1
|
da Silva RC, Oliveira HC, Igamberdiev AU, Stasolla C, Gaspar M. Interplay between nitric oxide and inorganic nitrogen sources in root development and abiotic stress responses. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154241. [PMID: 38640547 DOI: 10.1016/j.jplph.2024.154241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/21/2024]
Abstract
Nitrogen (N) is an essential nutrient for plants, and the sources from which it is obtained can differently affect their entire development as well as stress responses. Distinct inorganic N sources (nitrate and ammonium) can lead to fluctuations in the nitric oxide (NO) levels and thus interfere with nitric oxide (NO)-mediated responses. These could lead to changes in reactive oxygen species (ROS) homeostasis, hormone synthesis and signaling, and post-translational modifications of key proteins. As the consensus suggests that NO is primarily synthesized in the reductive pathways involving nitrate and nitrite reduction, it is expected that plants grown in a nitrate-enriched environment will produce more NO than those exposed to ammonium. Although the interplay between NO and different N sources in plants has been investigated, there are still many unanswered questions that require further elucidation. By building on previous knowledge regarding NO and N nutrition, this review expands the field by examining in more detail how NO responses are influenced by different N sources, focusing mainly on root development and abiotic stress responses.
Collapse
Affiliation(s)
- Rafael Caetano da Silva
- Department of Biodiversity Conservation, Institute of Environmental Research, São Paulo, SP, 04301-902, Brazil
| | - Halley Caixeta Oliveira
- Department of Animal and Plant Biology, State University of Londrina, Londrina, PR, 86057-970, Brazil
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Marilia Gaspar
- Department of Biodiversity Conservation, Institute of Environmental Research, São Paulo, SP, 04301-902, Brazil.
| |
Collapse
|
2
|
Sanchez-Corrionero A, Sánchez-Vicente I, Arteaga N, Manrique-Gil I, Gómez-Jiménez S, Torres-Quezada I, Albertos P, Lorenzo O. Fine-tuned nitric oxide and hormone interface in plant root development and regeneration. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6104-6118. [PMID: 36548145 PMCID: PMC10575706 DOI: 10.1093/jxb/erac508] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Plant root growth and developmental capacities reside in a few stem cells of the root apical meristem (RAM). Maintenance of these stem cells requires regenerative divisions of the initial stem cell niche (SCN) cells, self-maintenance, and proliferative divisions of the daughter cells. This ensures sufficient cell diversity to guarantee the development of complex root tissues in the plant. Damage in the root during growth involves the formation of a new post-embryonic root, a process known as regeneration. Post-embryonic root development and organogenesis processes include primary root development and SCN maintenance, plant regeneration, and the development of adventitious and lateral roots. These developmental processes require a fine-tuned balance between cell proliferation and maintenance. An important regulator during root development and regeneration is the gasotransmitter nitric oxide (NO). In this review we have sought to compile how NO regulates cell rate proliferation, cell differentiation, and quiescence of SCNs, usually through interaction with phytohormones, or other molecular mechanisms involved in cellular redox homeostasis. NO exerts a role on molecular components of the auxin and cytokinin signaling pathways in primary roots that affects cell proliferation and maintenance of the RAM. During root regeneration, a peak of auxin and cytokinin triggers specific molecular programs. Moreover, NO participates in adventitious root formation through its interaction with players of the brassinosteroid and cytokinin signaling cascade. Lately, NO has been implicated in root regeneration under hypoxia conditions by regulating stem cell specification through phytoglobins.
Collapse
Affiliation(s)
- Alvaro Sanchez-Corrionero
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
- Universidad Politécnica de Madrid, Madrid, Spain
| | - Inmaculada Sánchez-Vicente
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Noelia Arteaga
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Isabel Manrique-Gil
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Sara Gómez-Jiménez
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Isabel Torres-Quezada
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Pablo Albertos
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Oscar Lorenzo
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| |
Collapse
|
3
|
Derrien V, André E, Bernad S. Peroxidase activity of rice (Oryza sativa) hemoglobin: distinct role of tyrosines 112 and 151. J Biol Inorg Chem 2023; 28:613-626. [PMID: 37507628 DOI: 10.1007/s00775-023-02014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Five non-symbiotic hemoglobins (nsHb) have been identified in rice (Oryza sativa). Previous studies have shown that stress conditions can induce their overexpression, but the role of those globins is still unclear. To better understand the functions of nsHb, the reactivity of rice Hb1 toward hydrogen peroxide (H2O2) has been studied in vitro. Our results show that recombinant rice Hb1 dimerizes through dityrosine cross-links in the presence of H2O2. By site-directed mutagenesis, we suggest that tyrosine 112 located in the FG loop is involved in this dimerization. Interestingly, this residue is not conserved in the sequence of the five rice non-symbiotic hemoglobins. Stopped-flow spectrophotometric experiments have been performed to measure the catalytic constants of rice Hb and its variants using the oxidation of guaiacol. We have shown that Tyrosine112 is a residue that enhances the peroxidase activity of rice Hb1, since its replacement by an alananine leads to a decrease of guaiacol oxidation. In contrast, tyrosine 151, a conserved residue which is buried inside the heme pocket, reduces the protein reactivity. Indeed, the variant Tyr151Ala exhibits a higher peroxidase activity than the wild type. Interestingly, this residue affects the heme coordination and the replacement of the tyrosine by an alanine leads to the loss of the distal ligand. Therefore, even if the amino acid at position 151 does not participate to the formation of the dimer, this residue modulates the peroxidase activity and plays a role in the hexacoordinated state of the heme.
Collapse
Affiliation(s)
- Valérie Derrien
- Institut de Chimie Physique, UMR8000, Université Paris-Saclay, CNRS, Avenue Jean Perrin. Bat 350, 91405, Orsay, France.
| | - Eric André
- Institut de Chimie Physique, UMR8000, Université Paris-Saclay, CNRS, Avenue Jean Perrin. Bat 350, 91405, Orsay, France
| | - Sophie Bernad
- Institut de Chimie Physique, UMR8000, Université Paris-Saclay, CNRS, Avenue Jean Perrin. Bat 350, 91405, Orsay, France
| |
Collapse
|
4
|
Rathnayaka Pathiranage RGL, Mira MM, Hill RD, Stasolla C. The inhibition of maize (Zea mays L.) root stem cell regeneration by low oxygen is attenuated by Phytoglobin 1 (Pgb1) through changes in auxin and jasmonic acid. PLANTA 2023; 257:120. [PMID: 37178357 DOI: 10.1007/s00425-023-04144-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
MAIN CONCLUSIONS Over-expression of Phytoglobin1 increases the viability of maize root stem cells to low oxygen stress through changes in auxin and jasmonic acid responses. Hypoxia inhibits maize (Zea mays L.) root growth by deteriorating the quiescent center (QC) stem cells of the root apical meristem. Over-expression of the Phytoglobin1 ZmPgb1.1 alleviates these effects through the retention of the auxin flow along the root profile required for the specification of the QC stem cells. To identify QC-specific hypoxia responses and determine whether ZmPgb1.1 exercises a direct role on QC stem cells, we performed a QC functionality test. This was done by estimating the ability of QCs to regenerate a root in vitro in a hypoxic environment. Hypoxia decreased the functionality of the QCs by depressing the expression of several genes participating in the synthesis and response of auxin. This was accompanied by a decrease in DR5 signal, a suppression of PLETHORA and WOX5, two markers of QC cell identity, and a reduction in expression of genes participating in JA synthesis and signaling. Over-expression of ZmPgb1.1 was sufficient to mitigate all these responses. Through pharmacological alterations of auxin and JA, it is demonstrated that both hormones are required for QC functionality under hypoxia, and that JA acts downstream of auxin during QC regeneration. A model is proposed whereby the ZmPgb1.1 maintenance of auxin synthesis in hypoxic QCs is determinant for the retention of their functionality, with JA supporting the regeneration of roots from the QCs.
Collapse
Affiliation(s)
| | - Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
5
|
Nie X, Mira M, Igamberdiev AU, Hill RD, Stasolla C. Anaerobiosis modulation of two phytoglobins in barley (Hordeum vulgare L.), and their regulation by gibberellin and abscisic acid in aleurone cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:174-181. [PMID: 35504225 DOI: 10.1016/j.plaphy.2022.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The transcript levels of the phytoglobin (Pgb) genes Pgb1 and Pgb3, and the protein content of Pgb1 were responsive to anaerobiosis in several tissues of barley (Hordeum vulgare L.). Oxygen deficiency induced the level of both Pgb transcripts and protein in aleurone layers and coleoptiles, as well as up-regulated both Pgb1 and Pgb3 in leaves, apexes and more strongly in roots of barley seedlings. In O2-depleted aleurone cells the induction of the Pgb transcript-protein pair was reversed by re-supplying O2. Based on this observation, it is suggested that Pgb1 and Pgb3 are inducible in all tissues. In aleurone cells, gibberellic acid (GA) induced Pgb1 and Pgb3 together with α-amylase, whereas abscisic acid (ABA) eliminated the GA stimulating effects on both α-amylase and Pgb1 and Pgb3 expression. While GA had no effects on alcohol dehydrogenase (Adh1, Adh2 and Adh3) transcripts, ABA induced all three Adh genes. It is concluded that Pgb and α-amylase in seeds are regulated reciprocally with the ethanolic fermentation pathway, and that Pgb induction is mediated by GA. Nitric oxide turnover and scavenging mediated by Pgb represents an important alternative to fermentation under anoxia.
