1
|
Wen S, Arakawa H, Tamai I. Uric acid in health and disease: From physiological functions to pathogenic mechanisms. Pharmacol Ther 2024; 256:108615. [PMID: 38382882 DOI: 10.1016/j.pharmthera.2024.108615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Owing to renal reabsorption and the loss of uricase activity, uric acid (UA) is strictly maintained at a higher physiological level in humans than in other mammals, which provides a survival advantage during evolution but increases susceptibility to certain diseases such as gout. Although monosodium urate (MSU) crystal precipitation has been detected in different tissues of patients as a trigger for disease, the pathological role of soluble UA remains controversial due to the lack of causality in the clinical setting. Abnormal elevation or reduction of UA levels has been linked to some of pathological status, also known as U-shaped association, implying that the physiological levels of UA regulated by multiple enzymes and transporters are crucial for the maintenance of health. In addition, the protective potential of UA has also been proposed in aging and some diseases. Therefore, the role of UA as a double-edged sword in humans is determined by its physiological or non-physiological levels. In this review, we summarize biosynthesis, membrane transport, and physiological functions of UA. Then, we discuss the pathological involvement of hyperuricemia and hypouricemia as well as the underlying mechanisms by which UA at abnormal levels regulates the onset and progression of diseases. Finally, pharmacological strategies for urate-lowering therapy (ULT) are introduced, and current challenges in UA study and future perspectives are also described.
Collapse
Affiliation(s)
- Shijie Wen
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
2
|
Hsin CH, Kuehne A, Gu Y, Jedlitschky G, Hagos Y, Gründemann D, Fuhr U. In vitro validation of an in vivo phenotyping drug cocktail for major drug transporters in humans. Eur J Pharm Sci 2023; 186:106459. [PMID: 37142000 DOI: 10.1016/j.ejps.2023.106459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/19/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
PURPOSE Cocktails of transporter probe drugs are used in vivo to assess transporter activity and respective drug-drug interactions. An inhibitory effect of components on transporter activities should be ruled out. Here, for a clinically tested cocktail consisting of adefovir, digoxin, metformin, sitagliptin, and pitavastatin, inhibition of major transporters by individual probe substrates was investigated in vitro. METHODS Transporter transfected HEK293 cells were used in all evaluations. Cell-based assays were applied for uptake by human organic cation transporters 1/2 (hOCT1/2), organic anion transporters 1/3 (hOAT1/3), multidrug and toxin extrusion proteins 1/2K (hMATE1/2K), and organic anion transporter polypeptide 1B1 (hOATP1B1). For P-glycoprotein (hMDR1) a cell-based efflux assay was used whereas an inside-out vesicle-based assay was used for the bile salt export pump (hBSEP). All assays used standard substrates and established inhibitors (as positive controls). Inhibition experiments using clinically achievable concentrations of potential perpetrators at the relevant transporter expression site were carried out initially. If there was a significant effect, the inhibition potency (Ki) was studied in detail. RESULTS In the inhibition tests, only sitagliptin had an effect and reduced hOCT1- and hOCT2- mediated metformin uptake and hMATE2K mediated MPP+ uptake by more than 70%, 80%, and 30%, respectively. The ratios of unbound Cmax (observed clinically) to Ki of sitagliptin were low with 0.009, 0.03, and 0.001 for hOCT1, hOCT2, and hMATE2K, respectively. CONCLUSION The inhibition of hOCT2 in vitro by sitagliptin is in agreement with the borderline inhibition of renal metformin elimination observed clinically, supporting a dose reduction of sitagliptin in the cocktail.
Collapse
Affiliation(s)
- Chih-Hsuan Hsin
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | | | - Yi Gu
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Gabriele Jedlitschky
- Department of General Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | | | - Dirk Gründemann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Uwe Fuhr
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany.
| |
Collapse
|
3
|
Lee KR, Chang JE, Chae YJ. Sensitive and valid assay for reliable evaluation of drug interactions mediated by human organic anion transporter 1 and 3 using 5-carboxyfluorescein. ANAL SCI 2022; 38:1347-1357. [PMID: 35882772 DOI: 10.1007/s44211-022-00166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
Drug interactions can induce significant clinical impacts, either by increasing adverse effects or by decreasing the therapeutic effect of drugs, and thus, need to be explored thoroughly. Clinically significant drug interactions can be induced by organic anion transporter 1 (OAT1) and OAT3 when concomitant medications competitively interact with the transporters. The purposes of this study were to develop and validate a sensitive and selective analytical method for 5-carboxyfluorescein (5-CF) and optimize the experimental conditions for interaction studies. An analytical method using high-performance liquid chromatography (HPLC) equipped with a fluorescence detector was validated for accuracy, precision, matrix effect, recovery, stability, dilutional integrity, and carry-over effect. In addition, the 5-CF concentration, incubation period, and washing conditions for interaction study were optimized. Using a valid analytical method and optimized conditions, we performed an interaction study for OAT1 and OAT3 using 26 test articles. Some of the test articles showed strong inhibitory potency for the transporters, with IC50 values close to or less than 10 μM. The valid analysis method and optimized systems developed in this study can be utilized to improve the predictability of drug interactions in humans and consequently aid in successful disease treatment by maintaining appropriate systemic exposures.
