1
|
The Breast Cancer Protooncogenes HER2, BRCA1 and BRCA2 and Their Regulation by the iNOS/NOS2 Axis. Antioxidants (Basel) 2022; 11:antiox11061195. [PMID: 35740092 PMCID: PMC9227079 DOI: 10.3390/antiox11061195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
The expression of inducible nitric oxide synthase (iNOS; NOS2) and derived NO in various cancers was reported to exert pro- and anti-tumorigenic effects depending on the levels of expression and the tumor types. In humans, the breast cancer level of iNOS was reported to be overexpressed, to exhibit pro-tumorigenic activities, and to be of prognostic significance. Likewise, the expression of the oncogenes HER2, BRCA1, and BRCA2 has been associated with malignancy. The interrelationship between the expression of these protooncogenes and oncogenes and the expression of iNOS is not clear. We have hypothesized that there exist cross-talk signaling pathways between the breast cancer protooncogenes, the iNOS axis, and iNOS-mediated NO mutations of these protooncogenes into oncogenes. We review the molecular regulation of the expression of the protooncogenes in breast cancer and their interrelationships with iNOS expression and activities. In addition, we discuss the roles of iNOS, HER2, BRCA1/2, and NO metabolism in the pathophysiology of cancer stem cells. Bioinformatic analyses have been performed and have found suggested molecular alterations responsible for breast cancer aggressiveness. These include the association of BRCA1/2 mutations and HER2 amplifications with the dysregulation of the NOS pathway. We propose that future studies should be undertaken to investigate the regulatory mechanisms underlying the expression of iNOS and various breast cancer oncogenes, with the aim of identifying new therapeutic targets for the treatment of breast cancers that are refractory to current treatments.
Collapse
|
2
|
Vince N, Li H, Ramsuran V, Naranbhai V, Duh FM, Fairfax BP, Saleh B, Knight JC, Anderson SK, Carrington M. HLA-C Level Is Regulated by a Polymorphic Oct1 Binding Site in the HLA-C Promoter Region. Am J Hum Genet 2016; 99:1353-1358. [PMID: 27817866 PMCID: PMC5142108 DOI: 10.1016/j.ajhg.2016.09.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/29/2016] [Indexed: 01/08/2023] Open
Abstract
Differential HLA-C levels influence several human diseases, but the mechanisms responsible are incompletely characterized. Using a validated prediction algorithm, we imputed HLA-C cell surface levels in 228 individuals from the 1000 Genomes dataset. We tested 68,726 SNPs within the MHC for association with HLA-C level. The HLA-C promoter region variant, rs2395471, 800 bp upstream of the transcription start site, gave the most significant association with HLA-C levels (p = 4.2 × 10-66). This imputed expression quantitative trait locus, termed impeQTL, was also shown to associate with HLA-C expression in a genome-wide association study of 273 donors in which HLA-C mRNA expression levels were determined by quantitative PCR (qPCR) (p = 1.8 × 10-20) and in two cohorts where HLA-C cell surface levels were determined directly by flow cytometry (n = 369 combined, p < 10-15). rs2395471 is located in an Oct1 transcription factor consensus binding site motif where the A allele is predicted to have higher affinity for Oct1 than the G allele. Mobility shift electrophoresis demonstrated that Oct1 binds to both alleles in vitro, but decreased HLA-C promoter activity was observed in a luciferase reporter assay for rs2395471_G relative to rs2395471_A on a fixed promoter background. The rs2395471 variant accounts for up to 36% of the explained variation of HLA-C level. These data strengthen our understanding of HLA-C transcriptional regulation and provide a basis for understanding the potential consequences of manipulating HLA-C levels therapeutically.
Collapse
Affiliation(s)
- Nicolas Vince
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Hongchuan Li
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Veron Ramsuran
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Vivek Naranbhai
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Center for the AIDS Programme of Research in South Africa, University of KwaZuluNatal, Durban 4091, South Africa
| | - Fuh-Mei Duh
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Benjamin P Fairfax
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Bahara Saleh
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Julian C Knight
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Stephen K Anderson
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Pance A. Oct-1, to go or not to go? That is the PolII question. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:820-4. [PMID: 27063953 DOI: 10.1016/j.bbagrm.2016.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 10/22/2022]
Abstract
The Oct transcription factors recognise an octamer DNA element from which they regulate transcription of specific target genes. Oct-1 is the only member of the subfamily that is ubiquitously expressed and has a wide role in transcriptional control. Through interaction with various partner proteins, Oct-1 can modulate accessibility to the chromatin to recruit the transcription machinery and form the pre-initiation complex. The recruited PolII is induced to initiate transcription and stalled until elongation is triggered on interaction with signalling transcription factors. In this way, Oct-1 can fulfil general roles in transcription by opening the chromatin as well as transduce extracellular signals by relaying activation through various interacting partners. The emerging picture of Oct-1 is that of a complex and versatile transcription factor with fundamental functions in cell homeostasis and signal response in general as well as cell specific contexts. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin.
Collapse
Affiliation(s)
- Alena Pance
- The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridgeshire, UK.
| |
Collapse
|
4
|
Anti-inflammatory cytokine interleukin-4 inhibits inducible nitric oxide synthase gene expression in the mouse macrophage cell line RAW264.7 through the repression of octamer-dependent transcription. Mediators Inflamm 2013; 2013:369693. [PMID: 24459328 PMCID: PMC3891534 DOI: 10.1155/2013/369693] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 11/17/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS) is a signature molecule involved in the classical activation of M1 macrophages and is induced by the Nos2 gene upon stimulation with Th1-cell derived interferon-gamma (IFNγ) and bacterial lipopolysaccharide (LPS). Although the anti-inflammatory cytokine IL-4 is known to inhibit Nos2 gene expression, the molecular mechanism involved in the negative regulation of Nos2 by IL-4 remains to be fully elucidated. In the present study, we investigated the mechanism of IL-4-mediated Nos2 transcriptional repression in the mouse macrophage-like cell line RAW264.7. Signal transducer and activator of transcription 6 (Stat6) knockdown by siRNA abolished the IL-4-mediated inhibition of Nos2 induced by IFNγ/LPS. Transient transfection of a luciferase reporter gene containing the 5′-flanking region of the Nos2 gene demonstrated that an octamer transcription factor (OCT) binding site in the promoter region is required for both positive regulation by IFNγ/LPS and negative regulation by IL-4. Although IL-4 had no inhibitory effect on the DNA-binding activity of constitutively expressed Oct-1, IL-4-induced Nos2-reporter transcriptional repression was partially attenuated by overexpression of the coactivator CREB-binding protein (CBP). These results suggest that a coactivator/cofactor that functionally interacts with Oct-1 is a molecular target for the IL-4-mediated inhibition of Nos2 and that IL-4-activated Stat6 represses Oct-1-dependent transcription by competing with this coactivator/cofactor.
Collapse
|
5
|
Zídek Z, Kmoníčková E, Kostecká P, Jansa P. Microfiltration method of removal of bacterial contaminants and their monitoring by nitric oxide and Limulus assays. Nitric Oxide 2012; 28:1-7. [PMID: 22981390 DOI: 10.1016/j.niox.2012.08.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/09/2012] [Accepted: 08/28/2012] [Indexed: 12/19/2022]
Abstract
Similar to lipopolysaccharide (LPS), a product of Gram-negative bacteria, the signal macromolecules of Gram-positive bacteria lipoteichoic acid (LTA) and peptidoglycan (PGN) possess multiple biological activities. They may be a source of misinterpretation of experimental findings. We have found that not only LPS but also LTA and PGN can be detected by the Limulus amebocyte lysate (LAL) assay. All of them stimulate the high output in vitro nitric oxide (NO) production of in rat peritoneal cells. The onset of the NO enhancement was observed with 25-100pg/ml of LPS and 25-100ng/ml of PGN and LTA. Polymyxin B (PMX), if applied at concentration 10,000-fold higher than that of LPS, can completely inhibit the NO and LAL binding responses of LPS. The NO-stimulatory and LAL-binding properties of LTA and PGN are not eliminated by PMX. Handling of LPS contamination with PMX may be associated with serious problems because it possesses intrinsic biological activity and becomes cytotoxic at concentration >25μg/ml. The present findings suggest a convenient alternative avoiding these issues. As monitored by the NO and LAL assays, even high amounts of LPS as well as PGN and LTA can be removed by molecular mass cutoff microfiltration. All types of the filters (3kDa to 100kDa) are equally effective. It is suggested that the microfiltration procedure may be considered as a preferable, general and easy method of sample decontamination.
Collapse
Affiliation(s)
- Zdeněk Zídek
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague 4, Czech Republic.
| | | | | | | |
Collapse
|
6
|
Reveneau S, Petrakis TG, Goldring CE, Chantôme A, Jeannin JF, Pance A. Oct-1 cooperates with the TATA binding initiation complex to control rapid transcription of human iNOS. Cell Mol Life Sci 2012; 69:2609-19. [PMID: 22349263 PMCID: PMC11114494 DOI: 10.1007/s00018-012-0939-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/28/2012] [Accepted: 02/07/2012] [Indexed: 11/27/2022]
Abstract
Expression of the human inducible nitric oxide synthase (hiNOS) is generally undetectable in resting cells, but stimulation by a variety of signals including cytokines induces transcription in most cell types. The tight transcriptional regulation of the enzyme is a complex mechanism many aspects of which remain unknown. Here, we describe an octamer (Oct) element in hiNOS proximal promoter, located close to the TATA box. This site constitutively binds Oct-1 and its deletion abrogates cytokine-induced transcription, showing that it is indispensable though not sufficient for transcription. Increasing the distance between Oct and the TATA box by inserting inert DNA sequence inhibits transcription, and footprinting of this region shows no other protein binding in resting cells, suggesting an interaction between the two complexes. Chromatin immunoprecipitation assays detect the presence of Oct-1, RNA polymerase II and trimethyl K4 histone H3 on the proximal promoter in resting cells, confirming that the gene is primed for transcription before stimulation. RT-PCR of various fragments along the hiNOS gene shows that transcription is initiated in resting cells and this is inhibited by interference with Oct-1 binding to the proximal site of the promoter. We propose that, through interaction with the initiation complex, Oct-1 regulates hiNOS transcription by priming the gene for the rapid response required in an immune response.
