1
|
Rokonujjaman M, Sahyouni A, Wolfe R, Jia L, Ghosh U, Weliky DP. A large HIV gp41 construct with trimer-of-hairpins structure exhibits V2E mutation-dominant attenuation of vesicle fusion and helicity very similar to V2E attenuation of HIV fusion and infection and supports: (1) hairpin stabilization of membrane apposition with larger distance for V2E; and (2) V2E dominance by an antiparallel β sheet with interleaved fusion peptide strands from two gp41 trimers. Biophys Chem 2023; 293:106933. [PMID: 36508984 PMCID: PMC9879285 DOI: 10.1016/j.bpc.2022.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
There is complete attenuation of fusion and infection mediated by HIV gp160 with gp41 subunit with V2E mutation, and also V2E dominance with WT/V2E mixtures. V2E is at the N-terminus of the ∼25-residue fusion peptide (Fp) which likely binds the target membrane. In this study, large V2E attenuation and dominance were observed for vesicle fusion induced by FP_HM, a large gp41 ectodomain construct with Fp followed by hyperthermostable hairpin with N- and C-helices, and membrane-proximal external region (Mper). FP_HM is a trimer-of-hairpins, the final gp41 structure during fusion. Vesicle fusion and helicity were measured for FP_HM using trimers with different fractions (f's) of WT and V2E proteins. Reductions in FP_HM fusion and helicity vs. fV2E were quantitatively-similar to those for gp160-mediated fusion and infection. Global fitting of all V2E data supports 6 WT gp41 (2 trimers) required for fusion. These data are understood by a model in which the ∼25 kcal/mol free energy for initial membrane apposition is compensated by the thermostable hairpin between the Fp in target membrane and Mper/transmembrane domain in virus membrane. The data support a structural model for V2E dominance with a membrane-bound Fp with antiparallel β sheet and interleaved strands from the two trimers. Relative to fV2E = 0, a longer Fp sheet is stabilized with small fV2E because of salt-bridge and/or hydrogen bonds between E2 on one strand and C-terminal Fp residues on adjacent strands, like R22. A longer Fp sheet results in shorter N- and C-helices, and larger separation during membrane apposition which hinders fusion.
Collapse
Affiliation(s)
- Md Rokonujjaman
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Abdulrazak Sahyouni
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Robert Wolfe
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Lihui Jia
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Ujjayini Ghosh
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - David P Weliky
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
2
|
Klug YA, Schwarzer R, Ravula T, Rotem E, Ramamoorthy A, Shai Y. Structural and Mechanistic Evidence for Calcium Interacting Sites in the HIV Transmembrane Protein gp41 Involved in Membrane Fusion. Biochemistry 2022; 61:1915-1922. [PMID: 35994087 PMCID: PMC9454089 DOI: 10.1021/acs.biochem.2c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/05/2022] [Indexed: 11/29/2022]
Abstract
The HIV envelope protein gp160 comprises two subunits, gp120 and gp41, responsible for receptor binding and membrane fusion during viral entry, respectively. In the course of the membrane fusion process, gp41 undergoes a conformational change, leading to the formation of a six-helix bundle (SHB), which ultimately drives membrane fusion. The gp41 C-terminal and N-terminal heptad repeats (CHR and NHR) interact with one another to form the SHB, and this step can be targeted by peptide inhibitors, which are used in the clinic to mitigate HIV infection. Here, we discover the calcium interaction motifs (CIMs) in the gp41 CHR and NHR regions via NMR spectroscopy. We find that the assembly of the CHR-NHR SHB is facilitated in Ca2+-containing media and impaired in CIM mutants. Of note, the clinically approved, gp41-derived fusion inhibitor T20, which does not contain the CIM motif, exhibits reduced inhibitory efficiency when challenged with calcium. This finding could have important implications for the development of better fusion inhibitors for HIV.
Collapse
Affiliation(s)
- Yoel A. Klug
- Department
of Biomolecular Sciences, The Weizmann Institute
of Science, Rehovot 7632701, Israel
| | - Roland Schwarzer
- Department
of Biomolecular Sciences, The Weizmann Institute
of Science, Rehovot 7632701, Israel
- Institute
for Translational HIV Research, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Thirupathi Ravula
- Biophysics
Program, Department of Chemistry, Macromolecular Science and Engineering,
Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Etai Rotem
- Department
of Biomolecular Sciences, The Weizmann Institute
of Science, Rehovot 7632701, Israel
| | - Ayyalusamy Ramamoorthy
- Biophysics
Program, Department of Chemistry, Macromolecular Science and Engineering,
Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Yechiel Shai
- Department
of Biomolecular Sciences, The Weizmann Institute
of Science, Rehovot 7632701, Israel
| |
Collapse
|
3
|
Schapiro HM, Khasnis MD, Ahn K, Karagiaridi A, Hayden S, Cilento ME, Root MJ. Regulation of epitope exposure in the gp41 membrane-proximal external region through interactions at the apex of HIV-1 Env. PLoS Pathog 2022; 18:e1010531. [PMID: 35584191 PMCID: PMC9154124 DOI: 10.1371/journal.ppat.1010531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/31/2022] [Accepted: 04/18/2022] [Indexed: 11/19/2022] Open
Abstract
Glycoprotein Env of human immunodeficiency virus type 1 (HIV-1) mediates viral entry through membrane fusion. Composed of gp120 and gp41 subunits arranged as a trimer-of-heterodimers, Env adopts a metastable, highly dynamic conformation on the virion surface. This structural plasticity limits the temporospatial exposure of many highly conserved, neutralizing epitopes, contributing to the difficulty in developing effective HIV-1 vaccines. Here, we employed antibody neutralization of HIV-1 infectivity to investigate how inter- and intra-gp120 interactions mediated by variable loops V1/V2 and V3 at the Env apex regulate accessibility of the gp41 membrane-proximal external region (MPER) at the Env base. Swapping the V3 loop from EnvSF162 into the EnvHXB2 background shifted MPER exposure from the prefusogenic state to a functional intermediate conformation that was distinct from the prehairpin-intermediate state sensitive to gp41-targeted fusion inhibitors. The V3-loop swap had a profound impact on global protein dynamics, biasing the equilibrium to a closed conformation resistant to most anti-gp120 antibodies, stabilizing the protein to both cold- and soluble CD4-induced Env inactivation, and increasing the CD4 requirements for viral entry. Further dissection of the EnvHXB2 V3 loop revealed that residue 306 uniquely modulated epitope exposure and trimer stability. The R306S substitution substantially decreased sensitivity to antibodies targeting the gp41 MPER and, surprisingly, the gp120 V3-loop crown (residues 312-315), but had only modest effects on exposure of intervening gp120 epitopes. Furthermore, the point mutation reduced soluble CD4-induced inactivation, but had no impact on cold inactivation. The residue appeared to exert its effects by electrostatically modifying the strength of intra-subunit interactions between the V1/V2 and V3 loops. The distinct patterns of neutralization and stability pointed to a novel prefusogenic Env conformation along the receptor activation pathway and suggested that apical Env-regulation of gp41 MPER exposure can be decoupled from much of the dynamics of gp120 subunits.
Collapse
Affiliation(s)
- Hannah M. Schapiro
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Mukta D. Khasnis
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Koree Ahn
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Alexandra Karagiaridi
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Stephanie Hayden
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Maria E. Cilento
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Michael J. Root
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
4
|
Falanga A, Galdiero M, Morelli G, Galdiero S. Membranotropic peptides mediating viral entry. Pept Sci (Hoboken) 2018; 110:e24040. [PMID: 32328541 PMCID: PMC7167733 DOI: 10.1002/pep2.24040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/27/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023]
Abstract
The means used by enveloped viruses to bypass cellular membranes are well characterized; however, the mechanisms used by non-enveloped viruses to deliver their genome inside the cell remain unresolved and poorly defined. The discovery of short, membrane interacting, amphipathic or hydrophobic sequences (known as membranotropic peptides) in both enveloped and non-enveloped viruses suggests that these small peptides are strongly involved in breaching the host membrane and in the delivery of the viral genome into the host cell. Thus, in spite of noticeable differences in entry, this short stretches of membranotropic peptides are probably associated with similar entry-related events. This review will uncover the intrinsic features of viral membranotropic peptides involved in viral entry of both naked viruses and the ones encircled with a biological membrane with the objective to better elucidate their different functional properties and possible applications in the biomedical field.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Pharmacy, School of MedicineNaples80134Italy
- CIRPEB University of Naples Federico II, Via Mezzocannone 16Naples80134Italy
| | - Massimiliano Galdiero
- CIRPEB University of Naples Federico II, Via Mezzocannone 16Naples80134Italy
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli,” Via de CrecchioNaples80134Italy
| | - Giancarlo Morelli
- Department of Pharmacy, School of MedicineNaples80134Italy
- CIRPEB University of Naples Federico II, Via Mezzocannone 16Naples80134Italy
| | - Stefania Galdiero
- Department of Pharmacy, School of MedicineNaples80134Italy
- CIRPEB University of Naples Federico II, Via Mezzocannone 16Naples80134Italy
| |
Collapse
|
5
|
Mavioso ICVC, de Andrade VCR, Palace Carvalho AJ, Martins do Canto AMT. Molecular dynamics simulations of T-2410 and T-2429 HIV fusion inhibitors interacting with model membranes: Insight into peptide behavior, structure and dynamics. Biophys Chem 2017; 228:69-80. [PMID: 28711675 DOI: 10.1016/j.bpc.2017.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 11/17/2022]
Abstract
T-2410 and T-2429 are HIV fusion inhibitor peptides (FI) designed to present a higher efficiency even against HIV strains that developed resistance against other FIs. Similar peptides were shown to interact with model membranes both in the liquid disordered phase and in the liquid ordered state. Those results indicated that such interaction is important to function and could be correlated with their effectiveness. Extensive molecular dynamics simulations were carried out to investigate the interactions between both T-2410 and T-2429 with bilayers of pure 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and a mixture of POPC/cholesterol (Chol) (1:1). It was observed that both peptides interact strongly with both membrane systems, especially with the POPC/Chol systems, where these peptides show the highest number of H-bonds observed so far. T-2410 and T-2429 showed higher extent of interaction with bilayers when compared to T-20 or T-1249 in previous studies. This is most notable in POPC/Chol membranes where, although able to form H-bonds with Chol, they do so to a lesser extent than T-1249 does, the latter being the only FI peptide so far that was observed to form H-bonds with Chol. This behavior suggests that interaction of FI peptides with rigid Chol rich membranes may not be as dependent from peptide/Chol H-bond formation as previous results of T-1249 behavior led to believe. As in other similar peptides, the higher ability to interact with membranes shown by T-2410 and T2429 is probably correlated with its higher inhibitory efficiency.
