1
|
Gorshkova IN, Mei X, Atkinson D. Arginine 123 of apolipoprotein A-I is essential for lecithin:cholesterol acyltransferase activity. J Lipid Res 2017; 59:348-356. [PMID: 29208698 DOI: 10.1194/jlr.m080986] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/29/2017] [Indexed: 01/10/2023] Open
Abstract
ApoA-I activates LCAT that converts lipoprotein cholesterol to cholesteryl ester (CE). Molecular dynamic simulations suggested earlier that helices 5 of two antiparallel apoA-I molecules on discoidal HDL form an amphipathic tunnel for migration of acyl chains and unesterified cholesterol to the active sites of LCAT. Our recent crystal structure of Δ(185-243)apoA-I showed the tunnel formed by helices 5/5, with two positively charged residues arginine 123 positioned at the edge of the hydrophobic tunnel. We hypothesized that these uniquely positioned residues Arg123 are poised for interaction with fatty acids produced by LCAT hydrolysis of the sn-2 chains of phosphatidylcholine, thus positioning the fatty acids for esterification to cholesterol. To test the importance of Arg123 for LCAT phospholipid hydrolysis and CE formation, we generated apoA-I[R123A] and apoA-I[R123E] mutants and made discoidal HDL with the mutants and WT apoA-I. Neither mutation of Arg123 changed the particle composition or size, or the protein conformation or stability. However, both mutations of Arg123 significantly reduced LCAT catalytic efficiency and the apparent Vmax for CE formation without affecting LCAT phospholipid hydrolysis. A control mutation, apoA-I[R131A], did not affect LCAT phospholipid hydrolysis or CE formation. These data suggest that Arg123 of apoA-I on discoidal HDL participates in LCAT-mediated cholesterol esterification.
Collapse
Affiliation(s)
- Irina N Gorshkova
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Xiaohu Mei
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - David Atkinson
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
2
|
Gogonea V. Structural Insights into High Density Lipoprotein: Old Models and New Facts. Front Pharmacol 2016; 6:318. [PMID: 26793109 PMCID: PMC4709926 DOI: 10.3389/fphar.2015.00318] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/22/2015] [Indexed: 11/13/2022] Open
Abstract
The physiological link between circulating high density lipoprotein (HDL) levels and cardiovascular disease is well-documented, albeit its intricacies are not well-understood. An improved appreciation of HDL function and overall role in vascular health and disease requires at its foundation a better understanding of the lipoprotein's molecular structure, its formation, and its process of maturation through interactions with various plasma enzymes and cell receptors that intervene along the pathway of reverse cholesterol transport. This review focuses on summarizing recent developments in the field of lipid free apoA-I and HDL structure, with emphasis on new insights revealed by newly published nascent and spherical HDL models constructed by combining low resolution structures obtained from small angle neutron scattering (SANS) with contrast variation and geometrical constraints derived from hydrogen-deuterium exchange (HDX), crosslinking mass spectrometry, electron microscopy, Förster resonance energy transfer, and electron spin resonance. Recently published low resolution structures of nascent and spherical HDL obtained from SANS with contrast variation and isotopic labeling of apolipoprotein A-I (apoA-I) will be critically reviewed and discussed in terms of how they accommodate existing biophysical structural data from alternative approaches. The new low resolution structures revealed and also provided some answers to long standing questions concerning lipid organization and particle maturation of lipoproteins. The review will discuss the merits of newly proposed SANS based all atom models for nascent and spherical HDL, and compare them with accepted models. Finally, naturally occurring and bioengineered mutations in apoA-I, and their impact on HDL phenotype, are reviewed and discuss together with new therapeutics employed for restoring HDL function.
Collapse
Affiliation(s)
- Valentin Gogonea
- Department of Chemistry, Cleveland State UniversityCleveland, OH, USA; Departments of Cellular and Molecular Medicine and the Center for Cardiovascular Diagnostics and Prevention, Cleveland ClinicCleveland, OH, USA
| |
Collapse
|
3
|
Oda MN, Budamagunta MS, Geier EG, Chandradas SH, Shao B, Heinecke JW, Voss JC, Cavigiolio G. Conservation of apolipoprotein A-I's central domain structural elements upon lipid association on different high-density lipoprotein subclasses. Biochemistry 2013; 52:6766-78. [PMID: 23984834 DOI: 10.1021/bi4007012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The antiatherogenic properties of apolipoprotein A-I (apoA-I) are derived, in part, from lipidation-state-dependent structural elements that manifest at different stages of apoA-I's progression from lipid-free protein to spherical high-density lipoprotein (HDL). Previously, we reported the structure of apoA-I's N-terminus on reconstituted HDLs (rHDLs) of different sizes. We have now investigated at the single-residue level the conformational adaptations of three regions in the central domain of apoA-I (residues 119-124, 139-144, and 164-170) upon apoA-I lipid binding and HDL formation. An important function associated with these residues of apoA-I is the activation of lecithin:cholesterol acyltransferase (LCAT), the enzyme responsible for catalyzing HDL maturation. Structural examination was performed by site-directed tryptophan fluorescence and spin-label electron paramagnetic resonance spectroscopies for both the lipid-free protein and rHDL particles 7.8, 8.4, and 9.6 nm in diameter. The two methods provide complementary information about residue side chain mobility and molecular accessibility, as well as the polarity of the local environment at the targeted positions. The modulation of these biophysical parameters yielded new insight into the importance of structural elements in the central domain of apoA-I. In particular, we determined that the loosely lipid-associated structure of residues 134-145 is conserved in all rHDL particles. Truncation of this region completely abolished LCAT activation but did not significantly affect rHDL size, reaffirming the important role of this structural element in HDL function.