Collapse
Affiliation(s)
- Sylvie Reveneau
- EPHE Laboratory, Faculty of Medicine, University of Bourgogne, 7 Bvd Jeanne D’Arc, 21033 Dijon, France
| | - Thodoris G. Petrakis
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Christopher E. Goldring
- EPHE Laboratory, Faculty of Medicine, University of Bourgogne, 7 Bvd Jeanne D’Arc, 21033 Dijon, France
- Present Address: Department of Pharmacology and Therapeutics, School of Biomedical Sciences, University of Liverpool, Liverpool, UK
| | - Aurélie Chantôme
- EPHE Laboratory, Faculty of Medicine, University of Bourgogne, 7 Bvd Jeanne D’Arc, 21033 Dijon, France
- Present Address: Nutrition, Criossance et Cancer, University of Tours, Tours, France
| | - Jean-François Jeannin
- EPHE Laboratory, Faculty of Medicine, University of Bourgogne, 7 Bvd Jeanne D’Arc, 21033 Dijon, France
| | - Alena Pance
- EPHE Laboratory, Faculty of Medicine, University of Bourgogne, 7 Bvd Jeanne D’Arc, 21033 Dijon, France
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| |
Collapse
|
7
|
Chou YY, Gao JI, Chang SF, Chang PY, Lu SC. Rapamycin inhibits lipopolysaccharide induction of granulocyte-colony stimulating factor and inducible nitric oxide synthase expression in macrophages by reducing the levels of octamer-binding factor-2. FEBS J 2010; 278:85-96. [PMID: 21114628 DOI: 10.1111/j.1742-4658.2010.07929.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This article reports an inhibitory effect of rapamycin on the lipopolysaccharide (LPS)-induced expression of both inducible nitric oxide synthase (iNOS) and granulocyte-colony stimulating factor (G-CSF) in macrophages and its underlying mechanism. The study arose from an observation that rapamycin inhibited the LPS-induced increase in octamer-binding factor-2 (Oct-2) protein levels through a mammalian target of rapamycin (mTOR)-dependent pathway in mouse RAW264.7 macrophages. As both iNOS and G-CSF are potential Oct-2 target genes, we tested the effect of rapamycin on their expression and found that it reduced the LPS-induced increase in iNOS and G-CSF mRNA levels and iNOS and G-CSF protein levels. Blocking of mTOR-signaling using a dominant-negative mTOR expression plasmid resulted in inhibition of the LPS-induced increase in iNOS and G-CSF protein levels, supporting the essential role of mTOR. Forced expression of Oct-2 using the pCG-Oct-2 plasmid overcame the inhibitory effect of rapamycin on the LPS-induced increase in iNOS and G-CSF mRNA levels. Chromatin immunoprecipitation assays showed that LPS enhanced the binding of Oct-2 to the iNOS and G-CSF promoters and that this effect was inhibited by pretreatment with rapamycin. Moreover, RNA interference knockdown of Oct-2 reduced iNOS and G-CSF expression in LPS-treated cells. The inhibitory effect of rapamycin on the LPS-induced increase in Oct-2 protein levels and on the iNOS and G-CSF mRNA levels was also detected in human THP-1 monocyte-derived macrophages. This study demonstrates that rapamycin reduces iNOS and G-CSF expression at the transcription level in LPS-treated macrophages by inhibiting Oct-2 expression.
Collapse
Affiliation(s)
- Yuan-Yi Chou
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
8
|
Zídek Z, Kmonícková E, Kostecká P, Tlaskalová-Hogenová H. Decisive role of lipopolysaccharide in activating nitric oxide and cytokine production by the probiotic Escherichia coli strain Nissle 1917. Folia Microbiol (Praha) 2010; 55:181-9. [PMID: 20490762 DOI: 10.1007/s12223-010-0027-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/25/2010] [Indexed: 02/06/2023]
Abstract
Effects of Gram-negative probiotic E. coli strain Nissle 1917 (EcN) on the production of nitric oxide (NO) and cytokines were determined in cultures of resident peritoneal cells of rats. The cells (2 x 10(6)/mL) were cultured for 24 h in the presence of live EcN suspension (EcN-Susp), bacteria-free supernatant of this suspension (Sup-EcN), and LPS of EcN origin (LPS-EcN). The biosynthesis of NO was substantially enhanced using live bacteria counts as low as 10(3)/mL applied in the form of EcN-Susp. The same NO-enhancing effect was produced by the correspondingly diluted Sup-EcN. It was found that Sup-EcN contained relatively high amounts of LPS. Administration of the LPS-EcN mimicked the high NO-augmenting activities of both Sup-EcN and EcN-Susp. However, the activity of LPS-EcN was significantly less pronounced than were the activities of Sup-EcN and EcN-Susp containing identical amounts of LPS. The NO-stimulatory effects of the EcN preparations were completely inhibited by polymyxin B. All LPS-EcN and correspondingly diluted Sup-EcN and EcN-Susp stimulated the secretion of cytokines TNF-alpha, IL-1beta, IL-6, IL-10 and VEGF. Also these effects were abrogated by polymyxin B. In contrast to the effects on NO production, the cytokine-stimulatory effects were significantly less pronounced after the exposure of the cells to Sup-EcN and EcN-Susp than to the identical amounts of LPS-EcN. It may be concluded that the in vitro stimulatory effects of EcN on NO and cytokine production are mediated by LPS. It is suggested that the immunostimulatory activity of LPS is modulated by EcN-derived factor(s), the nature of which remains to be identified.
Collapse
Affiliation(s)
- Z Zídek
- Institute of Experimental Medicine, v.v.i., Academy of Sciences of the Czech Republic, 142 20, Prague 4, Czech Republic.
| | | | | | | |
Collapse
|
9
|
|
10
|
A far-upstream Oct-1 motif regulates cytokine-induced transcription of the human inducible nitric oxide synthase gene. J Mol Biol 2009; 390:595-603. [PMID: 19467240 DOI: 10.1016/j.jmb.2009.05.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 05/18/2009] [Accepted: 05/20/2009] [Indexed: 11/22/2022]
Abstract
Transcriptional regulation of the human inducible nitric oxide synthase (hiNOS) gene is highly complex and requires an orchestrated flow of positive and negative transcription factors that bind to specific cis-acting upstream response elements. Very little specific information exists about the far-upstream region of the hiNOS gene. Oct-1 protein belongs to the Pit-Oct-Unc domain transcription factor family and is constitutively expressed in all dividing cells. It is essential for proliferation, differentiation, and other key cell processes. However, the role of Oct-1 in regulating hiNOS gene expression has not been reported. In this work, the octamer sequence 5'-ATGCAAAT-3' at -10.2 kb in the hiNOS promoter was identified as high-affinity Oct-1 binding by electrophoretic mobility shift assay in vitro and chromatin immunoprecipitation assay in vivo. Mutation of Oct-1 motif at -10.2 kb in the hiNOS promoter decreased cytokine-induced hiNOS promoter activity by 40%. Cytokine-induced hiNOS promoter activity was also significantly reduced by Oct-1 small interfering RNA targeting. Overexpression of Oct-1 increased cytokine-induced hiNOS protein expression in primary human hepatocytes. Furthermore, the Oct-1 motif at -10.2 kb of the hiNOS promoter conferred increased transcriptional activity to the heterologous thymidine kinase promoter irrespective of cytokine induction. Taken together, this work identifies a far-upstream functional Oct-1 enhancer motif at -10.2 kb in the hiNOS promoter that regulates cytokine-induced hiNOS gene transcription and further underscores tight control mechanisms regulating the expression of the hiNOS gene.
Collapse
|
11
|
Lu SC, Wu HW, Lin YJ, Chang SF. The essential role of Oct-2 in LPS-induced expression of iNOS in RAW 264.7 macrophages and its regulation by trichostatin A. Am J Physiol Cell Physiol 2009; 296:C1133-9. [DOI: 10.1152/ajpcell.00031.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This article reports on a study of the effect of trichostatin A (TSA), an inhibitor of histone deacetylase, on lipopolysaccharide (LPS)-induced expression of inducible nitric oxide synthase (iNOS) in RAW 264.7 macrophages and its underlying mechanisms. TSA pretreatment potently diminishes LPS-stimulated nitric oxide (NO) release and both mRNA and protein levels of iNOS in macrophages. The effects of TSA and LPS on transcription factors binding to two LPS-responsive elements within the iNOS promoter, one binding the NF-κB site and the other the octamer element, were investigated. Results show that TSA did not alter the LPS-activated NF-κB activity demonstrated by the nuclear translocation of p50 and p65 and by a NF-κB-driven reporter gene expression system. In addition, neither TSA nor LPS changed the expression of Oct-1, a ubiquitously expressed octamer binding protein. However, TSA suppressed the LPS-induced expression of Oct-2, another octamer binding protein, at both mRNA and protein levels. Chromatin immunoprecipitation assays revealed that binding of Oct-2 to the iNOS promoter was enhanced by LPS treatment; however, pretreatment with TSA resulted in loss of this binding. Moreover, forced expression of Oct-2 by transfection of pCG-Oct-2 plasmid restored the TSA-suppressed iNOS expression elevated by LPS stimulation, further indicating that Oct-2 activation is a crucial step for transcriptional activation of the iNOS gene in response to LPS stimulation in macrophages. This study demonstrates that TSA diminishes iNOS expression in LPS-treated macrophages by inhibiting Oct-2 expression and thus reducing the production of NO.
Collapse
|
12
|
Chiu FL, Lin JK. Tomatidine inhibits iNOS and COX-2 through suppression of NF-kappaB and JNK pathways in LPS-stimulated mouse macrophages. FEBS Lett 2008; 582:2407-12. [PMID: 18544347 DOI: 10.1016/j.febslet.2008.05.049] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 05/30/2008] [Accepted: 05/30/2008] [Indexed: 10/22/2022]
Abstract
We use the LPS-stimulated macrophage as a model of inflammation to investigate the anti-inflammatory effects of tomatidine and solasodine, whose structures resemble glucocorticoids. We found that tomatidine exhibited a more potent anti-inflammatory effect than solasodine. Tomatidine could decrease inducible nitric oxide synthase and cyclooxygenase-2 expression through suppression of I-kappaBalpha phosphorylation, NF-kappaB nuclear translocation and JNK activation, which in turn inhibits c-jun phosphorylation and Oct-2 expression. Here, we demonstrate that tomatidine acts as an anti-inflammatory agent by blocking NF-kappaB and JNK signaling, and may possibly be developed as a useful agent for the chemoprevention of cancer or inflammatory diseases.