Collapse
Affiliation(s)
- Kyeong-Ryoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.,Department of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Ji-Eun Chang
- College of Pharmacy, Dongduk Women's University, Seoul, 02748, Republic of Korea
| | - Yoon-Jee Chae
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju, 55338, Republic of Korea.
| |
Collapse
|
4
|
Qin Y, Zhang X, Tao H, Wu Y, Yan J, Liao L, Meng J, Lin F. Ameliorative effect and mechanism of Yi-Suan-Cha against hyperuricemia in rats. J Clin Lab Anal 2021; 35:e23859. [PMID: 34251052 PMCID: PMC8373314 DOI: 10.1002/jcla.23859] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/20/2021] [Accepted: 04/29/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND This study aimed to evaluate the urate-lowering effects of Yi-Suan-Cha and explore its underlying mechanisms in experimental hyperuricemia induced in rats. METHODS Forty-eight male SD rats were randomly allocated into normal control, model, allopurinol, benzbromarone, low-dose Yi-Suan-Cha (0.2 g/ml), and high-dose Yi-Suan-Cha (0.4 g/ml) groups (n = 8 rats per group). Rat models of hyperuricemia were established through intragastric administration of adenine 25 mg/kg + potassium oxalate 300 mg/kg for 3 weeks. After the last administration, serum uric acid, creatinine, and urea nitrogen levels were measured. Renal histopathology was observed by hematoxylin-eosin staining. Xanthine oxidase level in serum and liver homogenates was measured by ELISA. The protein and mRNA expression of URAT1, ABCG2, OAT1, and GLUT9 in the kidney was detected by Western blotting and RT-PCR, respectively. RESULTS The serum uric acid levels were significantly lowered in all medication groups than in the model group. The benzbromarone and both Yi-Suan-Cha groups showed clear kidney structures with no obvious abnormalities. Compared with the normal control group, the model group showed increased URAT1/GLUT9 protein expression and decreased ABCG2/OAT1 protein expression. Compared with the model group, both Yi-Suan-Cha groups showed decreased URAT1/GLUT9 protein expression and increased ABCG2/OAT1 protein expression. Compared with that in the normal control group, URAT1/GLUT9 mRNA expression increased in the model group. Compared with the model group, the low-dose and high-dose Yi-Suan-Cha groups showed decreased URAT1/GLUT9 mRNA expression and increased ABCG2/OAT1 mRNA expression. CONCLUSION Yi-Suan-Cha may lower uric acid level by downregulating URAT1/GLUT9 expression and upregulating ABCG2/OAT1 expression.
Collapse
Affiliation(s)
- Yuanyuan Qin
- Department of Clinical LaboratoryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Xuan Zhang
- Department of Clinical LaboratoryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Hui Tao
- Guangxi Medical CollegeNanningChina
| | - Yangyang Wu
- Department of Clinical LaboratoryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Jie Yan
- Department of Clinical LaboratoryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Lin Liao
- Department of Clinical LaboratoryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Jianjun Meng
- The First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Faquan Lin
- Department of Clinical LaboratoryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| |
Collapse
|
5
|
Arakawa H, Amezawa N, Kawakatsu Y, Tamai I. Renal Reabsorptive Transport of Uric Acid Precursor Xanthine by URAT1 and GLUT9. Biol Pharm Bull 2021; 43:1792-1798. [PMID: 33132325 DOI: 10.1248/bpb.b20-00597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Xanthine and hypoxanthine are intermediate metabolites of uric acid and a source of reactive oxidative species (ROS) by xanthine oxidoreductase (XOR), suggesting that facilitating their elimination is beneficial. Since they are reabsorbed in renal proximal tubules, we investigated their reabsorption mechanism by focusing on the renal uric acid transporters URAT1 and GLUT9, and examined the effect of clinically used URAT1 inhibitor on their renal clearance when their plasma concentration is increased by XOR inhibitor. Uptake study for [3H]xanthine and [3H]hypoxanthine was performed using URAT1- and GLUT9-expressing Xenopus oocytes. Transcellular transport study for [3H]xanthine was carried out using Madin-Darby canine kidney (MDCK)II cells co-expressing URAT1 and GLUT9. In in vivo pharmacokinetic study, renal clearance of xanthine was estimated based on plasma concentration and urinary recovery. Uptake by URAT1- and GLUT9-expressing oocytes demonstrated that xanthine is a substrate of URAT1 and GLUT9, while hypoxanthine is not. Transcellular transport of xanthine in MDCKII cells co-expressing URAT1 and GLUT9 was significantly higher than those in mock cells and cells expressing URAT1 or GLUT9 alone. Furthermore, dotinurad, a URAT1 inhibitor, increased renal clearance of xanthine in rats treated with topiroxostat to inhibit XOR. It was suggested that xanthine is reabsorbed in the same manner as uric acid through URAT1 and GLUT9, while hypoxanthine is not. Accordingly, it is expected that treatment with XOR and URAT1 inhibitors will effectively decrease purine pools in the body and prevent cell injury due to ROS generated during XOR-mediated reactions.