Collapse
Affiliation(s)
- I C V C Mavioso
- Departamento de Química, Escola de Ciências e Tecnologia, Universidade de Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
| | - V C R de Andrade
- Departamento de Química, Escola de Ciências e Tecnologia, Universidade de Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
| | - A J Palace Carvalho
- Departamento de Química, Escola de Ciências e Tecnologia, Universidade de Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal; Centro de Química de Évora, IIFA, Universidade de Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
| | - A M T Martins do Canto
- Departamento de Química, Escola de Ciências e Tecnologia, Universidade de Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal; Centro de Química de Évora, IIFA, Universidade de Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal.
| |
Collapse
|
6
|
Zeng X, Wu P, Yao C, Liang J, Zhang S, Yin H. Small Molecule and Peptide Recognition of Protein Transmembrane Domains. Biochemistry 2017; 56:2076-2085. [DOI: 10.1021/acs.biochem.6b00909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Xianfeng Zeng
- Center
of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100082, China
| | - Peiyao Wu
- Center
of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100082, China
| | - Chengbo Yao
- Center
of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100082, China
| | - Jiaqi Liang
- Center
of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100082, China
| | - Shuting Zhang
- Center
of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100082, China
- School
of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Hang Yin
- Center
of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100082, China
| |
Collapse
|
7
|
Changes in lipid bilayer structure caused by the helix-to-sheet transition of an HIV-1 gp41 fusion peptide derivative. Chem Phys Lipids 2017; 203:46-53. [DOI: 10.1016/j.chemphyslip.2017.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 11/20/2022]
|
8
|
Khasnis MD, Halkidis K, Bhardwaj A, Root MJ. Receptor Activation of HIV-1 Env Leads to Asymmetric Exposure of the gp41 Trimer. PLoS Pathog 2016; 12:e1006098. [PMID: 27992602 PMCID: PMC5222517 DOI: 10.1371/journal.ppat.1006098] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/09/2017] [Accepted: 11/29/2016] [Indexed: 11/18/2022] Open
Abstract
Structural rearrangements of HIV-1 glycoprotein Env promote viral entry through membrane fusion. Env is a symmetric homotrimer with each protomer composed of surface subunit gp120 and transmembrane subunit gp41. Cellular CD4- and chemokine receptor-binding to gp120 coordinate conformational changes in gp41, first to an extended prehairpin intermediate (PHI) and, ultimately, into a fusogenic trimer-of-hairpins (TOH). HIV-1 fusion inhibitors target gp41 in the PHI and block TOH formation. To characterize structural transformations into and through the PHI, we employed asymmetric Env trimers containing both high and low affinity binding sites for individual fusion inhibitors. Asymmetry was achieved using engineered Env heterotrimers composed of protomers deficient in either CD4- or chemokine receptor-binding. Linking receptor engagement to inhibitor affinity allowed us to assess conformational changes of individual Env protomers in the context of a functioning trimer. We found that the transition into the PHI could occur symmetrically or asymmetrically depending on the stoichiometry of CD4 binding. Sequential engagement of multiple CD4s promoted progressive exposure of individual fusion inhibitor binding sites in a CD4-dependent fashion. By contrast, engagement of only a single CD4 molecule led to a delayed, but symmetric, exposure of the gp41 trimer. This complex coupling between Env-CD4 interaction and gp41 exposure explained the multiphasic fusion-inhibitor titration observed for a mutant Env homotrimer with a naturally asymmetric gp41. Our results suggest that the spatial and temporal exposure of gp41 can proceed in a nonconcerted, asymmetric manner depending on the number of CD4s that engage the Env trimer. The findings have important implications for the mechanism of viral membrane fusion and the development of vaccine candidates designed to elicit neutralizing antibodies targeting gp41 in the PHI. For HIV, cellular invasion requires merging viral and cellular membranes, an event achieved through the activity of the viral fusion protein Env. Env consists of three gp120 and three gp41 subunits symmetrically arranged on the viral surface. The gp120 subunits bind cellular receptors, which, in turn, coordinate gp41 conformational changes that promote membrane fusion. Understanding these structural rearrangements illuminates the mechanism of viral membrane fusion, and also spurs development of targeted inhibitors of viral entry and vaccine candidates that elicit antiviral immune responses. In this study, we employed a novel strategy to investigate individual subunits in the context of functioning Env complexes. The strategy links distinct gp120-receptor interactions to conformational changes that expose specific gp41 subunits. We found that, despite the initial symmetric arrangement of its subunits, Env conformational changes most often proceed quite asymmetrically, leading to exposure of only one-third of the gp41 trimer for much of the fusion event. This finding might explain why attempts to elicit potent anti-HIV antibodies to a fully exposed gp41 trimer have been largely unsuccessful. The study gives us a glimpse of the early structural transitions leading to Env-mediated membrane fusion and provides a framework for interrogating the fusion proteins of other membrane-encapsulated viruses.
Collapse
Affiliation(s)
- Mukta D. Khasnis
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Konstantine Halkidis
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Anshul Bhardwaj
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Michael J. Root
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
9
|
Structure and interaction with lipid membrane models of Semliki Forest virus fusion peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2671-2680. [PMID: 27425030 PMCID: PMC7172313 DOI: 10.1016/j.bbamem.2016.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/21/2016] [Accepted: 07/12/2016] [Indexed: 11/24/2022]
Abstract
Semliki Forest virus (SFV) is a well-characterized alphavirus that infects cells via endocytosis and an acid-triggered fusion step using class II fusion proteins. Membrane fusion is mediated by the viral spike protein, a heterotrimer of two transmembrane subunits, E1 and E2, and a peripheral protein, E3. Sequence analysis of the E1 ectodomain of a number of alphaviruses demonstrated the presence of a highly conserved hydrophobic domain on the E1 ectodomain. This sequence was proposed to be the fusion peptide of SFV and is believed to be the domain of E1 that interacts with the target membrane and triggers fusion. Here, we investigate the structure and the interaction with lipid membrane models of 76YQCKVYTGVYPFMWGGAYCFC96 sequence from SFV, named SFV21, using optical method (ellipsometry) and vibrational spectroscopiy approaches (Polarization Modulation infra-Red Reflection Absorption Spectroscopy, PMIRRAS, and polarized ATR-FTIR). We demonstrate a structural flexibility of SFV21 sequence whether the lateral pressure and the lipid environment. In a lipid environment that mimics eukaryotic cell membranes, a conformational transition from an α-helix to a β-sheet is induced in the presence of lipid by increasing the peptide to lipid ratio, which leads to important perturbations in the membrane organisation. SFV21 fusion peptide displays structural flexibility between α-helix and β-sheets. A conformational transition from an α-helix to a β-sheet is induced by the increase of the peptide to lipid ratio. SFV21 fusion peptide leads to important perturbations in the membrane organisation.