Collapse
Affiliation(s)
- Michael N Oda
- Children's Hospital Oakland Research Institute , Oakland, California 94609, United States
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Sequence-specific apolipoprotein A-I effects on lecithin:cholesterol acyltransferase activity. Mol Cell Biochem 2013; 378:283-90. [DOI: 10.1007/s11010-013-1619-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/02/2013] [Indexed: 01/08/2023]
|
5
|
Aslan M, Dogan S. Proteomic detection of nitroproteins as potential biomarkers for cardiovascular disease. J Proteomics 2011; 74:2274-88. [PMID: 21640858 DOI: 10.1016/j.jprot.2011.05.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/18/2011] [Accepted: 05/03/2011] [Indexed: 12/21/2022]
Abstract
Increased levels of reactive oxygen and nitrogen species are linked to many human diseases and can be formed as an indirect result of the disease process. The accumulation of specific nitroproteins which correlate with pathological processes suggests that nitration of protein tyrosine represents a dynamic and selective process, rather than a random event. Indeed, in numerous clinical disorders associated with an upregulation in oxidative stress, tyrosine nitration has been limited to certain cell types and to selective sites of injury. Additionally, proteomic studies show that only certain proteins are nitrated in selective tissue extracts. A growing list of nitrated proteins link the negative effects of protein nitration with their accumulation in a wide variety of diseases related to oxidation. Nitration of tyrosine has been demonstrated in diverse proteins such as cytochrome c, actin, histone, superoxide dismutase, α-synuclein, albumin, and angiotensin II. In vitro and in vivo aspects of redox-proteomics of specific nitroproteins that could be relevant to biomarker analysis and understanding of cardiovascular disease mechanism will be discussed within this review.
Collapse
Affiliation(s)
- Mutay Aslan
- Akdeniz University Faculty of Medicine, Department of Medical Biochemistry, Campus, 07070 Antalya, Turkey.
| | | |
Collapse
|
6
|
Jones MK, Catte A, Li L, Segrest JP. Dynamics of activation of lecithin:cholesterol acyltransferase by apolipoprotein A-I. Biochemistry 2009; 48:11196-210. [PMID: 19860440 DOI: 10.1021/bi901242k] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The product of transesterification of phospholipid acyl chains and unesterified cholesterol (UC) by the enzyme lecithin:cholesterol acyltransferase (LCAT) is cholesteryl ester (CE). Activation of LCAT by apolipoprotein (apo) A-I on nascent (discoidal) high-density lipoproteins (HDL) is essential for formation of mature (spheroidal) HDL during the antiatherogenic process of reverse cholesterol transport. Here we report all-atom and coarse-grained (CG) molecular dynamics (MD) simulations of HDL particles that have major implications for mechanisms of LCAT activation. Both the all-atom and CG simulations provide support for a model in which the helix 5/5 domains of apoA-I create an amphipathic "presentation tunnel" that exposes methyl ends of acyl chains at the bilayer center to solvent. Further, CG simulations show that UC also becomes inserted with high efficiency into the amphipathic presentation tunnel with its hydroxyl moiety (UC-OH) exposed to solvent; these results are consistent with trajectory analyses of the all-atom simulations showing that UC is being concentrated in the vicinity of the presentation tunnel. Finally, consistent with known product inhibition of CE-rich HDL by CE, CG simulations of CE-rich spheroidal HDL indicate partial blockage of the amphipathic presentation tunnel by CE. These results lead us to propose the following working hypothesis. After attachment of LCAT to discoidal HDL, the helix 5/5 domains in apoA-I form amphipathic presentation tunnels for migration of hydrophobic acyl chains and amphipathic UC from the bilayer to the phospholipase A2-like and esterification active sites of LCAT, respectively. This hypothesis is currently being tested by site-directed mutagenesis.
Collapse
Affiliation(s)
- Martin K Jones
- Department of Medicine and Atherosclerosis Research Unit, University ofAlabama, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
7
|
Cavigiolio G, Shao B, Geier EG, Ren G, Heinecke JW, Oda MN. The interplay between size, morphology, stability, and functionality of high-density lipoprotein subclasses. Biochemistry 2008; 47:4770-9. [PMID: 18366184 DOI: 10.1021/bi7023354] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-density lipoprotein (HDL) mediates reverse cholesterol transport (RCT), wherein excess cholesterol is conveyed from peripheral tissues to the liver and steroidogenic organs. During this process HDL continually transitions between subclass sizes, each with unique biological activities. For instance, RCT is initiated by the interaction of lipid-free/lipid-poor apolipoprotein A-I (apoA-I) with ABCA1, a membrane-associated lipid transporter, to form nascent HDL. Because nearly all circulating apoA-I is lipid-bound, the source of lipid-free/lipid-poor apoA-I is unclear. Lecithin:cholesterol acyltransferase (LCAT) then drives the conversion of nascent HDL to spherical HDL by catalyzing cholesterol esterification, an essential step in RCT. To investigate the relationship between HDL particle size and events critical to RCT such as LCAT activation and lipid-free apoA-I production for ABCA1 interaction, we reconstituted five subclasses of HDL particles (rHDL of 7.8, 8.4, 9.6, 12.2, and 17.0 nm in diameter, respectively) using various molar ratios of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, free cholesterol, and apoA-I. Kinetic analyses of this comprehensive array of rHDL particles suggest that apoA-I stoichiometry in rHDL is a critical factor governing LCAT activation. Electron microscopy revealed specific morphological differences in the HDL subclasses that may affect functionality. Furthermore, stability measurements demonstrated that the previously uncharacterized 8.4 nm rHDL particles rapidly convert to 7.8 nm particles, concomitant with the dissociation of lipid-free/lipid-poor apoA-I. Thus, lipid-free/lipid-poor apoA-I generated by the remodeling of HDL may be an essential intermediate in RCT and HDL's in vivo maturation.