Collapse
Affiliation(s)
- Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Natsumi Amezawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Yu Kawakatsu
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|
6
|
Yuasa H, Yasujima T, Inoue K. Current Understanding of the Intestinal Absorption of Nucleobases and Analogs. Biol Pharm Bull 2021; 43:1293-1300. [PMID: 32879202 DOI: 10.1248/bpb.b20-00342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has long been suggested that a Na+-dependent carrier-mediated transport system is involved in the absorption of nucleobases and analogs, including some drugs currently in therapeutic use, for their uptake at the brush border membrane of epithelial cells in the small intestine, mainly based on studies in non-primate experimental animals. The presence of this transport system was indeed proved by the recent identification of sodium-dependent nucleobase transporter 1 (SNBT1/Slc23a4) as its molecular entity in rats. However, this transporter has been found to be genetically deficient in humans and higher primates. Aware of this deficiency, we need to revisit the issue of the absorption of these compounds in the human small intestine so that we can understand the mechanisms and gain information to assure the more rational use and development of drugs analogous to nucleobases. Here, we review the current understanding of the intestinal absorption of nucleobases and analogs. This includes recent knowledge about the efflux transport of those compounds across the basolateral membrane when exiting epithelial cells, following brush border uptake, in order to complete the overall absorption process; the facilitative transporters of equilibrative nucleoside transporter 1 (ENT1/SLC29A1) and equilibrative nucleobase transporter 1 (ENBT1/SLC43A3) may be involved in that in many animal species, including human and rat, without any major species differences.
Collapse
Affiliation(s)
- Hiroaki Yuasa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tomoya Yasujima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
7
|
Sun A, Wang J. Choroid Plexus and Drug Removal Mechanisms. AAPS JOURNAL 2021; 23:61. [PMID: 33942198 DOI: 10.1208/s12248-021-00587-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023]
Abstract
Timely and efficient removal of xenobiotics and metabolites from the brain is crucial in maintaining the homeostasis and normal function of the brain. The choroid plexus (CP) forms the blood-cerebrospinal fluid barrier and vitally removes drugs and wastes from the brain through several co-existing clearance mechanisms. The CP epithelial (CPE) cells synthesize and secrete the cerebrospinal fluid (CSF). As the CSF passes through the ventricular and subarachnoid spaces and eventually drains into the general circulation, it collects and removes drugs, toxins, and metabolic wastes from the brain. This bulk flow of the CSF serves as a default and non-selective pathway for the removal of solutes and macromolecules from the brain interstitium. Besides clearance by CSF bulk flow, the CPE cells express several multispecific membrane transporters to actively transport substrates from the CSF side into the blood side. In addition, several phase I and II drug-metabolizing enzymes are expressed in the CPE cells, which enzymatically inactivate a broad spectrum of reactive or toxic substances. This review summarizes our current knowledge of the functional characteristics and key contributors to the various clearance pathways in the CP-CSF system, overviewing recent developments in our understanding of CSF flow dynamics and the functional roles of CP uptake and efflux transporters in influencing CSF drug concentrations.