Collapse
|
10
|
Dimonte S. Different HIV-1 env frames: gp120 and ASP (antisense protein) biosynthesis, and theirs co-variation tropic amino acid signatures in X4- and R5-viruses. J Med Virol 2016; 89:112-122. [PMID: 27328810 DOI: 10.1002/jmv.24611] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2016] [Indexed: 11/07/2022]
Abstract
Antisense protein (ASP) is the new actor of viral life of Human Immunodeficiency Virus type 1 (HIV-1) although proposed above 20 years ago. The asp ORF is into complementary strand of the gp120/gp41 junction of env gene. The ASP biological role remains little known. Knowing the Env markers of viral tropism, a dataset of sequences (660 strains) was used to analyze the hypothetical ASP involvement in CCR5 (R5) and/or CXCR4 (X4) co-receptor interaction. Preliminarily, prevalence of ASP and gp120V3 mutations was performed; following association among mutations were elaborate. The classical V3 tropic-signatures were confirmed, and 36 R5- and 22 X4-tropic ASP mutations were found. Moreover, by analyzing the ASP sequences, 36 out of 179 amino acid positions significantly associated with different co-receptor usage were found. Several statistically significant associations between gp120V3 and ASP mutations were observed. The dendrogram showed the existence of a cluster associated with R5-usage and a large cluster associated with X4-usage. These results show that gp120V3 and specific amino acid changes in ASP are associated together with CXCR4 and/or CCR5-usage. These findings implement previous observations on unclear ASP functions. J. Med. Virol. 89:112-122, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
|
11
|
Galdiero S, Falanga A, Morelli G, Galdiero M. gH625: a milestone in understanding the many roles of membranotropic peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:16-25. [PMID: 25305339 PMCID: PMC7124228 DOI: 10.1016/j.bbamem.2014.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 12/05/2022]
Abstract
Here, we review the current knowledge about viral derived membranotropic peptides, and we discuss how they may be used for many therapeutic applications. While they have been initially discovered in viral fusion proteins and have been involved in the mechanism of viral entry, it is now clear that their features and their mode of interaction with membrane bilayers can be exploited to design viral inhibitors as well as to favor delivery of cargos across the cell membrane and across the blood–brain barrier. The peptide gH625 has been extensively used for all these purposes and provides a significant contribution to the field. We describe the roles of this sequence in order to close the gap between the many functions that are now emerging for membranotropic peptides. Membranotropic peptides and their therapeutic applications Membrane fusion, viral inhibition, drug delivery gH625, a peptide derived from Herpes simplex virus type I: a case study gH625 in vitro and in vivo delivery across the blood–brain barrier
Collapse
Affiliation(s)
- Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy; DFM Scarl, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy.
| | - Annarita Falanga
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy; DFM Scarl, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy; DFM Scarl, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
12
|
Lai AL, Freed JH. HIV gp41 fusion peptide increases membrane ordering in a cholesterol-dependent fashion. Biophys J 2014; 106:172-81. [PMID: 24411249 DOI: 10.1016/j.bpj.2013.11.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/11/2013] [Accepted: 11/13/2013] [Indexed: 10/25/2022] Open
Abstract
Fusion between viral envelopes and host cell membranes, which is mediated by special glycoproteins anchored on the viral membrane, is required for HIV viral entry and infection. The HIV gp41 fusion peptide (FP), which initiates membrane fusion, adopts either an α-helical or β-sheeted structure depending on the cholesterol concentration. We used phosphocholine spin labels on the lipid headgroup and different positions on the acyl chain to detect its perturbation on lipid bilayers containing different cholesterol concentrations by electron-spin resonance. Our findings were as follows. 1), gp41 FP affects the lipid order in the same manner as previously shown for influenza hemagglutinin FP, i.e., it has a cooperative effect versus the peptide/lipid ratio, supporting our hypothesis that membrane ordering is a common prerequisite for viral membrane fusion. 2), gp41 FP induces membrane ordering in all lipid compositions studied, whereas a nonfusion mutant FP perturbs lipid order to a significantly smaller extent. 3), In high-cholesterol-containing lipid bilayers, where gp41 FP is in the β-aggregation conformation, its effect on the lipid ordering reaches deeper into the bilayer. The different extent to which the two conformers perturb is correlated with their fusogenicity. The possible role of the two conformers in membrane fusion is discussed.
Collapse
Affiliation(s)
- Alex L Lai
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York.
| |
Collapse
|
13
|
Apellániz B, Huarte N, Largo E, Nieva JL. The three lives of viral fusion peptides. Chem Phys Lipids 2014; 181:40-55. [PMID: 24704587 PMCID: PMC4061400 DOI: 10.1016/j.chemphyslip.2014.03.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 02/07/2023]
Abstract
The presence of a fusion peptide (FP) is a hallmark of viral fusion glycoproteins. Structure–function relationships underlying FP conservation remain greatly unknown. FPs establish interactions satisfying their folding within pre-fusion glycoproteins. Upon fusion activation FPs insert into and restructure target membranes. FPs can finally combine with transmembrane domains to form integral membrane bundles.
Fusion peptides comprise conserved hydrophobic domains absolutely required for the fusogenic activity of glycoproteins from divergent virus families. After 30 years of intensive research efforts, the structures and functions underlying their high degree of sequence conservation are not fully elucidated. The long-hydrophobic viral fusion peptide (VFP) sequences are structurally constrained to access three successive states after biogenesis. Firstly, the VFP sequence must fulfill the set of native interactions required for (meta) stable folding within the globular ectodomains of glycoprotein complexes. Secondly, at the onset of the fusion process, they get transferred into the target cell membrane and adopt specific conformations therein. According to commonly accepted mechanistic models, membrane-bound states of the VFP might promote the lipid bilayer remodeling required for virus-cell membrane merger. Finally, at least in some instances, several VFPs co-assemble with transmembrane anchors into membrane integral helical bundles, following a locking movement hypothetically coupled to fusion-pore expansion. Here we review different aspects of the three major states of the VFPs, including the functional assistance by other membrane-transferring glycoprotein regions, and discuss briefly their potential as targets for clinical intervention.
Collapse
Affiliation(s)
- Beatriz Apellániz
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Nerea Huarte
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Eneko Largo
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - José L Nieva
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
14
|
Volkov V, Bonn M. Structural Properties of gp41 Fusion Peptide at a Model Membrane Interface. J Phys Chem B 2013; 117:15527-35. [DOI: 10.1021/jp405852r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- V. Volkov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - M. Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
15
|
Galdiero S, Falanga A, Tarallo R, Russo L, Galdiero E, Cantisani M, Morelli G, Galdiero M. Peptide inhibitors against herpes simplex virus infections. J Pept Sci 2013; 19:148-58. [PMID: 23389903 DOI: 10.1002/psc.2489] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 11/07/2022]
Abstract
Herpes simplex virus (HSV) is a significant human pathogen causing mucocutaneous lesions primarily in the oral or genital mucosa. Although acyclovir (ACV) and related nucleoside analogs provide successful treatment, HSV remains highly prevalent worldwide and is a major cofactor for the spread of human immunodeficiency virus. Encephalitis, meningitis, and blinding keratitis are among the most severe diseases caused by HSV. ACV resistance poses an important problem for immunocompromised patients and highlights the need for new safe and effective agents; therefore, the development of novel strategies to eradicate HSV is a global public health priority. Despite the continued global epidemic of HSV and extensive research, there have been few major breakthroughs in the treatment or prevention of the virus since the introduction of ACV in the 1980s. A therapeutic strategy at the moment not fully addressed is the use of small peptide molecules. These can be either modeled on viral proteins or derived from antimicrobial peptides. Any peptide that interrupts protein-protein or viral protein-host cell membrane interactions is potentially a novel antiviral drug and may be a useful tool for elucidating the mechanisms of viral entry. This review summarizes current knowledge and strategies in the development of synthetic and natural peptides to inhibit HSV infectivity.
Collapse
Affiliation(s)
- Stefania Galdiero
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134, Napoli, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Shai Y. ATR-FTIR studies in pore forming and membrane induced fusion peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012. [PMID: 23201348 DOI: 10.1016/j.bbamem.2012.11.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Infrared (IR) spectroscopy has been shown to be very reliable for the characterization, identification and quantification of structural data. Particularly, the Attenuated Total Reflectance (ATR) technique which became one of the best choices to study the structure and organization of membrane proteins and membrane-bound peptides in biologically relevant membranes. An important advantage of IR spectroscopy is its ability to analyze material under a very wide range of conditions including solids, liquids and gases. This method allows elucidation of component secondary structure elements of a peptide or protein in a global manner, and by using site specific isotope labeling allows determination of specific regions. A few advantages in using ATR-FTIR spectroscopy include; a relatively simple technique, allow the determination of peptide orientation in the membrane, allow the determination of secondary structures of very small peptides, and importantly, the method is sensitive to isotopic labeling on the scale of single amino acids. Many studies were reported on the use of ATR-FTIR spectroscopy in order to study the structure and orientation of membrane bound hydrophobic peptides and proteins. The list includes native and de-novo designed peptides, as well as those derived from trans-membrane domains of various receptors (TMDs). The present review will focus on several examples that demonstrate the potential and the simplicity in using the ATR-FTIR approach to determine secondary structures of proteins and peptides when bound, inserted, and oligomerized within membranes. The list includes (i) a channel forming protein/peptide: the Ca(2+) channel phospholamban, (ii) a cell penetrating peptide, (iii) changes in the structure of a transmembrane domain located within ordered and non-ordered domains, and (iv) isotope edited FTIR to directly assign structure to the membrane associated fusion peptide in context of a Key gp41 Structural Motif. Importantly, a unique advantage of infrared spectroscopy is that it allows a simultaneous study of the structure of lipids and proteins in intact biological membranes without an introduction of foreign perturbing probes. Because of the long IR wavelength, light scattering problems are virtually non-existent. This allows the investigation of highly aggregated materials or large membrane fragments. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.