Collapse
|
8
|
Chroni A, Duka A, Kan HY, Liu T, Zannis VI. Point mutations in apolipoprotein A-I mimic the phenotype observed in patients with classical lecithin:cholesterol acyltransferase deficiency. Biochemistry 2006; 44:14353-66. [PMID: 16245952 DOI: 10.1021/bi050962o] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have analyzed the effect of charged to neutral amino acid substitutions around the kinks flanking helices 4 and 6 of apoA-I and of the deletion of helix 6 on the in vivo activity of LCAT and the biogenesis of HDL. The LCAT activation capacity of apoA-I in vitro was nearly abolished by the helix 6 point (helix 6P-apoA-I[R160V/H162A]) and deletion {helix 6Delta-apoA-I[Delta(144-165)]} mutants, but was reduced to 50% in the helix 4 point mutant (helix 4P-apoA-I[D102A/D103A]). Following adenovirus-mediated gene transfer in apoA-I deficient mice, the level of plasma HDL cholesterol was greatly reduced in helix 6P and helix 6Delta mutants. Electron microscopy and two-dimensional gel electrophoresis showed that the helix 6P mutant formed predominantly high levels of apoA-I containing discoidal particles and had an increased prebeta1-HDL/alpha-HDL ratio. The helix 6Delta mutant formed few spherical particles and had an increased prebeta1-HDL/alpha-HDL ratio. Mice infected with adenovirus expressing the helix 4P mutant or wild-type apoA-I had normal HDL cholesterol and formed spherical alpha-HDL particles. Coinfection of mice with adenoviruses expressing human LCAT and the helix 6P mutant dramatically increased plasma HDL and apoA-I levels and converted the discoidal into spherical HDL, indicating that the LCAT activity was rate-limiting for the biogenesis of HDL. The LCAT treatment caused only a small increase in HDL cholesterol and apoA-I levels and in alpha-HDL particle numbers in the helix 6Delta mutant. The findings indicate a critical contribution of residue 160 of apoA-I to the in vivo activity of LCAT and the subsequent maturation of HDL and explain the low HDL levels in heterozygous subjects carrying this mutation.
Collapse
Affiliation(s)
- Angeliki Chroni
- Molecular Genetics, Whitaker Cardiovascular Institute, Department of Medicine, Center for Advanced Biomedical Research, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
9
|
Kiss RS, Weers PMM, Narayanaswami V, Cohen J, Kay CM, Ryan RO. Structure-guided protein engineering modulates helix bundle exchangeable apolipoprotein properties. J Biol Chem 2003; 278:21952-9. [PMID: 12684504 DOI: 10.1074/jbc.m302676200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein (apo) E plays a major role in lipid metabolism by mediating cellular uptake of lipoprotein particles through interaction with members of the low density lipoprotein (LDL) receptor family. The primary region of apoE responsible for receptor binding has been limited to a cluster of basic amino acids between residues 134 and 150, located in the fourth helix of the N-terminal domain globular helix bundle structure. To investigate structural and functional requirements of this "receptor binding region" we engineered an apolipoprotein chimera wherein residues 131-151 of human apoE were substituted for residues 146-166 (helix 5) of Manduca sexta apolipophorin III (apoLp-III). Recombinant hybrid apolipoprotein was expressed in Escherichia coli, isolated, and characterized. Hybrid apolipoprotein and apoE3-N-terminal, but not apoLp-III, bound to heparin-Sepharose. Far UV circular dichroism spectroscopy revealed the presence of predominantly alpha-helix secondary structure, and stability studies revealed a urea denaturation midpoint of 1.05 m, similar to wild-type apoLp-III. Hybrid apolipoprotein-induced dimyristoylphosphatidylcholine (DMPC) bilayer vesicle solubilization activity was significantly enhanced compared with either parent protein, consistent with detection of solvent-exposed hydrophobic regions on the protein in fluorescent dye binding experiments. Unlike wild-type apoLp-III.DMPC complexes, disc particles bearing the hybrid apolipoprotein competed with 125ILDL for binding to the LDL receptor on cultured human skin fibroblasts. We conclude that a hybrid apolipoprotein containing a key receptor recognition element of apoE preserves the structural integrity of the parent protein while conferring a new biological activity, illustrating the potential of helix swapping to introduce desirable biological properties into unrelated or engineered apolipoproteins.
Collapse
Affiliation(s)
- Robert S Kiss
- Department of Biochemistry and Protein Engineering Network of Centers of Excellence, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Hoang A, Huang W, Sasaki J, Sviridov D. Natural mutations of apolipoprotein A-I impairing activation of lecithin:cholesterol acyltransferase. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1631:72-6. [PMID: 12573451 DOI: 10.1016/s1388-1981(02)00357-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Five natural mutations of apolipoprotein A-I (apoA-I), apoA-I(A95D), apoA-I(Y100H), apoA-I(E110K), apoA-I(V156E) and apoA-I(H162Q), were studied for their ability to activate lecithin:cholesterol acyltransferase (LCAT). Mutants apoA-I(E110K), apoA-I(V156E) and apoA-I(H162Q) had an impaired ability to activate LCAT. Combined with data on other apoA-I mutants this finding is consistent with the idea that the central region between amino acids 110 and 160 is likely to be the "active site" of apoA-I involved in the interaction with LCAT and that a specific sequence of apoA-I is required for activation of the enzyme.
