorders.
Collapse
Affiliation(s)
- Emile Levy
- Research Centre, CHU Sainte-Justine and Department of Nutrition, Université de Montréal, Montreal, Quebec H3T 1C5, Canada
| |
Collapse
|
7
|
Zhang L, Zhong S, Li Y, Ji G, Sundaram M, Yao Z. Global Inactivation of the Pla2g6 Gene in Mice Does Not Cause Dyslipidemia under Chow or High-fat Diet Conditions. J Cancer Prev 2014; 18:235-48. [PMID: 25337551 PMCID: PMC4189460 DOI: 10.15430/jcp.2013.18.3.235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 01/30/2023] Open
Abstract
Background: Genome-wide association studies suggest that plasma triacylglyceride (TAG) in humans was associated with variation in the PLA2G6 locus, a gene that encodes calcium-independent phospholipase A2 (iPLA2β). The objective of the present study is to understand the impact of genetic inactivation of iPLA2β on hepatic TAG metabolism in C57BL/6 mice. Methods: Male iPLA2β+/− mice were backcrossed with female iPLA2β−/− mice for up to 10 generations prior to experiments. Lipid and lipoprotein metabolism from plasma, hepatocytes, thigh subcutaneous adipose and thigh skeletal muscle tissues of the mice were determined under various experimental conditions. Results: The iPLA2β−/− mice, either male or female as compared with iPLA2β+/+ littermates, showed no change in fasted or postprandial plasma TAG or total cholesterol at young (12–15 weeks) or old (40–44 weeks) ages under chow diet or high-fat diet (HFD) conditions. However, fractionation of plasma lipoproteins showed that under HFD conditions, there was a significant increase (by 40%) in apoB-100 association with VLDL1 fractions in iPLA2β−/− mice as compared with iPLA2β+/+ littermates. There was no significant difference in triglyceride or cholesterol contents in the liver, muscle, or adipose tissue between iPLA2β−/− and iPLA2β+/+ littermates. Metabolic labeling experiments with cultured primary hepatocytes isolated from iPLA2β−/− mice also showed 2-fold increase in the secretion of [35S]methionine-labeled apoB-100 in VLDL1 fractions as compared with that from iPLA2β+/+ hepatocytes. Likewise, secretion of [3H]palmitate-labeled TAG from the iPLA2β−/− hepatocytes was increased by 2-fold. Conclusions: Although iPLA2β may play a role in TAG-rich VLDL1 production from cultured hepatocytes, there is no evidence that inactivation of iPLA2β would lead to dyslipidemia in mice in vivo.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shumei Zhong
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Ying Li
- College of Life Science, Chongqing Normal University, Chongqing, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meenakshi Sundaram
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
8
|
Lee LY, Köhler UA, Zhang L, Roenneburg D, Werner S, Johnson JA, Foley DP. Activation of the Nrf2-ARE pathway in hepatocytes protects against steatosis in nutritionally induced non-alcoholic steatohepatitis in mice. Toxicol Sci 2014; 142:361-74. [PMID: 25294219 DOI: 10.1093/toxsci/kfu184] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress is implicated in the development of non-alcoholic steatohepatitis (NASH). The Nrf2-antioxidant response element pathway protects cells from oxidative stress. Studies have shown that global Nrf2 deficiency hastens the progression of NASH. The purpose of this study was to determine whether long-term hepatocyte-specific activation of Nrf2 mitigates NASH progression. Transgenic mice expressing a constitutively active Nrf2 construct in hepatocytes (AlbCre+/caNrf2+) and littermate controls were generated. These mice were fed standard or methionine-choline-deficient (MCD) diet, a diet used to induce NASH development in rodents. After 28 days of MCD dietary feeding, mice developed significant increases in steatosis, inflammation, oxidative stress, and HSC activation compared with those mice on standard diet. AlbCre+/caNrf2+ animals had significantly decreased serum transaminases and reduced steatosis when compared with the AlbCre+/caNrf2- animals. This significant reduction in steatosis was associated with increased expression of genes involved in triglyceride export (MTTP) and β-oxidation (CPT2). However, there were no differences in the increased oxidative stress, inflammation, and HSC activation from MCD diet administration between the AlbCre+/caNrf2- and AlbCre+/caNrf2+ animals. We conclude that hepatocyte-specific activation of Nrf2-mediated gene expression decreased hepatocellular damage and steatosis in a dietary model of NASH. However, hepatocyte-specific induction of Nrf2-mediated gene expression alone is insufficient to mitigate inflammation, oxidative stress, and HSC activation in this nutritional NASH model.
Collapse
Affiliation(s)
- Lung-Yi Lee
- *Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland, Divisions of Pharmaceutical Sciences, Molecular and Environmental Toxicology Center, Center for Neuroscience, Waisman Center, University of Wisconsin, Madison, Wisconsin 53705 and Veterans Administration Surgical Services, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Ulrike A Köhler
- *Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland, Divisions of Pharmaceutical Sciences, Molecular and Environmental Toxicology Center, Center for Neuroscience, Waisman Center, University of Wisconsin, Madison, Wisconsin 53705 and Veterans Administration Surgical Services, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Li Zhang
- *Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland, Divisions of Pharmaceutical Sciences, Molecular and Environmental Toxicology Center, Center for Neuroscience, Waisman Center, University of Wisconsin, Madison, Wisconsin 53705 and Veterans Administration Surgical Services, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Drew Roenneburg
- *Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland, Divisions of Pharmaceutical Sciences, Molecular and Environmental Toxicology Center, Center for Neuroscience, Waisman Center, University of Wisconsin, Madison, Wisconsin 53705 and Veterans Administration Surgical Services, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Sabine Werner
- *Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland, Divisions of Pharmaceutical Sciences, Molecular and Environmental Toxicology Center, Center for Neuroscience, Waisman Center, University of Wisconsin, Madison, Wisconsin 53705 and Veterans Administration Surgical Services, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Jeffrey A Johnson
- *Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland, Divisions of Pharmaceutical Sciences, Molecular and Environmental Toxicology Center, Center for Neuroscience, Waisman Center, University of Wisconsin, Madison, Wisconsin 53705 and Veterans Administration Surgical Services, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin *Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland, Divisions of Pharmaceutical Sciences, Molecular and Environmental Toxicology Center, Center for Neuroscience, Waisman Center, University of Wisconsin, Madison, Wisconsin 53705 and Veterans Administration Surgical Services, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin *Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland, Divisions of Pharmaceutical Sciences, Molecular and Environmental Toxicology Center, Center for Neuroscience, Waisman Center, University of Wisconsin, Madison, Wisconsin 53705 and Veterans Administration Surgical Services, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin *Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland, Divisions of Pharmaceutical Sciences, Molecular and Environmental Toxicology Center, Center for Neuroscience, Waism
| | - David P Foley
- *Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland, Divisions of Pharmaceutical Sciences, Molecular and Environmental Toxicology Center, Center for Neuroscience, Waisman Center, University of Wisconsin, Madison, Wisconsin 53705 and Veterans Administration Surgical Services, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin *Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland, Divisions of Pharmaceutical Sciences, Molecular and Environmental Toxicology Center, Center for Neuroscience, Waisman Center, University of Wisconsin, Madison, Wisconsin 53705 and Veterans Administration Surgical Services, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
9
|
Fisher E, Lake E, McLeod RS. Apolipoprotein B100 quality control and the regulation of hepatic very low density lipoprotein secretion. J Biomed Res 2014; 28:178-93. [PMID: 25013401 PMCID: PMC4085555 DOI: 10.7555/jbr.28.20140019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/15/2014] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein B (apoB) is the main protein component of very low density lipoprotein (VLDL) and is necessary for the assembly and secretion of these triglyceride (TG)-rich particles. Following release from the liver, VLDL is converted to low density lipoprotein (LDL) in the plasma and increased production of VLDL can therefore play a detrimental role in cardiovascular disease. Increasing evidence has helped to establish VLDL assembly as a target for the treatment of dyslipidemias. Multiple factors are involved in the folding of the apoB protein and the formation of a secretion-competent VLDL particle. Failed VLDL assembly can initiate quality control mechanisms in the hepatocyte that target apoB for degradation. ApoB is a substrate for endoplasmic reticulum associated degradation (ERAD) by the ubiquitin proteasome system and for autophagy. Efficient targeting and disposal of apoB is a regulated process that modulates VLDL secretion and partitioning of TG. Emerging evidence suggests that significant overlap exists between these degradative pathways. For example, the insulin-mediated targeting of apoB to autophagy and postprandial activation of the unfolded protein response (UPR) may employ the same cellular machinery and regulatory cues. Changes in the quality control mechanisms for apoB impact hepatic physiology and pathology states, including insulin resistance and fatty liver. Insulin signaling, lipid metabolism and the hepatic UPR may impact VLDL production, particularly during the postprandial state. In this review we summarize our current understanding of VLDL assembly, apoB degradation, quality control mechanisms and the role of these processes in liver physiology and in pathologic states.