Collapse
Affiliation(s)
- Yechiel Shai
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel.
| |
Collapse
|
17
|
Saar-Dover R, Bitler A, Nezer R, Shmuel-Galia L, Firon A, Shimoni E, Trieu-Cuot P, Shai Y. D-alanylation of lipoteichoic acids confers resistance to cationic peptides in group B streptococcus by increasing the cell wall density. PLoS Pathog 2012; 8:e1002891. [PMID: 22969424 PMCID: PMC3435245 DOI: 10.1371/journal.ppat.1002891] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 07/18/2012] [Indexed: 11/18/2022] Open
Abstract
Cationic antimicrobial peptides (CAMPs) serve as the first line of defense of the innate immune system against invading microbial pathogens. Gram-positive bacteria can resist CAMPs by modifying their anionic teichoic acids (TAs) with D-alanine, but the exact mechanism of resistance is not fully understood. Here, we utilized various functional and biophysical approaches to investigate the interactions of the human pathogen Group B Streptococcus (GBS) with a series of CAMPs having different properties. The data reveal that: (i) D-alanylation of lipoteichoic acids (LTAs) enhance GBS resistance only to a subset of CAMPs and there is a direct correlation between resistance and CAMPs length and charge density; (ii) resistance due to reduced anionic charge of LTAs is not attributed to decreased amounts of bound peptides to the bacteria; and (iii) D-alanylation most probably alters the conformation of LTAs which results in increasing the cell wall density, as seen by Transmission Electron Microscopy, and reduces the penetration of CAMPs through the cell wall. Furthermore, Atomic Force Microscopy reveals increased surface rigidity of the cell wall of the wild-type GBS strain to more than 20-fold that of the dltA mutant. We propose that D-alanylation of LTAs confers protection against linear CAMPs mainly by decreasing the flexibility and permeability of the cell wall, rather than by reducing the electrostatic interactions of the peptide with the cell surface. Overall, our findings uncover an important protective role of the cell wall against CAMPs and extend our understanding of mechanisms of bacterial resistance.
Collapse
Affiliation(s)
- Ron Saar-Dover
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Arkadi Bitler
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Ravit Nezer
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Liraz Shmuel-Galia
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Arnaud Firon
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, CNRS-ERL3526, Paris, France
| | - Eyal Shimoni
- Electron Microscopy Unit, The Weizmann Institute of Science, Rehovot, Israel
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, CNRS-ERL3526, Paris, France
| | - Yechiel Shai
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
18
|
Faingold O, Cohen T, Shai Y. A GxxxG-like motif within HIV-1 fusion peptide is critical to its immunosuppressant activity, structure, and interaction with the transmembrane domain of the T-cell receptor. J Biol Chem 2012; 287:33503-11. [PMID: 22872636 DOI: 10.1074/jbc.m112.370817] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To thrive in the human body, HIV fuses to its target cell and evades the immune response via several mechanisms. The fusion cascade is initiated by the fusion peptide (FP), which is located at the N-terminal of gp41, the transmembrane protein of HIV. Recently, it has been shown that the HIV-1 FP, particularly its 5-13 amino acid region (FP(5-13)), suppresses T-cell activation and interacts with the transmembrane domain (TMD) of the T-cell receptor (TCR) complex. Specific amino acid motifs often contribute to such interactions in TMDs of membrane proteins. Using bioinformatics and experimental studies, we report on a GxxxG-like motif (AxxxG), which is conserved in the FP throughout different clades and strains of HIV-1. Biological activity studies and FTIR spectroscopy revealed that HIV FP(5-13)-derived peptides, in which the motif was altered either by randomization or by a single amino acid shift, lost their immunosuppressive activity concomitant with a loss of the β-sheet structure in a membranous environment. Furthermore, fluorescence studies revealed that the inactive mutants lost their ability to interact with their target site, namely, the TMD of TCRα, designated CP. Importantly, lipotechoic acid activated macrophages (lacking TCR) were not affected by FP, further demonstrating the specificity of the immunosuppressant activity of CP. Finally, although the AxxxG WT and the GxxxG analog both associated with the CP and immunosuppressed T-cells, the AxxxG WT but not the GxxxG analog induced lipid mixing. Overall, the data support an important role for the AxxxG motif in the function of FP and might explain the natural selection of the AxxxG motif rather than the classical GxxxG motif in FP.
Collapse
Affiliation(s)
- Omri Faingold
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
19
|
Lu L, Tong P, Yu X, Pan C, Zou P, Chen YH, Jiang S. HIV-1 variants with a single-point mutation in the gp41 pocket region exhibiting different susceptibility to HIV fusion inhibitors with pocket- or membrane-binding domain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2950-7. [PMID: 22867851 DOI: 10.1016/j.bbamem.2012.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 11/24/2022]
Abstract
Enfuvirtide (T20), the first FDA-approved peptide HIV fusion/entry inhibitor derived from the HIV-1 gp41 C-terminal heptad-repeat (CHR) domain, is believed to share a target with C34, another well-characterized CHR-peptide, by interacting with the gp41 N-terminal heptad-repeat (NHR) to form six-helix bundle core. However, our previous studies showed that T20 mainly interacts with the N-terminal region of the NHR (N-NHR) and lipid membranes, while C34 mainly binds to the NHR C-terminal pocket region. But so far, no one has shown that C34 can induce drug-resistance mutation in the gp41 pocket region. In this study, we constructed pseudoviruses in which the Ala at the position of 67 in the gp41 pocket region was substituted with Asp, Gly or Ser, respectively, and found that these mutations rendered the viruses highly resistant to C34, but sensitive to T20. The NHR-peptide N36 with mutations of A67 exhibited reduced anti-HIV-1 activity and decreased α-helicity. The stability of six-helix bundle formed by C34 and N36 with A67 mutations was significantly lower than that formed by C34 and N36 with wild-type sequence. The combination of C34 and T20 resulted in potent synergistic anti-HIV-1 effect against the viruses with mutations in either N- or C-terminal region in NHR. These results suggest that C34 with a pocket-binding domain and T20 containing the N-NHR- and membrane-binding domains inhibit HIV-1 fusion by interacting with different target sites and the combinatorial use of C34 and T20 is expected to be effective against HIV-1 variants resistant to HIV fusion inhibitors.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Reuven EM, Dadon Y, Viard M, Manukovsky N, Blumenthal R, Shai Y. HIV-1 gp41 transmembrane domain interacts with the fusion peptide: implication in lipid mixing and inhibition of virus-cell fusion. Biochemistry 2012; 51:2867-78. [PMID: 22413880 PMCID: PMC3335273 DOI: 10.1021/bi201721r] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fusion of the human immunodeficiency virus (HIV) with target cells is mediated by the gp41 subunit of the envelope protein. Mutation and deletion studies within the transmembrane domain (TMD) of intact gp41 influenced its fusion activity. In addition, current models suggest that the TMD is in proximity with the fusion peptide (FP) at the late fusion stages, but there are no direct experimental data to support this hypothesis. Here, we investigated the TMD focusing on two regions: the N-terminal containing the GxxxG motif and the C-terminal containing the GLRI motif, which is conserved among the TMDs of HIV and the T-cell receptor. Studies utilizing the ToxR expression system combined with synthetic peptides and their fluorescent analogues derived from TMD revealed that the GxxxG motif is important for TMD self-association, whereas the C-terminal region is for its heteroassociation with FP. Functionally, all three TMD peptides induced lipid mixing that was enhanced significantly upon mixing with FP. Furthermore, the TMD peptides inhibited virus-cell fusion apparently through their interaction with their endogenous counterparts. Notably, the R2E mutant (in the GLRI) was significantly less potent than the two others. Overall, our findings provide experimental evidence that HIV-1 TMD contributes to membrane assembly and function of the HIV-1 envelope. Owing to similarities between functional domains within viruses, these findings suggest that the TMDs and FPs may contribute similarly in other viruses as well.
Collapse
Affiliation(s)
- Eliran Moshe Reuven
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Yakir Dadon
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Mathias Viard
- Basic Research Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702
- Nanobiology Program, Center of Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Nurit Manukovsky
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Robert Blumenthal
- Basic Research Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702
| | - Yechiel Shai
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel
| |
Collapse
|
21
|
Lorizate M, Kräusslich HG. Role of lipids in virus replication. Cold Spring Harb Perspect Biol 2011; 3:a004820. [PMID: 21628428 DOI: 10.1101/cshperspect.a004820] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Viruses intricately interact with and modulate cellular membranes at several stages of their replication, but much less is known about the role of viral lipids compared to proteins and nucleic acids. All animal viruses have to cross membranes for cell entry and exit, which occurs by membrane fusion (in enveloped viruses), by transient local disruption of membrane integrity, or by cell lysis. Furthermore, many viruses interact with cellular membrane compartments during their replication and often induce cytoplasmic membrane structures, in which genome replication and assembly occurs. Recent studies revealed details of membrane interaction, membrane bending, fission, and fusion for a number of viruses and unraveled the lipid composition of raft-dependent and -independent viruses. Alterations of membrane lipid composition can block viral release and entry, and certain lipids act as fusion inhibitors, suggesting a potential as antiviral drugs. Here, we review viral interactions with cellular membranes important for virus entry, cytoplasmic genome replication, and virus egress.