Collapse
Affiliation(s)
- Anh Hoang
- Wynn Domain, Baker Medical Research Institute, PO Box 6492 St Kilda Rd Central, Melbourne Vic 8008, Australia
| | | | | | | |
Collapse
|
11
|
Gorshkova IN, Liu T, Zannis VI, Atkinson D. Lipid-free structure and stability of apolipoprotein A-I: probing the central region by mutation. Biochemistry 2002; 41:10529-39. [PMID: 12173940 DOI: 10.1021/bi025807d] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To probe the structure and stability of the central region of lipid-free apolipoprotein (apo) A-I (residues 123-165), we studied the effects of four mutations made in this region on the conformation, stability, dimyristoylphosphatidylcholine (DMPC) binding kinetics, and size of discoidal reconstituted high-density lipoprotein (rHDL) particles. The apoA-I deletion delta(144-165) leads to a red shift in the wavelength of maximum fluorescence and a reduction in the alpha-helical content, the stability, the initial rate of association with DMPC liposomes, and the size of the discoidal particles. The data are consistent with the helical structure of residues 144-165, and the deletion appears to perturb the tertiary organization of the N-terminal half of apoA-I. In contrast, the deletion of the adjacent region, delta(136-143), leads to stabilization without altering the number of residues in the helical conformation or the initial rate of association with DMPC liposomes. The quadruple substitution E125K/E128K/K133E/E139K leads to approximately 17 additional residues in the helical conformation and an increase in the stability, the initial rate of association with DMPC liposomes, and the size of the rHDL particles. The findings are consistent with the disordered structure of the segment of residues 123-142, which becomes helical as a result of the quadruple mutation or upon lipid binding. The naturally occurring mutation L141R (also associated with coronary heart disease) that is located in this segment does not change the protein conformation but leads to a reduced stability and a decreased rate of association with DMPC liposomes that may relate to the observed altered functions of this mutant.
Collapse
Affiliation(s)
- Irina N Gorshkova
- Department of Physiology and Biophysics and Section of Molecular Genetics, Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Approximately 46 human apolipoprotein A-I (apoA-I) coding sequence mutations have been reported to date. Roughly half of these mutations are associated with lower than average plasma concentrations of high-density lipoprotein (HDL) apoA-I. Mutations associated with low HDL apoA-I concentrations fall into two main categories: those which poorly activate the enzyme lecithin:cholesterol acyltransferase (LCAT) and those associated with amyloidosis. These phenotypically distinct groups of mutations are uniquely localized in different regions of the apoprotein sequence. Mutations associated with abnormal LCAT activation are located within repeats 5, 6, and 7, corresponding to amino acids 121 to 186, while many of the mutations found in amyloid deposits are clustered at the amino terminus of the protein, namely residues 1 to 90. These observations strongly support the idea that the tertiary structure of apoA-I determines its intravascular fate and ultimately the steady state concentration of plasma HDL.
Collapse
Affiliation(s)
- Mary G Sorci-Thomas
- Department of Pathology, Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina, USA.
| | | |
Collapse
|
13
|
Holvoet P, Peeters K, Lund-Katz S, Mertens A, Verhamme P, Quarck R, Stengel D, Lox M, Deridder E, Bernar H, Nickel M, Theilmeier G, Ninio E, Phillips MC. Arg123-Tyr166 domain of human ApoA-I is critical for HDL-mediated inhibition of macrophage homing and early atherosclerosis in mice. Arterioscler Thromb Vasc Biol 2001; 21:1977-83. [PMID: 11742873 DOI: 10.1161/hq1201.100221] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atherosclerosis was studied in apolipoprotein E (apoE) knockout mice expressing human apolipoprotein A-I (apoA-I) or an apoA-I/apolipoprotein A-II (apoA-II) chimera in which the Arg123-Tyr166 central domain of apoA-I was substituted with the Ser12-Ala75 segment of apoA-II. High density lipoprotein (HDL) cholesterol levels were identical in apoA-I and apoA-I/apoA-II mice, but at 4 months, plaques were 2.7-fold larger in the aortic root of the apoA-I/apoA-II mice (P<0.01). The macrophage-to-smooth muscle cell ratio of lesions was 2.1-fold higher in apo-I/apoA-II mice than in apoA-I mice (P<0.01). This was due to a 2.7-fold higher (P<0.001) in vivo macrophage homing in the aortic root of apoA-I/apoA-II mice. Plasma platelet-activating factor acetyl hydrolase activity was lower (P<0.01) in apoA-I/apoA-II mice, resulting in increased oxidative stress, as evidenced by the higher titer of antibodies against oxidized low density lipoprotein (P<0.01). Increased oxidative stress resulted in increased stimulation of ex vivo macrophage adhesion by apoA-I/apoA-II beta-very low density lipoprotein and decreased inhibition of beta-very low density lipoprotein-induced adhesion by HDL from apoA-I/apoA-II mice. The cellular cholesterol efflux capacity of HDL from apoA-I/apoA-II mice was very similar to that of apoA-I mice. Thus, the Arg123-Tyr166 central domain of apoA-I is critical for reducing oxidative stress, macrophage homing, and early atherosclerosis in apoE knockout mice independent of its role in HDL production and cholesterol efflux.