Collapse
Affiliation(s)
- Xianzhou Nie
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
| | - Mohammed Mira
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada; Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B3X9, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada.
| |
Collapse
|
6
|
Kobayashi K, Kim J, Fukuda Y, Kozawa T, Inoue T. Fields, biochemistry fast autooxidation of a Bis-Histidyl-ligated globin from the anhydrobiotic tardigrade, ramazzottius varieornatus, by molecular oxygen. J Biochem 2021; 169:663-673. [PMID: 33479760 DOI: 10.1093/jb/mvab003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/27/2020] [Indexed: 01/11/2023] Open
Abstract
Tardigrades, a phylum of meiofaunal organisms, exhibit extraordinary tolerance to various environmental conditions, including extreme temperatures (-272 to 151 °C) and exposure to ionizing radiation. Proteins from anhydrobiotic tardigrades with homology to known proteins from other organisms are new potential targets for structural genomics. Recently, we reported spectroscopic and structural characterization of a hexacoordinated hemoglobin (Kumaglobin [Kgb]) found in an anhydrobiotic tardigrade. In the absence of its exogenous ligand, Kgb displays hexacoordination with distal and proximal histidines. In this work, we analyzed binding of the molecular oxygen ligand following reduction of heme in Kgb using a pulse radiolysis technique. Radiolytically generated hydrated electrons (eaq-) reduced the heme iron of Kgb within 20 µs. Subsequently, ferrous heme reacted with O2 to form a ferrous-dioxygen intermediate with a second-order rate constant of 3.0 × 106 M-1 s-1. The intermediate was rapidly (within 0.1 s) autooxidized to the ferric form. Redox potential measurements revealed an E'0 of -400 mV (vs. SHE) in the ferric/ferrous couple. Our results suggest that Kgb may serve as a physiological generator of O2·- via redox signaling and/or electron transfer.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - JeeEun Kim
- Graduate School of Pharmaceutical Science, Osaka University, Suita, Japan
| | - Yohta Fukuda
- Graduate School of Pharmaceutical Science, Osaka University, Suita, Japan
| | - Takahiro Kozawa
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Tsuyoshi Inoue
- Graduate School of Pharmaceutical Science, Osaka University, Suita, Japan
| |
Collapse
|
7
|
Astegno A, Conter C, Bertoldi M, Dominici P. Structural Insights into the Heme Pocket and Oligomeric State of Non-Symbiotic Hemoglobins from Arabidopsis thaliana. Biomolecules 2020; 10:E1615. [PMID: 33260415 PMCID: PMC7761212 DOI: 10.3390/biom10121615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 11/18/2022] Open
Abstract
Non-symbiotic hemoglobins AHb1 and AHb2 from Arabidopsis thaliana are hexacoordinate heme-proteins that likely have different biological roles, in view of diverse tissue localization, expression pattern, and ligand binding properties. Herein, we expand upon previous biophysical studies on these isoforms, focusing on their oligomeric states and circular dichroism (CD) characteristics. We found that AHb1 exists in solution in a concentration-dependent monomer-dimer equilibrium, while AHb2 is present only as a monomer. The quaternary structure of AHb1 affects its degree of hexacoordination with the formation of the dimer that enhances pentacoordination. Accordingly, the mutant of a conserved residue within the dimeric interface, AHb1-T45A, which is mostly monomeric in solution, has an equilibrium that is shifted toward a hexacoordinate form compared to the wild-type protein. CD studies further support differences in the globin's structure and heme moiety. The Soret CD spectra for AHb2 are opposite in sense to those for AHb1, reflecting different patterns of heme-protein side chain contacts in the two proteins. Moreover, the smaller contribution of the heme to the near-UV CD in AHb2 compared to AHb1 suggests a weaker heme-protein association in AHb2. Our data corroborate the structural diversity of AHb1 and AHb2 and confirm the leghemoglobin-like structural properties of AHb2.
Collapse
Affiliation(s)
- Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (A.A.); (C.C.)
| | - Carolina Conter
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (A.A.); (C.C.)
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy;
| | - Paola Dominici
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (A.A.); (C.C.)
| |
Collapse
|
8
|
Zhao X, Zhou J, Du G, Chen J. Recent Advances in the Microbial Synthesis of Hemoglobin. Trends Biotechnol 2020; 39:286-297. [PMID: 32912649 DOI: 10.1016/j.tibtech.2020.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/27/2020] [Accepted: 08/11/2020] [Indexed: 01/08/2023]
Abstract
Hemoglobin is a cofactor-containing protein with heme that plays important roles in transporting and storing oxygen. Hemoglobins have been widely applied as acellular oxygen carriers, bioavailable iron-supplying agents, and food-grade coloring and flavoring agents. To meet increasing demands and overcome the drawbacks of chemical extraction, the biosynthesis of hemoglobin has become an attractive alternative. Several hemoglobins have recently been synthesized by various microorganisms through metabolic engineering and synthetic biology. In this review, we summarize the novel strategies that have been used to biosynthesize hemoglobin. These strategies can also serve as references for producing other heme-binding proteins.
Collapse
Affiliation(s)
- Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
9
|
Becana M, Yruela I, Sarath G, Catalán P, Hargrove MS. Plant hemoglobins: a journey from unicellular green algae to vascular plants. THE NEW PHYTOLOGIST 2020; 227:1618-1635. [PMID: 31960995 DOI: 10.1111/nph.16444] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/24/2019] [Indexed: 05/17/2023]
Abstract
Globins (Glbs) are widely distributed in archaea, bacteria and eukaryotes. They can be classified into proteins with 2/2 or 3/3 α-helical folding around the heme cavity. Both types of Glbs occur in green algae, bryophytes and vascular plants. The Glbs of angiosperms have been more intensively studied, and several protein structures have been solved. They can be hexacoordinate or pentacoordinate, depending on whether a histidine is coordinating or not at the sixth position of the iron atom. The 3/3 Glbs of class 1 and the 2/2 Glbs (also called class 3 in plants) are present in all angiosperms, whereas the 3/3 Glbs of class 2 have been only found in early angiosperms and eudicots. The three Glb classes are expected to play different roles. Class 1 Glbs are involved in hypoxia responses and modulate NO concentration, which may explain their roles in plant morphogenesis, hormone signaling, cell fate determination, nutrient deficiency, nitrogen metabolism and plant-microorganism symbioses. Symbiotic Glbs derive from class 1 or class 2 Glbs and transport O2 in nodules. The physiological roles of class 2 and class 3 Glbs are poorly defined but could involve O2 and NO transport and/or metabolism, respectively. More research is warranted on these intriguing proteins to determine their non-redundant functions.
Collapse
Affiliation(s)
- Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 13034, 50080, Zaragoza, Spain
| | - Inmaculada Yruela
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 13034, 50080, Zaragoza, Spain
- Group of Biochemistry, Biophysics and Computational Biology (BIFI-Unizar) Joint Unit to CSIC, Edificio I+D Campus Río Ebro, 50018, Zaragoza, Spain
| | - Gautam Sarath
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, East Campus, University of Nebraska-Lincoln, Lincoln, NE, 86583, USA
| | - Pilar Catalán
- Group of Biochemistry, Biophysics and Computational Biology (BIFI-Unizar) Joint Unit to CSIC, Edificio I+D Campus Río Ebro, 50018, Zaragoza, Spain
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, 22071, Huesca, Spain
| | - Mark S Hargrove
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
10
|
Berger N, Vignols F, Przybyla-Toscano J, Roland M, Rofidal V, Touraine B, Zienkiewicz K, Couturier J, Feussner I, Santoni V, Rouhier N, Gaymard F, Dubos C. Identification of client iron-sulfur proteins of the chloroplastic NFU2 transfer protein in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 72:873-884. [PMID: 32240305 DOI: 10.1093/jxb/eraa403] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/01/2020] [Indexed: 05/15/2023]
Abstract
Iron-sulfur (Fe-S) proteins have critical functions in plastids, notably participating in photosynthetic electron transfer, sulfur and nitrogen assimilation, chlorophyll metabolism, and vitamin or amino acid biosynthesis. Their maturation relies on the so-called SUF (sulfur mobilization) assembly machinery. Fe-S clusters are synthesized de novo on a scaffold protein complex and then delivered to client proteins via several transfer proteins. However, the maturation pathways of most client proteins and their specificities for transfer proteins are mostly unknown. In order to decipher the proteins interacting with the Fe-S cluster transfer protein NFU2, one of the three plastidial representatives found in Arabidopsis thaliana, we performed a quantitative proteomic analysis of shoots, roots, and seedlings of nfu2 plants, combined with NFU2 co-immunoprecipitation and binary yeast two-hybrid experiments. We identified 14 new targets, among which nine were validated in planta using a binary bimolecular fluorescence complementation assay. These analyses also revealed a possible role for NFU2 in the plant response to desiccation. Altogether, this study better delineates the maturation pathways of many chloroplast Fe-S proteins, considerably extending the number of NFU2 clients. It also helps to clarify the respective roles of the three NFU paralogs NFU1, NFU2, and NFU3.
Collapse
Affiliation(s)
- Nathalie Berger
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Florence Vignols
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | | | | | - Valérie Rofidal
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Brigitte Touraine
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | | | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- Service unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Véronique Santoni
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | | | - Frédéric Gaymard
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Christian Dubos
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| |
Collapse
|
11
|
Nys K, Cuypers B, Berghmans H, Hammerschmid D, Moens L, Dewilde S, Van Doorslaer S. Surprising differences in the respiratory protein of insects: A spectroscopic study of haemoglobin from the European honeybee and the malaria mosquito. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140413. [PMID: 32179182 DOI: 10.1016/j.bbapap.2020.140413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
Only recently it was discovered that haemoglobin (Hb) belongs to the standard gene repertoire of insects, although their tracheal system is used for respiration. A classical oxygen-carrying function of Hb is only obvious for hexapods living in hypoxic environments. In other insect species, including the common fruit fly Drosophila melanogaster, the physiological role of Hb is yet unclear. Here, we study recombinant haemoglobin from the European honeybee Apis mellifera (Ame) and the malaria mosquito Anopheles gambiae (Aga). Spectroscopic evidence shows that both proteins can be classified as hexacoordinate Hbs with a strong affinity for the distal histidine. AgaHb1 is proposed to play a role in oxygen transport or sensing based on its multimeric state, slow autoxidation, and small but significant amount of five-coordinated haem in the deoxy ferrous form. AmeHb appears to behave more like vertebrate neuroglobin with a complex function given its diversified distribution in the genome.