Collapse
Affiliation(s)
- Maier Lorizate
- Department of Infectious Diseases, Virology, University Heidelberg, D-69120 Heidelberg, Germany
| | | |
Collapse
|
22
|
Sánchez-Martín MJ, Urbán P, Pujol M, Haro I, Alsina MA, Busquets MA. Biophysical Investigations of GBV-C E1 Peptides as Potential Inhibitors of HIV-1 Fusion Peptide. Chemphyschem 2011; 12:2816-22. [DOI: 10.1002/cphc.201100407] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Indexed: 01/04/2023]
|
23
|
High-throughput selection of transmembrane sequences that enhance receptor tyrosine kinase activation. J Mol Biol 2011; 412:43-54. [PMID: 21767549 DOI: 10.1016/j.jmb.2011.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/01/2011] [Accepted: 07/05/2011] [Indexed: 12/21/2022]
Abstract
Dimerization is a critical requirement for the activation of the intracellular kinase domains of receptor tyrosine kinases (RTKs). The single transmembrane (TM) helices of RTKs contribute to dimerization, but the details are not well understood. Work with TM helices in various model systems has revealed a small number of specific dimerization sequence motifs, and it has been suggested that RTK dimerization is modulated by such motifs. Yet questions remain about the universality of these sequence motifs for RTK dimerization and about how TM domain dimerization in model systems relates to RTK activation in mammalian membranes. To investigate these questions, we designed a 3888-member combinatorial peptide library based on the TM domain of Neu (ErbB2) as a model RTK. The library contains many closely related, Neu-like sequences, including thousands of sequences with known dimerization motifs. We used an SDS-PAGE-based screen to select peptides that dimerize better than the native Neu sequence, and we assayed the activation of chimeric Neu receptors in mammalian cells with TM sequences selected in the screen. Despite the very high abundance of known dimerization motifs in the library, only a very few dimerizing sequences were identified by SDS-PAGE. About half of those sequences activated the Neu kinase significantly more than did the wild-type TM sequence. This work furthers our knowledge about the requirements for membrane protein interactions and the requirements for RTK activation in cells.
Collapse
|
24
|
Bhakta SJ, Shang L, Prince JL, Claiborne DT, Hunter E. Mutagenesis of tyrosine and di-leucine motifs in the HIV-1 envelope cytoplasmic domain results in a loss of Env-mediated fusion and infectivity. Retrovirology 2011; 8:37. [PMID: 21569545 PMCID: PMC3117779 DOI: 10.1186/1742-4690-8-37] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 05/14/2011] [Indexed: 12/30/2022] Open
Abstract
Background The gp41 component of the Human Immunodeficiency Virus (HIV) envelope glycoprotein (Env) contains a long cytoplasmic domain (CD) with multiple highly conserved tyrosine (Y) and dileucine (LL) motifs. Studies suggest that the motifs distal to major endocytosis motif (Y712HRL), located at residues 712-715 of Env, may contribute to Env functionality in the viral life cycle. In order to examine the biological contribution of these motifs in the biosynthesis, transport, and function of Env, we constructed two panels of mutants in which the conserved Y- and LL-motifs were sequentially substituted by alternative residues, either in the presence or absence of Y712. Additional mutants targeting individual motifs were then constructed. Results All mutant Envs, when expressed in the absence of other viral proteins, maintained at least WT levels of Env surface staining by multiple antibodies. The Y712 mutation (Y712C) contributed to at least a 4-fold increase in surface expression for all mutants containing this change. Sequential mutagenesis of the Y- and LL-motifs resulted in a generally progressive decrease in Env fusogenicity. However, additive mutation of dileucine and tyrosine motifs beyond the tyrosine at residue 768 resulted in the most dramatic effects on Env incorporation into virions, viral infectivity, and virus fusion with target cells. Conclusions From the studies reported here, we show that mutations of the Y- and LL-motifs, which effectively eliminate the amphipathic nature of the lytic peptide 2 (LLP2) domain or disrupt YW and LL motifs in a region spanning residues 795-803 (YWWNLLQYW), just C-terminal of LLP2, can dramatically interfere with biological functions of HIV-1 Env and abrogate virus replication. Because these mutant proteins are expressed at the cell surface, we conclude that tyrosine and di-leucine residues within the cytoplasmic domain of gp41 play critical roles in HIV-1 replication that are distinct from that of targeting the plasma membrane.
Collapse
Affiliation(s)
- Sushma J Bhakta
- Emory Vaccine Center at the Yerkes National Primate Research Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30329, USA
| | | | | | | | | |
Collapse
|
25
|
Grasnick D, Sternberg U, Strandberg E, Wadhwani P, Ulrich AS. Irregular structure of the HIV fusion peptide in membranes demonstrated by solid-state NMR and MD simulations. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:529-43. [PMID: 21274707 DOI: 10.1007/s00249-011-0676-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 12/21/2010] [Accepted: 01/11/2011] [Indexed: 10/18/2022]
Abstract
To better understand peptide-induced membrane fusion at a molecular level, we set out to determine the structure of the fusogenic peptide FP23 from the HIV-1 protein gp41 when bound to a lipid bilayer. An established solid-state (19)F nuclear magnetic resonance (NMR) approach was used to collect local orientational constraints from a series of CF(3)-phenylglycine-labeled peptide analogues in macroscopically aligned membranes. Fusion assays showed that these (19)F-labels did not significantly affect peptide function. The NMR spectra were characteristic of well-behaved samples, without any signs of heterogeneity or peptide aggregation at 1:300 in 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC). We can conclude from these NMR data that FP23 has a well-defined (time-averaged) conformation and undergoes lateral diffusion in the bilayer plane, presumably as a monomer or small oligomer. Attempts to evaluate its conformation in terms of various secondary structures, however, showed that FP23 does not form any type of regular helix or β-strand. Therefore, all-atom molecular dynamics (MD) simulations were carried out using the orientational NMR constraints as pseudo-forces to drive the peptide into a stable alignment and structure. The resulting picture suggests that FP23 can adopt multiple β-turns and insert obliquely into the membrane. Such irregular conformation explains why the structure of the fusion peptide could not be reliably determined by any biophysical method so far.
Collapse
Affiliation(s)
- Dorit Grasnick
- Karlsruhe Institute of Technology, Institute of Organic Chemistry and CFN, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
26
|
Ashkenazi A, Shai Y. Insights into the mechanism of HIV-1 envelope induced membrane fusion as revealed by its inhibitory peptides. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:349-57. [PMID: 21258789 DOI: 10.1007/s00249-010-0666-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/14/2010] [Accepted: 12/23/2010] [Indexed: 10/18/2022]
Abstract
HIV-1 fusion with its target cells is mediated by the glycoprotein 41 (gp41) transmembrane subunit of the viral envelope glycoprotein (ENV). The current models propose that gp41 undergoes several conformational changes between the apposing viral and cell membranes to facilitate fusion. In this review we focus on the progress that has been made in revealing the dynamic role of the N-terminal heptad repeat (NHR) and the C-terminal heptad repeat (CHR) regions within gp41 to the fusion process. The involvement of these regions in the formation of the gp41 pre-hairpin and hairpin conformations during an ongoing fusion event was mainly discovered by their derived inhibitory peptides. For example, the core structure within the hairpin conformation in a dynamic fusion event is suggested to be larger than its high resolution structure and its minimal boundaries were determined in situ. Also, inhibitory peptides helped reveal the dual contribution of the NHR to the fusion process. Finally, we will also discuss several developments in peptide design that has led to a deeper understanding of the mechanism of viral membrane fusion.
Collapse
Affiliation(s)
- Avraham Ashkenazi
- The Department of Biological Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | |
Collapse
|
27
|
Aromatic and polar residues spanning the candidate fusion peptide of the Andes virus Gc protein are essential for membrane fusion and infection. J Gen Virol 2010; 92:552-63. [DOI: 10.1099/vir.0.027235-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
28
|
HIV-1 gp41 and TCRalpha trans-membrane domains share a motif exploited by the HIV virus to modulate T-cell proliferation. PLoS Pathog 2010; 6:e1001085. [PMID: 20824090 PMCID: PMC2932719 DOI: 10.1371/journal.ppat.1001085] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 08/03/2010] [Indexed: 11/19/2022] Open
Abstract
Viruses have evolved several strategies to modify cellular processes and evade the immune response in order to successfully infect, replicate, and persist in the host. By utilizing in-silico testing of a transmembrane sequence library derived from virus protein sequences, we have pin-pointed a nine amino-acid motif shared by a group of different viruses; this motif resembles the transmembrane domain of the α-subunit of the T-cell receptor (TCRα). The most striking similarity was found within the immunodeficiency virus (SIV and HIV) glycoprotein 41 TMD (gp41 TMD). Previous studies have shown that stable interactions between TCRα and CD3 are localized to this nine amino acid motif within TCRα, and a peptide derived from it (TCRα TMD, GLRILLLKV) interfered and intervened in the TCR function when added exogenously. We now report that the gp41 TMD peptide co-localizes with CD3 within the TCR complex and inhibits T cell proliferation in vitro. However, the inhibitory mechanism of gp41 TMD differs from that of the TCRα TMD and also from the other two known immunosuppressive regions within gp41. HIV uses several mechanisms that allow it to evade immune control, in order to successfully infect, replicate, and persist in the host. Here we report a new mechanism. We utilized bioinformatics and identified a region within the transmembrane domain (TMD) of the envelop proteins of viruses that has high similarity with the α subunit of the T-cell receptor (TCR) TMD. A striking similarity was found within the immunodeficiency virus (SIV and HIV) glycoprotein 41 (gp41). TCR TMDs play an important role in the assembly of the receptor complex composed of the TCR subunits and the CD3 co-receptor chains. We show that a synthetic peptide derived from gp41 TMD co-localizes with CD3 and inhibits T-cell proliferation in vitro. Biophysical studies suggest a specific interaction between gp41 TMD and the TMD of the TCRα subunit. Importantly, the inhibitory mechanism of gp41 TMD differs from that of the other two known immunosuppressive regions within gp41. Overall, the present study demonstrates a new weapon that HIV-1 uses to penetrate into the host cell and modulates its immune response. Disassociated from HIV, however, HIV TMD molecule provides a novel mechanism for down regulating undesirable responses and might be used as a new therapy for autoimmune diseases.