Collapse
Affiliation(s)
- Eric Fisher
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Elizabeth Lake
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Roger S McLeod
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
10
|
Heden TD, Morris EM, Kearney ML, Liu TW, Park YM, Kanaley JA, Thyfault JP. Differential effects of low-fat and high-fat diets on fed-state hepatic triacylglycerol secretion, hepatic fatty acid profiles, and DGAT-1 protein expression in obese-prone Sprague-Dawley rats. Appl Physiol Nutr Metab 2013; 39:472-9. [PMID: 24669989 DOI: 10.1139/apnm-2013-0410] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The purpose of this study was to compare the effects of short-term low-fat (LF) and high-fat (HF) diets on fed-state hepatic triacylglycerol (TAG) secretion, the content of proteins involved in TAG assembly and secretion, fatty acid oxidation (FAO), and the fatty acid profile of stored TAG. Using selectively bred obese-prone Sprague-Dawley rats, we directly measured fed-state hepatic TAG secretion, using Tyloxapol (a lipoprotein lipase inhibitor) and a standardized oral mixed meal (45% carbohydrate, 40% fat, 15% protein) bolus in animals fed a HF or LF diet for 2 weeks, after which the rats were maintained on their respective diet for 1 week (washout) prior to the liver being excised to measure protein content, FAO, and TAG fatty acid profiles. Hepatic DGAT-1 protein expression was ∼27% lower in HF- than in LF-fed animals (p < 0.05); the protein expression of all other molecules was similar in the 2 diets. The fed-state hepatic TAG secretion rate was ∼39% lower (p < 0.05) in HF- (4.62 ± 0.18 mmol·h(-1)) than in LF- (7.60 ± 0.57 mmol·h(-1)) fed animals. Hepatic TAG content was ∼2-fold higher (p < 0.05) in HF- (1.07 ± 0.15 nmol·g(-1) tissue) than in LF- (0.50 ± 0.16 nmol·g(-1) tissue) fed animals. In addition, the fatty acid profile of liver TAG in HF-fed animals closely resembled the diet, whereas in LF-fed animals, the fatty acid profile consisted of mostly de novo synthesized fatty acids. FAO was not altered by diet. LF and HF diets differentially alter fed-state hepatic TAG secretion, hepatic fatty acid profiles, and DGAT-1 protein expression.
Collapse
Affiliation(s)
- Timothy D Heden
- a Department of Nutrition and Exercise Physiology, University of Missouri, NW502 Medical Science Building, Columbia, MO 65211, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Jiang XC, Jin W, Hussain MM. The impact of phospholipid transfer protein (PLTP) on lipoprotein metabolism. Nutr Metab (Lond) 2012; 9:75. [PMID: 22897926 PMCID: PMC3495888 DOI: 10.1186/1743-7075-9-75] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/30/2012] [Indexed: 02/05/2023] Open
Abstract
It has been reported that phospholipid transfer protein (PLTP) is an independent risk factor for human coronary artery disease. In mouse models, it has been demonstrated that PLTP overexpression induces atherosclerosis, while its deficiency reduces it. PLTP is considered a promising target for pharmacological intervention to treat atherosclerosis. However, we must still answer a number of questions before its pharmaceutical potential can be fully explored. In this review, we summarized the recent progresses made in the PLTP research field and focused on its effect on apoB-containing- triglyceride-rich particle and HDL metabolism.
Collapse
Affiliation(s)
- Xian-Cheng Jiang
- Department of Cell Biology, Downstate Medical Center, State University of New York, 450 Clarkson Ave,, Box 5, Brooklyn, NY, 11203, USA.
| | | | | |
Collapse
|
12
|
Yazdanyar A, Jiang XC. Liver phospholipid transfer protein (PLTP) expression with a PLTP-null background promotes very low-density lipoprotein production in mice. Hepatology 2012; 56:576-84. [PMID: 22367708 PMCID: PMC3409695 DOI: 10.1002/hep.25648] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/31/2012] [Indexed: 12/07/2022]
Abstract
UNLABELLED It is known that plasma phospholipid transfer protein (PLTP) activity influences lipoprotein metabolism. The liver is one of the major sites of lipoprotein production and degradation, as well as of PLTP expression. To address the impact of liver-expressed PLTP on lipoprotein metabolism, we created a mouse model that expresses PLTP in the liver acutely and specifically, with a PLTP-null background. This approach in mouse model preparations can also be used universally for evaluating the function of many other genes in the liver. We found that liver PLTP expression dramatically increases plasma levels of non-high-density lipoprotein (HDL) cholesterol (2.7-fold, P < 0.0001), non-HDL phospholipid (2.5-fold, P < 0.001), and triglyceride (51%, P < 0.01), but has no significant influence on plasma HDL lipids compared with controls. Plasma apolipoprotein (apo)B levels were also significantly increased in PLTP-expressing mice (2.2-fold, P < 0.001), but those of apoA-I were not. To explore the mechanism involved, we examined the lipidation and secretion of nascent very low-density lipoprotein (VLDL), finding that liver PLTP expression significantly increases VLDL lipidation in hepatocyte microsomal lumina, and also VLDL secretion into the plasma. CONCLUSION It is possible to prepare a mouse model that expresses the gene of interest only in the liver, but not in other tissues. Our results suggest, for the first time, that the major function of liver PLTP is to drive VLDL production and makes a small contribution to plasma PLTP activity.
Collapse
Affiliation(s)
| | - Xian-Cheng Jiang
- Department of Cell Biology, SUNY Downstate Medical Center
- To whom correspondence may be addressed at Downstate Medical Center, 450 Clarkson Ave. Box 5 Brooklyn, NY 11203, tel. (718) 270-6701, Fax (718) 270-3732,
| |
Collapse
|
13
|
Li Z, Ding T, Pan X, Li Y, Li R, Sanders PE, Kuo MS, Hussain MM, Cao G, Jiang XC. Lysophosphatidylcholine acyltransferase 3 knockdown-mediated liver lysophosphatidylcholine accumulation promotes very low density lipoprotein production by enhancing microsomal triglyceride transfer protein expression. J Biol Chem 2012; 287:20122-31. [PMID: 22511767 DOI: 10.1074/jbc.m111.334664] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
After de novo biosynthesis phospholipids undergo extensive remodeling by the Lands' cycle. Enzymes involved in phospholipid biosynthesis have been studied extensively but not those involved in reacylation of lysophosphopholipids. One key enzyme in the Lands' cycle is fatty acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT), which utilizes lysophosphatidylcholine (LysoPC) and fatty acyl-CoA to produce various phosphatidylcholine (PC) species. Four isoforms of LPCAT have been identified. In this study we found that LPCAT3 is the major hepatic isoform, and its knockdown significantly reduces hepatic LPCAT activity. Moreover, we report that hepatic LPCAT3 knockdown increases certain species of LysoPCs and decreases certain species of PC. A surprising observation was that LPCAT3 knockdown significantly reduces hepatic triglycerides. Despite this, these mice had higher plasma triglyceride and apoB levels. Lipoprotein production studies indicated that reductions in LPCAT3 enhanced assembly and secretion of triglyceride-rich apoB-containing lipoproteins. Furthermore, these mice had higher microsomal triglyceride transfer protein (MTP) mRNA and protein levels. Mechanistic studies in hepatoma cells revealed that LysoPC enhances secretion of apoB but not apoA-I in a concentration-dependent manner. Moreover, LysoPC increased MTP mRNA, protein, and activity. In short, these results indicate that hepatic LPCAT3 modulates VLDL production by regulating LysoPC levels and MTP expression.
Collapse
Affiliation(s)
- Zhiqiang Li
- Molecular and Cellular Cardiology Program, Veterans Affairs New York Harbor Healthcare System, Brooklyn, New York 11209, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fisher EA, Khanna NA, McLeod RS. Ubiquitination regulates the assembly of VLDL in HepG2 cells and is the committing step of the apoB-100 ERAD pathway. J Lipid Res 2011; 52:1170-1180. [PMID: 21421992 DOI: 10.1194/jlr.m011726] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein B-100 (apoB-100) is degraded by endoplasmic reticulum-associated degradation (ERAD) when lipid availability limits assembly of VLDLs. The ubiquitin ligase gp78 and the AAA-ATPase p97 have been implicated in the proteasomal degradation of apoB-100. To study the relationship between ERAD and VLDL assembly, we used small interfering RNA (siRNA) to reduce gp78 expression in HepG2 cells. Reduction of gp78 decreased apoB-100 ubiquitination and cytosolic apoB-ubiquitin conjugates. Radiolabeling studies revealed that gp78 knockdown increased secretion of newly synthesized apoB-100 and, unexpectedly, enhanced VLDL assembly, as the shift in apoB-100 density in gp78-reduced cells was accompanied by increased triacylglycerol (TG) secretion. To explore the mechanisms by which gp78 reduction might enhance VLDL assembly, we compared the effects of gp78 knockdown with those of U0126, a mitogen-activated protein kinase/ERK kinase1/2 inhibitor that enhances apoB-100 secretion in HepG2 cells. U0126 treatment increased secretion of both apoB100 and TG and decreased the ubiquitination and cellular accumu-lation of apoB-100. Furthermore, p97 knockdown caused apoB-100 to accumulate in the cell, but if gp78 was concomitantly reduced or assembly was enhanced by U0126 treatment, cellular apoB-100 returned toward baseline. This indicates that ubiquitination commits apoB-100 to p97-mediated retrotranslocation during ERAD. Thus, decreasing ubiquitination of apoB-100 enhances VLDL assembly, whereas improving apoB-100 lipidation decreases its ubiquitination, suggesting that ubiquitination has a regulatory role in VLDL assembly.
Collapse
Affiliation(s)
- Eric A Fisher
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | - Neeraj A Khanna
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | - Roger S McLeod
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5.
| |
Collapse
|
15
|
Sundaram M, Yao Z. Recent progress in understanding protein and lipid factors affecting hepatic VLDL assembly and secretion. Nutr Metab (Lond) 2010; 7:35. [PMID: 20423497 PMCID: PMC2873297 DOI: 10.1186/1743-7075-7-35] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 04/27/2010] [Indexed: 02/06/2023] Open
Abstract
Excess lipid induced metabolic disorders are one of the major existing challenges for the society. Among many different causes of lipid disorders, overproduction and compromised catabolism of triacylglycerol-rich very low density lipoproteins (VLDL) have become increasingly prevalent leading to hyperlipidemia worldwide. This review provides the latest understanding in different aspects of VLDL assembly process, including structure-function relationships within apoB, mutations in APOB causing hypobetalipoproteinemia, significance of modulating microsomal triglyceride-transfer protein activity in VLDL assembly, alterations of VLDL assembly by different fatty acid species, and hepatic proteins involved in vesicular trafficking, and cytosolic lipid droplet metabolism that contribute to VLDL assembly. The role of lipoprotein receptors and exchangeable apolipoproteins that promote or diminish VLDL assembly and secretion is discussed. New understanding on dysregulated insulin signaling as a consequence of excessive triacylglycerol-rich VLDL in the plasma is also presented. It is hoped that a comprehensive view of protein and lipid factors that contribute to molecular and cellular events associated with VLDL assembly and secretion will assist in the identification of pharmaceutical targets to reduce disease complications related to hyperlipidemia.