Collapse
Affiliation(s)
- Kevin Nys
- BIMEF Laboratory, Department of Chemistry, University of Antwerp, Belgium.
| | - Bert Cuypers
- BIMEF Laboratory, Department of Chemistry, University of Antwerp, Belgium
| | - Herald Berghmans
- PPES Laboratory, Department of Biomedical Sciences, University of Antwerp, Belgium.
| | - Dietmar Hammerschmid
- PPES Laboratory, Department of Biomedical Sciences, University of Antwerp, Belgium.
| | - Luc Moens
- PPES Laboratory, Department of Biomedical Sciences, University of Antwerp, Belgium.
| | - Sylvia Dewilde
- PPES Laboratory, Department of Biomedical Sciences, University of Antwerp, Belgium.
| | | |
Collapse
|
12
|
Sugar beet hemoglobins: reactions with nitric oxide and nitrite reveal differential roles for nitrogen metabolism. Biochem J 2019; 476:2111-2125. [PMID: 31285352 PMCID: PMC6668756 DOI: 10.1042/bcj20190154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/23/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022]
Abstract
In contrast with human hemoglobin (Hb) in red blood cells, plant Hbs do not transport oxygen, instead research points towards nitrogen metabolism. Using comprehensive and integrated biophysical methods we characterized three sugar beet Hbs: BvHb1.1, BvHb1.2 and BvHb2. Their affinities for oxygen, CO, and hexacoordination were determined. Their role in nitrogen metabolism was studied by assessing their ability to bind NO, to reduce nitrite (NiR, nitrite reductase), and to form nitrate (NOD, NO dioxygenase). Results show that BvHb1.2 has high NOD-like activity, in agreement with the high nitrate levels found in seeds where this protein is expressed. BvHb1.1, on the other side, is equally capable to bind NO as to form nitrate, its main role would be to protect chloroplasts from the deleterious effects of NO. Finally, the ubiquitous, reactive, and versatile BvHb2, able to adopt 'open and closed forms', would be part of metabolic pathways where the balance between oxygen and NO is essential. For all proteins, the NiR activity is relevant only when nitrite is present at high concentrations and both NO and oxygen are absent. The three proteins have distinct intrinsic capabilities to react with NO, oxygen and nitrite; however, it is their concentration which will determine the BvHbs' activity.
Collapse
|
13
|
Teixeira CS, Cabral MES, Carneiro RF, Brito SV, Nagano CS, Silva ALC, Garcia W, Almeida WO, Sampaio AH, Delatorre P, Carvalho JMS, Sousa EHS, Rocha BAM. Structural aspects and physiological implications of the hemoglobin of green iguana (Iguana iguana). Int J Biol Macromol 2018; 120:1275-1285. [PMID: 30171953 DOI: 10.1016/j.ijbiomac.2018.08.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Claudener S Teixeira
- Centro de Ciências Agrárias e Ambientais, Universidade Federal do Maranhão, Chapadinha, Maranhão, Brazil
| | - Mario E S Cabral
- Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Rômulo F Carneiro
- Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Samuel V Brito
- Centro de Ciências Agrárias e Ambientais, Universidade Federal do Maranhão, Chapadinha, Maranhão, Brazil
| | - Celso S Nagano
- Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - André L C Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - Wanius Garcia
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Waltécio O Almeida
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - Alexandre H Sampaio
- Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Plínio Delatorre
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - José M S Carvalho
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Eduardo H S Sousa
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Bruno A M Rocha
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil.
| |
Collapse
|
14
|
Shankar A, Fernandes JL, Kaur K, Sharma M, Kundu S, Pandey GK. Rice phytoglobins regulate responses under low mineral nutrients and abiotic stresses in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2018; 41:215-230. [PMID: 29044557 DOI: 10.1111/pce.13081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
Just like animals, plants also contain haemoglobins (known as phytoglobins in plants). Plant phytoglobins (Pgbs) have been categorized into 6 different classes, namely, Phytogb0 (Pgb0), Phytogb1 (Pgb1), Phytogb2 (Pgb2), SymPhytogb (sPgb), Leghaemoglobin (Lb), and Phytogb3 (Pgb3). Among the 6 Phytogbs, sPgb and Lb have been functionally characterized, whereas understanding of the roles of other Pgbs is still evolving. In our present study, we have explored the function of 2 rice Pgbs (OsPgb1.1 and OsPgb1.2). OsPgb1.1, OsPgb1.2, OsPgb1.3, and OsPgb1.4 displayed increased level of transcript upon salt, drought, cold, and ABA treatment. The overexpression (OX) lines of OsPgb1.2 in Arabidopsis showed a tolerant phenotype in terms of better root growth in low potassium (K+ ) conditions. The expression of the known K+ gene markers such as LOX2, HAK5, and CAX3 was much higher in the OsPgb1.2 OX as compared to wild type. Furthermore, the OsPgb1.2 OX lines showed a decrease in reactive oxygen species (ROS) production and conversely an increase in the K+ content, both in root and shoot, as compared to wild type in K+ limiting condition. Our results indicated the potential involvement of OsPgb1.2 in signalling networks triggered by the nutrient deficiency stresses.
Collapse
Affiliation(s)
- Alka Shankar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Joel Lars Fernandes
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Kanwaljeet Kaur
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Manisha Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| |
Collapse
|
15
|
Calvo-Begueria L, Cuypers B, Van Doorslaer S, Abbruzzetti S, Bruno S, Berghmans H, Dewilde S, Ramos J, Viappiani C, Becana M. Characterization of the Heme Pocket Structure and Ligand Binding Kinetics of Non-symbiotic Hemoglobins from the Model Legume Lotus japonicus. FRONTIERS IN PLANT SCIENCE 2017; 8:407. [PMID: 28421084 PMCID: PMC5378813 DOI: 10.3389/fpls.2017.00407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/09/2017] [Indexed: 05/04/2023]
Abstract
Plant hemoglobins (Hbs) are found in nodules of legumes and actinorhizal plants but also in non-symbiotic organs of monocots and dicots. Non-symbiotic Hbs (nsHbs) have been classified into two phylogenetic groups. Class 1 nsHbs show an extremely high O2 affinity and are induced by hypoxia and nitric oxide (NO), whereas class 2 nsHbs have moderate O2 affinity and are induced by cold and cytokinins. The functions of nsHbs are still unclear, but some of them rely on the capacity of hemes to bind diatomic ligands and catalyze the NO dioxygenase (NOD) reaction (oxyferrous Hb + NO → ferric Hb + nitrate). Moreover, NO may nitrosylate Cys residues of proteins. It is therefore important to determine the ligand binding properties of the hemes and the role of Cys residues. Here, we have addressed these issues with the two class 1 nsHbs (LjGlb1-1 and LjGlb1-2) and the single class 2 nsHb (LjGlb2) of Lotus japonicus, which is a model legume used to facilitate the transfer of genetic and biochemical information into crops. We have employed carbon monoxide (CO) as a model ligand and resonance Raman, laser flash photolysis, and stopped-flow spectroscopies to unveil major differences in the heme environments and ligand binding kinetics of the three proteins, which suggest non-redundant functions. In the deoxyferrous state, LjGlb1-1 is partially hexacoordinate, whereas LjGlb1-2 shows complete hexacoordination (behaving like class 2 nsHbs) and LjGlb2 is mostly pentacoordinate (unlike other class 2 nsHbs). LjGlb1-1 binds CO very strongly by stabilizing it through hydrogen bonding, but LjGlb1-2 and LjGlb2 show lower CO stabilization. The changes in CO stabilization would explain the different affinities of the three proteins for gaseous ligands. These affinities are determined by the dissociation rates and follow the order LjGlb1-1 > LjGlb1-2 > LjGlb2. Mutations LjGlb1-1 C78S and LjGlb1-2 C79S caused important alterations in protein dynamics and stability, indicating a structural role of those Cys residues, whereas mutation LjGlb1-1 C8S had a smaller effect. The three proteins and their mutant derivatives exhibited similarly high rates of NO consumption, which were due to NOD activity of the hemes and not to nitrosylation of Cys residues.
Collapse
Affiliation(s)
- Laura Calvo-Begueria
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | - Bert Cuypers
- Department of Physics, University of AntwerpAntwerp, Belgium
| | | | - Stefania Abbruzzetti
- Dipartimento di Bioscienze, Università degli Studi di ParmaParma, Italy
- NEST, Istituto Nanoscienze, Consiglio Nazionale delle RicerchePisa, Italy
| | - Stefano Bruno
- Dipartimento di Farmacia, Università degli Studi di ParmaParma, Italy
| | - Herald Berghmans
- Department of Biomedical Sciences, University of AntwerpAntwerp, Belgium
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of AntwerpAntwerp, Belgium
| | - Javier Ramos
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | - Cristiano Viappiani
- NEST, Istituto Nanoscienze, Consiglio Nazionale delle RicerchePisa, Italy
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di ParmaParma, Italy
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| |
Collapse
|
16
|
Preimesberger MR, Majumdar A, Lecomte JTJ. Dynamics of Lysine as a Heme Axial Ligand: NMR Analysis of the Chlamydomonas reinhardtii Hemoglobin THB1. Biochemistry 2017; 56:551-569. [DOI: 10.1021/acs.biochem.6b00926] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew R. Preimesberger
- T.