Collapse
Affiliation(s)
- Feng-Lan Chiu
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No. 1 Section 1, Jen-ai Road, Taipei 10018, Taiwan
| | | |
Collapse
|
13
|
Inhibition of NADPH oxidase by apocynin inhibits lipopolysaccharide (LPS) induced up-regulation of arginase in rat alveolar macrophages. Eur J Pharmacol 2007; 579:403-10. [PMID: 18001708 DOI: 10.1016/j.ejphar.2007.10.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 10/16/2007] [Accepted: 10/18/2007] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species participate in the pathogenesis of inflammatory airway diseases, in which increased arginase may play a role by interfering with nitric oxide (NO) synthesis and providing substrate for collagen synthesis. Therefore a modulatory role of reactive oxygen species for arginase was explored in alveolar macrophages using the NADPH oxidase inhibitor apocynin. The effects of lipopolysacharides (LPS) and apocynin on nitrite accumulation, arginase activity and mRNA for inducible NO synthase (iNOS), arginase I and II were determined. Superoxide anion (O(2)(-)) release was analysed by the iodonitrotetrazolium (INT) formazan assay. LPS (1 microg/ml) caused a 55%, transient increase in INT formation, i.e. O(2)(-) release which was inhibited by apocynin (500 microM). LPS caused a 2 fold increase in arginase activity and a marked increase in mRNA encoding arginase I, the predominant isoenzyme. Both effects were largely attenuated by apocynin. Apocynin did not affect the stability of arginase I mRNA, but accelerated the decline of arginase activity when protein synthesis was inhibited by cycloheximide. Apocynin also reduced LPS-induced nitrite accumulation (by 30%) and iNOS mRNA expression, but the magnitude of these effects was smaller than that on arginase I. Arginase I mRNA was also increased following exposure to hydrogen peroxide (H(2)O(2), 200 muM). In conclusion, inhibition of NADPH oxidase in alveolar macrophages causes down-regulation of arginase, indicating that reactive oxygen species exert stimulatory effects on arginase. Enhanced transcription of arginase mRNA and prolongation of the life time of the active enzyme appear to contribute to the enhanced arginase activity.
Collapse
|
14
|
Sanchez AC, Davis RL, Syapin PJ. The Oct DNA motif participates in the alcohol inhibition of the inducible nitric oxide synthase gene promoter in rat C6 glioma cells. Brain Res 2007; 1179:16-27. [PMID: 17936731 DOI: 10.1016/j.brainres.2007.08.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 08/14/2007] [Accepted: 08/17/2007] [Indexed: 11/30/2022]
Abstract
Induction of nitric oxide synthase-2 (iNOS) by cytokines and bacterial products is associated with protein binding at the proximal promoter and in an upstream enhancer region of the Nos2 gene. To clarify how ethanol suppresses rat iNOS activity, we constructed several deletion mutants of the Nos2 promoter fused to the luciferase gene and transfected the constructs into C6 glial cells. Acute ethanol exposure of stably transfected cells for 24 h inhibits induced activity of Nos2 promoter constructs containing deletions in the 5' flanking region, including a 94 bp promoter that lacks any known NF-kappaB site but which carries a C/EBPbeta and overlapping gamma-IRE, GAS and Oct motifs. Ethanol failed to inhibit the endogenous activity of a smaller, 78 bp promoter that lacks the C/EBPbeta and overlapping, gamma-IRE and GAS motifs and showed no inducible activity. As another approach, in vivo DNA footprinting was used and identified protein protections at five regions of the proximal Nos2 promoter in induced cells. Exposure to acute ethanol diminished protein occupation in the five promoter regions including the gamma-IRE/NF-kappaB and the overlapping gamma-IRE/GAS/Oct sites. Site-directed mutagenesis in the octamer domain of the gamma-IRE/GAS/Oct motifs was studied in a 1002 bp promoter to examine its role in ethanol inhibition of cytokine and lipopolysaccharide induced activity. The data indicate that ethanol failed to inhibit promoter activity when the Oct motif is missing. Electrophoretic mobility shift assays performed using a 22-mer probe containing the overlapping gamma-IRE/GAS/Oct sites showed three complexes with one of the complexes being competed by an octamer-1 antibody. These observations demonstrate the role of protein-DNA binding at the core promoter, and the likely involvement of the octamer motif, in ethanol modulation of cytokine and lipopolysaccharide induced iNOS expression.
Collapse
Affiliation(s)
- Alma C Sanchez
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | |
Collapse
|
15
|
Lu SC, Chang SF, Chen HL, Chou YY, Lan YH, Chuang CY, Yu WH, Chen CL. A novel role for Oct-2 in the lipopolysaccharide-mediated induction of resistin gene expression in RAW264.7 cells. Biochem J 2007; 402:387-95. [PMID: 17107342 PMCID: PMC1798441 DOI: 10.1042/bj20061096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although resistin was first suggested as a possible link between obesity and diabetes, we have demonstrated previously that expression of resistin is induced by LPS (lipopolysaccharide). In the present study, we showed that LPS increased levels of resistin mRNA and promoter activity in murine RAW264.7 macrophages. Investigation of cis-regulatory elements in the mouse resistin promoter required for LPS-mediated induction showed that an Octamer (ATTTGCAT) element, located at -914 to -907, was required for maximal promoter activity in response to LPS stimulation. Co-transfection of RAW264.7 cells with a resistin promoter-luciferase construct and an Oct-1 or Oct-2 expression plasmid (pCG-Oct-1 or pCG-Oct-2) showed that Oct-2, but not Oct-1, activated the resistin promoter upon LPS treatment. Binding of Oct-2 to the Octamer element was demonstrated by supershift DNA-affinity precipitation and chromatin immunoprecipitation assays. Reverse transcription-PCR and Western blot results showed that levels of Oct-2 mRNA and protein were both up-regulated by LPS in RAW264.7 cells. The LPS-induced increase in Oct-2 protein was inhibited by LY294002 (a phosphoinositide 3-kinase inhibitor) post-transcriptionally, and the inhibition also resulted in a lower response of both resistin mRNA and promoter activity to LPS treatment. Moreover, specific knockdown of Oct-2 by RNA interference impaired the LPS-induced increase in resistin mRNA and promoter activity. Together, these results indicate that Oct-2 is involved in the LPS-mediated induction of resistin gene expression in macrophages and suggest that activation of Oct-2 is a part of LPS signalling pathways in macrophages.
Collapse
Affiliation(s)
- Shao-Chun Lu
- *Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- To whom correspondence should be addressed at Rm. 810, No.1, Jen Ai Road Section 1, Taipei 10051, Taiwan (email )
| | - Shwu-Fen Chang
- †Graduate Institute of Cell and Molecular Biology, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ling Chen
- ‡Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Yuan-Yi Chou
- *Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Hsin Lan
- *Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Ying Chuang
- *Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Hsuan Yu
- *Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Lin Chen
- *Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
16
|
Kim YS, Kim SS, Cho JJ, Choi DH, Hwang O, Shin DH, Chun HS, Beal MF, Joh TH. Matrix metalloproteinase-3: a novel signaling proteinase from apoptotic neuronal cells that activates microglia. J Neurosci 2006; 25:3701-11. [PMID: 15814801 PMCID: PMC6725382 DOI: 10.1523/jneurosci.4346-04.2005] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microglial activation and inflammation are associated with progressive neuronal apoptosis in neurodegenerative human brain disorders. We sought to investigate molecular signaling mechanisms that govern activation of microglia in apoptotic neuronal degeneration. We report here that the active form of matrix metalloproteinase-3 (MMP-3) was released into the serum-deprived media (SDM) of PC12 cells and other media of apoptotic neuronal cells within 2-6 h of treatment of the cells, and SDM and catalytic domain of recombinant MMP-3 (cMMP-3) activated microglia in primary microglia cultures as well as BV2 cells, a mouse microglia cell line. Both SDM and cMMP-3 induced generation of tumor necrosis factor alpha (TNF-alpha), interleukin-6 (IL-6), IL-1beta, and interleukin-1 receptor antagonist but not IL-12 and inducible nitric oxide synthase, which are readily induced by lipopolysaccharide, in microglia, suggesting that there is a characteristic pattern of microglial cytokine induction by apoptotic neurons. Neither glial cell line-derived neurotrophic factor nor anti-inflammatory cytokines, such as IL-10 and transforming growth factor-beta1, were induced. SDM and cMMP-3 extensively released TNF-alpha from microglia and activated the nuclear factor-kappaB pathway, and these microglial responses were totally abolished by preincubation with an MMP-3 inhibitor, NNGH [N-isobutyl-N-(4-methoxyphenylsulfonyl)-glycylhydroxamic acid]. MMP-3-mediated microglial activation mostly depended on ERK (extracellular signal-regulated kinase) phosphorylation but not much on either JNK (c-Jun N-terminal protein kinase) or p38 activation. Conditioned medium of SDM- or cMMP-3-activated BV2 cells caused apoptosis of PC12 cells. These results strongly suggest that the distinctive signal of neuronal apoptosis is the release of active form of MMP-3 that activates microglia and subsequently exacerbates neuronal degeneration. Therefore, the release of MMP-3 from apoptotic neurons may play a major role in degenerative human brain disorders, such as Parkinson's disease.
Collapse
Affiliation(s)
- Yoon Seong Kim
- Burke Medical Research Institute, Weill Medical College and Graduate School of Medical Sciences of Cornell University, White Plains, New York 10605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kleinert H, Pautz A, Linker K, Schwarz PM. Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol 2005; 500:255-66. [PMID: 15464038 DOI: 10.1016/j.ejphar.2004.07.030] [Citation(s) in RCA: 449] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 01/24/2023]
Abstract
The role of nitric oxide (NO) generated by the inducible isoform of nitric oxide synthase (iNOS) is very complex. Induction of iNOS expression and hence NO production has been described to have beneficial antiviral, antiparasital, microbicidal, immunomodulatory, and antitumoral effects. However, induced at the wrong place or at the wrong time, iNOS has detrimental consequences and seems to be involved in the pathophysiology of different human diseases. The pathways regulating iNOS expression seem to vary in different cells or different species. In general, activation of the transcription factors nuclear factor (NF)-kappaB and signal transducer and activator of transcription (STAT)-1alpha and thereby activation of the iNOS promoter seems to be an essential step in the regulation of iNOS expression in most cells. Also, post-transcriptional mechanisms are critically involved in the regulation of iNOS expression.
Collapse
Affiliation(s)
- Hartmut Kleinert
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Strasse 67, D-55101 Mainz, Germany.
| | | | | | | |
Collapse
|
18
|
Darville MI, Terryn S, Eizirik DL. An octamer motif is required for activation of the inducible nitric oxide synthase promoter in pancreatic beta-cells. Endocrinology 2004; 145:1130-6. [PMID: 14630716 DOI: 10.1210/en.2003-1200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nitric oxide, generated by the inducible form of nitric oxide synthase (iNOS), is a potential mediator of cytokine-induced beta-cell dysfunction in type 1 diabetes mellitus. We have previously shown that cytokine-induced iNOS expression is cycloheximide (CHX) sensitive and requires nuclear factor-kappa B (NF-kappa B) activation. In the present study, we show that an octamer motif located 20 bp downstream of the proximal NF-kappa B binding site in the rat iNOS promoter is critical for IL-1 beta and interferon-gamma induction of promoter activity in rat primary beta-cells and insulin-producing RINm5F cells. In gel shift assays, the octamer motif bound constitutively the transcription factor Oct1. Neither Oct1 nor NF-kappa B binding activities were blocked by CHX, suggesting that other factor(s) synthesized in response to IL-1 beta contribute to iNOS promoter induction. The high mobility group (HMG)-I(Y) protein also bound the proximal iNOS promoter region. HMG-I(Y) binding was decreased in cells treated with CHX and HMG-I(Y) silencing by RNA interference reduced IL-1 beta-induced iNOS promoter activity. These results suggest that Oct1, NF-kappa B, and HMG-I(Y) cooperate for transactivation of the iNOS promoter in pancreatic beta-cells.