Collapse
Affiliation(s)
- Meenakshi Sundaram
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Department of Pathology and Laboratory Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
16
|
Liu Y, Manchekar M, Sun Z, Richardson PE, Dashti N. Apolipoprotein B-containing lipoprotein assembly in microsomal triglyceride transfer protein-deficient McA-RH7777 cells. J Lipid Res 2010; 51:2253-64. [PMID: 20181985 DOI: 10.1194/jlr.m005371] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Microsomal triglyceride transfer protein (MTP) is required for the assembly and secretion of apolipoprotein (apo) B-containing lipoproteins. Previously, we demonstrated that the N-terminal 1,000 residues of apoB (apoB:1000) are necessary for the initiation of apoB-containing lipoprotein assembly in rat hepatoma McA-RH7777 cells and that these particles are phospholipid (PL) rich. To determine if the PL transfer activity of MTP is sufficient for the assembly and secretion of primordial apoB:1000-containing lipoproteins, we employed microRNA-based short hairpin RNAs (miR-shRNAs) to silence Mttp gene expression in parental and apoB:1000-expressing McA-RH7777 cells. This approach led to 98% reduction in MTP protein levels in both cell types. Metabolic labeling studies demonstrated a drastic 90-95% decrease in the secretion of rat endogenous apoB100-containing lipoproteins in MTP-deficient McA-RH7777 cells compared with cells transfected with negative control miR-shRNA. A similar reduction was observed in the secretion of rat endogenous apoB48 under the experimental conditions employed. In contrast, MTP absence had no significant effect on the synthesis, lipidation, and secretion of human apoB:1000-containing particles. These results provide strong evidence in support of the concept that in McA-RH7777 cells, acquisition of PL by apoB:1000 and initiation of apoB-containing lipoprotein assembly, a process distinct from the conventional first-step assembly of HDL-sized apoB-containing particles, do not require MTP. This study indicates that, in hepatocytes, a factor(s) other than MTP mediates the formation of the PL-rich primordial apoB:1000-containing initiation complex.
Collapse
Affiliation(s)
- Yanwen Liu
- Department of Medicine, Basic Sciences Section, Atherosclerosis Research Unit, University of Alabama at Birmingham Medical Center, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
17
|
Sundaram M, Zhong S, Bou Khalil M, Zhou H, Jiang ZG, Zhao Y, Iqbal J, Hussain MM, Figeys D, Wang Y, Yao Z. Functional analysis of the missense APOC3 mutation Ala23Thr associated with human hypotriglyceridemia. J Lipid Res 2010; 51:1524-34. [PMID: 20097930 DOI: 10.1194/jlr.m005108] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have shown that expression of apolipoprotein (apo) C-III promotes VLDL secretion from transfected McA-RH7777 cells under lipid-rich conditions. To determine structural elements within apoC-III that confer to this function, we contrasted wild-type apoC-III with a mutant Ala23Thr originally identified in hypotriglyceridemia subjects. Although synthesis of [(3)H]glycerol-labeled TAG was comparable between cells expressing wild-type apoC-III (C3wt cells) or Ala23Thr mutant (C3AT cells), secretion of [(3)H]TAG from C3AT cells was markedly decreased. The lowered [(3)H]TAG secretion was associated with an inability of C3AT cells to assemble VLDL(1). Moreover, [(3)H]TAG within the microsomal lumen in C3AT cells was 60% higher than that in C3wt cells, yet the activity of microsomal triglyceride-transfer protein in C3AT cells was not elevated. The accumulated [(3)H]TAG in C3AT microsomal lumen was mainly associated with lumenal IDL/LDL-like lipoproteins. Phenotypically, this [(3)H]TAG fractionation profiling resembled what was observed in cells treated with brefeldin A, which at low dose specifically blocked the second-step VLDL(1) maturation. Furthermore, lumenal [(35)S]Ala23Thr protein accumulated in IDL/LDL fractions and was absent in VLDL fractions in C3AT cells. These results suggest that the presence of Ala23Thr protein in lumenal IDL/LDL particles might prevent effective fusion between lipid droplets and VLDL precursors. Thus, the current study reveals an important structural element residing within the N-terminal region of apoC-III that governs the second step VLDL(1) maturation.
Collapse
Affiliation(s)
- Meenakshi Sundaram
- Department of Biochemistry, Ottawa Institute of Systems Biology, University of Ottawa, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhong S, Magnolo AL, Sundaram M, Zhou H, Yao EF, Di Leo E, Loria P, Wang S, Bamji-Mirza M, Wang L, McKnight CJ, Figeys D, Wang Y, Tarugi P, Yao Z. Nonsynonymous mutations within APOB in human familial hypobetalipoproteinemia: evidence for feedback inhibition of lipogenesis and postendoplasmic reticulum degradation of apolipoprotein B. J Biol Chem 2009; 285:6453-64. [PMID: 20032471 DOI: 10.1074/jbc.m109.060467] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Five nontruncating missense APOB mutations, namely A31P, G275S, L324M, G912D, and G945S, were identified in heterozygous carriers of familial hypobetalipoproteinemia (FHBL) in the Italian population. To test that the FHBL phenotype was a result of impaired hepatic secretion of mutant apoB proteins, we performed transfection studies using McA-RH7777 cells stably expressing wild type or mutant forms of human apolipoprotein B-48 (apoB-48). All mutant proteins displayed varied impairment in secretion, with G912D the least affected and A31P barely secreted. Although some A31P was degraded by proteasomes, a significant proportion of it (although inappropriately glycosylated) escaped endoplasmic reticulum (ER) quality control and presented in the Golgi compartment. Degradation of the post-ER A31P was achieved by autophagy. Expression of A31P also decreased secretion of endogenous apoB and triglycerides, yet the impaired lipoprotein secretion did not lead to lipid accumulation in the cells or ER stress. Rather, expression of genes involved in lipogenesis was down-regulated, including liver X receptor alpha, sterol regulator element-binding protein 1c, fatty acid synthase, acetyl-CoA carboxylase 1, stearoyl-CoA desaturase 1, and lipin-1. These results suggest that feedback inhibition of hepatic lipogenesis in conjunction with post-ER degradation of misfolded apoB proteins can contribute to reduce fat accumulation in the FHBL liver.
Collapse
Affiliation(s)
- Shumei Zhong
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Xie Y, Blanc V, Kerr TA, Kennedy S, Luo J, Newberry EP, Davidson NO. Decreased expression of cholesterol 7alpha-hydroxylase and altered bile acid metabolism in Apobec-1-/- mice lead to increased gallstone susceptibility. J Biol Chem 2009; 284:16860-16871. [PMID: 19386592 PMCID: PMC2719322 DOI: 10.1074/jbc.m109.010173] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Quantitative trait mapping in mice identified a susceptibility locus for gallstones (Lith6) spanning the Apobec-1 locus, the structural gene encoding the RNA-specific cytidine deaminase responsible for production of apolipoprotein B48 in mammalian small intestine and rodent liver. This observation prompted us to compare dietary gallstone susceptibility in Apobec-1(-/-) mice and congenic C57BL/6 wild type controls. When fed a lithogenic diet (LD) for 2 weeks, 90% Apobec-1(-/-) mice developed solid gallstones in comparison with 16% wild type controls. LD-fed Apobec-1(-/-) mice demonstrated increased biliary cholesterol secretion as well as increased cholesterol saturation and bile acid hydrophobicity indices. These changes occurred despite a relative decrease in cholesterol absorption in LD-fed Apobec-1(-/-) mice. Among the possible mechanisms to account for this phenotype, expression of Cyp7a1 mRNA and protein were significantly decreased in chow-fed Apobec-1(-/-) mice, decreasing further in LD-fed animals. Cyp7a1 transcription in hepatocyte nuclei, however, was unchanged in Apobec-1(-/-) mice, excluding transcriptional repression as a potential mechanism for decreased Cyp7a1 expression. We demonstrated that APOBEC-1 binds to AU-rich regions of the 3'-untranslated region of the Cyp7a1 transcript, containing the UUUN(A/U)U consensus motif, using both UV cross-linking to recombinant APOBEC-1 and in vivo RNA co-immunoprecipitation. In vivo Apobec-1-dependent modulation of Cyp7a1 expression was further confirmed following adenovirus-Apobec-1 administration to chow-fed Apobec-1(-/-) mice, which rescued Cyp7a1 gene expression. Taken together, the findings suggest that the AU-rich RNA binding-protein Apobec-1 mediates post-transcriptional regulation of murine Cyp7a1 expression and influences susceptibility to diet-induced gallstone formation.
Collapse
Affiliation(s)
- Yan Xie
- From the Departments of Medicine, St. Louis, Missouri 63110
| | - Valerie Blanc
- From the Departments of Medicine, St. Louis, Missouri 63110
| | - Thomas A Kerr
- From the Departments of Medicine, St. Louis, Missouri 63110
| | - Susan Kennedy
- From the Departments of Medicine, St. Louis, Missouri 63110
| | - Jianyang Luo
- From the Departments of Medicine, St. Louis, Missouri 63110
| | | | - Nicholas O Davidson
- From the Departments of Medicine, St. Louis, Missouri 63110; Pharmacology and Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110.
| |
Collapse
|
20
|
El Harchaoui K, Akdim F, Stroes ESG, Trip MD, Kastelein JJP. Current and future pharmacologic options for the management of patients unable to achieve low-density lipoprotein-cholesterol goals with statins. Am J Cardiovasc Drugs 2009; 8:233-42. [PMID: 18690757 DOI: 10.2165/00129784-200808040-00003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Low-density lipoprotein-cholesterol (LDL-C) lowering is the mainstay of the current treatment guidelines in the management of cardiovascular risk. HMG-CoA reductase inhibitors (statins) are currently the most effective LDL-C-lowering drugs. However, a substantial number of patients do not reach treatment targets with statins. Therefore, an unmet medical need exists for lipid-lowering drugs with novel mechanisms of action to reach the recommended cholesterol target levels, either by monotherapy or combination therapy. Upregulation of the LDL receptor with squalene synthase inhibitors has shown promising results in animal studies but the clinical development of the lead compound lapaquistat (TAK-475) has recently been discontinued. Ezetimibe combined with statins allowed significantly more patients to reach their LDL-C targets. Other inhibitors of intestinal cholesterol absorption such as disodium ascorbyl phytostanol phosphate (FM-VP4) and bile acid transport inhibitors have shown positive results in early development trials, whereas the prospect of acyl coenzyme A: cholesterol acyltransferase inhibition in cardiovascular prevention is dire. Selective inhibition of messenger RNA (mRNA) by antisense oligonucleotides is a new approach to modify cholesterol levels. The inhibition of apolipoprotein B mRNA is in advanced development and mipomersen sodium (ISIS 301012) has shown striking results in phase II studies both as monotherapy as well as in combination with statins.