Collapse
|
29
|
Tristram-Nagle S, Chan R, Kooijman E, Uppamoochikkal P, Qiang W, Weliky DP, Nagle JF. HIV fusion peptide penetrates, disorders, and softens T-cell membrane mimics. J Mol Biol 2010; 402:139-53. [PMID: 20655315 DOI: 10.1016/j.jmb.2010.07.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 02/01/2023]
Abstract
This work investigates the interaction of N-terminal gp41 fusion peptide (FP) of human immunodeficiency virus type 1 (HIV-1) with model membranes in order to elucidate how FP leads to fusion of HIV and T-cell membranes. FP constructs were (i) wild-type FP23 (23 N-terminal amino acids of gp41), (ii) water-soluble monomeric FP that adds six lysines on the C-terminus of FP23 (FPwsm), and (iii) the C-terminus covalently linked trimeric version (FPtri) of FPwsm. Model membranes were (i) LM3 (a T-cell mimic), (ii) 1,2-dioleoyl-sn-glycero-3-phosphocholine, (iii) 1,2-dioleoyl-sn-glycero-3-phosphocholine/30 mol% cholesterol, (iv) 1,2-dierucoyl-sn-glycero-3-phosphocholine, and (v) 1,2-dierucoyl-sn-glycero-3-phosphocholine/30 mol% cholesterol. Diffuse synchrotron low-angle x-ray scattering from fully hydrated samples, supplemented by volumetric data, showed that FP23 and FPtri penetrate into the hydrocarbon region and cause membranes to thin. Depth of penetration appears to depend upon a complex combination of factors including bilayer thickness, presence of cholesterol, and electrostatics. X-ray data showed an increase in curvature in hexagonal phase 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, which further indicates that FP23 penetrates into the hydrocarbon region rather than residing in the interfacial headgroup region. Low-angle x-ray scattering data also yielded the bending modulus K(C), a measure of membrane stiffness, and wide-angle x-ray scattering yielded the S(xray) orientational order parameter. Both FP23 and FPtri decreased K(C) and S(xray) considerably, while the weak effect of FPwsm suggests that it did not partition strongly into LM3 model membranes. Our results are consistent with the HIV FP disordering and softening the T-cell membrane, thereby lowering the activation energy for viral membrane fusion.
Collapse
Affiliation(s)
- Stephanie Tristram-Nagle
- Biological Physics Group, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Taylor A, Sansom MSP. Studies on viral fusion peptides: the distribution of lipophilic and electrostatic potential over the peptide determines the angle of insertion into a membrane. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 39:1537-45. [PMID: 20499059 DOI: 10.1007/s00249-010-0611-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 05/06/2010] [Accepted: 05/06/2010] [Indexed: 11/30/2022]
Abstract
The oblique insertion of type 1 viral fusion peptides into the cell membrane of the host cell has been shown previously to be an essential element of viral fusion. The actual physical explanation of the cause of the oblique insertion has been the subject of speculation. In this study the physical properties of the fusion peptide surface have been determined computationally and compared to the tilt angles determined both experimentally and by the use of molecular dynamics. It has been shown that the relationship between the distribution of lipophilic potential over the peptide surface and the peptide geometry control the tilt angle of the peptide in a biomimetic DMPC bilayer whereas the depth of penetration into the bilayer appears to be determined by the electrostatic potential and hydrogen bonding at the C-terminus.
Collapse
Affiliation(s)
- A Taylor
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK.
| | | |
Collapse
|
31
|
Martins do Canto A, Palace Carvalho A, Prates Ramalho J, Loura LM. Structure and conformation of HIV fusion inhibitor peptide T-1249 in presence of model membranes: A molecular dynamics study. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.theochem.2009.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Pan J, Lai CB, Scott WRP, Straus SK. Synthetic Fusion Peptides of Tick-Borne Encephalitis Virus as Models for Membrane Fusion. Biochemistry 2009; 49:287-96. [DOI: 10.1021/bi9017895] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinhe Pan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - C. Benjamin Lai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Walter R. P. Scott
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Suzana K. Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
33
|
Sackett K, Nethercott MJ, Shai Y, Weliky DP. Hairpin folding of HIV gp41 abrogates lipid mixing function at physiologic pH and inhibits lipid mixing by exposed gp41 constructs. Biochemistry 2009; 48:2714-22. [PMID: 19222185 DOI: 10.1021/bi8019492] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conformational changes in the HIV gp41 protein are directly correlated with fusion between the HIV and target cell plasma membranes, which is the initial step of infection. Key gp41 fusion conformations include an early extended conformation termed prehairpin which contains exposed regions and a final low-energy conformation termed hairpin which has a compact six-helix bundle structure. Current fusion models debate the roles of hairpin and prehairpin conformations in the process of membrane merger. In the present work, gp41 constructs have been engineered which correspond to fusion relevant parts of both prehairpin and hairpin conformations and have been analyzed for their ability to induce lipid mixing between membrane vesicles. The data correlate membrane fusion function with the prehairpin conformation and suggest that one of the roles of the final hairpin conformation is sequestration of membrane-perturbing gp41 regions with consequent loss of the membrane disruption induced earlier by the prehairpin structure. To our knowledge, this is the first biophysical study to delineate the membrane fusion potential of gp41 constructs modeling key fusion conformations.
Collapse
Affiliation(s)
- Kelly Sackett
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
34
|
Pang W, Tam SC, Zheng YT. Current peptide HIV type-1 fusion inhibitors. Antivir Chem Chemother 2009; 20:1-18. [PMID: 19794228 DOI: 10.3851/imp1369] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
There are now 26 antiretroviral drugs and 6 fixed-dose combinations, including reverse transcriptase inhibitors, protease inhibitors, integrase inhibitors and fusion (or entry) inhibitors, approved by the US Food and Drug Administration for clinical use. Although they are clinically effective when used in combination, none of the existing drugs are considered ideal because of toxic side effects and the ascendance of inducing drug-resistant mutants. Development of new antiviral agents is essential. In the past decades, there has been great progress in understanding the structure of HIV type-1 (HIV-1) gp41 and the mechanism of HIV-1 entry into host cells. This opened up a promising avenue for rationally designed agents to interfere with this process. A number of fusion inhibitors have been developed to block HIV-1 replication. Enfuvirtide (T20) was one of those approved for clinical use. This signalled a new era in AIDS therapeutics. It is a synthetic polypeptide with potent inhibitory activity against HIV-1 infection. However, it is sensitive to proteolytic digestion and resistant virus strains are easily induced with multiple clinical use. One of the directions in designing new fusion inhibitors is to overcome these shortages. In the past years, large numbers of promising fusion inhibitory peptides have emerged. The antiviral activities are more potent or they can act differently from that of T20. Some of these new compounds have great potential to be further developed as therapeutic agents. This article reviewed some recent developments of these peptides and the possible role in anti-HIV-1 therapy.
Collapse
Affiliation(s)
- Wei Pang
- Key Laboratory of Animal Models and Human Diseases Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | | |
Collapse
|
35
|
Cheng SF, Kantchev AB, Chang DK. Fluorescence evidence for a loose self-assembly of the fusion peptide of influenza virus HA2 in the lipid bilayer. Mol Membr Biol 2009; 20:345-51. [PMID: 14578049 DOI: 10.1080/0968708031000138046] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Steady state fluorescence experiments were performed on a 25-mer synthetic peptide incorporated in the phospholipid vesicle to study the role of oligomerization of the fusion peptide in membrane fusion. It was found from fluorescence resonance energy transfer (FRET) that the extent of lipid mixing and the initial mixing rate varied with the fusion peptide concentration in a higher than linear fashion, indicating that the peptide promoted membrane mixing as oligomers. Results of self-quenching of the Rhodamine (Rho) in Rho-labelled peptide incorporated in the phospholipid bilayer indicated that the peptide molecules assembled in the bilayer with an order higher than dimer. The data also revealed that the peptides were not tightly packed in the membrane. Binding affinity measurement monitored by the NBD fluorescence intensity on the fluorophore-labelled fusion peptide supports the notion of self-association of the peptide in the vesicular dispersion. In the sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) experiments, a diffuse band with apparent molecular mass close to a dimeric species of the wild type fusion peptide suggested that the fusion peptides formed loose oligomers under the influence of SDS detergent in the electric field. The result is in contrast to a less fusion-active variant which appears to exhibit less propensity for self-association.
Collapse
Affiliation(s)
- Shu-Fang Cheng
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China 115
| | | | | |
Collapse
|
36
|
Alving CR, Beck Z, Karasavva N, Matyas GR, Rao M. HIV-1, lipid rafts, and antibodies to liposomes: implications for anti-viral-neutralizing antibodies (Review). Mol Membr Biol 2009; 23:453-65. [PMID: 17127618 DOI: 10.1080/09687860600935348] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) is an enveloped virus with a lipid bilayer that contains several glycoproteins that are anchored in, or closely associated with, the membrane surface. The envelope proteins have complex interactions with the lipids both on the host cells and on the target cells. The processes of budding from host cells and entry into target cells occur at sites on the plasma membrane, known as lipid rafts, that represent specialized regions that are rich in cholesterol and sphingolipids. Although the envelope glycoproteins are antigenic molecules that potentially might be used for development of broadly neutralizing antibodies in a vaccine to HIV-1, the development of such antibodies that have broad specificities against primary field isolates of virus has been largely thwarted to date by the ability of the envelope proteins to evade the immune system through various mechanisms. In this review, the interactions of HIV-1 with membrane lipids are summarized. Liposomes are commonly used as models for understanding interactions of proteins with membrane lipids; and liposomes have also been used both as carriers for vaccines, and as antigens for induction of antibodies to liposomal lipids. The possibility is proposed that liposomal lipids, or liposome-protein combinations, could be useful as antigens for inducing broadly neutralizing antibodies to HIV-1.