Collapse
Affiliation(s)
- Martine I Darville
- Laboratory of Experimental Medicine, Université libre de Bruxelles, B-1070 Brussels, Belgium.
| | | | | |
Collapse
|
19
|
Platten M, Eitel K, Wischhusen J, Dichgans J, Weller M. Involvement of protein kinase Cδ and extracellular signal-regulated kinase-2 in the suppression of microglial inducible nitric oxide synthase expression by N-[3,4-dimethoxycinnamoyl]-anthranilic acid (tranilast). Biochem Pharmacol 2003; 66:1263-70. [PMID: 14505805 DOI: 10.1016/s0006-2952(03)00449-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Excess nitric oxide (NO) in the brain released by microglial cells contributes to neuronal damage in various pathologies of the central nervous system (CNS) including neurodegenerative diseases and multiple sclerosis. N-[3,4-Dimethoxycinnamoyl]-anthranilic acid (tranilast, TNL) is an anti-allergic compound which suppresses the activation of monocytes. We show that inducible nitric oxide synthase (iNOS) mRNA and protein expression and the release of NO from N9 microglial cells stimulated with the bacterial endotoxin lipopolysaccharide (LPS) are inhibited when the cells are exposed to TNL. TNL fails to modulate LPS-stimulated nuclear factor-kappaB (NF-kappaB) reporter gene activity and phosphorylation of inhibitory kappaB (IkappaB), indicating that NF-kappaB is not involved in the TNL-mediated suppression of LPS-induced iNOS expression. Moreover, TNL inhibits LPS-induced phosphorylation of extracellular signal-regulated kinase 2 (ERK-2). Finally, TNL abolishes translocation of protein kinase Cdelta (PKCdelta) to the nucleus and suppresses the phosphorylation of the PKCdelta substrate, myristoylated alanin-rich C kinase substrate (MARCKS). We conclude that the anti-allergic compound TNL suppresses microglial iNOS induction by LPS via inhibition of a signalling pathway involving PKCdelta and ERK-2.
Collapse
Affiliation(s)
- Michael Platten
- Department of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
20
|
Sanchez AC, Davis RL, Syapin PJ. Identification of cis-regulatory regions necessary for robust Nos2 promoter activity in glial cells: indirect role for NF-kappaB. J Neurochem 2003; 86:1379-90. [PMID: 12950447 DOI: 10.1046/j.1471-4159.2003.01943.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous reports suggest the nitric-oxide synthase 2 (Nos2) promoter contains negative and positive cis-regulatory regions. This study identified such regions using rat C6 glial cells. Activity of the serially deleted rat Nos2 promoter fused to a luciferase reporter gene was found to vary with construct size independent of stimuli, decreasing markedly from 160 to 130 bp then increasing significantly from 110 to 94 bp. In contrast, time to peak activity was stimulus-dependent but size-independent; 4-8 h for a cytokine mixture or lipopolysaccharide + interferon-gamma, and 8-16 h for lipopolysaccharide + phorbol 12-myristate 13-acetate. Peak activity with heterologous promoters also varied; 4 h for 3.7 kb of the human Nos2A promoter, and 36 h for 1.8 kb of the murine promoter. Electrophoretic mobility shift assays and in vivo DNA footprinting data confirmed nuclear protein binding to promoter regions suspected of containing important regulatory sites based on reporter gene data. A binding site for NF-kappaB was not required for Nos2 promoter activity. These findings provide significant new information on the relative importance of different regions of the rat Nos2 promoter for transcriptional activation and nitric oxide production by glial cells and support the existence of cell- and species-specific mechanisms for transcriptional regulation of Nos2 activation.
Collapse
Affiliation(s)
- Alma C Sanchez
- Alcohol and Brain Research Laboratory, Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | | | | |
Collapse
|
21
|
Chen J, Wersinger C, Sidhu A. Chronic stimulation of D1 dopamine receptors in human SK-N-MC neuroblastoma cells induces nitric-oxide synthase activation and cytotoxicity. J Biol Chem 2003; 278:28089-100. [PMID: 12738794 DOI: 10.1074/jbc.m303094200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elevated synaptic levels of dopamine may induce striatal neurodegeneration in l-DOPA-unresponsive parkinsonism subtype of multiple system atrophy (MSA-P subtype), multiple system atrophy, and methamphetamine addiction. We examined the participation of dopamine and D1 dopamine receptors in the genesis of postsynaptic neurodegeneration. Chronic treatment of human SK-N-MC neuroblastoma cells with dopamine or H2O2 increased NO production and accelerated cytotoxicity, as indexed by enhanced nitrite levels and cell death. The antioxidant sodium metabisulfite or SCH 23390, a D1 dopamine receptor-selective antagonist, partially blocked dopamine effects but together ablated dopamine-mediated cytotoxicity, indicating the participation of both autoxidation and D1 receptor stimulation. Direct activation of D1 dopamine receptors with SKF R-38393 caused cytotoxicity, which was refractory to sodium metabisulfite. Dopamine and SKF R-38393 induced overexpression of the nitric-oxide synthase (NOS) isoforms neuronal NOS, inducible NOS (iNOS), and endothelial NOS in a protein kinase A-dependent manner. Functional studies showed that approximately 60% of total NOS activity was due to activation of iNOS. The NOS inhibitor N(G)-nitro-l-arginine methyl ester and genistein, wortmannin, or NF-kappaB SN50, inhibitors of protein tyrosine kinases phosphatidylinositol 3-kinase and NF-kappaB, respectively, reduced nitrite production by dopamine and SKF R-38393 but were less effective in attenuating H2O2-mediated effects. In rat striatal neurons, dopamine and SKF R-38393, but not H2O2, accelerated cell death through increased expression of neuronal NOS and iNOS but not endothelial NOS. These data demonstrate a novel pathway of dopamine-mediated postsynaptic oxidative stress and cell death through direct activation of NOS enzymes by D1 dopamine receptors and its associated signaling pathways.
Collapse
Affiliation(s)
- Jun Chen
- Department of Pediatrics, Georgetown University, Washington, DC 20007, USA
| | | | | |
Collapse
|
22
|
Kleinert H, Schwarz PM, Förstermann U. Regulation of the Expression of Inducible Nitric Oxide Synthase. Biol Chem 2003; 384:1343-64. [PMID: 14669979 DOI: 10.1515/bc.2003.152] [Citation(s) in RCA: 289] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO), generated by the inducible isoform of nitric oxide synthase (iNOS), has been described to have beneficial microbicidal, antiviral, antiparasital, immunomodulatory, and antitumoral effects. However, aberrant iNOS induction at the wrong place or at the wrong time has detrimental consequences and seems to be involved in the pathophysiology of several human diseases. iNOS is primarily regulated at the expression level by transcriptional and post-transcriptional mechanisms. iNOS expression can be induced in many cell types with suitable agents such as bacterial lipopolysaccharides (LPS), cytokines, and other compounds. Pathways resulting in the induction of iNOS expression may vary in different cells or different species. Activation of the transcription factors NF-kappaB and STAT-1alpha, and thereby activation of the iNOS promoter, seems to be an essential step for iNOS induction in most cells. However, at least in the human system, also post-transcriptional mechanism are critically involved in the regulation of iNOS expression. The induction of iNOS can be inhibited by a wide variety of immunomodulatory compounds acting at the transcriptional levels and/or post-transcriptionally.
Collapse
Affiliation(s)
- Hartmut Kleinert
- Department of Pharmacology, Johannes Gutenberg University, D-55101 Mainz, Germany
| | | | | |
Collapse
|
23
|
Gupta AK, Kone BC. USF-1 and USF-2 trans-repress IL-1beta-induced iNOS transcription in mesangial cells. Am J Physiol Cell Physiol 2002; 283:C1065-72. [PMID: 12225970 DOI: 10.1152/ajpcell.00100.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcriptional activation of the inducible nitric oxide synthase (iNOS) gene requires multiple interactions of cis elements and trans-acting factors. Previous in vivo footprinting studies (Goldring CE, Reveneau S, Algarte M, and Jeannin JF. Nucleic Acids Res 24: 1682-1687, 1996) of the murine iNOS gene demonstrated lipopolysaccharide-inducible protection of guanines in the region -904/-883, which includes an E-box motif. In this report, by using site-directed mutagenesis of the -893/-888 E-box and correlating functional assays of the mutated iNOS promoter with upstream stimulatory factor (USF) DNA-binding activities, we demonstrate that the -893/-888 E-box motif is functionally required for iNOS regulation in murine mesangial cells and that USFs are in vivo components of the iNOS transcriptional response complex. Mutation of the E-box sequence augmented the iNOS response to interleukin-1beta (IL-1beta) in transiently transfected mesangial cells. Gel mobility shift assays demonstrated that USFs cannot bind to the -893/-888 E-box promoter region when the E-box is mutated. Cotransfection of USF-1 and USF-2 expression vectors with iNOS promoter-luciferase reporter constructs suppressed IL-1beta-simulated iNOS promoter activity. Cotransfection of dominant-negative USF-2 mutants lacking the DNA binding domain or cis-element decoys containing concatamers of the -904/-883 region augmented IL-1beta stimulation of iNOS promoter activity. Gel mobility shift assays showed that only USF-1 and USF-2 supershifted the USF protein-DNA complexes. These results demonstrated that USF binding to the E-box at -893/-888 serves to trans-repress basal expression and IL-1beta induction of the iNOS promoter.
Collapse
Affiliation(s)
- Ashish K Gupta
- Department of Internal Medicine, The University of Texas Medical School at Houston, 6431 Fannin, Houston, TX 77030, USA
| | | |
Collapse
|
24
|
Fan QI, Vanderpool K, Marsh JD. A 27 bp cis-acting sequence is essential for L-type calcium channel alpha(1C) subunit expression in vascular smooth muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:401-11. [PMID: 12359330 DOI: 10.1016/s0167-4781(02)00441-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Expression of L-type calcium channels in cardiac myocytes and vascular smooth muscle cells (VSMC) critically regulates the contractile state of these cells. In order to discover the elements in the promoter region of the Ca(v)1.2 gene encoding the vascular/cardiac calcium channel alpha(1C) subunit that are important for the basal gene expression, approximately 2 kb of the 5'-flanking sequence of the Ca(v)1.2 gene has been cloned in our lab. In this study, using various lengths of the 5'-flanking DNA fused with a luciferase gene as a reporter, we have defined a 493-bp fragment of the cis-regulatory DNA which carries the majority of promoter activity in pulmonary artery smooth muscle (PAC1) cells. DNase I footprinting analysis of this 493-bp DNA using nuclear extracts from PAC1 cells revealed a 27-bp DNA sequence that contains a c-Ets like motif (CAGGATGC). Mutation of the Ets-like site and the respective flanking sequence within the DNase I footprinting protection region induced a marked change in the promoter activity in PAC1 cells. Electrophoretic mobility shift assays (EMSA) confirmed the presence of specific binding factor(s) in PAC1 cells' nuclear extracts for this 27-bp DNA. Competition studies with the wild-type and mutated DNA fragments established the importance of the 27 bp DNA sequence for high-affinity binding of the nuclear proteins to the promoter. We conclude that there is a 27 bp region in the promoter of the Ca(v)1.2 gene to which nuclear proteins from VSMC bind and strongly regulate the basal promoter activity.