C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ananya Majumdar
- Biomolecular
NMR Center, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Juliette T. J. Lecomte
- T.
C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
17
|
Overexpression of spinach non-symbiotic hemoglobin in Arabidopsis resulted in decreased NO content and lowered nitrate and other abiotic stresses tolerance. Sci Rep 2016; 6:26400. [PMID: 27211528 PMCID: PMC4876387 DOI: 10.1038/srep26400] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 05/03/2016] [Indexed: 11/29/2022] Open
Abstract
A class 1 non-symbiotic hemoglobin family gene, SoHb, was isolated from spinach. qRT-PCR showed that SoHb was induced by excess nitrate, polyethylene glycol, NaCl, H2O2, and salicylic acid. Besides, SoHb was strongly induced by application of nitric oxide (NO) donor, while was suppressed by NO scavenger, nitrate reductase inhibitor, and nitric oxide synthase inhibitor. Overexpression of SoHb in Arabidopsis resulted in decreased NO level and sensitivity to nitrate stress, as shown by reduced root length, fresh weight, the maximum photosystem II quantum ratio of variable to maximum fluorescence (Fv/Fm), and higher malondialdehyde contents. The activities and gene transcription of superoxide dioxidase, and catalase decreased under nitrate stress. Expression levels of RD22, RD29A, DREB2A, and P5CS1 decreased after nitrate treatment in SoHb-overexpressing plants, while increased in the WT plants. Moreover, SoHb-overexpressing plants showed decreased tolerance to NaCl and osmotic stress. In addition, the SoHb-overexpression lines showed earlier flower by regulating the expression of SOC, GI and FLC genes. Our results indicated that the decreasing NO content in Arabidopsis by overexpressing SoHb might be responsible for lowered tolerance to nitrate and other abiotic stresses.
Collapse
|
18
|
Álvarez-Salgado E, Arredondo-Peter R. Effect of the synthesis of rice non-symbiotic hemoglobins 1 and 2 in the recombinant Escherichia coli TB1 growth. F1000Res 2016; 4:1053. [PMID: 26973784 PMCID: PMC4776736 DOI: 10.12688/f1000research.7195.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2016] [Indexed: 11/20/2022] Open
Abstract
Non-symbiotic hemoglobins (nsHbs) are widely distributed in land plants, including rice. These proteins are classified into type 1 (nsHbs-1) and type 2. The O2-affinity of nsHbs-1 is very high mostly because of an extremely low O2-dissociation rate constant resulting in that nsHbs-1 apparently do not release O2after oxygenation. Thus, it is possible that theinvivofunction of nsHbs-1 is other than O2-transport. Based on the properties of multiple Hbs it was proposed that nsHbs-1 could play diverse roles in rice organs, however theinvivoactivity of rice nsHbs-1 has been poorly analyzed. Aninvivoanalysis for rice nsHbs-1 is essential to elucidate the biological function(s) of these proteins. Rice Hb1 and Hb2 are nsHbs-1 that have been generated in recombinantEscherichiacoliTB1. The rice Hb1 and Hb2 amino acid sequence, tertiary structure and rate and equilibrium constants for the reaction of O2are highly similar. Thus, it is possible that rice Hb1 and Hb2 function similarlyinvivo. As an initial approach to test this hypothesis we analyzed the effect of the synthesis of rice Hb1 and Hb2 in the recombinantE.coliTB1 growth. Effect of the synthesis of the O2-carrying soybean leghemoglobina, cowpea leghemoglobin II andVitreoscillaHb in the recombinantE.coliTB1 growth was also analyzed as an O2-carrier control. Our results showed that synthesis of rice Hb1, rice Hb2, soybean Lba, cowpea LbII andVitreoscillaHb inhibits the recombinantE.coliTB1 growth and that growth inhibition was stronger when recombinantE.coliTB1 synthesized rice Hb2 than when synthesized rice Hb1. These results suggested that rice Hb1 and Hb2 could function differentlyin vivo.
Collapse
Affiliation(s)
- Emma Álvarez-Salgado
- Laboratorio de Biofísica y Biología Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62210, Mexico
| | - Raúl Arredondo-Peter
- Laboratorio de Biofísica y Biología Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62210, Mexico
| |
Collapse
|
19
|
Hill R, Hargrove M, Arredondo-Peter R. Phytoglobin: a novel nomenclature for plant globins accepted by the globin community at the 2014 XVIII conference on Oxygen-Binding and Sensing Proteins. F1000Res 2016; 5:212. [PMID: 26998237 PMCID: PMC4792203 DOI: 10.12688/f1000research.8133.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2016] [Indexed: 11/20/2022] Open
Abstract
Hemoglobin (Hb) is a heme-containing protein found in the red blood cells of vertebrates. For many years, the only known Hb-like molecule in plants was leghemoglobin (Lb). The discovery that other Hb-like proteins existed in plants led to the term “nonsymbiotic Hbs (nsHbs)” to differentiate them from the Lbs. While this terminology was adequate in the early stages of research on the protein, the complexity of the research in this area necessitates a change in the definition of these proteins to delineate them from red blood cell Hb. At the 2014 XVIII Conference on Oxygen-Binding and Sensing Proteins, the group devoted to the study of heme-containing proteins, this issue was discussed and a consensus was reached on a proposed name change. We propose
Phytoglobin (Phytogb) as a logical, descriptive name to describe a heme-containing (Hb-like) protein found in plants. It will be readily recognized by the research community without a prolonged explanation of the origin of the term. The classification system that has been established can essentially remain unchanged substituting Phytogb in place of nsHb. Here, we present a guide to the new nomenclature, with reference to the existing terminology and a phylogenetic scheme, placing the known Phytogbs in the new nomenclature.
Collapse
Affiliation(s)
- Robert Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Canada
| | - Mark Hargrove
- Molecular Biology Building, Deptartment of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, USA
| | - Raúl Arredondo-Peter
- Laboratorio de Biofísica y Biología Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
20
|
De Henau S, Tilleman L, Vangheel M, Luyckx E, Trashin S, Pauwels M, Germani F, Vlaeminck C, Vanfleteren JR, Bert W, Pesce A, Nardini M, Bolognesi M, De Wael K, Moens L, Dewilde S, Braeckman BP. A redox signalling globin is essential for reproduction in Caenorhabditis elegans. Nat Commun 2015; 6:8782. [PMID: 26621324 PMCID: PMC4686822 DOI: 10.1038/ncomms9782] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 10/02/2015] [Indexed: 12/17/2022] Open
Abstract
Moderate levels of reactive oxygen species (ROS) are now recognized as redox signalling molecules. However, thus far, only mitochondria and NADPH oxidases have been identified as cellular sources of ROS in signalling. Here we identify a globin (GLB-12) that produces superoxide, a type of ROS, which serves as an essential signal for reproduction in C. elegans. We find that GLB-12 has an important role in the regulation of multiple aspects in germline development, including germ cell apoptosis. We further describe how GLB-12 displays specific molecular, biochemical and structural properties that allow this globin to act as a superoxide generator. In addition, both an intra- and extracellular superoxide dismutase act as key partners of GLB-12 to create a transmembrane redox signal. Our results show that a globin can function as a driving factor in redox signalling, and how this signal is regulated at the subcellular level by multiple control layers.
Collapse
Affiliation(s)
- Sasha De Henau
- Department of Biology, Ghent University, Ghent B-9000, Belgium
| | - Lesley Tilleman
- Department of Biomedical Sciences, University of Antwerp, Antwerp B-2000, Belgium
| | | | - Evi Luyckx
- Department of Biomedical Sciences, University of Antwerp, Antwerp B-2000, Belgium
| | - Stanislav Trashin
- Department of Chemistry, University of Antwerp, Antwerp B-2000, Belgium
| | - Martje Pauwels
- Department of Chemistry, University of Antwerp, Antwerp B-2000, Belgium
| | - Francesca Germani
- Department of Biomedical Sciences, University of Antwerp, Antwerp B-2000, Belgium
| | | | | | - Wim Bert
- Department of Biology, Ghent University, Ghent B-9000, Belgium
| | - Alessandra Pesce
- Department of Physics, University of Genova, Genova I-16146, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milano, Milano I-20133, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milano, Milano I-20133, Italy
- CNR-IBF and CIMAINA, University of Milano, Milano I-20133, Italy
| | - Karolien De Wael
- Department of Chemistry, University of Antwerp, Antwerp B-2000, Belgium
| | - Luc Moens
- Department of Biomedical Sciences, University of Antwerp, Antwerp B-2000, Belgium
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, Antwerp B-2000, Belgium
| | | |
Collapse
|
21
|
Huwald D, Schrapers P, Kositzki R, Haumann M, Hemschemeier A. Characterization of unusual truncated hemoglobins of Chlamydomonas reinhardtii suggests specialized functions. PLANTA 2015; 242:167-85. [PMID: 25893868 DOI: 10.1007/s00425-015-2294-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/27/2015] [Indexed: 05/04/2023]
Abstract
Annotated hemoglobin genes in Chlamydomonas reinhardtii form functional globins, despite unusual architectures. Spectral characteristics show subtle biochemical differences. Multiple globins might help the alga to cope with its versatile environment. The unicellular green alga C. reinhardtii is a photosynthetic, often soil-dwelling organism, subjected to a changeable environment in nature. The alga contains 12 genes encoding so-called truncated hemoglobins that feature a two-on-two helical fold instead of the three-on-three helix arrangement of the long-studied vertebrate globins or plant symbiotic and non-symbiotic hemoglobins. In plants, non-symbiotic hemoglobins often play a role in acclimation to stress, and we could show recently that one of the C. reinhardtii globin genes is vital for anoxic growth. Here, three further globin encoding transcripts (Cre16.g661000.t1.1, Cre16.g661300.t2.1 and Cre16.g662750.t1.2) were heterologously expressed along with the recently studied THB1. UV-Vis and X-ray absorption spectroscopy analyses show that the sequences indeed encode functional hemoglobins, despite their uncommon primary sequences, which include long C-termini without any predictable function, or a split heme-binding domain. The proteins show some variations regarding the coordination of the heme iron or the interaction with diatomic ligands, indicating different functionalities. The respective transcripts are not responsive to the nitrogen source, in contrast to results reported for THB1, but they accumulate in darkness. This work advances experimental data on the very large globin family in general, and, more specifically, on hemoglobins in photosynthetic organisms.