Collapse
Affiliation(s)
- Carl R Alving
- Department of Vaccine Production and Delivery, Division of Retrovirology, US Military HIV Research Program, Walter Reed Army Institute of Research, Rockville, MD 20850, USA.
| | | | | | | | | |
Collapse
|
37
|
Gaston F, Granados G, Madurga S, Rabanal F, Lakhdar-Ghazal F, Giralt E, Bahraoui E. Development and Characterization of Peptidic Fusion Inhibitors Derived from HIV-1 gp41 with Partial D-Amino Acid Substitutions. ChemMedChem 2009; 4:570-81. [DOI: 10.1002/cmdc.200800390] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Galdiero S, Falanga A, Vitiello M, D’Isanto M, Cantisani M, Kampanaraki A, Benedetti E, Browne H, Galdiero M. Peptides containing membrane-interacting motifs inhibit herpes simplex virus type 1 infectivity. Peptides 2008; 29:1461-71. [PMID: 18572274 PMCID: PMC7172891 DOI: 10.1016/j.peptides.2008.04.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 04/24/2008] [Accepted: 04/30/2008] [Indexed: 11/17/2022]
Abstract
Herpes simplex virus (HSV) membrane fusion represents an attractive target for anti-HSV therapy. To investigate the structural basis of HSV membrane fusion and identify new targets for inhibition, we have investigated the different membranotropic domains of HSV-1 gH envelope glycoprotein. We observed that fusion peptides when added exogenously are able to inhibit viral fusion likely by intercalating with viral fusion peptides upon adopting functional structure in membranes. Interestingly, peptides analogous to the predicted HSV-1 gH loop region inhibited viral plaque formation more significantly. Their inhibitory effect appears to be a consequence of their ability to partition into membranes and aggregate within them. Circular dichroism spectra showed that peptides self-associate in aqueous and lipidic solutions, therefore the inhibition of viral entry may occur via peptides association with their counterpart on wild-type gH. The antiviral activity of HSV-1 peptides tested provides an attractive basis for the development of new fusion peptide inhibitors corresponding to regions outside the fusion protein heptad repeat regions.
Collapse
Affiliation(s)
- Stefania Galdiero
- Department of Biological Sciences, Division of Biostructures, University of Naples “Federico II”, Via Mezzocannone 16, 80134 Naples, Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples “Federico II”, Via Mezzocannone 16, 80134 Naples, Italy
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Annarita Falanga
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Naples, Italy
| | - Mariateresa Vitiello
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Naples, Italy
| | - Marina D’Isanto
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Naples, Italy
| | - Marco Cantisani
- Department of Biological Sciences, Division of Biostructures, University of Naples “Federico II”, Via Mezzocannone 16, 80134 Naples, Italy
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Aikaterini Kampanaraki
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Naples, Italy
| | - Ettore Benedetti
- Department of Biological Sciences, Division of Biostructures, University of Naples “Federico II”, Via Mezzocannone 16, 80134 Naples, Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples “Federico II”, Via Mezzocannone 16, 80134 Naples, Italy
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Helena Browne
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Massimiliano Galdiero
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Naples, Italy
- Corresponding author. Tel.: +39 081 5667646; fax: +39 081 5667578.
| |
Collapse
|
39
|
Galdiero S, Falanga A, Vitiello M, Raiola L, Fattorusso R, Browne H, Pedone C, Isernia C, Galdiero M. Analysis of a membrane interacting region of herpes simplex virus type 1 glycoprotein H. J Biol Chem 2008; 283:29993-30009. [PMID: 18678872 DOI: 10.1074/jbc.m803092200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycoprotein H (gH) of herpes simplex virus type I (HSV-1) is involved in the complex mechanism of membrane fusion of the viral envelope with the host cell. Membrane interacting regions and potential fusion peptides have been identified in HSV-1 gH as well as glycoprotein B (gB). Because of the complex fusion mechanism of HSV-1, which requires four viral glycoproteins, and because there are only structural data for gB and glycoprotein D, many questions regarding the mechanism by which HSV-1 fuses its envelope with the host cell membrane remain unresolved. Previous studies have shown that peptides derived from certain regions of gH have the potential to interact with membranes, and based on these findings we have generated a set of peptides containing mutations in one of these domains, gH-(626-644), to investigate further the functional role of this region. Using a combination of biochemical, spectroscopic, and nuclear magnetic resonance techniques, we showed that the alpha-helical nature of this stretch of amino acids in gH is important for membrane interaction and that the aromatic residues, tryptophan and tyrosine, are critical for induction of fusion.
Collapse
Affiliation(s)
- Stefania Galdiero
- Department of Biological Sciences, Division of Biostructures, University of Naples Federico II, Via Mezzocannone 16, 80134, Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
White JM, Delos SE, Brecher M, Schornberg K. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol 2008; 43:189-219. [PMID: 18568847 DOI: 10.1080/10409230802058320] [Citation(s) in RCA: 665] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent work has identified three distinct classes of viral membrane fusion proteins based on structural criteria. In addition, there are at least four distinct mechanisms by which viral fusion proteins can be triggered to undergo fusion-inducing conformational changes. Viral fusion proteins also contain different types of fusion peptides and vary in their reliance on accessory proteins. These differing features combine to yield a rich diversity of fusion proteins. Yet despite this staggering diversity, all characterized viral fusion proteins convert from a fusion-competent state (dimers or trimers, depending on the class) to a membrane-embedded homotrimeric prehairpin, and then to a trimer-of-hairpins that brings the fusion peptide, attached to the target membrane, and the transmembrane domain, attached to the viral membrane, into close proximity thereby facilitating the union of viral and target membranes. During these conformational conversions, the fusion proteins induce membranes to progress through stages of close apposition, hemifusion, and then the formation of small, and finally large, fusion pores. Clearly, highly divergent proteins have converged on the same overall strategy to mediate fusion, an essential step in the life cycle of every enveloped virus.
Collapse
Affiliation(s)
- Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908-0732, USA.
| | | | | | | |
Collapse
|
41
|
Abstract
Although membrane proteins account for approximately one third of all proteins encoded in the human genome, the functions and structures of their transmembrane domains are much less understood than the water-soluble regions. A major hurdle in studying these transmembrane domains is the lack of appropriate exogenous agents that can be used as specific probes. Despite the daunting challenges, major strides have recently been made in targeting the transmembrane domains of a variety of membrane proteins. High affinity and selectivity have been achieved in model biophysical systems, membranes of bacteria, and mammalian cells.
Collapse
Affiliation(s)
- Hang Yin
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215 UCB, Boulder, CO 80309-0215, USA.
| |
Collapse
|
42
|
Cohen T, Pevsner-Fischer M, Cohen N, Cohen IR, Shai Y. Characterization of the interacting domain of the HIV-1 fusion peptide with the transmembrane domain of the T-cell receptor. Biochemistry 2008; 47:4826-33. [PMID: 18376816 DOI: 10.1021/bi800100p] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV infection is initiated by the fusion of the viral membrane with the target T-cell membrane. The HIV envelope glycoprotein, gp41, contains a fusion peptide (FP) in the N terminus that functions together with other gp41 domains to fuse the virion with the host cell membrane. We recently reported that FP co-localizes with CD4 and T-cell receptor (TCR) molecules, co-precipitates with TCR, and inhibits antigen-specific T-cell proliferation and pro-inflammatory cytokine secretion. Molecular dynamic simulation implicated an interaction between an alpha-helical transmembrane domain (TM) of the TCRalpha chain (designated CP) and the beta-sheet 5-13 region of the 16 N-terminal amino acids of FP (FP(1-16)). To correlate between the theoretical prediction and experimental data, we synthesized a series of mutants derived from the interacting motif GALFLGFLG stretch (FP(5-13)) and investigated them structurally and functionally. The data reveal a direct correlation between the beta-sheet structure of FP(5-13) and its mutants and their ability to interact with CP and induce immunosuppressive activity; the phenylalanines play an important role. Furthermore, studies with fluorescently labeled peptides revealed that this interaction leads to penetration of the N terminus of FP and its active analogues into the hydrophobic core of the membrane. A detailed understanding of the molecular interactions mediating the immunosuppressive activity of the FP(5-13) motif should facilitate evaluating its contribution to HIV pathology and its exploitation as an immunotherapeutic tool.