Collapse
Affiliation(s)
- Karim El Harchaoui
- Department of Vascular Medicine, Academic Medical Center, Meibergdreef 9, Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
21
|
Chen Z, Newberry EP, Norris JY, Xie Y, Luo J, Kennedy SM, Davidson NO. ApoB100 is required for increased VLDL-triglyceride secretion by microsomal triglyceride transfer protein in ob/ob mice. J Lipid Res 2008; 49:2013-22. [PMID: 18519977 DOI: 10.1194/jlr.m800240-jlr200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Microsomal triglyceride transfer protein (Mttp) is a key player in the assembly and secretion of hepatic very low density lipoproteins (VLDL). Here we determined the effects of Mttp overexpression on hepatic triglyceride (TG) and VLDL secretion in leptin-deficient (ob/ob) mice, specifically in relation to apolipoproteinB (apoB) isoforms. We crossed Apobec1(-/-) mice with congenic ob/ob mice to generate apoB100-only ob/ob mice (A-ob/ob). The obesity phenotype in both genotypes was similar, but A-ob/ob mice had greater hepatic TG content. Administration of recombinant adenovirus expressing murine Mttp cDNA (Ad-mMTP) increased hepatic Mttp content and activity and increased hepatic VLDL-TG secretion in A-ob/ob mice. However, despite equivalent overexpression of Mttp, there was no change in VLDL-TG secretion in ob/ob mice in a wild-type Apobec1 background. Metabolic labeling studies in primary hepatocytes from A-ob/ob mice demonstrated that Ad-mMTP increased triglyceride secretion without changing the synthesis and secretion of apoB100, suggesting greater incorporation of TG into existing VLDL particles rather than increased particle number. Ad-mMTP administration failed to increase hepatic VLDL secretion in lean Apobec1(-/-) mice or controls. By contrast, VLDL secretion increased and hepatic TG content decreased following Ad-mMTP administration to human APOB transgenic mice crossed into the Apobec1(-/-) line. These findings demonstrate that Ad-mMTP increases murine hepatic VLDL-TG secretion only in the apoB100 background, and even then only in situations with either increased hepatic TG accumulation or increased apoB100 expression.
Collapse
Affiliation(s)
- Zhouji Chen
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Xie Y, Luo J, Kennedy S, Davidson NO. Conditional intestinal lipotoxicity in Apobec-1-/- Mttp-IKO mice: a survival advantage for mammalian intestinal apolipoprotein B mRNA editing. J Biol Chem 2007; 282:33043-51. [PMID: 17855359 DOI: 10.1074/jbc.m705386200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mammalian small intestinal lipid absorption requires the coordinated interactions of apolipoprotein B (apoB) and the microsomal triglyceride transfer protein (Mttp). The observation that apoB100 displays greater dependence on Mttp availability than does apoB48 prompted us to examine the phenotype of Mttp deletion in an Apobec-1(-/-) background (i.e. apoB100 Mttp-IKO). 20% apoB100 Mttp-IKO mice died on a chow diet, and >90% died following high fat feeding (versus 0 and 11% apoB48 Mttp-IKO mice, respectively). Intestinal adaptation occurred in apoB48 Mttp-IKO mice in response to high fat feeding, evidenced by increased bromodeoxyuridine incorporation and villus lengthening, changes that did not occur in apoB100 Mttp-IKO mice. There was an exaggerated unfolded protein response (UPR), which became more pronounced in apoB100 Mttp-IKO mice. To examine the role of endoplasmic reticulum stress and the UPR in the lipotoxic effects of Mttp deletion, we administered tauroursodeoxycholate to apoB100 Mttp-IKO mice upon initiation of high fat feeding. Tauroursodeoxycholate administration abrogated the UPR but produced an unexpected acceleration in the onset of lethality in apoB100 Mttp-IKO mice. The findings demonstrate that there is activation of the UPR with lethal lipotoxicity in conditional intestinal apoB100 Mttp-IKO mice. Together the data provide the first plausible biological evidence for a survival advantage for mammalian intestinal apoB mRNA editing.
Collapse
Affiliation(s)
- Yan Xie
- Department of Medicine, Washington University School of Medicine, 660 South Euclid, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
23
|
Dashti N, Manchekar M, Liu Y, Sun Z, Segrest JP. Microsomal triglyceride transfer protein activity is not required for the initiation of apolipoprotein B-containing lipoprotein assembly in McA-RH7777 cells. J Biol Chem 2007; 282:28597-28608. [PMID: 17690102 DOI: 10.1074/jbc.m700229200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously demonstrated that the N-terminal 1000 amino acid residues of human apolipoprotein (apo) B (designated apoB:1000) are competent to fold into a three-sided lipovitellin-like lipid binding cavity to form the apoB "lipid pocket" without a structural requirement for microsomal triglyceride transfer protein (MTP). Our results established that this primordial apoB-containing particle is phospholipid-rich (Manchekar, M., Richardson, P. E., Forte, T. M., Datta, G., Segrest, J. P., and Dashti, N. (2004) J. Biol. Chem. 279, 39757-39766). In this study we have investigated the putative functional role of MTP in the initial lipidation of apoB:1000 in stable transformants of McA-RH7777 cells. Inhibition of MTP lipid transfer activity by 0.1 microm BMS-197636 and 5, 10, and 20 microm of BMS-200150 had no detectable effect on the synthesis, lipidation, and secretion of apoB:1000-containing particles. Under identical experimental conditions, the synthesis, lipidation, and secretion of endogenous apoB100-containing particles in HepG2 and parental untransfected McA-RH7777 cells were inhibited by 86-94%. BMS-200150 at 40 microm nearly abolished the secretion of endogenous apoB100-containing particles in HepG2 and parental McA-RH cells but caused only 15-20% inhibition in the secretion of apoB: 1000-containing particles. This modest decrease was attributable to the nonspecific effect of a high concentration of this compound on hepatic protein synthesis, as reflected in a similar (20-25%) reduction in albumin secretion. Suppression of MTP gene expression in stable transformants of McA-RH7777 cells by micro-interfering RNA led to 60-70% decrease in MTP mRNA and protein levels, but it had no detectable effect on the secretion of apoB:1000. Our results provide a compelling argument that the initial addition of phospholipids to apoB:1000 and initiation of apoB-containing lipoprotein assembly occur independently of MTP lipid transfer activity.
Collapse
Affiliation(s)
- Nassrin Dashti
- Department of Medicine, Basic Sciences Section, Atherosclerosis Research Unit, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294; Department of Cell Biology, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294.
| | - Medha Manchekar
- Department of Medicine, Basic Sciences Section, Atherosclerosis Research Unit, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294
| | - Yanwen Liu
- Department of Medicine, Basic Sciences Section, Atherosclerosis Research Unit, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294
| | - Zhihuan Sun
- Department of Medicine, Basic Sciences Section, Atherosclerosis Research Unit, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294
| | - Jere P Segrest
- Department of Medicine, Basic Sciences Section, Atherosclerosis Research Unit, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294
| |
Collapse
|
24
|
The assembly of triacylglycerol-rich lipoproteins: an essential role for the microsomal triacylglycerol transfer protein. Br J Nutr 2007. [DOI: 10.1017/s0007114598001263] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Raised plasma triacylglycerol is an independent risk factor for cardiovascular disease, and an understanding of factors which regulate the synthesis and degradation of lipoproteins which carry triacylglycerol in the blood may lead to novel approaches to the treatment of hypertriacylglycerolaemia. An active microsomal triacylglycerol transfer protein (MTP) is essential for the assembly of particles which transport triacylglycerol through the circulation. After absorption in the intestine, dietary fat and fat-soluble vitamins are incorporated into chylomicrons in the intestinal epithelial cells, and these lipoproteins reach the bloodstream via the lymphatic system. Patients with the rare genetic disorder, abetalipoproteinaemia, in which MTP activity is absent, present clinically with fat-soluble vitamin and essential fatty acid deficiency, indicating a key role for MTP in the movement of fat into the body. The triacylglycerol-rich lipoprotein found in fasting blood, VLDL, is assembled in the liver by an MTP-dependent process similar to chylomicron assembly, and transports triacylglycerol to extra-hepatic tissues such as adipose tissue and heart. In the absence of MTP activity, VLDL are not synthesized and only extremely low levels of triacylglycerol are present in the blood. Dietary components, including fat, cholesterol and ethanol, can modify the expression of the MTP gene and, hence, MTP activity. The present review summarizes current knowledge of the role of MTP in the assembly and secretion of triacylglycerol-rich lipoproteins, and the regulation of its activity in both animal and cell systems.