Collapse
Affiliation(s)
- Dennis Huwald
- Work Group Photobiotechnology, Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, ND2/134, 44801, Bochum, Germany
| | | | | | | | | |
Collapse
|
22
|
Abstract
Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (
Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the
nshb genes, consisting of
hb1,
hb2,
hb3,
hb4 and
hb5, and a single copy of the
thb gene exist in
Oryza sativa var. indica and
O.
sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O
2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O
2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O
2-transport, O
2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice
nshb and
thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice
nshbs and
thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the
cis-elements and
trans-acting factors that regulate the expression of rice
hb genes, and the partial understanding of the evolution of rice Hbs.
Collapse
Affiliation(s)
- Raúl Arredondo-Peter
- Laboratorio de Biofísica y Biología Molecular, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62210, Mexico
| | - Jose F Moran
- Instituto de Agrobiotecnología, IdAB-CSIC-Universidad Pública de Navarra-Gobierno de Navarra, Navarre, E-31192, Spain
| | - Gautam Sarath
- Grain, Forage and Bioenergy Research Unit, USDA-ARS, University of Nebraska-Lincoln, Lincoln, NE, 68583-0937, USA
| |
Collapse
|
23
|
Okamoto Y, Sawai H, Ogura M, Uchida T, Ishimori K, Hayashi T, Aono S. Heme-Binding Properties of HupD Functioning as a Substrate-Binding Protein in a Heme-Uptake ABC-Transporter System in Listeria monocytogenes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2014. [DOI: 10.1246/bcsj.20140166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yasunori Okamoto
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institute of Natural Sciences
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
| | - Hitomi Sawai
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institute of Natural Sciences
| | - Mariko Ogura
- Graduate School of Chemical Sciences and Engineering, Hokkaido University
| | - Takeshi Uchida
- Graduate School of Chemical Sciences and Engineering, Hokkaido University
- Department of Chemistry, Faculty of Science, Hokkaido University
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University
- Department of Chemistry, Faculty of Science, Hokkaido University
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
| | - Shigetoshi Aono
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institute of Natural Sciences
| |
Collapse
|
24
|
Jamil F, Teh AH, Schadich E, Saito JA, Najimudin N, Alam M. Crystal structure of truncated haemoglobin from an extremely thermophilic and acidophilic bacterium. J Biochem 2014; 156:97-106. [PMID: 24733432 DOI: 10.1093/jb/mvu023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A truncated haemoglobin (tHb) has been identified in an acidophilic and thermophilic methanotroph Methylacidiphilium infernorum. Hell's Gate Globin IV (HGbIV) and its related tHbs differ from all other bacterial tHbs due to their distinctively large sequence and polar distal haem pocket residues. Here we report the crystal structure of HGbIV determined at 1.96 Å resolution. The HGbIV structure has the distinctive 2/2 α-helical structure with extensions at both termini. It has a large distal site cavity in the haem pocket surrounded by four polar residues: His70(B9), His71(B10), Ser97(E11) and Trp137(G8). This cavity can bind bulky ligands such as a phosphate ion. Conformational shifts of His71(B10), Leu90(E4) and Leu93(E7) can also provide more space to accommodate larger ligands than the phosphate ion. The entrance/exit of such bulky ligands might be facilitated by positional flexibility in the CD1 loop, E helix and haem-propionate A. Therefore, the large cavity in HGbIV with polar His70(B9) and His71(B10), in contrast to the distal sites of other bacterial tHbs surrounded by non-polar residues, suggests its distinct physiological functions.
Collapse
Affiliation(s)
- Farrukh Jamil
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia; School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand; Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USA; School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; and Department of Microbiology, University of Hawaii, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| | - Aik-Hong Teh
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia; School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand; Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USA; School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; and Department of Microbiology, University of Hawaii, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| | - Ermin Schadich
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia; School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand; Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USA; School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; and Department of Microbiology, University of Hawaii, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| | - Jennifer A Saito
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia; School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand; Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USA; School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; and Department of Microbiology, University of Hawaii, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| | - Nazalan Najimudin
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia; School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand; Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USA; School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; and Department of Microbiology, University of Hawaii, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| | - Maqsudul Alam
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia; School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand; Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USA; School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; and Department of Microbiology, University of Hawaii, 2538 McCarthy Mall, Honolulu, HI 96822, USACentre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia; School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand; Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USA; School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; and Department of Microbiology, University of Hawaii, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| |
Collapse
|
25
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
26
|
Leiva-Eriksson N, Pin PA, Kraft T, Dohm JC, Minoche AE, Himmelbauer H, Bülow L. Differential expression patterns of non-symbiotic hemoglobins in sugar beet (Beta vulgaris ssp. vulgaris). PLANT & CELL PHYSIOLOGY 2014; 55:834-44. [PMID: 24486763 DOI: 10.1093/pcp/pcu027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Biennial sugar beet (Beta vulgaris spp. vulgaris) is a Caryophyllidae that has adapted its growth cycle to the seasonal temperature and daylength variation of temperate regions. This is the first time a holistic study of the expression pattern of non-symbiotic hemoglobins (nsHbs) is being carried out in a member of this group and under two essential environmental conditions for flowering, namely vernalization and length of photoperiod. BvHb genes were identified by sequence homology searches against the latest draft of the sugar beet genome. Three nsHb genes (BvHb1.1, BvHb1.2 and BvHb2) and one truncated Hb gene (BvHb3) were found in the genome of sugar beet. Gene expression profiling of the nsHb genes was carried out by quantitative PCR in different organs and developmental stages, as well as during vernalization and under different photoperiods. BvHb1.1 and BvHb2 showed differential expression during vernalization as well as during long and short days. The high expression of BvHb2 indicates that it has an active role in the cell, maybe even taking over some BvHb1.2 functions, except during germination where BvHb1.2 together with BvHb1.1-both Class 1 nsHbs-are highly expressed. The unprecedented finding of a leader peptide at the N-terminus of BvHb1.1, for the first time in an nsHb from higher plants, together with its observed expression indicate that it may have a very specific role due to its suggested location in chloroplasts. Our findings open up new possibilities for research, breeding and engineering since Hbs could be more involved in plant development than previously was anticipated.
Collapse
Affiliation(s)
- Nélida Leiva-Eriksson
- Department of Pure and Applied Biochemistry, Lund University, Box 124, 221.00 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
27
|
Roy J, Sen Santara S, Bose M, Mukherjee S, Saha R, Adak S. The ferrous–dioxy complex of Leishmania major globin coupled heme containing adenylate cyclase: The role of proximal histidine on its stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:615-22. [DOI: 10.1016/j.bbapap.2014.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/16/2022]
|
28
|
Sainz M, Pérez-Rontomé C, Ramos J, Mulet JM, James EK, Bhattacharjee U, Petrich JW, Becana M. Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:875-87. [PMID: 24118423 DOI: 10.1111/tpj.12340] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/09/2013] [Accepted: 09/27/2013] [Indexed: 05/09/2023]
Abstract
The heme of bacteria, plant and animal hemoglobins (Hbs) must be in the ferrous state to bind O(2) and other physiological ligands. Here we have characterized the full set of non-symbiotic (class 1 and 2) and 'truncated' (class 3) Hbs of Lotus japonicus. Class 1 Hbs are hexacoordinate, but class 2 and 3 Hbs are pentacoordinate. Three of the globins, Glb1-1, Glb2 and Glb3-1, are nodule-enhanced proteins. The O(2) affinity of Glb1-1 (50 pm) was the highest known for any Hb, and the protein may function as an O(2) scavenger. The five globins were reduced by free flavins, which transfer electrons from NAD(P)H to the heme iron under aerobic and anaerobic conditions. Class 1 Hbs were reduced at very fast rates by FAD, class 2 Hbs at slower rates by both FMN and FAD, and class 3 Hbs at intermediate rates by FMN. The members of the three globin classes were immunolocalized predominantly in the nuclei. Flavins were quantified in legume nodules and nuclei, and their concentrations were sufficient to maintain Hbs in their functional state. All Hbs, except Glb1-1, were expressed in a flavohemoglobin-deficient yeast mutant and found to confer tolerance to oxidative stress induced by methyl viologen, copper or low temperature, indicating an anti-oxidative role for the hemes. However, only Glb1-2 and Glb2 afforded protection against nitrosative stress induced by S-nitrosoglutathione. Because this compound is specifically involved in transnitrosylation reactions with thiol groups, our results suggest a contribution of the single cysteine residues of both proteins in the stress response.