Collapse
Affiliation(s)
- P Holvoet
- Center for Experimental Surgery and Anesthesiology, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
McManus DC, Scott BR, Franklin V, Sparks DL, Marcel YL. Proteolytic degradation and impaired secretion of an apolipoprotein A-I mutant associated with dominantly inherited hypoalphalipoproteinemia. J Biol Chem 2001; 276:21292-302. [PMID: 11292828 DOI: 10.1074/jbc.m100463200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have devised a combined in vivo, ex vivo, and in vitro approach to elucidate the mechanism(s) responsible for the hypoalphalipoproteinemia in heterozygous carriers of a naturally occurring apolipoprotein A-I (apoA-I) variant (Leu(159) to Arg) known as apoA-I Finland (apoA-I(FIN)). Adenovirus-mediated expression of apoA-I(FIN) decreased apoA-I and high density lipoprotein cholesterol concentrations in both wild-type C57BL/6J mice and in apoA-I-deficient mice expressing native human apoA-I (hapoA-I). Interestingly, apoA-I(FIN) was degraded in the plasma, and the extent of proteolysis correlated with the most significant reductions in murine apoA-I concentrations. ApoA-I(FIN) had impaired activation of lecithin:cholesterol acyltransferase in vitro compared with hapoA-I, but in a mixed lipoprotein preparation consisting of both hapoA-I and apoA-I(FIN) there was only a moderate reduction in the activation of this enzyme. Importantly, secretion of apoA-I was also decreased from primary apoA-I-deficient hepatocytes when hapoA-I was co-expressed with apoA-I(FIN) following infection with recombinant adenoviruses, a condition that mimics secretion in heterozygotes. Thus, this is the first demonstration of an apoA-I point mutation that decreases LCAT activation, impairs hepatocyte secretion of apoA-I, and makes apoA-I susceptible to proteolysis leading to dominantly inherited hypoalphalipoproteinemia.
Collapse
Affiliation(s)
- D C McManus
- Lipoprotein and Atherosclerosis Research Group, Department of Pathology, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | | | | | | | | |
Collapse
|
15
|
Brouillette CG, Anantharamaiah GM, Engler JA, Borhani DW. Structural models of human apolipoprotein A-I: a critical analysis and review. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1531:4-46. [PMID: 11278170 DOI: 10.1016/s1388-1981(01)00081-6] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human apolipoprotein (apo) A-I has been the subject of intense investigation because of its well-documented anti-atherogenic properties. About 70% of the protein found in high density lipoprotein complexes is apo A-I, a molecule that contains a series of highly homologous amphipathic alpha-helices. A number of significant experimental observations have allowed increasing sophisticated structural models for both the lipid-bound and the lipid-free forms of the apo A-I molecule to be tested critically. It seems clear, for example, that interactions between amphipathic domains in apo A-I may be crucial to understanding the dynamic nature of the molecule and the pathways by which the lipid-free molecule binds to lipid, both in a discoidal and a spherical particle. The state of the art of these structural studies is discussed and placed in context with current models and concepts of the physiological role of apo A-I and high-density lipoprotein in atherosclerosis and lipid metabolism.
Collapse
Affiliation(s)
- C G Brouillette
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, AL 35294-0005, USA.
| | | | | | | |
Collapse
|
16
|
Effect of acylglyceride content on the structure and function of reconstituted high density lipoprotein particles. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)32338-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Sviridov D, Hoang A, Sawyer WH, Fidge NH. Identification of a sequence of apolipoprotein A-I associated with the activation of Lecithin:Cholesterol acyltransferase. J Biol Chem 2000; 275:19707-12. [PMID: 10781581 DOI: 10.1074/jbc.m000962200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We aimed to distinguish between the effects of mutations in apoA-I on the requirements for the secondary structure and a specific amino acid sequence for lecithin:cholesterol acyltransferase (LCAT) activation. Several mutants were constructed targeting region 140-150: (i) two mutations affecting alpha-helical structure, deletion of amino acids 140-150 and substitution of Ala(143) for proline; (ii) two mutations not affecting alpha-helical structure, substitution of Val(149) for arginine and substitution of amino acids 63-73 for sequence 140-150; and (iii) a mutation in a similar region away from the target area, deletion of amino acids 63-73. All mutations affecting region 140-150 resulted in a 4-42-fold reduction in LCAT activation. Three mutations, apoA-I(Delta140-150), apoA-I(P143A), and apoA-I(140-150 --> 63-73), affected both the apparent V(max) and K(m), whereas the mutation apoA-I(R149V) affected only the V(max). The mutation apoA-I(Delta63-73) caused only a 5-fold increase in the K(m). All mutants, except apoA-I(P143A) and apoA-I(Delta63-73), were active in phospholipid binding assay. All mutants, except apoA-I(P143A), formed normal discoidal complexes with phospholipid. The mutation apoA-I(Delta63-73) caused a significant reduction in the stability of apoA-I.phospholipid complexes in denaturation experiments. Combined, our results strongly suggest that although the correct conformation and orientation of apoA-I in the complex with lipids are crucial for activation of LCAT, when these conditions are fulfilled, activation also strongly depends on the sequence that includes amino acids 140-150.