Collapse
|
25
|
Tsai J, Qiu W, Kohen-Avramoglu R, Adeli K. MEK-ERK inhibition corrects the defect in VLDL assembly in HepG2 cells: potential role of ERK in VLDL-ApoB100 particle assembly. Arterioscler Thromb Vasc Biol 2006; 27:211-8. [PMID: 17038630 DOI: 10.1161/01.atv.0000249861.80471.96] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Hepatic VLDL assembly is defective in HepG2 cells, resulting in the secretion of immature triglyceride-poor LDL-sized apoB particles. We investigated the mechanisms underlying defective VLDL assembly in HepG2 and have obtained evidence implicating the MEK-ERK pathway. METHODS AND RESULTS HepG2 cells exhibited considerably higher levels of the ERK1/2 mass and activity compared with primary hepatocytes. Inhibition of ERK1/2 using the MEK1/MEK2 inhibitor, U0126 (but not the inactive analogue) led to a significant increase in apoB secretion. In the presence of oleic acid, ERK1/2 inhibition caused a major shift in the lipoprotein distribution with a majority of particles secreted as VLDL, an effect independent of insulin. In contrast, overexpression of constitutively active MEK1 decreased apoB and large VLDL secretion. MEK1/2 inhibition significantly increased both cellular and microsomal TG mass, and mRNA levels for DGAT-1 and DGAT-2. In contrast to ERK, modulation of the PI3-K pathway or inhibition of the p38 MAP kinase, had no effect on lipoprotein density profile. Modulation of the MEK-ERK pathway in primary hamster hepatocytes led to changes in apoB secretion and altered the density profile of apoB-containing lipoproteins. CONCLUSIONS Inhibition of the overactive ras-MEK-ERK pathway in HepG2 cells can correct the defect in VLDL assembly leading to the secretion of large, VLDL-sized particles, similar to primary hepatocytes, implicating the MEK-ERK cascade in VLDL assembly in the HepG2 model. Modulation of this pathway in primary hepatocytes also regulates apoB secretion and appears to alter the formation of VLDL-1 sized particles.
Collapse
Affiliation(s)
- Julie Tsai
- Division of Clinical Biochemistry, Hospital for Sick Children, University of Toronto, Ontario, Canada M5G 1X8
| | | | | | | |
Collapse
|
26
|
Qiu W, Avramoglu RK, Rutledge AC, Tsai J, Adeli K. Mechanisms of glucosamine-induced suppression of the hepatic assembly and secretion of apolipoprotein B-100-containing lipoproteins. J Lipid Res 2006; 47:1749-61. [PMID: 16672736 DOI: 10.1194/jlr.m500363-jlr200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucosamine-induced endoplasmic reticulum (ER) stress was recently shown to specifically reduce apolipoprotein B-100 (apoB-100) secretion by enhancing the proteasomal degradation of apoB-100. Here, we examined the mechanisms linking glucosamine-induced ER stress and apoB-lipoprotein biogenesis. Trypsin sensitivity studies suggested glucosamine-induced changes in apoB-100 conformation. Endoglycosidase H studies of newly synthesized apoB-100 revealed glucosamine induced N-linked glycosylation defects resulting in reduced apoB-100 secretion. We also examined glucosamine-induced changes in VLDL assembly and secretion. A dose-dependent (1-10 mM glucosamine) reduction was observed in VLDL-apoB-100 secretion in primary hepatocytes (24.2-67.3%) and rat McA-RH7777 cells (23.2-89.5%). Glucosamine also inhibited the assembly of larger VLDL-, LDL-, and intermediate density lipoprotein-apoB-100 but did not affect smaller HDL-sized apoB-100 particles. Glucosamine treatment during the chase period (posttranslational) led to a 24% reduction in apoB-100 secretion (P < 0.01; n = 4) and promoted post-ER apoB degradation. However, the contribution of post-ER apoB-100 degradation appeared to be quantitatively minor. Interestingly, the glucosamine-induced posttranslational reduction in apoB-100 secretion could be partially prevented by treatment with desferrioxamine or vitamin E. Together, these data suggest that cotranslational glucosamine treatment may cause defects in apoB-100 N-linked glycosylation and folding, resulting in enhanced proteasomal degradation. Posttranslationally, glucosamine may interfere with the assembly process of apoB lipoproteins, leading to post-ER degradation via nonproteasomal pathways.
Collapse
Affiliation(s)
- Wei Qiu
- Department of Clinical Biochemistry and Pathobiology, Division of Clinical Biochemistry, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
27
|
Tran K, Sun F, Cui Z, Thorne-Tjomsland G, St Germain C, Lapierre LR, McLeod RS, Jamieson JC, Yao Z. Attenuated secretion of very low density lipoproteins from McA-RH7777 cells treated with eicosapentaenoic acid is associated with impaired utilization of triacylglycerol synthesized via phospholipid remodeling. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:463-73. [PMID: 16675301 DOI: 10.1016/j.bbalip.2006.03.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Revised: 03/16/2006] [Accepted: 03/16/2006] [Indexed: 11/17/2022]
Abstract
In McA-RH7777 cells stably expressing human apolipoprotein (apo) B100, treatment with oleic acid (18:1(n-9)) promoted whereas treatment with eicosapentaenoic acid (EPA, 20:5(n-3)) attenuated assembly and secretion of VLDL. Under conditions where the cells were cultured in the presence of 20% serum, EPA (0.4 mM) had marginal effect on the secretion of total apoB100 (determined by pulse-chase analysis) but decreased (by 50%) secretion of triacylglycerol (TG), indicating that the inhibitory effect of EPA was exerted primarily on TG-rich VLDL. Analysis of phospholipid mass and species by tandem mass spectrometry showed increased phosphatidylethanolamine (PE) in EPA-treated cells, the increase was significant in the distal Golgi membranes (by 170%) and endoplasmic reticulum (by 116%). Lipid pulse-chase studies showed a major distinction between phospholipid species containing 20:5(n-3) and 18:1(n-9), which in turn was associated with distinct compartmentalization of TG containing 20:5(n-3) or 18:1(n-9) between cytosol and microsomes and their recruitment during VLDL assembly. Thus, 18:1-TG was secreted as VLDL but 20:5-TG was not. These results suggest that EPA attenuation of VLDL secretion is associated with impaired utilization of TG derived from phospholipid remodeling.
Collapse
Affiliation(s)
- Khai Tran
- Lipoprotein and Atherosclerosis Research Group, University of Ottawa Heart Institute, Ottawa, Canada K1Y 4W7
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Xie Y, Newberry EP, Young SG, Robine S, Hamilton RL, Wong JS, Luo J, Kennedy S, Davidson NO. Compensatory increase in hepatic lipogenesis in mice with conditional intestine-specific Mttp deficiency. J Biol Chem 2005; 281:4075-86. [PMID: 16354657 DOI: 10.1074/jbc.m510622200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microsomal TG transfer protein (MTTP) is required for the assembly and secretion of TG (TG)-rich lipoproteins from both enterocytes and hepatocytes. Liver-specific deletion of Mttp produced a dramatic reduction in plasma very low density lipoprotein-TG and virtually eliminated apolipoprotein B100 (apoB100) secretion yet caused only modest reductions in plasma apoB48 and apoB48 secretion from primary hepatocytes. These observations prompted us to examine the phenotype following intestine-specific Mttp deletion because murine, like human enterocytes, secrete virtually exclusively apoB48. We generated mice with conditional Mttp deletion in villus enterocytes (Mttp-IKO), using a tamoxifen-inducible, intestine-specific Cre transgene. Villus enterocytes from chow-fed Mttp-IKO mice contained large cytoplasmic TG droplets and no chylomicron-sized particles within the secretory pathway. Chow-fed, Mttp-IKO mice manifested steatorrhea, growth arrest, and decreased cholesterol absorption, features that collectively recapitulate the phenotype associated with abetalipoproteinemia. Chylomicron secretion was reduced dramatically in vivo, in conjunction with an approximately 80% decrease in apoB48 secretion from primary enterocytes. Additionally, although plasma and hepatic cholesterol and TG content were decreased, Mttp-IKO mice demonstrated a paradoxical increase in both hepatic lipogenesis and very low density lipoprotein secretion. These findings establish distinctive features for MTTP involvement in intestinal chylomicron assembly and secretion and suggest that hepatic lipogenesis undergoes compensatory induction in the face of defective intestinal TG secretion.
Collapse
Affiliation(s)
- Yan Xie
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Increased serum concentrations of low density lipoproteins represent a major cardiovascular risk factor. Low-density lipoproteins are derived from very low density lipoproteins secreted by the liver. Apolipoprotein (apo)B that constitutes the essential structural protein of these lipoproteins exists in two forms, the full length form apoB-100 and the carboxy-terminal truncated apoB-48. The generation of apoB-48 is due to editing of the apoB mRNA which generates a premature stop translation codon. The editing of apoB mRNA is an important regulatory event because apoB-48-containing lipoproteins cannot be converted into the atherogenic low density lipoproteins. The apoB gene is constitutively expressed in liver and intestine, and the rate of apoB secretion is regulated post-transcriptionally. The translocation of apoB into the endoplasmic reticulum is complicated by the hydrophobicity of the nascent polypeptide. The assembly and secretion of apoB-containing lipoproteins within the endoplasmic reticulum is strictly dependent on the microsomal tricylceride transfer protein which shuttles triglycerides onto the nascent lipoprotein particle. The overall synthesis of apoB lipoproteins is regulated by proteosomal and nonproteosomal degradation and is dependent on triglyceride availability. Noninsulin dependent diabetes mellitus, obesity and the metabolic syndrome are characterized by an increased hepatic synthesis of apoB-containing lipoproteins. Interventions aimed to reduce the hepatic secretion of apoB-containing lipoproteins are therefore of great clinical importance. Lead targets in these pathways are discussed.