Collapse
Affiliation(s)
- Q Ivy Fan
- Program in Molecular and Cellular Cardiology, Department of Internal Medicine, Wayne State University School of Medicine, 421 E. Canfield Avenue, Detroit, MI 48201, USA
| | | | | |
Collapse
|
25
|
Ortego M, Hernández AG, Bustos C, Blanco-Colio LM, Hernández-Presa MA, Tuñón J, Egido J. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors increase the binding activity and nuclear level of Oct-1 in mononuclear cells. Eur J Pharmacol 2002; 448:113-21. [PMID: 12144930 DOI: 10.1016/s0014-2999(02)01938-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) are drugs very effective to decrease low-density lipoprotein (LDL) cholesterol. In addition, a number of studies suggest that statins have other beneficial clinical effects beyond cholesterol lowering. We recently reported that statins decrease nuclear factor kappa B (NF-kappaB) binding activity in monocytes and vascular smooth muscle cells. We now explored the effect of two different statins, simvastatin and atorvastatin, in the activation of the octamer transcription factor Oct-1 on the monocytic cell line THP-1. Oct-1 is a nuclear factor that represses the transcription of proinflammatory genes such as interleukin-8, CD11c/CD18, vascular cell adhesion molecule-1 (VCAM-1) and platelet endothelial cell adhesion molecule-1 (PECAM-1). Low concentrations of both statins increased Oct-1 DNA binding activity (electrophoretic mobility shift assay) that was resolved into two specific bands. The upper one was supershifted by preincubation of nuclear extracts with anti-Oct-1 antibody. The lower one was supershifted by preincubation of nuclear extracts with an anti-Oct-2 antibody, also partially competed with 100 mol/l excess of cold activator protein-1 (AP-1) and attenuated by anti-c-Jun antibody. Both statins increased Oct-1 and Oct-2 nuclear protein levels (Western blot). In contrast, neither had any effect on PMA-differentiated cells, suggesting a distinct sensitivity between circulating monocytes and resident tissular macrophages. In addition, statins did not increase Oct-lipoprotein lipase binding activity that contains an Oct-1 binding element. The mRNA expression of interleukin-8, a chemokine containing Oct sites in its promoter, was diminished by statin pretreatment. Our results indicate that simvastatin and atorvastatin increase the activity of the transcriptional repressor Oct-1 in mononuclear cells, and could thus contribute to decrease the activation of these cells. These data suggest a possible novel mechanism supporting a certain anti-inflammatory effect of these two 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors.
Collapse
Affiliation(s)
- Mónica Ortego
- Vascular Research Laboratory, Fundación Jiménez Díaz, Avda Reyes Católicos 2, 28040 Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
26
|
Chou TC, Yang SP, Pei D. Amlodipine inhibits pro-inflammatory cytokines and free radical production and inducible nitric oxide synthase expression in lipopolysaccharide/interferon-gamma-stimulated cultured vascular smooth muscle cells. JAPANESE JOURNAL OF PHARMACOLOGY 2002; 89:157-63. [PMID: 12120758 DOI: 10.1254/jjp.89.157] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Overproduction of nitric oxide (NO) from inducible nitric oxide synthase (iNOS) is importantly involved in the pathogenesis of endotoxemia and atherosclerosis. Calcium antagonists are commonly used as cardiovascular drugs and have a beneficial effect on prolonging survival in various models of endotoxin shock. The present study was to investigate the effect of a calcium antagonist amlodipine on nitrite, tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) formation and iNOS induction both in lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma)-treated rat aortic smooth muscle cells (RASMC) and in a rat model of endotoxemia. Incubation with amlodipine (0.1 - 10 microM) for 24 h resulted in a significant and dose-dependent attenuation in medium nitrite, TNF-alpha and IL-1beta formation as well as iNOS protein expression in LPS/IFN-gamma-treated RASMC. In addition, amlodipine inhibited leucigenin-induced superoxide formation in RASMC. In the rat endotoxic model, the serum nitrite/nitrate, TNF-alpha and IL-1beta levels as well as iNOS protein expression of lungs were also suppressed by administration of amlodipine (50 microg/kg, i.v.). These results suggest that amlodipine may exert vascular beneficial effects by suppressing pro-inflammatory cytokines and free radical generation as well as iNOS induction in smooth muscle cells during activation of inflammatory mechanism.
Collapse
MESH Headings
- Amlodipine/pharmacology
- Animals
- Calcium Channel Blockers/pharmacology
- Cells, Cultured
- Cytokines/antagonists & inhibitors
- Inflammation Mediators/antagonists & inhibitors
- Interferon-gamma/pharmacology
- Lipopolysaccharides/pharmacology
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type II
- Rats
- Rats, Sprague-Dawley
- Superoxides/metabolism
Collapse
Affiliation(s)
- Tz-Chong Chou
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.
| | | | | |
Collapse
|
27
|
Han YJ, Kwon YG, Chung HT, Lee SK, Simmons RL, Billiar TR, Kim YM. Antioxidant enzymes suppress nitric oxide production through the inhibition of NF-kappa B activation: role of H(2)O(2) and nitric oxide in inducible nitric oxide synthase expression in macrophages. Nitric Oxide 2002; 5:504-13. [PMID: 11587565 DOI: 10.1006/niox.2001.0367] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reactive molecules O(-)(2), H(2)O(2), and nitrogen monoxide (NO) are produced from macrophages following exposure to lipopolysaccharide (LPS) and involved in cellular signaling for gene expression. Experiments were carried out to determine whether these molecules regulate inducible nitric oxide synthase (iNOS) gene expression in RAW264.7 macrophages exposed to LPS. NO production was inhibited by the antioxidative enzymes catalase, horseradish peroxidase, and myeloperoxidase but not by superoxide dismutase (SOD). In contrast, the NO-producing activity of LPS-stimulated RAW264.7 cells was enhanced by the NO scavengers hemoglobin (Hb) and myoglobin. The antioxidant enzymes decreased levels of iNOS mRNA and protein in LPS-stimulated RAW264.7 cells, whereas the NOS inhibitor N(G)-monomethyl-L-arginine as well as Hb increased the level of iNOS protein but not mRNA, indicating that NO inhibits iNOS protein expression. NF-kappa B was activated in LPS-stimulated RAW264.7 cells and the activation was significantly inhibited by antioxidant enzymes, but not by Hb. Similar results were obtained using LPS-stimulated rodent peritoneal macrophages. Extracellular O(-)(2) generation by LPS-stimulated macrophages was suppressed by SOD, but not by antioxidative enzymes, while accumulation of intracellular reactive oxygen species was inhibited by antioxidative enzymes, but not by SOD. Exogenous H(2)O(2) induced NF-kappa B activation in macrophages, which was inhibited by catalase and pyrroline dithiocarbamate (PDTC). H(2)O(2) enhanced iNOS expression and NO production in peritoneal macrophages when added with interferon-gamma, and the effect of H(2)O(2) was inhibited by catalase and PDTC. These findings suggest that H(2)O(2) production from LPS-stimulated macrophages participates in the upregulation of iNOS expression via NF-kappa B activation and that NO is a negative feedback inhibitor of iNOS protein expression.
Collapse
Affiliation(s)
- Y J Han
- Department of Molecular and Cellular Biochemistry, College of Medicine, Kangwon National University, Chunchon, Kangwon-Do 200-701, Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Zeng C, Morrison AR. Disruption of the actin cytoskeleton regulates cytokine-induced iNOS expression. Am J Physiol Cell Physiol 2001; 281:C932-40. [PMID: 11502570 DOI: 10.1152/ajpcell.2001.281.3.c932] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin-1beta (IL-1beta) induces the inducible nitric oxide synthase (iNOS), resulting in the release of nitric oxide (NO) from glomerular mesangial cells. In this study, we demonstrated that disruption of F-actin formation by sequestration of G-actin with the toxin latrunculin B (LatB) dramatically potentiated IL-1beta-induced iNOS protein expression in a dose-dependent manner. LatB by itself had little or no effect on iNOS expression. Staining of F-actin with nitrobenzoxadiazole (NBD)-phallacidin demonstrated that LatB significantly impaired F-actin stress fiber formation. Jasplakinolide (Jasp), which binds to and stabilizes F-actin, suppressed iNOS expression enhanced by LatB. These data strongly suggest that actin cytoskeletal dynamics regulates IL-1beta-induced iNOS expression. We demonstrated that LatB decreases serum response factor (SRF) activity as determined by reporter gene assays, whereas Jasp increases SRF activity. The negative correlation between SRF activity and iNOS expression suggests a negative regulatory role for SRF in iNOS expression. Overexpression of a dominant negative mutant of SRF increases the IL-1beta-induced iNOS expression, providing direct evidence that SRF inhibits iNOS expression.
Collapse
Affiliation(s)
- C Zeng
- Department of Medicine, Molecular Biology, and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
29
|
Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhäuser C. Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J Biol Chem 2001; 276:32008-15. [PMID: 11410599 DOI: 10.1074/jbc.m104794200] [Citation(s) in RCA: 471] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sulforaphane (SFN), an aliphatic isothiocyanate, is a known cancer chemopreventive agent. Aiming to investigate anti-inflammatory mechanisms of SFN, we here report a potent decrease in lipopolysaccharide (LPS)-induced secretion of pro-inflammatory and pro-carcinogenic signaling factors in cultured Raw 264.7 macrophages after SFN treatment, i.e. NO, prostaglandin E(2), and tumor necrosis factor alpha. SFN did not directly interact with NO, nor did it inhibit inducible nitric-oxide synthase enzymatic activity. Western blot analyses revealed time- and dose-dependent reduction of LPS-induced inducible nitric-oxide synthase as well as Cox-2 protein expression, which was suppressed at the transcriptional level. To reveal the target of SFN beyond its anti-inflammatory action, we performed electrophoretic mobility shift assay analyses of transcription factor-DNA binding. Consequently, nuclear factor kappa B (NF-kappa B), a pivotal transcription factor in LPS-stimulated pro-inflammatory response, was identified as the key mediator. SFN selectively reduced DNA binding of NF-kappa B without interfering with LPS-induced degradation of the inhibitor of NF-kappa B nor with nuclear translocation of NF-kappa B. Because SFN can interact with thiol groups by dithiocarbamate formation, it may impair the redox-sensitive DNA binding and transactivation of NF-kappa B. Sulforaphane could either directly inactivate NF-kappa B subunits by binding to essential Cys residues or interact with glutathione or other redox regulators like thioredoxin and Ref-1 relevant for NF-kappa B function. Our data provide novel evidence that anti-inflammatory mechanisms contribute to sulforaphane-mediated cancer chemoprevention.