Collapse
Affiliation(s)
- Martha Sainz
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080, Zaragoza, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Molitor B, Stassen M, Modi A, El-Mashtoly SF, Laurich C, Lubitz W, Dawson JH, Rother M, Frankenberg-Dinkel N. A heme-based redox sensor in the methanogenic archaeon Methanosarcina acetivorans. J Biol Chem 2013; 288:18458-72. [PMID: 23661702 PMCID: PMC3689988 DOI: 10.1074/jbc.m113.476267] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/08/2013] [Indexed: 11/06/2022] Open
Abstract
Based on a bioinformatics study, the protein MA4561 from the methanogenic archaeon Methanosarcina acetivorans was originally predicted to be a multidomain phytochrome-like photosensory kinase possibly binding open-chain tetrapyrroles. Although we were able to show that recombinantly produced and purified protein does not bind any known phytochrome chromophores, UV-visible spectroscopy revealed the presence of a heme tetrapyrrole cofactor. In contrast to many other known cytoplasmic heme-containing proteins, the heme was covalently attached via one vinyl side chain to cysteine 656 in the second GAF domain. This GAF domain by itself is sufficient for covalent attachment. Resonance Raman and magnetic circular dichroism data support a model of a six-coordinate heme species with additional features of a five-coordination structure. The heme cofactor is redox-active and able to coordinate various ligands like imidazole, dimethyl sulfide, and carbon monoxide depending on the redox state. Interestingly, the redox state of the heme cofactor has a substantial influence on autophosphorylation activity. Although reduced protein does not autophosphorylate, oxidized protein gives a strong autophosphorylation signal independent from bound external ligands. Based on its genomic localization, MA4561 is most likely a sensor kinase of a two-component system effecting regulation of the Mts system, a set of three homologous corrinoid/methyltransferase fusion protein isoforms involved in methyl sulfide metabolism. Consistent with this prediction, an M. acetivorans mutant devoid of MA4561 constitutively synthesized MtsF. On the basis of our results, we postulate a heme-based redox/dimethyl sulfide sensory function of MA4561 and propose to designate it MsmS (methyl sulfide methyltransferase-associated sensor).
Collapse
Affiliation(s)
| | - Marc Stassen
- Institute of Molecular Biosciences, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt/Main, Germany
| | - Anuja Modi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Samir F. El-Mashtoly
- Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany
| | - Christoph Laurich
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim/Ruhr, Germany, and
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim/Ruhr, Germany, and
| | - John H. Dawson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Michael Rother
- Institute of Molecular Biosciences, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt/Main, Germany
- Institute of Microbiology, Technical University Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | | |
Collapse
|
31
|
Matilla AJ, Rodríguez-Gacio MDC. Non-symbiotic hemoglobins in the life of seeds. PHYTOCHEMISTRY 2013; 87:7-15. [PMID: 23286879 DOI: 10.1016/j.phytochem.2012.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 11/13/2012] [Accepted: 11/21/2012] [Indexed: 06/01/2023]
Abstract
Non-symbiotic hemoglobins (nsHbs), ancestors of symbiotic-Hbs, are hexacoordinated dimeric proteins, for which the crystal structure is well described. According to the extent of hexacoordination, nsHbs are classified as belonging to class-1 (nsHbs1) or class-2 (nsHbs2). The nsHbs1 show weak hexacoordination, moderate rates of O(2)-binding, very small rates of O(2) dissociation, and a remarkably high affinity for O(2), all suggesting a function involving O(2) scavenging. In contrast, the nsHbs2 exhibit strong hexacoordination, low rates of O(2)-binding and moderately low O(2) dissociation and affinity, suggesting a sensing role for sustained low (μM) levels of O(2). The existence of spatial and specific expression of nsHbs1 suggests that nsHbs play tissue-specific rather than housekeeping functions. The permeation of O(2) into seeds is usually prevented during the desiccation phase and early imbibition, generating an internal hypoxic environment that leads to ATP limitation. During evolution, the seed has acquired mechanisms to prevent or reduce this hypoxic stress. The nsHbs1/NO cycle appear to be involved in modulating the redox state in the seed and in maintaining an active metabolism. Under O(2) deficit, NADH and NO are synthesized in the seed and nsHbs1 scavenges O(2), which is used to transform NO into NO(3)(-) with concomitant formation of Fe(3+)-nsHbs1. Expression of nsHbs1 is not detectable in dry viable seeds. However, in the seeds cross-talk occurs between nsHbs1 and NO during germination. This review considers the current status of our knowledge of seed nsHbs and considers key issues of further work to better understand their role in seed physiology.
Collapse
Affiliation(s)
- Angel J Matilla
- Department of Plant Physiology, University of Santiago de Compostela, 15782 Santiago de Compostela, A Coruña, Spain.
| | | |
Collapse
|
32
|
Morzan UN, Capece L, Marti MA, Estrin DA. Quaternary structure effects on the hexacoordination equilibrium in rice hemoglobin rHb1: Insights from molecular dynamics simulations. Proteins 2013; 81:863-73. [DOI: 10.1002/prot.24245] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 12/11/2012] [Accepted: 12/14/2012] [Indexed: 11/09/2022]
|
33
|
Vázquez-Limón C, Castro-Bustos S, Arredondo-Peter R. Spectroscopic analysis of moss (Ceratodon purpureus and Physcomitrella patens) recombinant non-symbiotic hemoglobins. Commun Integr Biol 2013; 5:527-30. [PMID: 23336017 PMCID: PMC3541314 DOI: 10.4161/cib.21473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Non-symbiotic hemoglobins (nsHbs) are O2-binding proteins widely distributed in land plants, including primitive bryophytes. Little is known about the properties of bryophyte nsHbs. Here, we report the spectroscopic characterization of two moss recombinant nsHbs, CerpurnsHb of Ceratodon purpureus and PhypatnsHb of Physcomitrella patens. Spectra showed that the absorption maxima of the ferrous and ferric forms of recombinant CerpurnsHb are located at 418, 531 and 557 nm and 407, 537, 569 (shoulder) and 632 (shoulder) nm, respectively, and of PhypatnsHb are located at 422, 529 and 557 nm and 407, 531, 571 (shoulder) and 647 (shoulder) nm, respectively. These absorption maxima are similar to those of rice Hb1. Also, the absorption maxima of the oxygenated ferrous form of recombinant CerpurnsHb and PhypatnsHb are located at 412, 541 and 575 nm and 414, 541 and 574 nm, respectively, similar to those of oxygenated rice Hb1 and cowpea leghemoglobin II. This evidence indicates that CerpurnsHb and PhypatnsHb are mostly hexacoordinate and that they bind O2.
Collapse
Affiliation(s)
- Consuelo Vázquez-Limón
- Laboratorio de Biofísica y Biología Molecular; Departamento de Bioquímica y Biología Molecular; Facultad de Ciencias; Universidad Autónoma del Estado de Morelos; Cuernavaca, Morelos México
| | | | | |
Collapse
|
34
|
Abstract
Approximately, 20 years ago, a haemoglobin gene was identified within the genome of the cyanobacterium Nostoc commune. Haemoglobins have now been confirmed in multiple species of photosynthetic microbes beyond N. commune, and the diversity of these proteins has recently come under increased scrutiny. This chapter summarizes the state of knowledge concerning the phylogeny, physiology and chemistry of globins in cyanobacteria and green algae. Sequence information is by far the best developed and the most rapidly expanding aspect of the field. Structural and ligand-binding properties have been described for just a few proteins. Physiological data are available for even fewer. Although activities such as nitric oxide dioxygenation and oxygen scavenging are strong candidates for cellular function, dedicated studies will be required to complete the story on this intriguing and ancient group of proteins.
Collapse
|
35
|
Vázquez-Limón C, Hoogewijs D, Vinogradov SN, Arredondo-Peter R. The evolution of land plant hemoglobins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 191-192:71-81. [PMID: 22682566 DOI: 10.1016/j.plantsci.2012.04.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/24/2012] [Accepted: 04/25/2012] [Indexed: 05/04/2023]
Abstract
This review discusses the evolution of land plant hemoglobins within the broader context of eukaryote hemoglobins and the three families of bacterial globins. Most eukaryote hemoglobins, including metazoan globins and the symbiotic and non-symbiotic plant hemoglobins, are homologous to the bacterial 3/3-fold flavohemoglobins. The remaining plant hemoglobins are homologous to the bacterial 2/2-fold group 2 hemoglobins. We have proposed that all eukaryote globins were acquired via horizontal gene transfer concomitant with the endosymbiotic events responsible for the origin of mitochondria and chloroplasts. Although the 3/3 hemoglobins originated in the ancestor of green algae and plants prior to the emergence of embryophytes at about 450 mya, the 2/2 hemoglobins appear to have originated via horizontal gene transfer from a bacterium ancestral to present day Chloroflexi. Unlike the 2/2 hemoglobins, the evolution of the 3/3 hemoglobins was accompanied by duplication, diversification, and functional adaptations. Duplication of the ancestral plant nshb gene into the nshb-1 and nshb-2 lineages occurred prior to the monocot-dicot divergence at ca. 140 mya. It was followed by the emergence of symbiotic hemoglobins from a non-symbiotic hemoglobin precursor and further specialization, leading to leghemoglobins in N₂-fixing legume nodules concomitant with the origin of nodulation at ca. 60 mya. The transition of non-symbiotic to symbiotic hemoglobins (including to leghemoglobins) was accompanied by the alteration of heme-Fe coordination from hexa- to penta-coordination. Additional genomic information about Charophyte algae, the sister group to land plants, is required for the further clarification of plant globin phylogeny.