Collapse
Affiliation(s)
- J Greeve
- Klinik für Allgemeine Innere Medizin, Inselspital-Universitätsspital Bern, Switzerland.
| |
Collapse
|
30
|
Affiliation(s)
- Rita Kohen Avramoglu
- Division of Clinical Biochemistry, Department of Laboratory Medicine & Pathobiology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada M5G 1X
| | | |
Collapse
|
31
|
McLeod RS, LeBlanc AM, Langille MA, Mitchell PL, Currie DL. Conjugated linoleic acids, atherosclerosis, and hepatic very-low-density lipoprotein metabolism. Am J Clin Nutr 2004; 79:1169S-1174S. [PMID: 15159253 DOI: 10.1093/ajcn/79.6.1169s] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Conjugated linoleic acids (CLAs) are isomeric forms of the 18:2 fatty acid that contain conjugated sites of unsaturation. Although CLAs are minor components of the diet, they have many reported biological activities. For nearly a decade, the potential for CLA to modify the atherosclerotic process has been examined in animal models, and studies of supplementation of the human diet with CLA were started with the anticipation that such an intervention could also reduce the risk of cardiovascular disease. Central to the hypothesis is the expectation that dietary modification could alter plasma lipid and lipoprotein metabolism toward a more cardioprotective profile. This review examines the evidence in support of the hypothesis and the mechanistic studies that lend support for a role of CLA in hepatic lipid and lipoprotein metabolism. Although there are still limited studies in strong support of a role for CLA in the reduction of early atherosclerotic lesions, there has been considerable progress in defining the mechanisms of CLA action. CLA could primarily modulate the metabolism of fatty acids in the liver. The tools are now available to examine isomer-specific effects of CLA on hepatic lipid and lipoprotein metabolism and the potential of CLA to modify hepatic gene expression patterns. Additional animal and cell culture studies will increase our understanding of these unusual fatty acids and their potential for health benefits in humans.
Collapse
Affiliation(s)
- Roger S McLeod
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.
| | | | | | | | | |
Collapse
|
32
|
Elzinga BM, Baller JFW, Mensenkamp AR, Yao Z, Agellon LB, Kuipers F, Verkade HJ. Inhibition of apolipoprotein B secretion by taurocholate is controlled by the N-terminal end of the protein in rat hepatoma McArdle-RH7777 cells. Biochim Biophys Acta Mol Cell Biol Lipids 2003; 1635:93-103. [PMID: 14729072 DOI: 10.1016/j.bbalip.2003.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bile salts (BS) inhibit the secretion of apolipoprotein B (apoB) and triacylglycerol (TG) in primary rat, mouse and human hepatocytes and in mice in vivo. We investigated whether lipidation of apoB into a lipoprotein particle is required for this inhibitory action of BS. The sodium/taurocholate co-transporting polypeptide (Ntcp) was co-expressed in McArdle-RH7777 (McA-RH7777) cells stably expressing the full-length human apoB100 (h-apoB100, secreted as TG-rich lipoprotein particles) or carboxyl-truncated human apoB18 (h-apoB18, secreted in lipid-free form). The doubly transfected cell lines (h-apoB/r-Ntcp) effectively accumulated taurocholic acid (TC). TC incubation decreased the secretion of endogenous rat apoB100 (-50%) and h-apoB18 (-35%), but did not affect secretion of rat apoA-I. Pulse-chase experiments (35S-methionine) indicated that the impaired secretion of radiolabeled h-apoB18 and h-apoB100 was associated with accelerated intracellular degradation. The calpain protease inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN) partially inhibited intracellular apoB degradation but did not affect the amount of either h-apoB18 or h-apoB100 secreted into the medium, indicating that inhibition of apoB secretion by TC is not due to calpain-dependent proteasomal degradation. We conclude that TC does not inhibit apoB secretion by interference with its lipidation, but rather involves a mechanism dependent on the N-terminal end of apoB.
Collapse
Affiliation(s)
- Baukje M Elzinga
- Department of Pediatrics, Groningen University Institute for Drug Exploration, Pediatric Gastroenterology, Academic Hospital, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
33
|
Yamaguchi J, Gamble MV, Conlon D, Liang JS, Ginsberg HN. The conversion of apoB100 low density lipoprotein/high density lipoprotein particles to apoB100 very low density lipoproteins in response to oleic acid occurs in the endoplasmic reticulum and not in the Golgi in McA RH7777 cells. J Biol Chem 2003; 278:42643-51. [PMID: 12917397 DOI: 10.1074/jbc.m306920200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The site where bulk lipid is added to apoB100 low density lipoproteins (LDL)/high density lipoproteins (HDL) particles to form triglyceride-enriched very low density lipoproteins (VLDL) has not been identified definitively. We employed several strategies to address this question. First, McA RH7777 cells were pulse-labeled for 20 min with [35S]methionine/cysteine and chased for 1 h (Chase I) to allow study of newly synthesized apoB100 LDL/HDL remaining in the endoplasmic reticulum (ER). After Chase I, cells were incubated for another hour (C2) with/without brefeldin A (BFA) and nocodazole (Noc) (to block ER to Golgi trafficking) and with/without oleic acid (OA). OA treatment alone during C2 increased VLDL secretion. This was prevented by the addition of BFA/Noc in C2. When C2 media were replaced by control media for another 1-h chase (C3), VLDL formed during OA treatment in C2 were secreted into C3 medium. Thus, OA-induced conversion of apoB100 LDL/HDL to VLDL during C2 occurred in the ER. Next, newly synthesized apoB100 lipoproteins were trapped in the Golgi by treatment with Noc and monensin during Chase I (C1), and C2 was carried out in the presence of BFA/Noc with/without OA and without monensin. Under these conditions, OA treatment during C2 did not stimulate VLDL secretion. The same pulse/chase protocols were followed by iodixanol subcellular fractionation, extraction of lipoproteins from ER and Golgi, and sucrose gradient separation of extracted lipoproteins. Cells treated with BFA/Noc and OA in C2 had VLDL in the ER. In the absence of OA, only LDL/HDL were present in the ER. The density of Golgi lipoproteins in these cells was not affected by OA. Similar results were obtained when ER were immuno-isolated with anti-calnexin antibodies. In conclusion, apoB100 bulk lipidation, resulting in conversion of LDL/HDL to VLDL, can occur in the ER, but not in the Golgi, in McA RH7777 cells.
Collapse
Affiliation(s)
- Junji Yamaguchi
- Department of Medicine, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
34
|
Vukmirica J, Tran K, Liang X, Shan J, Yuan J, Miskie BA, Hegele RA, Resh MD, Yao Z. Assembly and secretion of very low density lipoproteins containing apolipoprotein B48 in transfected McA-RH7777 cells. Lack of evidence that palmitoylation of apolipoprotein B48 is required for lipoprotein secretion. J Biol Chem 2003; 278:14153-61. [PMID: 12582154 DOI: 10.1074/jbc.m211995200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined the role of S-linked palmitoylation of human apolipoprotein (apo) B in the assembly and secretion of very low density lipoproteins using recombinant human apoB48. There are four free cysteine residues (Cys(1085), Cys(1396), Cys(1478), and Cys(1635)) within apoB48 that potentially can be palmitoylated. All four cysteine residues were substituted with serine by site-specific mutagenesis. The mutant protein was expressed in transfected rat hepatoma McA-RH7777 cells. Metabolic labeling of the stably transfected cells with iodopalmitic acid analog showed that the mutant apoB48 lacked palmitoylation. The lack of palmitoylation had little impact on the ability of apoB48 to assemble and secrete very low density lipoproteins or high density lipoproteins. Immunocytochemistry experiments using confocal microscopy failed to reveal any major alterations in the intracellular distribution of the mutant apoB48 at steady state. Pulse-chase analysis combined with subcellular fractionation showed no apparent deficiency in the movement of the mutant apoB48 protein from the endoplasmic reticulum to cis/medial Golgi. However, the mutant apoB48 lacking palmitoylation showed retarded movement toward the distal Golgi and increased association (>2-fold) with the membranes of the secretory compartments. A marginal decrease (by 15-20%) in secretion efficiency as compared with that of wild type apoB48 was also observed. These results suggest that lack of palmitoylation may influence the partitioning of apoB48 between microsomal membranes and microsomal lumen, but it does not compromise the ability of apoB48 to assemble lipoproteins.
Collapse
Affiliation(s)
- Jelena Vukmirica
- Lipoprotein and Atherosclerosis Group, University of Ottawa Heart Institute, Canada K1Y 4W7
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhang J, Herscovitz H. Nascent lipidated apolipoprotein B is transported to the Golgi as an incompletely folded intermediate as probed by its association with network of endoplasmic reticulum molecular chaperones, GRP94, ERp72, BiP, calreticulin, and cyclophilin B. J Biol Chem 2003; 278:7459-68. [PMID: 12397072 DOI: 10.1074/jbc.m207976200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated that endoplasmic reticulum (ER)-resident molecular chaperones interact with apolipoprotein B-100 (apoB) during its maturation. The initial stages of apoB folding occur while it is bound to the ER membrane, where it becomes partially lipidated to form a primordial intermediate. We determined whether this intermediate is dependent on the assistance of molecular chaperones for its subsequent folding steps. To that end, microsomes were prepared from HepG2 cells and luminal contents were subjected to KBr density gradient centrifugation. Immunoprecipitation of apoB followed by Western blotting showed that the luminal pool floated at a density of 1.12 g/ml and, like the membrane-bound pool, was associated with GRP94, ERp72, BiP, calreticulin, and cyclophilin B. Except for calreticulin, chaperone/apoB ratio in the lumen was severalfold higher than that in the membrane, suggesting a role for these chaperones both in facilitating the release of the primordial intermediate into the ER lumen and in providing stability. Subcellular fractionation on sucrose gradients showed that apoB in the Golgi was associated with the same array of chaperones as the pool of apoB recovered from heavy microsomes containing the ER, except that chaperone/apoB ratio was lower. KBr density gradient fractionation showed that the major pool of luminal apoB in the Golgi was recovered from 1.02 < d < 1.08 g/ml, whereas apoB in ER was recovered primarily from 1.08 < d < 1.2 g/ml. Both fractions were associated with the same spectrum of chaperones. Together with the finding that GRP94 was found associated with sialylated apoB, we conclude that correct folding of apoB is dependent on the assistance of molecular chaperone, which play multiple roles in its maturation throughout the secretory pathway including distal compartments such as the trans-Golgi network.