Collapse
Affiliation(s)
- D Sviridov
- Baker Medical Research Institute, Melbourne 8008 and the Department of Biochemistry, University of Melbourne, Parkville 3052, Victoria, Australia.
| | | | | | | |
Collapse
|
18
|
|
19
|
Vanloo B, Peelman F, Deschuymere K, Taveirne J, Verhee A, Gouyette C, Labeur C, Vandekerckhove J, Tavernier J, Rosseneu M. Relationship between structure and biochemical phenotype of lecithin:cholesterol acyltransferase (LCAT) mutants causing fish-eye disease. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32384-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
20
|
Sorci-Thomas MG, Thomas M, Curtiss L, Landrum M. Single repeat deletion in ApoA-I blocks cholesterol esterification and results in rapid catabolism of delta6 and wild-type ApoA-I in transgenic mice. J Biol Chem 2000; 275:12156-63. [PMID: 10766851 DOI: 10.1074/jbc.275.16.12156] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The deletion mutation Delta6 apolipoprotein A-I lacks residues 143-164 or repeat 6 in the mature apoA-I protein. In vitro studies show this mutation dramatically reduces the rate of lecithin:cholesterol acyltransferase (LCAT) catalyzed cholesterol esterification. The present study was initiated to investigate the effect of this mutation on in vivo high density lipoprotein (HDL) cholesterol esterification and metabolism. Transgenic mice expressing human Delta6 apoA-I (TgDelta6 +/+) were created and then crossed with apoA-I knockout mice (-/-) to generate mice expressing only human Delta6 apoA-I (TgDelta6 -/-). Human Delta6 apoA-I was associated with homogeneous sized alpha-HDL, when wild-type mouse apoA-I was present (in TgDelta6 +/+ and +/- mice). However, in the absence of endogenous mouse apoA-I, Delta6 apoA-I was found exclusively in cholesterol ester-poor HDL, and lipid-free HDL fractions. This observation coincides with the 6-fold lower cholesterol ester mass in TgDelta6 -/- mouse plasma compared with control. Structural studies show that despite the structural perturbation of a domain extending from repeat 5 to repeat 8 (137-178), Delta6 apoA-I binds to spherical unilamellar vesicles with only 2-fold less binding affinity. In summary, these data show a domain corresponding to apoA-I repeat 6 is responsible for providing an essential conformation for LCAT catalyzed generation of cholesterol esters. Deletion of apoA-I repeat 6 not only blocks normal levels of cholesterol esterification but also exerts a dominant inhibition on the ability of wild-type apoA-I to activate LCAT in vivo.
Collapse
Affiliation(s)
- M G Sorci-Thomas
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | |
Collapse
|
21
|
Segrest JP, Li L, Anantharamaiah GM, Harvey SC, Liadaki KN, Zannis V. Structure and function of apolipoprotein A-I and high-density lipoprotein. Curr Opin Lipidol 2000; 11:105-15. [PMID: 10787171 DOI: 10.1097/00041433-200004000-00002] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Structural biology and molecular modeling have provided intriguing insights into the atomic details of the lipid-associated structure of the major protein component of HDL, apo A-I. For the first time, an atomic resolution map is available for future studies of the molecular interactions of HDL in such biological processes as ABC1-regulated HDL assembly, LCAT activation, receptor binding, reverse lipid transport and HDL heterogeneity. Within the context of this paradigm, the current review summarizes the state of HDL research.
Collapse
Affiliation(s)
- J P Segrest
- Department of Medicine, UAB Medical Center, Birmingham, Alabama 35294-0012, USA.
| | | | | | | | | | | |
Collapse
|
22
|
McManus DC, Scott BR, Frank PG, Franklin V, Schultz JR, Marcel YL. Distinct central amphipathic alpha-helices in apolipoprotein A-I contribute to the in vivo maturation of high density lipoprotein by either activating lecithin-cholesterol acyltransferase or binding lipids. J Biol Chem 2000; 275:5043-51. [PMID: 10671546 DOI: 10.1074/jbc.275.7.5043] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recombinant adenoviruses with cDNAs for human apolipoprotein A-I (wild type (wt) apoA-I) and three mutants, referred to as Delta4-5A-I, Delta5-6A-I, and Delta6-7A-I, that have deletions removing regions coding for amino acids 100-143, 122-165, and 144-186, respectively, were created to study structure/function relationships of apoA-I in vivo. All mutants were expressed at lower concentrations than wt apoA-I in plasma of fasting apoA-I-deficient mice. The Delta5-6A-I mutant was found primarily in the lipid-poor high density lipoprotein (HDL) pool and at lower concentrations than Delta4-5A-I and Delta6-7A-I that formed more buoyant HDL(2/3) particles. At an elevated adenovirus dose and earlier blood sampling from fed mice, both Delta5-6A-I and Delta6-7A-I increased HDL-free cholesterol and phospholipid but not cholesteryl ester. In contrast, wt apoA-I and Delta4-5A-I produced significant increases in HDL cholesteryl ester. Further analysis showed that Delta6-7A-I and native apoA-I could bind similar amounts of phospholipid and cholesterol that were reduced slightly for Delta5-6A-I and greatly for Delta4-5A-I. We conclude from these findings that amino acids (aa) 100-143, specifically helix 4 (aa 100-121), contributes to the maturation of HDL through a role in lipid binding and that the downstream sequence (aa 144-186) centered around helix 6 (aa 144-165) is responsible for the activation of lecithin-cholesterol acyltransferase.