Collapse
Affiliation(s)
- Consuelo Vázquez-Limón
- Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | | | | | | |
Collapse
|
36
|
Carrica MDC, Fernandez I, Martí MA, Paris G, Goldbaum FA. The NtrY/X two-component system of Brucella spp. acts as a redox sensor and regulates the expression of nitrogen respiration enzymes. Mol Microbiol 2012; 85:39-50. [DOI: 10.1111/j.1365-2958.2012.08095.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Shi X, Wang X, Peng F, Zhao Y. Molecular cloning and characterization of a nonsymbiotic hemoglobin gene (GLB1) from Malus hupehensis Rehd. with heterologous expression in tomato. Mol Biol Rep 2012; 39:8075-82. [DOI: 10.1007/s11033-012-1654-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
|
38
|
Meilhoc E, Boscari A, Bruand C, Puppo A, Brouquisse R. Nitric oxide in legume-rhizobium symbiosis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:573-81. [PMID: 21893254 DOI: 10.1016/j.plantsci.2011.04.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/07/2011] [Accepted: 04/12/2011] [Indexed: 05/08/2023]
Abstract
Nitric oxide (NO) is a gaseous signaling molecule with a broad spectrum of regulatory functions in plant growth and development. NO has been found to be involved in various pathogenic or symbiotic plant-microbe interactions. During the last decade, increasing evidence of the occurrence of NO during legume-rhizobium symbioses has been reported, from early steps of plant-bacteria interaction, to the nitrogen-fixing step in mature nodules. This review focuses on recent advances on NO production and function in nitrogen-fixing symbiosis. First, the potential plant and bacterial sources of NO, including NO synthase-like, nitrate reductase or electron transfer chains of both partners, are presented. Then responses of plant and bacterial cells to the presence of NO are presented in the context of the N(2)-fixing symbiosis. Finally, the roles of NO as either a regulatory signal of development, or a toxic compound with inhibitory effects on nitrogen fixation, or an intermediate involved in energy metabolism, during symbiosis establishment and nodule functioning are discussed.
Collapse
Affiliation(s)
- Eliane Meilhoc
- INRA, Laboratoire des Interactions Plantes-Microorganismes, UMR441, F-31326 Castanet-Tolosan, France
| | | | | | | | | |
Collapse
|
39
|
Parent C, Crèvecoeur M, Capelli N, Dat JF. Contrasting growth and adaptive responses of two oak species to flooding stress: role of non-symbiotic haemoglobin. PLANT, CELL & ENVIRONMENT 2011; 34:1113-1126. [PMID: 21410709 DOI: 10.1111/j.1365-3040.2011.02309.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Soil flooding is an environmental constraint that is increasingly important for forest ecosystems, affecting tree growth and regeneration. As a result, selection pressure will alter forest diversity and distribution by favouring tree species tolerant of soil oxygen deprivation. Sessile and pedunculate oaks are the most abundant oak species and they exhibit a strong differential tolerance to waterlogging. In order to gain some understanding of the mechanisms of tolerance of both species to hypoxia, we undertook the characterization of the physiological, morphological, cellular and molecular responses of both species to flooding stress. Our results indicate that pedunculate oak, the more tolerant species, succeeded in maintaining its growth, water status and photosynthetic activity at a higher level than sessile oak. Furthermore, pedunculate oak developed aerenchyma in its root cortex as well as adventitious roots. The later exhibited a strong accumulation of class1 non-symbiotic haemoglobin localized by in situ hybridization in the protoderm and in some cortical cells. In conclusion, the higher tolerance of pedunculate oak to flooding was associated with an enhanced capacity to maintain photosynthesis and water homeostasis, coupled with the development of adaptive features (aerenchyma, adventitious roots) and with a higher expression of non-symbiotic haemoglobin in the roots.
Collapse
Affiliation(s)
- Claire Parent
- Laboratoire de Chrono-Environnement,,Université de Franche-Comté, Besançon Cedex, France
| | | | | | | |
Collapse
|
40
|
Kakar S, Sturms R, Tiffany A, Nix JC, DiSpirito AA, Hargrove MS. Crystal Structures of Parasponia and Trema Hemoglobins: Differential Heme Coordination Is Linked to Quaternary Structure. Biochemistry 2011; 50:4273-80. [DOI: 10.1021/bi2002423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Smita Kakar
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Ryan Sturms
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Andrea Tiffany
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Jay C. Nix
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alan A. DiSpirito
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Mark S. Hargrove
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
41
|
Igamberdiev AU, Bykova NV, Hill RD. Structural and functional properties of class 1 plant hemoglobins. IUBMB Life 2011; 63:146-52. [DOI: 10.1002/iub.439] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
42
|
Horchani F, Prévot M, Boscari A, Evangelisti E, Meilhoc E, Bruand C, Raymond P, Boncompagni E, Aschi-Smiti S, Puppo A, Brouquisse R. Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules. PLANT PHYSIOLOGY 2011; 155:1023-36. [PMID: 21139086 PMCID: PMC3032450 DOI: 10.1104/pp.110.166140] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 11/29/2010] [Indexed: 05/09/2023]
Abstract
Nitric oxide (NO) is a signaling and defense molecule of major importance in living organisms. In the model legume Medicago truncatula, NO production has been detected in the nitrogen fixation zone of the nodule, but the systems responsible for its synthesis are yet unknown and its role in symbiosis is far from being elucidated. In this work, using pharmacological and genetic approaches, we explored the enzymatic source of NO production in M. truncatula-Sinorhizobium meliloti nodules under normoxic and hypoxic conditions. When transferred from normoxia to hypoxia, nodule NO production was rapidly increased, indicating that NO production capacity is present in functioning nodules and may be promptly up-regulated in response to decreased oxygen availability. Contrary to roots and leaves, nodule NO production was stimulated by nitrate and nitrite and inhibited by tungstate, a nitrate reductase inhibitor. Nodules obtained with either plant nitrate reductase RNA interference double knockdown (MtNR1/2) or bacterial nitrate reductase-deficient (napA) and nitrite reductase-deficient (nirK) mutants, or both, exhibited reduced nitrate or nitrite reductase activities and NO production levels. Moreover, NO production in nodules was found to be inhibited by electron transfer chain inhibitors, and nodule energy state (ATP-ADP ratio) was significantly reduced when nodules were incubated in the presence of tungstate. Our data indicate that both plant and bacterial nitrate reductase and electron transfer chains are involved in NO synthesis. We propose the existence of a nitrate-NO respiration process in nodules that could play a role in the maintenance of the energy status required for nitrogen fixation under oxygen-limiting conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Renaud Brouquisse
- UMR INRA 1301, CNRS 6243, Université Nice Sophia Antipolis, Interactions Biotiques et Santé Végétale, Institut Agrobiotech, 06903 Sophia Antipolis cedex, France (F.H., M.P., A.B., E.E., E.B., A.P., R.B.); Laboratoire des Interactions Plantes Microorganismes, UMR INRA 441, CNRS 2594, 31326 Castanet Tolosan, France (E.M., C.B.); UR d’Ecologie Végétale, Département des Sciences Biologiques, Faculté des Sciences de Tunis, 1060 Tunis, Tunisia (F.H., S.A.-S.); UMR INRA 619, Biologie du Fruit, F–33883 Villenave d’Ornon cedex, France (P.R.)
| |
Collapse
|
43
|
Vinogradov SN, Fernández I, Hoogewijs D, Arredondo-Peter R. Phylogenetic relationships of 3/3 and 2/2 hemoglobins in Archaeplastida genomes to bacterial and other eukaryote hemoglobins. MOLECULAR PLANT 2011; 4:42-58. [PMID: 20952597 DOI: 10.1093/mp/ssq040] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Land plants and algae form a supergroup, the Archaeplastida, believed to be monophyletic. We report the results of an analysis of the phylogeny of putative globins in the currently available genomes to bacterial and other eukaryote hemoglobins (Hbs). Archaeplastida genomes have 3/3 and 2/2 Hbs, with the land plant genomes having group 2 2/2 Hbs, except for the unexpected occurrence of two group 1 2/2 Hbs in Ricinus communis. Bayesian analysis shows that plant 3/3 Hbs are related to vertebrate neuroglobins and bacterial flavohemoglobins (FHbs). We sought to define the bacterial groups, whose ancestors shared the precursors of Archaeplastida Hbs, via Bayesian and neighbor-joining analyses based on COBALT alignment of representative sets of bacterial 3/3 FHb-like globins and group 1 and 2 2/2 Hbs with the corresponding Archaeplastida Hbs. The results suggest that the Archaeplastida 3/3 and group 1 2/2 Hbs could have originated from the horizontal gene transfers (HGTs) that accompanied the two generally accepted endosymbioses of a proteobacterium and a cyanobacterium with a eukaryote ancestor. In contrast, the origin of the group 2 2/2 Hbs unexpectedly appears to involve HGT from a bacterium ancestral to Chloroflexi, Deinococcales, Bacilli, and Actinomycetes. Furthermore, although intron positions and phases are mostly conserved among the land plant 3/3 and 2/2 globin genes, introns are absent in the algal 3/3 genes and intron positions and phases are highly variable in their 2/2 genes. Thus, introns are irrelevant to globin evolution in Archaeplastida.