Collapse
Affiliation(s)
- E Heiss
- Deutsches Krebsforschungszentrum Heidelberg, Division of Toxicology and Cancer Risk Factors, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
30
|
Kim EJ, Jin HK, Kim YK, Lee HY, Lee SY, Lee KR, Zee OP, Han JW, Lee HW. Suppression by a sesquiterpene lactone from Carpesium divaricatum of inducible nitric oxide synthase by inhibiting nuclear factor-kappaB activation. Biochem Pharmacol 2001; 61:903-10. [PMID: 11274976 DOI: 10.1016/s0006-2952(01)00538-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Excessive nitric oxide (NO) produced by inducible NO synthase (iNOS) acts as a causative regulator in various inflammatory disease states. Carpesium divaricatum has been used in Korean traditional herbal medicine for its antipyretic, analgesic, vermifugic, and anti-inflammatory properties. We investigated the molecular mechanism for the suppression of lipopolysaccharide/interferon-gamma (LPS/IFN-gamma)-induced NO production in RAW 264.7 macrophages by the sesquiterpene lactone 2beta,5-epoxy-5,10-dihydroxy-6alpha-angeloyloxy-9beta-isobutyloxy-germacran-8alpha,12-olide (C-1), which has been identified recently as a new compound from C. divaricatum. C-1 decreased NO production in LPS/IFN-gamma-stimulated RAW 264.7 cells in a concentration-dependent manner, with an IC50 of approximately 2.16 microM; however, it had no direct effect on the iNOS activity of fully LPS/IFN-gamma-stimulated RAW 264.7 cells. Furthermore, treatment with C-1 led to a decrease in iNOS protein and mRNA. These effects appear to be due to inhibition of nuclear factor-kappaB (NF-kappaB) activation through a mechanism involving stabilization of the NF-kappaB/inhibitor of the kappaB (I-kappaB) complex, since inhibition of NF-kappaB DNA binding activity by C-1 was accompanied by a parallel reduction of nuclear translocation of subunit p65 of NF-kappaB and I-kappaBalpha degradation. Taken together, the results suggest that the ability of C-1 to inhibit iNOS gene expression may be responsible, in part, for its anti-inflammatory effects.
Collapse
Affiliation(s)
- E J Kim
- College of Pharmacy, Sungkyunkwan University, 440-746, Suwon, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hammermann R, Dreißig MDM, Mössner J, Fuhrmann M, Berrino L, Göthert M, Racké K. Nuclear Factor-κB Mediates Simultaneous Induction of Inducible Nitric-Oxide Synthase and Up-Regulation of the Cationic Amino Acid Transporter CAT-2B in Rat Alveolar Macrophages. Mol Pharmacol 2000. [DOI: 10.1124/mol.58.6.1294] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
32
|
Tian JY, Sørensen ES, Butler WT, Lopez CA, Sy MS, Desai NK, Denhardt DT. Regulation of no synthesis induced by inflammatory mediators in RAW264.7 cells: collagen prevents inhibition by osteopontin. Cytokine 2000; 12:450-7. [PMID: 10857758 DOI: 10.1006/cyto.1999.0634] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Osteopontin has been shown to inhibit the induction of inducible nitric oxide synthase (iNOS, or NOS2) by lipopolysaccharide and interferon-gamma in the RAW264.7 mouse monocyte/macrophage line and in primary mouse proximal tubule epithelial cells. However, the RAW264.7 cells become refractory to the action of OPN after several subcultures or under dilute culture conditions, possibly because of changes in the composition of the extracellular matrix. We make this suggestion because if the cells are plated on a collagen type I or collagen type IV substrate the inhibitory action of OPN is completely suppressed; this is not the case on substrates consisting of laminin, fibronectin, poly-D-lysine, or poly-(2-hydroxyethylmethylacrylate). These observations imply that macrophages are sensitive to regulation by OPN only in certain physiological contexts. Both hyaluronate, which binds CD44, and rat IgGs are also able to inhibit the induction of NO synthesis by the inflammatory mediators. The similar actions of HA and OPN are consistent with the possibility that CD44 may be a receptor for OPN.
Collapse
Affiliation(s)
- J Y Tian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Zhang H, Teng X, Snead C, Catravas JD. Non-NF-kappaB elements are required for full induction of the rat type II nitric oxide synthase in vascular smooth muscle cells. Br J Pharmacol 2000; 130:270-8. [PMID: 10807663 PMCID: PMC1572057 DOI: 10.1038/sj.bjp.0703284] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have investigated the role of the NF-kappaB binding sites and other promoter elements beyond NF-kappaB in iNOS induction in rat vascular smooth muscle cells (SMC). Rat aortic SMC transfected with iNOS promoter constructs with either mutation or deletion of the downstream NF-kappaB site exhibited about 50% reduction in promoter activity in response to a cytokine mixture, whereas either mutation or deletion of the upstream NF-kappaB site reduced promoter activity by 90%, suggesting that the latter site is the most important, and that co-existence of two NF-kappaB sites is necessary for iNOS induction. Nuclear NF-kappaB activity was robustly induced by TNF-alpha. However, TNF-alpha alone did not induce iNOS promoter activity, protein expression, or nitrite production, indicating that NF-kappaB activation alone is not sufficient for iNOS induction. The construct up to -890 bp, containing the downstream NF-kappaB site, exhibited little response to cytokines. The construct up to -1.0 kb, containing the two NF-kappaB sites exhibited only 22% of full promoter activity. The regions -1001 to -1368 bp and -2 to -2.5 kb contributed an additional 43 and 22% promoter activity, respectively. Internal deletion or reversal of the orientation of -1001 to -1368 bp in the full promoter resulted in 40% reduction in promoter activity. These data suggest that the co-existence of two NF-kappaB sites is essential for core promoter activity, but that full induction of the rat SMC iNOS gene requires other elements located between -1.0 to -1.37 and -2.0 to -2.5 kb of the promoter.
Collapse
Affiliation(s)
- H Zhang
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia, GA 30912-2500, USA.
| | | | | | | |
Collapse
|
34
|
Mirzoeva S, Koppal T, Petrova TV, Lukas TJ, Watterson DM, Van Eldik LJ. Screening in a cell-based assay for inhibitors of microglial nitric oxide production reveals calmodulin-regulated protein kinases as potential drug discovery targets. Brain Res 1999; 844:126-34. [PMID: 10536268 DOI: 10.1016/s0006-8993(99)01911-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A high-throughput screening (HTS) assay for inhibitors of nitric oxide (NO) production by activated microglia was developed and used to compare the relative activities of various anti-inflammatory compounds and cell-permeable protein kinase inhibitors. BV-2 cells, an immortalized line that retains phenotypic features of microglia and produces NO in response to lipopolysaccharide (LPS), were used in the activation paradigm for the HTS assay. A characteristic feature of the compounds that were the most potent dose-dependent inhibitors of NO production is their ability to modulate serine/threonine protein kinases. The anti-inflammatory compound K252a, an inhibitor of calmodulin (CaM)-regulated protein kinases, had one of the highest potencies in the assay. Other classes of kinase inhibitors, including the protein kinase A inhibitor H-89, the mitogen activated protein kinase inhibitors PD98059 and SB203580, and the tyrosine kinase inhibitor genistein, were less potent and efficacious than K252a or the general serine/threonine/tyrosine kinase inhibitor staurosporine. K252a suppresses production of the inducible nitric-oxide synthase (iNOS). The inhibitory effect of K252a is not due to cell toxicity and does not correlate with inhibition of NFkappaB nuclear translocation. The mechanism of action appears to involve inhibition of phosphorylation of the transcription factor CREB, a protein whose activity is modulated by phosphorylation by CaM-dependent protein kinases. These data suggest that signal transduction pathways mediated by CaM-dependent protein kinases warrant future study as potential drug discovery targets.