Collapse
Affiliation(s)
- D C McManus
- Lipoprotein and Atherosclerosis Research Group and the Department of Pathology and Laboratory Medicine, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Holvoet P, De Geest B, Van Linthout S, Lox M, Danloy S, Raes K, Collen D. The Arg123-Tyr166 central domain of human ApoAI is critical for lecithin:cholesterol acyltransferase-induced hyperalphalipoproteinemia and HDL remodeling in transgenic mice. Arterioscler Thromb Vasc Biol 2000; 20:459-66. [PMID: 10669644 DOI: 10.1161/01.atv.20.2.459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
High density lipoprotein (HDL) metabolism and lecithin:cholesterol acyltransferase (LCAT)-induced HDL remodeling were investigated in transgenic mice expressing human apolipoprotein (apo) AI or an apoAI/apoAII chimera in which the Arg123-Tyr166 domain of apoAI was substituted with the Ser12-Ala75 domain of apoAII. Expression of apoAI and of the apoAI/apoAII chimera resulted in a respective 3. 5-fold and 2.9-fold increase of HDL cholesterol. Human LCAT gene transfer into apoAI-transgenic mice resulted in a 5.1-fold increase of endogenous LCAT activity. This increase was associated with a 2. 4-fold increase of the cholesterol ester-to-free cholesterol ratio of HDL, a shift from HDL(3) to HDL(2), and a 2.4-fold increase of HDL cholesterol levels. Agarose gel electrophoresis revealed that human LCAT gene transfer into human apoAI-transgenic mice resulted in an increase of pre-beta-HDL and of pre-alpha-HDL. In contrast, human LCAT gene transfer did not affect cholesterol levels and HDL distribution profile in mice expressing the apoAI/apoAII chimera. Mouse LCAT did not "see" a difference between wild-type and mutant human apoAI, whereas human LCAT did, thus localizing the species-specific interaction in the central domain of apoAI. In conclusion, the Arg123-Tyr166 central domain of apoAI is not critical for in vivo lipoprotein association. It is, however, critical for LCAT-induced hyperalphalipoproteinemia and HDL remodeling independent of the lipid-binding properties of apoAI.
Collapse
Affiliation(s)
- P Holvoet
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
24
|
Narayanaswami V, Ryan RO. Molecular basis of exchangeable apolipoprotein function. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1483:15-36. [PMID: 10601693 DOI: 10.1016/s1388-1981(99)00176-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- V Narayanaswami
- Lipid and Lipoprotein Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
25
|
Daum U, Leren TP, Langer C, Chirazi A, Cullen P, Pritchard PH, Assmann G, von Eckardstein A. Multiple dysfunctions of two apolipoprotein A-I variants, apoA-I(R160L)Oslo and apoA-I(P165R), that are associated with hypoalphalipoproteinemia in heterozygous carriers. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)32453-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
26
|
Frank PG, N'Guyen D, Franklin V, Neville T, Desforges M, Rassart E, Sparks DL, Marcel YL. Importance of central alpha-helices of human apolipoprotein A-I in the maturation of high-density lipoproteins. Biochemistry 1998; 37:13902-9. [PMID: 9753480 DOI: 10.1021/bi981205b] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have studied the role of amphipathic alpha-helices in the ability of apoA-I to promote cholesterol efflux from human skin fibroblasts and activate lecithin:cholesterol acyltransferase (LCAT). Three apoA-I mutants were designed, each by deletion of a pair of predicted adjacent central alpha-helices [Delta(100-143), Delta(122-165), Delta(144-186)], and expressed in Escherichia coli. This strategy was used to minimize disruption of the predicted secondary structure of the resulting protein. These three central deletion mutants have been previously shown to be expressed as stable folded proteins but to exhibit altered phospholipid-binding properties. When recombined with phospholipids to form homogeneous LpA-I containing equivalent amounts of POPC and tested for their ability to promote diffusional cholesterol efflux from normal [3H]cholesterol-labeled fibroblasts, each mutant and the wild-type recombinant protein (Rec.-apoA-I) promoted cholesterol efflux with very similar rates at all the concentrations tested. These experiments showed that all LpA-I could acquire cellular cholesterol with similar affinity and binding capacity. However, when the cell-incubated LpA-I were incubated with purified LCAT, two mutants, Delta(122-165) and Delta(144-186), appeared incapable of activating the enzyme. To directly determine their ability to activate LCAT, each mutant and the control were recombined with equivalent amounts of cholesterol and phospholipid and incubated with the purified enzyme. The results show that whereas deletion of residues 100-143 has little effect on LCAT activation, deletion of residues 122-165 or 144-186 results in an inability of the mutants to promote cholesterol esterification. In conclusion, our results show that no specific sequence in the central domain of apoA-I is required for efficient diffusional cholesterol efflux from normal fibroblasts; however, residues 144-186 appear critical for optimum LCAT activation and cholesteryl ester accumulation. Since deletion of residues 144-186 also perturbs phospholipid association and prevents the formation of large LpA-I particles [Frank, P. G., Bergeron, J., Emmanuel, F., Lavigne, J. P., Sparks, D. L., Denèfle, P., Rassart, E., and Marcel, Y. L. (1997) Biochemistry 36, 1798-1806], the data show that this pair of alpha-helices plays an important role in the maturation of HDL. Sequence analysis of these apoA-I helices further identifies specific residues that appear essential to this activity.