Collapse
Affiliation(s)
- Jianying Zhang
- Department of Physiology and Biophysics, Center for Advanced Biomedical Research, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
36
|
Hussain MM, Shi J, Dreizen P. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J Lipid Res 2003; 44:22-32. [PMID: 12518019 DOI: 10.1194/jlr.r200014-jlr200] [Citation(s) in RCA: 423] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein B (apoB) and microsomal triglyceride transfer protein (MTP) are necessary for lipoprotein assembly. ApoB consists of five structural domains, betaalpha(1)-beta(1)-alpha(2)-beta(2)-alpha(3). We propose that MTP contains three structural motifs (N-terminal beta-barrel, central alpha-helix, and C-terminal lipid cavity) and three functional domains (lipid transfer, membrane associating, and apoB binding). MTP's lipid transfer activity is required for the assembly of lipoproteins. This activity renders nascent apoB secretion-competent and may be involved in the import of triglycerides into the lumen of endoplasmic reticulum. In addition, MTP binds to apoB with high affinity involving ionic interactions. MTP interacts at multiple sites in the N-terminal betaalpha(1) structural domain of apoB. A novel antagonist that inhibits apoB-MTP binding decreases apoB secretion. Furthermore, site-directed mutagenesis and deletion analyses that inhibit apoB-MTP binding decrease apoB secretion. Lipids modulate protein-protein interactions between apoB and MTP. Lipids associated with MTP increase apoB-MTP binding whereas lipids associated with apoB decrease this binding. Thus, specific antagonist, site-directed mutagenesis, deletion analyses, and modulation studies support the notion that apoB-MTP binding plays a role in lipoprotein biogenesis. However, specific steps in lipoprotein assembly that require apoB-MTP binding have not been identified. ApoB-MTP binding may be important for the prevention of degradation and lipidation of nascent apoB.
Collapse
Affiliation(s)
- M Mahmood Hussain
- Department of Anatomy, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| | | | | |
Collapse
|
37
|
Kulinski A, Rustaeus S, Vance JE. Microsomal triacylglycerol transfer protein is required for lumenal accretion of triacylglycerol not associated with ApoB, as well as for ApoB lipidation. J Biol Chem 2002; 277:31516-25. [PMID: 12072432 DOI: 10.1074/jbc.m202015200] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The assembly of very low density lipoproteins in hepatocytes requires the microsomal triacylglycerol transfer protein (MTP). This microsomal lumenal protein transfers lipids, particularly triacylglycerols (TG), between membranes in vitro and has been proposed to transfer TG to nascent apolipoprotein (apo) B in vivo. We examined the role of MTP in the assembly of apoB-containing lipoproteins in cultured murine primary hepatocytes using an inhibitor of MTP. The MTP inhibitor reduced TG secretion from hepatocytes by 85% and decreased the amount of apoB100 in the microsomal lumen, as well as that secreted into the medium, by 70 and 90%, respectively, whereas the secretion of apoB48 was only slightly decreased and the amount of lumenal apoB48 was unaffected. However, apoB48-containing particles formed in the presence of inhibitor were lipid-poor compared with those produced in the absence of inhibitor. We also isolated a pool of apoB-free TG from the microsomal lumen and showed that inhibition of MTP decreased the amount of TG in this pool by approximately 45%. The pool of TG associated with apoB was similarly reduced. However, inhibition of MTP did not directly block TG transfer from the apoB-independent TG pool to partially lipidated apoB in the microsomal lumen. We conclude that MTP is required for TG accumulation in the microsomal lumen and as a source of TG for assembly with apoB, but normal levels of MTP are not required for transferring the bulk of TG to apoB during VLDL assembly in murine hepatocytes.
Collapse
Affiliation(s)
- Agnes Kulinski
- Canadian Institutes for Health Research Group in Molecular and Cell Biology of Lipids, and the Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | |
Collapse
|
38
|
Fisher EA, Ginsberg HN. Complexity in the secretory pathway: the assembly and secretion of apolipoprotein B-containing lipoproteins. J Biol Chem 2002; 277:17377-80. [PMID: 12006608 DOI: 10.1074/jbc.r100068200] [Citation(s) in RCA: 356] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Edward A Fisher
- Cardiovascular Institute and Departments of Medicine and Biochemistry, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | |
Collapse
|
39
|
Levy E, Stan S, Delvin E, Menard D, Shoulders C, Garofalo C, Slight I, Seidman E, Mayer G, Bendayan M. Localization of microsomal triglyceride transfer protein in the Golgi: possible role in the assembly of chylomicrons. J Biol Chem 2002; 277:16470-7. [PMID: 11830580 DOI: 10.1074/jbc.m102385200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although a critical role of microsomal transfer protein (MTP) has been recognized in the assembly of nascent apolipoprotein B (apoB)-containing lipoproteins, it remains unclear where and how MTP transfers lipids in the secretory pathway during the maturational process of apoB lipidation. The aims of this study were to determine whether MTP functions in the secretory pathway as well as in the endoplasmic reticulum and whether its large 97-kDa subunit interacts with the small 58-kDa protein disulfide isomerase (PDI) subunit and apoB, particularly in the Golgi apparatus. Using a high resolution immunogold approach combined with specific polyclonal antibodies, the large and small subunits of MTP were observed over the rough endoplasmic reticulum and the Golgi. Double immunocytochemical detection unraveled the colocalization of MTP and PDI as well as MTP and apoB in these same subcellular compartments. To confirm the spatial contact of these proteins, Golgi fractions were isolated, homogenized, and incubated with an anti-MTP large subunit antibody. Immunoprecipitates were applied on SDS-PAGE and then transferred on to nitrocellulose. Immunoblotting the membrane with PDI and apoB antibodies confirmed the colocalization of these proteins with MTP. Furthermore, MTP activity assay disclosed a substantial triglyceride transfer in the Golgi fractions. The occurrence of membrane-associated apoB in the Golgi, coupled with its interaction with active MTP, suggests an important role for the Golgi in the biogenesis of apoB-containing lipoproteins.
Collapse
Affiliation(s)
- Emile Levy
- Department of Nutrition, Hôpital Sainte-Justine and University of Montreal, Montreal, Quebec H3T 1C5, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Higashi Y, Itabe H, Fukase H, Mori M, Fujimoto Y, Sato R, Imanaka T, Takano T. Distribution of microsomal triglyceride transfer protein within sub-endoplasmic reticulum regions in human hepatoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1581:127-36. [PMID: 12020640 DOI: 10.1016/s1388-1981(02)00157-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Very low-density lipoprotein (VLDL) particles are formed in the endoplasmic reticulum (ER) through the association of lipids with apolipoprotein B (apoB). Microsomal triglyceride transfer protein (MTP), which transfers lipid molecules to nascent apoB, is essential for VLDL formation in ER. However, little is known of the distribution and interaction of MTP with apoB within ER. In this study, distribution patterns of apoB and MTP large subunit (lMTP) within ER were examined. Microsomes prepared from HuH-7 cells, a human hepatoma cell line, were further fractionated into rough ER (RER)-enriched subfractions (ER-I fraction) and smooth ER (SER)-enriched subfractions (ER-II fraction) by iodixanol density-gradient ultracentrifugation. ApoB was evenly distributed in the ER-I and the ER-II fractions, while 1.5 times more lMTP molecules were present in the ER-I fraction than in the ER-II fraction. lMTP and apoB were coprecipitated both in the ER-I and in the ER-II fractions by immunoprecipitation whenever anti-apoB or an anti-lMTP antibodies were used. ApoB-containing lipoprotein particles showed a lower density in the ER-II fraction than those in the ER-I fraction. From these results, it is suggested that MTP can function in both rough and smooth regions of ER in human hepatoma cells.
Collapse
Affiliation(s)
- Yusuke Higashi
- Department of Molecular Pathology, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Tsukui, Kanagawa 199-0195, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Pan M, Liang Js JS, Fisher EA, Ginsberg HN. The late addition of core lipids to nascent apolipoprotein B100, resulting in the assembly and secretion of triglyceride-rich lipoproteins, is independent of both microsomal triglyceride transfer protein activity and new triglyceride synthesis. J Biol Chem 2002; 277:4413-21. [PMID: 11704664 DOI: 10.1074/jbc.m107460200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although microsomal triglyceride transfer protein (MTP) and newly synthesized triglyceride (TG) are critical for co-translational targeting of apolipoprotein B (apoB100) to lipoprotein assembly in hepatoma cell lines, their roles in the later stages of lipoprotein assembly remain unclear. Using N-acetyl-Leu-Leu-norleucinal to prevent proteasomal degradation, HepG2 cells were radiolabeled and chased for 0-90 min (chase I). The medium was changed and cells chased for another 150 min (chase II) in the absence (control) or presence of Pfizer MTP inhibitor CP-10447 (CP). As chase I was extended, inhibition of apoB100 secretion by CP during chase II decreased from 75.9% to only 15% of control (no CP during chase II). Additional studies were conducted in which chase I was either 0 or 90 min, and chase II was in the presence of [(3)H]glycerol and either BSA (control), CP (inhibits both MTP activity and TG synthesis),BMS-1976360-1) (BMS) (inhibits only MTP activity), or triacsin C (TC) (inhibits only TG synthesis). When chase I was 0 min, CP, BMS, and TC reduced apoB100 secretion during chase II by 75.3, 73.9, and 53.9%. However, when chase I was 90 min, those agents reduced apoB100 secretion during chase II by only 16.0, 19.2, and 13.9%. Of note, all three inhibited secretion of newly synthesized TG during chase II by 80, 80, and 40%, whether chase I was 0 or 90 min. In both HepG2 cells and McA-RH7777 cells, if chase I was at least 60 min, inhibition of TG synthesis and/or MTP activity did not affect the density of secreted apoB100-lipoproteins under basal conditions. Oleic acid increased secretion of TG-enriched apoB100-lipoproteins similarly in the absence or presence of either of CP, BMS, or TC. We conclude that neither MTP nor newly synthesized TG is necessary for the later stages of apoB100-lipoprotein assembly and secretion in either HepG2 or McA-RH7777 cells.