Collapse
Affiliation(s)
- Serge N Vinogradov
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
44
|
Nienhaus K, Dominici P, Astegno A, Abbruzzetti S, Viappiani C, Nienhaus GU. Ligand migration and binding in nonsymbiotic hemoglobins of Arabidopsis thaliana. Biochemistry 2010; 49:7448-58. [PMID: 20666470 DOI: 10.1021/bi100768g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have studied carbon monoxide (CO) migration and binding in the nonsymbiotic hemoglobins AHb1 and AHb2 of Arabidopsis thaliana using Fourier transform infrared (FTIR) spectroscopy combined with temperature derivative spectroscopy (TDS) at cryogenic temperatures. Both proteins have similar amino acid sequences but display pronounced differences in ligand binding properties, at both physiological and cryogenic temperatures. Near neutral pH, the distal HisE7 side chain is close to the heme-bound ligand in the majority of AHb1-CO molecules, as indicated by a low CO stretching frequency at 1921 cm(-1). In this fraction, two CO docking sites can be populated, the primary site B and the secondary site C. When the pH is lowered, a high-frequency stretching band at approximately 1964 cm(-1) grows at the expense of the low-frequency band, indicating that HisE7 protonates and, concomitantly, moves away from the bound ligand. Geminate rebinding barriers are markedly different for the two conformations, and docking site C is not accessible in the low-pH conformation. Rebinding of NO ligands was observed only from site B of AHb1, regardless of conformation. In AHb2, the HisE7 side chain is removed from the bound ligand; rebinding barriers are low, and CO molecules can populate only primary docking site B. These results are interpreted in terms of differences in the active site structures and physiological functions.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Structure and reactivity of hexacoordinate hemoglobins. Biophys Chem 2010; 152:1-14. [PMID: 20933319 DOI: 10.1016/j.bpc.2010.08.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/20/2010] [Accepted: 08/21/2010] [Indexed: 01/07/2023]
Abstract
The heme prosthetic group in hemoglobins is most often attached to the globin through coordination of either one or two histidine side chains. Those proteins with one histidine coordinating the heme iron are called "pentacoordinate" hemoglobins, a group represented by red blood cell hemoglobin and most other oxygen transporters. Those with two histidines are called "hexacoordinate hemoglobins", which have broad representation among eukaryotes. Coordination of the second histidine in hexacoordinate Hbs is reversible, allowing for binding of exogenous ligands like oxygen, carbon monoxide, and nitric oxide. Research over the past several years has produced a fairly detailed picture of the structure and biochemistry of hexacoordinate hemoglobins from several species including neuroglobin and cytoglobin in animals, and the nonsymbiotic hemoglobins in plants. However, a clear understanding of the physiological functions of these proteins remains an elusive goal.
Collapse
|
46
|
Zou X, Jiang Y, Liu L, Zhang Z, Zheng Y. Identification of transcriptome induced in roots of maize seedlings at the late stage of waterlogging. BMC PLANT BIOLOGY 2010; 10:189. [PMID: 20738849 PMCID: PMC2956539 DOI: 10.1186/1471-2229-10-189] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 08/25/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants respond to low oxygen stress, particularly that caused by waterlogging, by altering transcription and translation. Previous studies have mostly focused on revealing the mechanism of the response at the early stage, and there is limited information about the transcriptional profile of genes in maize roots at the late stage of waterlogging. The genetic basis of waterlogging tolerance is largely unknown. In this study, the transcriptome at the late stage of waterlogging was assayed in root cells of the tolerant inbred line HZ32, using suppression subtractive hybridization (SSH). A forward SSH library using RNA populations from four time points (12 h, 16 h, 20 h and 24 h) after waterlogging treatment was constructed to reveal up-regulated genes, and transcriptional and linkage data was integrated to identify candidate genes for waterlogging tolerance. RESULTS Reverse Northern analysis of a set of 768 cDNA clones from the SSH library revealed a large number of genes were up-regulated by waterlogging. A total of 465 ESTs were assembled into 296 unigenes. Bioinformatic analysis revealed that the genes were involved in complex pathways, such as signal transduction, protein degradation, ion transport, carbon and amino acid metabolism, and transcriptional and translational regulation, and might play important roles at the late stage of the response to waterlogging. A significant number of unigenes were of unknown function. Approximately 67% of the unigenes could be aligned on the maize genome and 63 of them were co-located within reported QTLs. CONCLUSION The late response to waterlogging in maize roots involves a broad spectrum of genes, which are mainly associated with two response processes: defense at the early stage and adaption at the late stage. Signal transduction plays a key role in activating genes related to the tolerance mechanism for survival during prolonged waterlogging. The crosstalk between carbon and amino acid metabolism reveals that amino acid metabolism performs two main roles at the late stage: the regulation of cytoplasmic pH and energy supply through breakdown of the carbon skeleton.
Collapse
Affiliation(s)
- Xiling Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanyuan Jiang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yonglian Zheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
47
|
The PpaA/AerR regulators of photosynthesis gene expression from anoxygenic phototrophic proteobacteria contain heme-binding SCHIC domains. J Bacteriol 2010; 192:5253-6. [PMID: 20675482 DOI: 10.1128/jb.00736-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SCHIC domain of the B12-binding domain family present in the Rhodobacter sphaeroides AppA protein binds heme and senses oxygen. Here we show that the predicted SCHIC domain PpaA/AerR regulators also bind heme and respond to oxygen in vitro, despite their low sequence identity with AppA.
Collapse
|
48
|
Nienhaus K, Nienhaus GU. Ligand dynamics in heme proteins observed by Fourier transform infrared-temperature derivative spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:1030-41. [PMID: 20656073 DOI: 10.1016/j.bbapap.2010.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 11/29/2022]
Abstract
Fourier transform infrared (FTIR) spectroscopy is a powerful tool for the investigation of protein-ligand interactions in heme proteins. Nitric oxide and carbon monoxide are attractive physiologically relevant ligands because their bond stretching vibrations give rise to strong mid-infrared absorption bands that can be measured with exquisite sensitivity and precision using photolysis difference spectroscopy at cryogenic temperatures. These stretching bands are fine-tuned by electrostatic interactions with the environment and, therefore, ligands can be utilized as local probes of structure and dynamics. Bound to the heme iron, the ligand stretching bands are susceptible to changes in the iron-ligand bond and the electric field at the active site. Upon photolysis, the vibrational bands display changes due to ligand relocation to docking sites within the protein, rotational motions of the ligand in these sites and protein conformational changes. Photolysis difference spectra taken over a wide temperature range (3-300K) using specific temperature protocols for sample photodissociation can provide detailed insights into both protein and ligand dynamics. Moreover, temperature-derivative spectroscopy (TDS) has proven to be a particularly powerful technique to study protein-ligand interactions. The FTIR-TDS technique has been extensively applied to studies of carbon monoxide binding to heme proteins, whereas measurements with nitric oxide are still scarce. Here we describe infrared cryo-spectroscopy and present a variety of applications to the study of protein-ligand interactions in heme proteins. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Karin Nienhaus
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics and Center for Functional Nanostructures, Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe, Germany
| | | |
Collapse
|
49
|
Yoon J, Herzik MA, Winter MB, Tran R, Olea C, Marletta MA. Structure and properties of a bis-histidyl ligated globin from Caenorhabditis elegans. Biochemistry 2010; 49:5662-70. [PMID: 20518498 DOI: 10.1021/bi100710a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Globins are heme-containing proteins that are best known for their roles in oxygen (O(2)) transport and storage. However, more diverse roles of globins in biology are being revealed, including gas and redox sensing. In the nematode Caenorhabditis elegans, 33 globin or globin-like genes were recently identified, some of which are known to be expressed in the sensory neurons of the worm and linked to O(2) sensing behavior. Here, we describe GLB-6, a novel globin-like protein expressed in the neurons of C. elegans. Recombinantly expressed full-length GLB-6 contains a heme site with spectral features that are similar to those of other bis-histidyl ligated globins, such as neuroglobin and cytoglobin. In contrast to these globins, however, ligands such as CO, NO, and CN(-) do not bind to the heme in GLB-6, demonstrating that the endogenous histidine ligands are likely very tightly coordinated. Additionally, GLB-6 exhibits rapid two-state autoxidation kinetics in the presence of physiological O(2) levels as well as a low redox potential (-193 +/- 2 mV). A high-resolution (1.40 A) crystal structure of the ferric form of the heme domain of GLB-6 confirms both the putative globin fold and bis-histidyl ligation and also demonstrates key structural features that can be correlated with the unusual ligand binding and redox properties exhibited by the full-length protein. Taken together, the biochemical properties of GLB-6 suggest that this neural protein would most likely serve as a physiological sensor for O(2) in C. elegans via redox signaling and/or electron transfer.
Collapse
Affiliation(s)
- Jungjoo Yoon
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
50
|
Hebelstrup KH, Christiansen MW, Carciofi M, Tauris B, Brinch-Pedersen H, Holm PB. UCE: A uracil excision (USER)-based toolbox for transformation of cereals. PLANT METHODS 2010; 6:15. [PMID: 20537147 PMCID: PMC2892451 DOI: 10.1186/1746-4811-6-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/10/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND Cloning of gene casettes and other DNA sequences into the conventional vectors for biolistic or Agrobacterium-mediated transformation is hampered by a limited amount of unique restriction sites and by the difficulties often encountered when ligating small single strand DNA overhangs. These problems are obviated by "The Uracil Specific Excision Reagent (USER)" technology (New England Biolabs) which thus offers a new and very time-efficient method for engineering of big and complex plasmids. RESULTS By application of the USER system, we engineered a collection of binary vectors, termed UCE (USER cereal), ready for use in cloning of complex constructs into the T-DNA. A series of the vectors were tested and shown to perform successfully in Agrobacterium-mediated transformation of barley (Hordeum vulgare L.) as well as in biolistic transformation of endosperm cells conferring transient expression. CONCLUSIONS The USER technology is very well suited for generating a toolbox of vectors for transformation and it opens an opportunity to engineer complex vectors, where several genetic elements of different origin are combined in a single cloning reaction.
Collapse
Affiliation(s)
- Kim H Hebelstrup
- Aarhus University, Faculty of Agricultural Sciences, Department of Genetics and Biotechnology, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Michael W Christiansen
- Aarhus University, Faculty of Agricultural Sciences, Department of Genetics and Biotechnology, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Massimiliano Carciofi
- Aarhus University, Faculty of Agricultural Sciences, Department of Genetics and Biotechnology, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Birgitte Tauris
- Aarhus University, Faculty of Agricultural Sciences, Department of Genetics and Biotechnology, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Henrik Brinch-Pedersen
- Aarhus University, Faculty of Agricultural Sciences, Department of Genetics and Biotechnology, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Preben B Holm
- Aarhus University, Faculty of Agricultural Sciences, Department of Genetics and Biotechnology, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| |
Collapse
|