Collapse
Affiliation(s)
- S Mirzoeva
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, IL 60611-3008, USA
| | | | | | | | | | | |
Collapse
|
35
|
Kang YJ, Koo EB, Lee YS, Yun-Choi HS, Chang KC. Prevention of the expression of inducible nitric oxide synthase by a novel positive inotropic agent, YS 49, in rat vascular smooth muscle and RAW 264.7 macrophages. Br J Pharmacol 1999; 128:357-64. [PMID: 10510445 PMCID: PMC1571637 DOI: 10.1038/sj.bjp.0702787] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1 The effects of a novel positive inotropic isoquinoline compound, YS 49, on NO production and iNOS protein expression were investigated in cultured rat aortic vascular smooth muscle cells (RAVSMC) and RAW 264.7 cells exposed to lipopolysaccharide (LPS) plus interferon-gamma (IFN-gamma). In addition, the effects of YS 49 on vascular hyporeactivity in vitro and ex vivo, and on survival rate (mice) and serum NOx (rat) levels, were also investigated in LPS-treated animals. 2 Pre- or co-treatment of YS 49 with LPS plus IFN-gamma, concentration-dependently reduced NO production in RAVSMC and RAW 264.7 cells (IC50 values, 22 and 30 microM, respectively). Although the inhibitory effect on NO production was reduced when YS 49 was applied 2 and 4 h after cytokine in RAW 264.7 cells, it was still statistically significant (P<0.05). 3 YS 49 reduced iNOS mRNA expression in LPS-treated rat aorta in vitro, an effect which was associated with restoration of contractility to the vasoconstrictor, phenylephrine (PE), and reduction in L-arginine-induced relaxation. 4 Serum NOx levels were significantly (P<0.01) reduced by YS 49 (5 mg kg-1, i.p.) in LPS-treated rats (10 mg kg-1, i.p.). Administration of YS 49 (10 and 20 mg kg-1) 30 min prior to LPS (10 mg kg-1) also significantly (P<0.01) increased the subsequent survival rates in mice. 5 Finally, expression of iNOS protein induced by LPS plus IFN-gamma in RAVSMC and RAW 264.7 cells was suppressed by YS 49, in a concentration-dependent manner. 6 These data strongly suggest that YS 49 suppresses iNOS gene expression induced by LPS and/or cytokines in RAVSMC and RAW 264.7 cells at the transcriptional level. YS 49 could therefore be beneficial in septic shock and other diseases associated with iNOS over-expression.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/cytology
- Aorta, Thoracic/drug effects
- Cardiotonic Agents/pharmacology
- Cells, Cultured
- Cytokines/pharmacology
- Endotoxins/pharmacology
- Endotoxins/toxicity
- Isoquinolines/pharmacology
- Isoquinolines/toxicity
- Lipopolysaccharides/pharmacology
- Lipopolysaccharides/toxicity
- Macrophages/drug effects
- Macrophages/enzymology
- Male
- Mice
- Mice, Inbred ICR
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Nitrates/metabolism
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase/biosynthesis
- Nitric Oxide Synthase Type II
- Nitrites/metabolism
- Rats
- Rats, Sprague-Dawley
- Stimulation, Chemical
- Tetrahydroisoquinolines
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Young Jin Kang
- Department of Pharmacology, College of Medicine, Gyeongsang National University, Chinju, 660-280, Korea
- Cardiovascular Research Institute, College of Medicine, Gyeongsang National University, Chinju, 660-280, Korea
| | - Eui Bon Koo
- Department of Pharmacology, College of Medicine, Gyeongsang National University, Chinju, 660-280, Korea
| | - Young Soo Lee
- Department of Pharmacology, College of Medicine, Gyeongsang National University, Chinju, 660-280, Korea
- Cardiovascular Research Institute, College of Medicine, Gyeongsang National University, Chinju, 660-280, Korea
| | - Hye Sook Yun-Choi
- Natural Product Research Institute, Seoul National University, Seoul, 460-100, Korea
| | - Ki Churl Chang
- Department of Pharmacology, College of Medicine, Gyeongsang National University, Chinju, 660-280, Korea
- Cardiovascular Research Institute, College of Medicine, Gyeongsang National University, Chinju, 660-280, Korea
- Author for correspondence:
| |
Collapse
|
36
|
Fadel BM, Boutet SC, Quertermous T. Octamer-dependent in vivo expression of the endothelial cell-specific TIE2 gene. J Biol Chem 1999; 274:20376-83. [PMID: 10400661 DOI: 10.1074/jbc.274.29.20376] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TIE2 gene, also known as TEK, encodes a tyrosine kinase receptor that is required for the normal development of the vascular system during embryogenesis. TIE2 is specifically expressed in endothelial cells; however, the transcriptional mechanisms that regulate this highly restricted pattern of expression remain unknown. Here we demonstrate that a consensus octamer element located in the 5'-flanking region of TIE2 is required for normal expression in embryonic endothelial cells. Transgenic embryos carrying a TIE2/LacZ construct spanning 2.1 kilobases of upstream regulatory sequences exhibit expression of the reporter transgene specifically in endothelial cells. Site-directed mutagenesis of a consensus octamer element located in this region results in the loss of enhancer activity and significantly impairs the endothelial expression of the reporter transgene. Consistent with the in vivo data, in vitro DNA-protein binding studies show that the consensus octamer element displays an endothelial cell-specific pattern of binding, suggesting an interaction with a protein complex consisting of Oct1 and an endothelial cell-restricted cofactor. These data identify a novel role for the octamer element as an essential regulator of TIE2 expression, define the first known transcriptional pathway that mediates the expression of a developmental endothelial cell gene, and provide insights into the transcriptional mechanisms that regulate development of the vasculature during embryogenesis.
Collapse
Affiliation(s)
- B M Fadel
- Division of Cardiovascular Medicine, Falk Cardiovascular Research Center, Stanford University, Stanford, California 94305-5406, USA
| | | | | |
Collapse
|
37
|
Keinänen R, Vartiainen N, Koistinaho J. Molecular cloning and characterization of the rat inducible nitric oxide synthase (iNOS) gene. Gene X 1999; 234:297-305. [PMID: 10395902 DOI: 10.1016/s0378-1119(99)00196-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We have cloned and characterized the rat inducible nitric oxide synthase (iNOS) gene. It spans approx. 36kb and is divided into 27 exons and 26 introns. The distribution and length of exons are similar to those in the human iNOS gene. In the 5' flanking regulatory region of the rat iNOS gene, there are a number of putative transcription factor binding sites (>20), many of them probably indispensable for the gene's nuclear factor kappaB (NFkappaB)-dependent induction, but also many which may have a role in its NFkappaB-independent induction pathway. These include cyclic adenosine 3', 5'-monophosphate (cAMP) response elements (CRE), hypoxia responsive element (HRE) and GATA-core elements. Rat models are powerful tools in studies of neurological diseases. Because iNOS is most likely responsible for the harmful consequences of nitric oxide (NO) in general, the cloned rat iNOS gene will further reveal the mechanisms of iNOS inducibility in different cell types during development and disease, including brain diseases, and to promote studies of pharmacological intervention in cases where extensive NO production plays a critical role.
Collapse
Affiliation(s)
- R Keinänen
- A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, P.O. Box 1627, FIN-70211, Kuopio, Finland.
| | | | | |
Collapse
|
38
|
Dlaska M, Weiss G. Central Role of Transcription Factor NF-IL6 for Cytokine and Iron-Mediated Regulation of Murine Inducible Nitric Oxide Synthase Expression. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.10.6171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We have previously shown that iron regulates the transcription of inducible nitric oxide synthase (iNOS). To elucidate the underlying mechanisms we performed a series of transient transfections of murine fibroblast (NIH-3T3) and macrophage-like cells (J774.A1) with reporter plasmids containing the iNOS promoter and deletions thereof. By means of this and subsequent DNase I footprinting analysis we identified a regulatory region between −153 and −142 bp upstream of the transcriptional start site of the iNOS promoter that was sensitive to regulation by iron perturbation. Gel shift and supershift assays revealed that the responsible protein for this observation is NF-IL6, a member of the CCAAT/enhancer binding protein family of transcription factors. Binding of NF-IL6 to its consensus motif within the iNOS promoter was inducible by IFN-γ and/or LPS, was reduced by iron, and was enhanced by the iron chelator desferrioxamine. Introduction of a double mutation into the NF-IL6 binding site (−153/−142) of an iNOS promoter construct resulted in a reduction of IFN-γ/LPS inducibility by >90% and also impaired iron mediated regulation of the iNOS promoter. Our results provide evidence that this NF-IL6 binding site is of central importance for maintaining a high transcriptional rate of the iNOS gene after IFN-γ/LPS stimulation, and that NF-IL6 may cooperate with hypoxia inducible factor-1 in the orchestration of iron-mediated regulation of iNOS.
Collapse
Affiliation(s)
- Margit Dlaska
- Department of Internal Medicine, University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
39
|
Gupta AK, Kone BC. CCAAT/enhancer binding protein-beta trans-activates murine nitric oxide synthase 2 gene in an MTAL cell line. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:F599-605. [PMID: 10198420 DOI: 10.1152/ajprenal.1999.276.4.f599] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide production by nitric oxide synthase 2 (NOS2) has been implicated in epithelial cell injury from oxidative and immunologic stress. The NOS2 gene is transcriptionally activated by lipopolysaccharide (LPS) and cytokines in medullary thick ascending limb of Henle's loop (MTAL) cells and other cell types. The 5'-flanking region of the NOS2 gene contains a consensus element for CCAAT/enhancer binding proteins (C/EBP) at -150 to -142 that we hypothesized contributes to NOS2 trans-activation in the mouse MTAL cell line ST-1. Gel shift assays demonstrated LPS + interferon-gamma (IFN-gamma) induction of C/EBP family protein-DNA complexes in nuclei harvested from the cells. Supershift assays revealed that the complexes were comprised of C/EBPbeta, but not C/EBPalpha, C/EBPdelta, or C/EBPepsilon. NOS2 promoter-luciferase genes harboring deletion or mutation of the C/EBP box exhibited lower activities in response to LPS + IFN-gamma compared with wild-type NOS2 promoter constructs. Overexpression of a C/EBP-specific dominant-negative mutant limited LPS + IFN-gamma activation of the NOS2 promoter. In trans-activation assays, overexpression of C/EBPbeta stimulated basal NOS2 promoter activity. Thus C/EBPbeta appears to be an important trans-activator of the NOS2 gene in the MTAL.
Collapse
Affiliation(s)
- A K Gupta
- Departments of Internal Medicine and of Integrative Biology, Pharmacology and Physiology, University of Texas Medical School at Houston, Texas 77030, USA
| | | |
Collapse
|
40
|
Perrella MA, Pellacani A, Wiesel P, Chin MT, Foster LC, Ibanez M, Hsieh CM, Reeves R, Yet SF, Lee ME. High mobility group-I(Y) protein facilitates nuclear factor-kappaB binding and transactivation of the inducible nitric-oxide synthase promoter/enhancer. J Biol Chem 1999; 274:9045-52. [PMID: 10085153 DOI: 10.1074/jbc.274.13.9045] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide (NO), a free radical gas whose production is catalyzed by the enzyme NO synthase, participates in the regulation of multiple organ systems. The inducible isoform of NO synthase (iNOS) is transcriptionally up-regulated by inflammatory stimuli; a critical mediator of this process is nuclear factor (NF)-kappaB. Our objective was to determine which regulatory elements other than NF-kappaB binding sites are important for activation of the iNOS promoter/enhancer. We also wanted to identify transcription factors that may be functioning in conjunction with NF-kappaB (subunits p50 and p65) to drive iNOS transcription. Deletion analysis of the iNOS promoter/enhancer revealed that an AT-rich sequence (-61 to -54) downstream of the NF-kappaB site (-85 to -76) in the 5'-flanking sequence was important for iNOS induction by interleukin-1beta and endotoxin in vascular smooth muscle cells. This AT-rich sequence, corresponding to an octamer (Oct) binding site, bound the architectural transcription factor high mobility group (HMG)-I(Y) protein. Electrophoretic mobility shift assays showed that HMG-I(Y) and NF-kappaB subunit p50 bound to the iNOS promoter/enhancer to form a ternary complex. The formation of this complex required HMG-I(Y) binding at the Oct site. The location of an HMG-I(Y) binding site typically overlaps that of a recruited transcription factor. In the iNOS promoter/enhancer, however, HMG-I(Y) formed a complex with p50 while binding downstream of the NF-kappaB site. Furthermore, overexpression of HMG-I(Y) potentiated iNOS promoter/enhancer activity by p50 and p65 in transfection experiments, suggesting that HMG-I(Y) contributes to the transactivation of iNOS by NF-kappaB.