Collapse
Affiliation(s)
- P G Frank
- Lipoprotein & Atherosclerosis Group, University of Ottawa Heart Institute, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Rogers DP, Roberts LM, Lebowitz J, Datta G, Anantharamaiah GM, Engler JA, Brouillette CG. The lipid-free structure of apolipoprotein A-I: effects of amino-terminal deletions. Biochemistry 1998; 37:11714-25. [PMID: 9718294 DOI: 10.1021/bi973112k] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Deletion mutants of human apolipoprotein A-I (apo hA-I) have been produced from a bacterial expression system to explore the function of the specific domains comprising residues 1-43, 1-65, 88-98, and 187-243, respectively, in the lipid-free conformation and in the lipid-binding mechanism of apo hA-I. Initial studies on apo Delta(1-43)A-I and apo Delta(187-243)A-I have already been reported. To aid purification of these mutants, a histidine-containing N-terminal extension was incorporated (+his); in cases where comparison with the (-his) construct was possible, little effect on the physical properties due to the (+his) extension was found. All mutants have folded structures in their lipid-free state, however these structures differ widely in their relative thermodynamic stability and extent of secondary structure. The mutant with the fewest residues deleted, apo Delta(88-98)A-I(+his), has the least secondary structure (only 34% helix) and is also the least stable (DeltaG = 2.9 kcal/mol). Determined from sedimentation velocity measurements on the lipid-free proteins, all but apo Delta(1-65)A-I(+his) exhibited a range of conformers in solution, which fluctuated around a highly elongated species (dimensions equal to approximately (14-16) x approximately 2.3 nm). Apo Delta(1-65)A-I(+his) exhibited a discrete species which was less asymmetric (dimensions equal to 9 x 2.9 nm). Apo Delta(88-98)A-I(+his) showed extreme heterogeneity with no predominating conformer. Spectroscopic studies (ANS binding and circular dichroism) indicate that there is little difference in the lipid-free structure of the carboxy-terminal deletion mutant, apo Delta(187-243)A-I(+/-his) compared to wild-type (wt) apo wtA-I(+/-his), but substantial differences are observed between wt and the amino-terminal deletion mutants, apo Delta(1-43)A-I, apo Delta(1-65)A-I(+his), and apo Delta(88-98)A-I(+his). In contrast, the lipid-binding properties are impaired for apo Delta(187-243)A-I(+/-his), as measured by dimyristoyl phosphatidylcholine (DMPC) liposome turbidity clearance kinetics and palmitoyloleoyl phosphatidylcholine (POPC) equilibrium binding. Apo Delta(1-43)A-I, apo Delta(1-65)A-I(+his), and apo Delta(88-98)A-I(+his) show lipid affinities statistically similar to apo wtA-I(+his), but significantly defective DMPC clearance kinetics. Interestingly, lecithin:cholesterol acyltransferase (LCAT) activation results correlate qualitatively with the lipid-binding affinity for all mutants but apo Delta(88-98)A-I(+his), suggesting that this mutant has an altered and possibly noncooperative lipid-bound structure as well as an altered lipid-free structure. These results suggest helix 1 (residues 44-65) and helix 10 (residues 220-240) are both required for native lipid-binding properties, while the presence of internal residues, at least helix 3 (residues 88-98), is essential for proper folding of both the lipid-free and lipid-bound conformations. Importantly, studies on apo Delta(88-98)A-I(+his) provide the first experimental evidence that a native-like structure is not necessary for native-like lipid affinity, but apparently is necessary for both DMPC solubilization and LCAT activation. These results provide support for a hypothetical, multistep structure-based mechanism for apo hA-I lipid binding.
Collapse
Affiliation(s)
- D P Rogers
- Department of Biochemistry and Molecular Genetics, Center for Macromolecular Crystallography, University of Alabama at Birmingham Medical Center 35294, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Sorci-Thomas MG, Curtiss L, Parks JS, Thomas MJ, Kearns MW, Landrum M. The hydrophobic face orientation of apolipoprotein A-I amphipathic helix domain 143-164 regulates lecithin:cholesterol acyltransferase activation. J Biol Chem 1998; 273:11776-82. [PMID: 9565601 DOI: 10.1074/jbc.273.19.11776] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein A-I (apoA-I) activates the plasma enzyme lecithin:cholesterol acyltransferase (LCAT), catalyzing the rapid conversion of lipoprotein cholesterol to cholesterol ester. Structural mutants of apoA-I have been used to study the details of apoA-I-LCAT-catalyzed cholesterol ester formation. Several studies have shown that the alpha-helical segments corresponding to amino acids 143-164 and 165-186 (repeats 6 and 7) are essential for LCAT activation. In the present studies, we examined how the orientation of the hydrophobic face, independent of an increase in overall hydrophobicity, affects LCAT activation. We designed, expressed, and characterized a mutant, reverse of 6 apoA-I (RO6 apoA-I), in which the primary amino acid sequence of repeat 6 (amino acids 143-164) was reversed from its normal orientation. This mutation rotates the hydrophobic face of repeat 6 approximately 80 degrees. Lipid-free RO6 apoA-I showed a marked stabilization when denatured by guanidine hydrochloride, but showed significant destabilization to guanidine hydrochloride denaturation in the lipid-bound state compared with wild-type apoA-I. Recombinant high density lipoprotein discs (rHDL) formed from RO6 apoA-I, sn-1-palmitoyl-sn-2-oleoyl phosphati-dylcholine, and cholesterol were approximately 12 A smaller than wild-type apoA-I rHDL. The reduced size suggests that one of the repeats did not effectively participate in phospholipid binding and organization. The sn-1-palmitoyl-sn-2-oleoyl phosphatidylcholine RO6 rHDL were a less effective substrate for LCAT. Mapping the entire lipid-free and lipid-bound RO6 apoA-I with a series of monoclonal antibodies revealed that both the lipid-free and lipid-bound RO6 apoA-I displayed altered or absent epitopes in domains within and adjacent to repeat 6. Together, these results suggest that the proper alignment and orientation of the hydrophobic face of repeat 6 is an important determinant for maintaining and stabilizing helix-bilayer and helix-helix interactions.
Collapse
Affiliation(s)
- M G Sorci-Thomas
- Department of Pathology and Comparative Medicine, Wake Forest University School of Medicine, Winston-Salen, North Carolina 27157, USA.
| | | | | | | | | | | |
Collapse
|