Collapse
Affiliation(s)
- Tomer Cohen
- Departments of Biological Chemistry and Immunology, the Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
43
|
Yin H. Exogene Wirkstoffe zur Erkennung von Transmembrandomänen von Proteinen. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200704780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Qiang W, Bodner ML, Weliky DP. Solid-state NMR spectroscopy of human immunodeficiency virus fusion peptides associated with host-cell-like membranes: 2D correlation spectra and distance measurements support a fully extended conformation and models for specific antiparallel strand registries. J Am Chem Soc 2008; 130:5459-71. [PMID: 18370385 DOI: 10.1021/ja077302m] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human immunodeficiency virus (HIV) is "enveloped" by a membrane, and infection of a host cell begins with fusion between viral and target cell membranes. Fusion is catalyzed by the HIV gp41 protein which contains a functionally critical approximately 20-residue apolar "fusion peptide" (HFP) that associates with target cell membranes. In this study, chemically synthesized HFPs were associated with host-cell-like membranes and had "scatter-uniform" labeling (SUL), that is, only one residue of each amino acid type was U-(13)C, (15)N labeled. For the first sixteen HFP residues, an unambiguous (13)C chemical shift assignment was derived from 2D (13)C/(13)C correlation spectra with short mixing times, and the shifts were consistent with continuous beta-strand conformation. (13)C-(13)C contacts between residues on adjacent strands were derived from correlation spectra with long mixing times and suggested close proximity of the following residues: Ala-6/Gly-10, Ala-6/Phe-11, and Ile-4/Gly-13. Specific antiparallel beta-strand registries were further tested using a set of HFPs that were (13)CO-labeled at Ala-14 and (15)N-labeled at either Val-2, Gly-3, Ile-4, or Gly-5. The solid-state NMR data were fit with 50-60% population of antiparallel HFP with either Ala-14/Gly-3 or Ala-14/Ile-4 registries and 40-50% population of structures not specified by the NMR experiments. The first two registries correlated with intermolecular hydrogen bonding of 15-16 apolar N-terminal residues and this hydrogen-bonding pattern would be consistent with a predominant location of these residues in the hydrophobic membrane interior. To our knowledge, these results provide the first residue-specific structural models for membrane-associated HFP in its beta-strand conformation.
Collapse
Affiliation(s)
- Wei Qiang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
45
|
Membrane interaction and structure of the transmembrane domain of influenza hemagglutinin and its fusion peptide complex. BMC Biol 2008; 6:2. [PMID: 18197965 PMCID: PMC2267159 DOI: 10.1186/1741-7007-6-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 01/15/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To study the organization and interaction with the fusion domain (or fusion peptide, FP) of the transmembrane domain (TMD) of influenza virus envelope glycoprotein for its role in membrane fusion which is also essential in the cellular trafficking of biomolecules and sperm-egg fusion. RESULTS The fluorescence and gel electrophoresis experiments revealed a tight self-assembly of TMD in the model membrane. A weak but non-random interaction between TMD and FP in the membrane was found. In the complex, the central TMD oligomer was packed by FP in an antiparallel fashion. FP insertion into the membrane was altered by binding to TMD. An infrared study exhibited an enhanced membrane perturbation by the complex formation. A model was built to illustrate the role of TMD in the late stages of influenza virus-mediated membrane fusion reaction. CONCLUSION The TMD oligomer anchors the fusion protein in the membrane with minimal destabilization to the membrane. Upon associating with FP, the complex exerts a synergistic effect on the membrane perturbation. This effect is likely to contribute to the complete membrane fusion during the late phase of fusion protein-induced fusion cascade. The results presented in the work characterize the nature of the interaction of TMD with the membrane and TMD in a complex with FP in the steps leading to pore initiation and dilation during virus-induced fusion. Our data and proposed fusion model highlight the key role of TMD-FP interaction and have implications on the fusion reaction mediated by other type I viral fusion proteins. Understanding the molecular mechanism of membrane fusion may assist in the design of anti-viral drugs.
Collapse
|
46
|
Lorizate M, Huarte N, Sáez-Cirión A, Nieva JL. Interfacial pre-transmembrane domains in viral proteins promoting membrane fusion and fission. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1624-39. [PMID: 18222166 PMCID: PMC7094410 DOI: 10.1016/j.bbamem.2007.12.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 12/17/2007] [Accepted: 12/20/2007] [Indexed: 12/02/2022]
Abstract
Membrane fusion and fission underlie two limiting steps of enveloped virus replication cycle: access to the interior of the host-cell (entry) and dissemination of viral progeny after replication (budding), respectively. These dynamic processes proceed mediated by specialized proteins that disrupt and bend the lipid bilayer organization transiently and locally. We introduced Wimley–White membrane-water partitioning free energies of the amino acids as an algorithm for predicting functional domains that may transmit protein conformational energy into membranes. It was found that many viral products possess unusually extended, aromatic-rich pre-transmembrane stretches predicted to stably reside at the membrane interface. Here, we review structure–function studies, as well as data reported on the interaction of representative peptides with model membranes, all of which sustain a functional role for these domains in viral fusion and fission. Since pre-transmembrane sequences also constitute antigenic determinants in a membrane-bound state, we also describe some recent results on their recognition and blocking at membrane interface by neutralizing antibodies.
Collapse
Affiliation(s)
| | | | | | - José L. Nieva
- Corresponding author. Unidad de Biofísica, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain. Tel.: +34 94 6013353; fax: +34 94 6013360.
| |
Collapse
|
47
|
Martins Do Canto AMT, Palace Carvalho AJ, Prates Ramalho JP, Loura LMS. T-20 and T-1249 HIV fusion inhibitors' structure and conformation in solution: a molecular dynamics study. J Pept Sci 2008; 14:442-7. [DOI: 10.1002/psc.982] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Biggs JS, Rosenfeld Y, Shai Y, Olivera BM. Conolysin-Mt: a conus peptide that disrupts cellular membranes. Biochemistry 2007; 46:12586-93. [PMID: 17927208 DOI: 10.1021/bi700775p] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conus venoms are estimated to comprise over 100,000 distinct pharmacologically active peptides, the majority probably targeting ion channels. Through the characterization of a cytolytic peptide from the venom of Conus mustelinus, conolysin-Mt, we expand the known conopeptide mechanisms to include association with and destruction of cellular membranes. A new 23AA conopeptide, conolysin-Mt has potent hemolytic activity when tested on human erythrocytes. At a concentration of 0.25 microM, the peptide permeabilized both negatively charged prokaryotic (PE:PG) and zwitterionic eukaryotic (PC:cholesterol) model membranes. The affinity constants (KA) of conolysin-Mt for PE:PG and PC:cholesterol model membranes were 0.9 +/- 0.3 x 10(7) and 3 +/- 1 x 10(7) M-1, respectively. In contrast, conolysin-Mt exhibited low antimicrobial activity (MIC > 50 microM) against two Escherichia coli strains, with an MIC for the Gram-positive S. aureus of 25-50 microM. The specificity of conolysin-Mt for native eukaryotic membranes is a novel feature of the peptide compared to other well-characterized cytolytic peptides such as melittin.
Collapse
Affiliation(s)
- Jason S Biggs
- Department of Biology, University of Utah, Salt Lake City, Utah 84108, USA
| | | | | | | |
Collapse
|
49
|
Xu Y, Hixon MS, Dawson PE, Janda KD. Development of a FRET Assay for Monitoring of HIV gp41 Core Disruption. J Org Chem 2007; 72:6700-7. [PMID: 17685571 DOI: 10.1021/jo070836l] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fusogenic core assembly of human immunodeficiency virus type 1 (HIV-1) fusion protein gp41 is a critical transformation for viral entry. Molecules that are able to intercept this process are of great therapeutic value as HIV-1 fusion inhibitors. In the search for such molecules, assay systems that can be adapted to high-throughput screens are valuable. Given that gp41 fusogenic transformation is characterized by the hexameric association of heptads located at the N and C terminal regions of the protein ectodomain, the corresponding heptad peptides (CHR and NHR), known to form the six-helix bundle core of gp41 fusion active form, are potentially useful in developing a fluorescence resonance energy transfer (FRET) system for identification of HIV fusion inhibitors. We demonstrate that by strategically placing two FRET probes on these two peptides, we are able to monitor the intermolecular co-association by fluorescence quenching between the fluorescence donor and acceptor. The utility of the system is that it should be adaptable to high-throughput screening (HTS) toward peptide or small-molecule HIV fusion inhibitors targeting the gp41 core. Herein, we report the design, synthesis, and development of a N- and C- terminal peptide FRET pair for screening of gp41 six-helix bundle disruption.
Collapse
Affiliation(s)
- Yang Xu
- Department of Chemistry and Immunology and The Skaggs Institute for Chemical Biology and Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
50
|
Cummings JE, Vanderlick TK. Aggregation and hemi-fusion of anionic vesicles induced by the antimicrobial peptide cryptdin-4. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1796-804. [PMID: 17531950 DOI: 10.1016/j.bbamem.2007.04.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 04/20/2007] [Accepted: 04/20/2007] [Indexed: 10/23/2022]
Abstract
We show that cryptdin-4 (Crp4), an antimicrobial peptide found in mice, induces the aggregation and hemi-fusion of charged phospholipid vesicles constructed of the anionic lipid POPG and the zwitterionic lipid POPC. Hemi-fusion is confirmed with positive total lipid-mixing assay results, negative inner monolayer lipid-mixing assay results, and negative results from contents-mixing assays. Aggregation, as quantified by absorbance and dynamic light scattering, is self-limiting, creating finite-sized vesicle assemblies. The rate limiting step in the formation process is the mixing of juxtaposed membrane leaflets, which is regulated by bound peptide concentration as well as vesicle radius (with larger vesicles less prone to hemi-fusion). Bound peptide concentration is readily controlled by total peptide concentration and the fraction of anionic lipid in the vesicles. As little as 1% PEGylated lipid significantly reduces aggregate size by providing a steric barrier for membrane apposition. Finally, as stable hemi-fusion is a rare occurrence, we compare properties of Crp4 to those of many peptides known to induce complete fusion and lend insight into conditions necessary for this unusual type of membrane merger.
Collapse
Affiliation(s)
- Jason E Cummings
- Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|