Collapse
Affiliation(s)
- M A Perrella
- Cardiovascular Biology Laboratory, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bayón Y, Alonso A, Crespo MS. 4-trifluoromethyl derivatives of salicylate, triflusal and its main metabolite 2-hydroxy-4-trifluoromethylbenzoic acid, are potent inhibitors of nuclear factor kappaB activation. Br J Pharmacol 1999; 126:1359-66. [PMID: 10217529 PMCID: PMC1565913 DOI: 10.1038/sj.bjp.0702441] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
1. The effect of two derivatives of salicylate, 2-hydroxy-4-trifluoromethylbenzoic acid (HTB) and 2-acetoxy-4-trifluoromethylbenzoic acid (triflusal), on the activation of NF-kappaB elicited by tumour necrosis factor-alpha (TNF-alpha) on human umbilical vein endothelial cells (HUVEC) was tested. 2. The expression of the mRNA of vascular cell adhesion molecule-1 (VCAM-1) was studied as an example of a gene the expression of which is regulated by NF-kappaB. To extend these findings to other systems, the induction of nitric oxide synthase in rat adherent peritoneal macrophages was studied. 3. Both HTB and triflusal were more potent than aspirin or salicylate as inhibitors of the nuclear translocation of NF-kappaB. The calculation of the IC50 values showed approximately 2 mM for HTB, 4 mM for aspirin and >4 mM for salicylate. 4. Comparison of the potency of these compounds on VCAM-1 mRNA expression showed complete inhibition by both triflusal and HTB at a concentration of 4 mM whereas aspirin and salicylate produced only 36-43% inhibition at the same concentration. 5. Inhibition of NF-kappaB activation was also observed in rat peritoneal macrophages stimulated via their receptors for the Fc portion of the antibody molecule with IgG/ovalbumin immune complexes. This was accompanied by a dose-dependent inhibition of nitrite production by the L-arginine pathway via iNOS. IC50 values for this effect were 1.13+/-0.12 mM (triflusal), 1.84+/-0.34 (HTB), 6.08+/-1.53 mM (aspirin) and 9.16+/-1.9 mM (salicylate). 6. These data indicate that the incorporation of a 4-trifluoromethyl group to the salicylate molecule strongly enhances its inhibitory effect on NF-kappaB activation, VCAM-1 mRNA expression and iNOS induction, irrespective of the presence of the acetyl moiety involved in the inhibition of cyclo-oxygenase.
Collapse
MESH Headings
- Animals
- Aspirin/pharmacology
- Cell Line
- Dose-Response Relationship, Drug
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Humans
- Macrophages, Peritoneal/cytology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- NF-kappa B/drug effects
- NF-kappa B/metabolism
- Nitric Oxide/metabolism
- Platelet Aggregation Inhibitors/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Salicylates/pharmacology
- Thrombin/pharmacology
- Tumor Necrosis Factor-alpha/pharmacology
- Umbilical Veins
- Vascular Cell Adhesion Molecule-1/genetics
Collapse
Affiliation(s)
- Yolanda Bayón
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Facultad de Medicina, 47005-Valladolid, Spain
| | - Andrés Alonso
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Facultad de Medicina, 47005-Valladolid, Spain
| | - Mariano Sánchez Crespo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Facultad de Medicina, 47005-Valladolid, Spain
- Author for correspondence:
| |
Collapse
|
42
|
Pugliese A, Savarino A, Vidotto V, Cantamessa C, Pescarmona GP. Effect of Aspergillus terreus mycotoxins on nitric oxide synthase activity in human erythroid K-562 cells. Cell Biochem Funct 1999; 17:35-45. [PMID: 10191507 DOI: 10.1002/(sici)1099-0844(199903)17:1<35::aid-cbf809>3.0.co;2-c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Because several stimuli of microbial origin enhance the activity of nitric oxide synthase (NOS) in human cells of the myeloid lineage, we decided to investigate whether cellular damage induced by Aspergillus terreus mycotoxins could be associated with an increase in NOS activity. A pool of mycotoxins rather than individual toxins was tested so that the natural conditions could be mimicked. In the present study, we report that a crude extract of A. terreus induces cellular damage and increases NOS activity in K-562 cells, an erythroleukaemic cell line in which NOS is particularly active. The specificity of this association was further investigated by using NOS inhibitors and by comparing, in the same cellular model, the effects of the extract with the activity of other microbial toxins of a defined mechanism of action. Canavanine, an inhibitor of NOS, significantly reduced cell death in the presence of the extract, suggesting that cellular damage, induced by the mycotoxins of A. terreus is at least in part mediated by NOS activity. Moreover, Escherichia coli lipopolysaccharide (LPS), known to be a potent NOS inducer, increased NOS activity in our experimental model as well. In contrast, Bordetella pertussis toxin did not show any effect on NOS activity. The results of this study suggest that NOS may be involved in mycotoxicoses.
Collapse
Affiliation(s)
- A Pugliese
- Department of Medical and Surgical Science, University of Torino, Italy. gipi@.cisi.unito.it
| | | | | | | | | |
Collapse
|
43
|
Gay RD, Dawson SJ, Murphy WJ, Russell SW, Latchman DS. Activation of the iNOS gene promoter by Brn-3 POU family transcription factors is dependent upon the octamer motif in the promoter. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1443:315-22. [PMID: 9878805 DOI: 10.1016/s0167-4781(98)00234-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The promoter of the gene encoding the inducible nitric oxide synthase (iNOS) contains an octamer motif which is of importance for its activation by specific stimuli. We show that in contrast to the promoter of the neuronal nitric oxide synthase gene (nNOS) which is strongly activated by the Oct-2 octamer-binding POU family transcription factor, the iNOS gene is only weakly activated by Oct-2 via its octamer motif. Unlike the nNOS promoter, however, the iNOS promoter is strongly activated by the POU family transcription factors Brn-3a and Brn-3b. This activation is dependent upon the octamer motif in the iNOS promoter and requires the activation domain located within the POU domain of Brn-3a or Brn-3b but not the N-terminal activation domain of Brn-3a. Thus different but related POU proteins play important roles in the regulation of the genes encoding different forms of nitric oxide synthase.
Collapse
Affiliation(s)
- R D Gay
- Department of Molecular Pathology, The Windeyer Institute of Medical Sciences, University College London Medical School, The Windeyer Building, 46 Cleveland Street, London W1P 6DB, UK
| | | | | | | | | |
Collapse
|
44
|
Tabakman R, Lazarovici P, Matsuda Y, Brodie C, Ovadia H. Protein kinase C-independent selective induction of nitric oxide synthase activity in rat alveolar macrophages by staurosporine. Nitric Oxide 1998; 2:250-8. [PMID: 9851366 DOI: 10.1006/niox.1998.0185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to characterize the effect of the K-252a family of protein kinase inhibitors with emphasis on staurosporine (ST), on stimulation of the inducible nitric oxide synthase activity in rat alveolar NR8383 macrophages. We found that ST, but not K-252a, K-252b, KT-5720, and KT-5823, selectively enhanced the basal or the lipopolysaccharide (LPS)-induced nitric oxide production. ST-induced NO production was blocked by L-NAME, K-252a, and phosphatase inhibitors and could not be mimicked by other protein kinase C (PKC) inhibitors such as calphostine. An additive effect between ST and PMA on NO production was observed. LPS and PMA but not ST induced PKCbeta translocation from the cytosol to the membrane fraction. ST may induce and affect the state of phosphorylation of iNOS via PKC-independent mechanisms. ST provides an important pharmacological tool to investigate PKC-independent signal transduction pathways which regulate iNOS, induction, and activity in rat NR8383 macrophages.
Collapse
Affiliation(s)
- R Tabakman
- Department of Pharmacology, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | | | | | | | | |
Collapse
|
45
|
St-Denis A, Chano F, Tremblay P, St-Pierre Y, Descoteaux A. Protein kinase C-alpha modulates lipopolysaccharide-induced functions in a murine macrophage cell line. J Biol Chem 1998; 273:32787-92. [PMID: 9830023 DOI: 10.1074/jbc.273.49.32787] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipopolysaccharide (LPS), a potent modulator of macrophage functional activity, binds to CD14 and triggers the activation of several protein kinases, leading to the secretion of variety of immunomodulatory molecules such as nitric oxide and proinflammatory cytokines. In this study, we have examined the role of the alpha isoenzyme of protein kinase C (PKC) in the regulation of LPS-initiated signal transduction in macrophages. To this end, we have stably overexpressed a dominant-negative (DN) version of PKC-alpha (DN PKC-alpha) in the murine macrophage cell line RAW 264. 7. Clones overexpressing DN PKC-alpha were indistinguishable from the parental line with respect to morphology and growth characteristics. At the functional level, DN PKC-alpha overexpression strongly inhibited LPS-induced interleukin-1alpha mRNA accumulation, and to a lesser extent inducible nitric oxide synthase and tumor necrosis factor-alpha expression. DN-PKC-alpha overexpression did not cause a general unresponsiveness to LPS, as secretion of the matrix metalloproteinase-9 was up-regulated in our DN PKC-alpha-overexpressing clones. Moreover, LPS-induced phosphorylation and degradation of IkappaBalpha, NF-kappaB activation, as well as p38 mitogen-activated protein kinase and Jun N-terminal kinase phosphorylation, were not affected by DN PKC-alpha overexpression. Collectively, these data provide evidence that PKC-alpha regulates selective LPS-induced macrophage functions involved in host defense and inflammation.
Collapse
Affiliation(s)
- A St-Denis
- Institut Armand-Frappier, Université du Québec, Laval, Québec H7V 1B7, Canada
| | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- M A Arstall
- Cardiology Unit, North West Adelaide Health Service, University of Adelaide, South Australia, Australia
| | | |
Collapse
|
47
|
Murayama T, Nomura Y. The actions of NO in the central nervous system and in thymocytes. JAPANESE JOURNAL OF PHARMACOLOGY 1998; 76:129-39. [PMID: 9541275 DOI: 10.1254/jjp.76.129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitrogen monoxide (NO) has been suggested to be involved in many physiological and pathological functions. In rat hippocampus, chemical NO donors stimulated noradrenaline release in the presence of thiols such as dithiothreitol and L-cysteine. S-Nitrosocysteine, which is proposed to be a stable and endogenous S-nitrosothiol molecule, stimulated noradrenaline release by itself. The effect of S-nitrosothiol on noradrenaline release was calmodulin-dependent and cyclic GMP-independent. S-Nitrosocysteine was incorporated into the slice via the L-type-like amino acid transporter. These findings suggest the physiological significance of S-nitrosocysteine on neurotransmitter release and propose the existence of a specific uptake system of S-nitrosothiols in neuronal tissues. In rat thymocytes, chemical NO donors inhibited DNA synthesis. Hydrocortisone treatment in vivo inhibited DNA synthesis via the expression of the inducible NO synthase protein, and the accumulation of NO and cyclic GMP. Although it is known that glucocorticoids regulate inducible NO synthase expression negatively in several types of cells in vitro, glucocorticoid treatment in vivo regulates the expression positively. In primary cultured rat glial cells, a combination of cytokines stimulated production of nitrite via expression of inducible NO synthase. In these cells, simultaneous addition of endothelin decreased inducible NO synthase expression induced by cytokines. On the other hand, pretreatment with endothelin for 24 hr enhanced the inducible NO synthase expression. Endothelin has two effects on inducible NO synthase expression, positive and negative, depending on treatment time. The actions of NO on the hippocampus and thymocytes and the regulation of inducible NO synthase expression in glial cells are discussed.
Collapse
Affiliation(s)
- T Murayama
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|