Collapse
Affiliation(s)
- Meihui Pan
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
42
|
Plonné D, Schulze HP, Kahlert U, Meltke K, Seidolt H, Bennett AJ, Cartwright IJ, Higgins JA, Till U, Dargel R. Postnatal development of hepatocellular apolipoprotein B assembly and secretion in the rat. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31513-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Sellers JA, Shelness GS. Lipoprotein assembly capacity of the mammary tumor-derived cell line C127 is due to the expression of functional microsomal triglyceride transfer protein. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31516-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
44
|
Davis RA, Hui TY. 2000 George Lyman Duff Memorial Lecture: atherosclerosis is a liver disease of the heart. Arterioscler Thromb Vasc Biol 2001; 21:887-98. [PMID: 11397693 DOI: 10.1161/01.atv.21.6.887] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The production of apolipoprotein B (apoB)-containing lipoproteins by the liver is regulated by a complex series of processes involving apoB being cotranslationally translocated across the endoplasmic reticulum and assembled into a lipoprotein particle. The translocation of apoB across the endoplasmic reticulum is facilitated by the intraluminal chaperone, microsomal triglyceride transfer protein (MTP). MTP facilitates the translocation and folding of apoB, as well as the addition of lipid to lipid-binding domains (which consist of amphipathic beta sheets and alpha helices). In the absence of MTP or sufficient lipid, apoB exhibits translocation arrest. Thus, apoB translation, translocation, and assembly with lipids to form a core-containing lipoprotein particle occur as concerted processes. Abrogation of >/=1 of these processes diverts apoB into a degradation pathway that is dependent on conjugation with ubiquitin and proteolysis by the proteasome. The nascent core-containing lipoprotein particle that forms within the lumen of the endoplasmic reticulum can be "enlarged" to form a mature very low density lipoprotein particle. Additional studies show that the assembly and secretion of apoB-containing lipoproteins are linked to the cholesterol/bile acid synthetic pathway controlled by cholesterol 7alpha-hydroxylase. Studies in cultured cells and transgenic mice indicate that the expression of cholesterol 7alpha-hydroxylase indirectly regulates the expression of lipogenic enzymes through changes in the cellular content of mature sterol response element binding proteins. Oxysterols and bile acids may also act via the ligand-activated nuclear receptors LXR and FXR to link the metabolic pathways controlling energy balance and lipid metabolism to nutritional state.
Collapse
Affiliation(s)
- R A Davis
- Mammalian Cell and Molecular Biology Laboratory, San Diego State University, San Diego, CA 92182-4614, USA.
| | | |
Collapse
|
45
|
Levy E, Stan S, Garofalo C, Delvin EE, Seidman EG, Ménard D. Immunolocalization, ontogeny, and regulation of microsomal triglyceride transfer protein in human fetal intestine. Am J Physiol Gastrointest Liver Physiol 2001; 280:G563-71. [PMID: 11254482 DOI: 10.1152/ajpgi.2001.280.4.g563] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To examine the multiple stages of lipoprotein packaging during development, we studied localization, ontogeny, and regulation of microsomal transfer protein (MTP), a crucial protein for lipid transport. With the use of immunofluorescence, MTP was identified in villus and crypt epithelial cells in different regions of human fetal intestine, including colon. Staining was detected as early as the 13th wk of gestation in all gut segments and was almost entirely confined to the columnar epithelial cells of the jejunum and colon. Unlike immunofluorescence, which provides qualitative but not quantitative information on MTP signal, enzymatic assays revealed a decreasing gradient from proximal small intestine to distal, as confirmed by immunoblot. Activity of MTP in small intestinal explants cultured for different incubation periods (0, 4, 8, and 24 h) peaked at 4 h but remained insensitive to different concentrations of oleic acid. Also, a trend toward increasing MTP activity was observed at 20-22 wk of gestation. Finally, in strong contrast to jejunal efficiency, colonic explants displayed impaired lipid production, apolipoprotein biogenesis, and lipoprotein assembly, in association with poor expression of MTP. These findings provide the first evidence that human fetal gut is able to express MTP and emphasize the distinct regional distribution, regulation by oleic acid, and ontogeny of MTP.
Collapse
Affiliation(s)
- E Levy
- Department of Nutrition, Université de Montréal, H3C 3J7, Quebec, Canada H3T 1C5.
| | | | | | | | | | | |
Collapse
|
46
|
Davidson NO, Shelness GS. APOLIPOPROTEIN B: mRNA editing, lipoprotein assembly, and presecretory degradation. Annu Rev Nutr 2001; 20:169-93. [PMID: 10940331 DOI: 10.1146/annurev.nutr.20.1.169] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apolipoprotein (apo)B circulates in two distinct forms, apoB100 and apoB48. Human liver secretes apoB100, the product of a large mRNA encoding 4536 residues. The small intestine of all mammals secretes apoB48, which arises following C-to-U deamination of a single cytidine base in the nuclear apoB transcript, introducing a translational stop codon. This process, referred to as apoB RNA editing, operates through a multicomponent enzyme complex that contains a single catalytic subunit, apobec-1, in addition to other protein factors that have yet to be cloned. ApoB RNA editing also exhibits stringent cis-acting requirements that include both structural and sequence-specific elements-specifically efficiency elements that flank the minimal cassette, an AU-rich RNA context, and an 11-nucleotide mooring sequence-located in proximity to a suitably positioned (usually upstream) cytidine. C-to-U RNA editing may become unconstrained under circumstances where apobec-1 is overexpressed, in which case multiple cytidines in apoB RNA, as well as in other transcripts, undergo C-to-U editing. ApoB RNA editing is eliminated following targeting of apobec-1, establishing that there is no genetic redundancy in this function. Under physiological circumstances, apoB RNA editing exhibits developmental, hormonal, and nutritional regulation, in some cases related to transcriptional regulation of apobec-1 mRNA. ApoB and the microsomal triglyceride transfer protein (MTP) are essential for the assembly and secretion of apoB-containing lipoproteins. MTP functions by transferring lipid to apoB during its translation and by transporting triglycerides into the endoplasmic reticulum to form apoB-free lipid droplets. These droplets fuse with nascent apoB-containing particles to form mature, very low-density lipoproteins or chylomicrons. In cultured hepatic cells, lipid availability dictates the rate of apoB production. Unlipidated or underlipidated forms of apoB are subjected to presecretory degradation, a process mediated by retrograde transport from the lumen of the endoplasmic reticulum to the cytosol, coupled with multiubquitination and proteasomal degradation. Although control of lipid secretion in vivo is primarily achieved at the level of lipoprotein particle size, regulation of apoB production by presecretory degradation may be relevant in some dyslipidemic states.
Collapse
Affiliation(s)
- N O Davidson
- Departments of Medicine and Molecular Biology and Pharmacology, Washington University Medical School, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
47
|
Berriot-Varoqueaux N, Aggerbeck LP, Samson-Bouma M, Wetterau JR. The role of the microsomal triglygeride transfer protein in abetalipoproteinemia. Annu Rev Nutr 2001; 20:663-97. [PMID: 10940349 DOI: 10.1146/annurev.nutr.20.1.663] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The microsomal triglyceride transfer protein (MTP) is a dimeric lipid transfer protein consisting of protein disulfide isomerase and a unique 97-kDa subunit. In vitro, MTP accelerates the transport of triglyceride, cholesteryl ester, and phospholipid between membranes. It was recently demonstrated that abetalipoproteinemia, a hereditary disease characterized as an inability to produce chylomicrons and very low-density lipoproteins in the intestine and liver, respectively, results from mutations in the gene encoding the 97-kDa subunit of the microsomal triglyceride transfer protein. Downstream effects resulting from this defect include malnutrition, very low plasma cholesterol and triglyceride levels, altered lipid and protein compositions of membranes and lipoprotein particles, and vitamin deficiencies. Unless treated, abetalipoproteinemic subjects develop gastrointestinal, neurological, ophthalmological, and hematological abnormalities.
Collapse
Affiliation(s)
- N Berriot-Varoqueaux
- U327 Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine Xavier Bichat, Université de Paris 7-Denis Diderot, 75870 Paris, France.
| | | | | | | |
Collapse
|
48
|
Cartwright IJ, Plonné D, Higgins JA. Intracellular events in the assembly of chylomicrons in rabbit enterocytes. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)31966-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
49
|
Macri J, Kazemian P, Kulinski A, Rudy D, Aiton A, Thibert RJ, Adeli K. Translocational status of ApoB in the presence of an inhibitor of microsomal triglyceride transfer protein. Biochem Biophys Res Commun 2000; 276:1035-47. [PMID: 11027587 DOI: 10.1006/bbrc.2000.3509] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite numerous studies demonstrating that microsomal triglyceride transfer protein (MTP) activity is critical to apoB secretion, there is still controversy as to whether MTP directly facilitates the translocation of apoB across the membrane of the endoplasmic reticulum (ER) through either the recruitment of lipids and/or chaperone activity. In the present study, a specific inhibitor of MTP (BMS 197636) was utilized in HepG2 cells to investigate whether a direct relationship exists between the translocation of apoB across the ER membrane and the lipid-transferring activity of MTP. Inhibition of MTP (with 10 and 50 nmol/L of the inhibitor) did not significantly affect the translocation of newly synthesized apoB (P = 0.77) or the translocational efficiency of the steady-state apoB mass (P = 0.45), despite a 49% decrease in apoB secretion and increased proteosomal degradation. These results compared well with subcellular fractionation experiments which showed no significant change in the fraction of apoB accumulated in the lumen of isolated microsomes in MTP-treated cells (P = 0.35). In summary, MTP lipid transfer activity does not appear to influence translocational status of apoB, but its inhibition is associated with an increased susceptibility to proteasome-mediated degradation and reduced assembly and secretion of apoB lipoprotein particles.
Collapse
Affiliation(s)
- J Macri
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Pan M, Liang JS, Fisher EA, Ginsberg HN. Inhibition of Translocation of Nascent Apolipoprotein B across the Endoplasmic Reticulum Membrane Is Associated with Selective Inhibition of the Synthesis of Apolipoprotein B. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61524-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|