Collapse
Affiliation(s)
- Austin Sun
- Department of Pharmaceutics, University of Washington, Health Science Building Room H-272J, Box 357610, Seattle, Washington, 98195-7610, USA
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Health Science Building Room H-272J, Box 357610, Seattle, Washington, 98195-7610, USA.
| |
Collapse
|
8
|
Nakanishi T, Nakamura Y, Umeno J. Recent advances in studies of SLCO2A1 as a key regulator of the delivery of prostaglandins to their sites of action. Pharmacol Ther 2021; 223:107803. [PMID: 33465398 DOI: 10.1016/j.pharmthera.2021.107803] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023]
Abstract
Solute carrier organic anion transporter family member 2A1 (SLCO2A1, also known as PGT, OATP2A1, PHOAR2, or SLC21A2) is a plasma membrane transporter consisting of 12 transmembrane domains. It is ubiquitously expressed in tissues, and mediates the membrane transport of prostaglandins (PGs, mainly PGE2, PGF2α, PGD2) and thromboxanes (e.g., TxB2). SLCO2A1-mediated transport is electrogenic and is facilitated by an outwardly directed gradient of lactate. PGs imported by SLCO2A1 are rapidly oxidized by cytoplasmic 15-hydroxyprostaglandin dehydrogenase (15-PGDH, encoded by HPGD). Accumulated evidence suggests that SLCO2A1 plays critical roles in many physiological processes in mammals, and it is considered a potential pharmacological target for diabetic foot ulcer treatment, antipyresis, and non-hormonal contraception. Furthermore, whole-exome analyses suggest that recessive inheritance of SLCO2A1 mutations is associated with two refractory diseases, primary hypertrophic osteoarthropathy (PHO) and chronic enteropathy associated with SLCO2A1 (CEAS). Intriguingly, SLCO2A1 is also a key component of the Maxi-Cl channel, which regulates fluxes of inorganic and organic anions, including ATP. Further study of the bimodal function of SLCO2A1 as a transporter and ion channel is expected to throw new light on the complex pathology of human diseases. Here, we review and summarize recent information on the molecular functions of SLCO2A1, and we discuss its pathophysiological significance.
Collapse
Affiliation(s)
- Takeo Nakanishi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma 370-0033, Japan.
| | - Yoshinobu Nakamura
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma 370-0033, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
9
|
Ali Y, Shams T, Cheng Z, Li Y, Chun CSW, Shu W, Bao X, Zhu L, Murray M, Zhou F. Impaired Transport Activity of Human Organic Anion Transporters (OATs) and Organic Anion Transporting Polypeptides (OATPs) by Wnt Inhibitors. J Pharm Sci 2020; 110:914-924. [PMID: 33049263 DOI: 10.1016/j.xphs.2020.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022]
Abstract
The Wnt/β-catenin signaling pathway is dysregulated in diseases and Wnt inhibitors like PRI-724 are in clinical development. This study evaluated the regulatory actions of PRI-724 and other Wnt inhibitors on the transport activity of human renal Organic anion transporters (OATs) and Organic anion transporting polypeptides (OATPs). The substrate uptake by OAT4 and OATP2B1 was markedly decreased by PRI-724 (Vmax/Km: ∼26% and ∼17% of corresponding control), with less pronounced decreases in OAT1, OAT3 and OAT1A2. PRI-724 decreased the plasma membrane expression of inhibited OATs/OATPs but didn't affect their total cellular expression. Two model Wnt inhibitors - FH535 and 21H7 - were also tested in comparative studies. Like PRI-724, they also strongly decreased the activities and membrane expression of multiple OATs/OATPs. In contrast, FH535 didn't affect the substrate uptake by organic cation transporters. In control studies, the EGFR inhibitor lapatinib did not inhibit the function of some OATs/OATPs. Together these findings suggest that Wnt inhibitors selectively modulate the function of multiple organic anions transporters, so their clinical use may have unanticipated effects on drug entry into cells. These findings are pertinent to current clinical trials that have been designed to understand the safety and efficacy of new Wnt inhibitor drugs.
Collapse
Affiliation(s)
- Youmna Ali
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia
| | - Tahiatul Shams
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia
| | - Zhengqi Cheng
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia
| | - Yue Li
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia
| | - Chelsea Siu-Wai Chun
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia
| | - Wenying Shu
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia; Department of Pharmacy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangdong Province, 511400 China
| | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226019 China
| | - Ling Zhu
- The University of Sydney, Save Sight Institute, Sydney, New South Wales, 2000 Australia
| | - Michael Murray
- The University of Sydney, Discipline of Pharmacology, Faculty of Medicine and Health, New South Wales 2006, Australia
| | - Fanfan Zhou
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia.
| |
Collapse
|
10
|
Jin C, Wei L, Ohgaki R, Tominaga H, Xu M, Okuda S, Okanishi H, Kawamoto Y, He X, Nagamori S, Kanai Y. Interaction of Halogenated Tyrosine/Phenylalanine Derivatives with Organic Anion Transporter 1 in the Renal Handling of Tumor Imaging Probes. J Pharmacol Exp Ther 2020; 375:451-462. [DOI: 10.1124/jpet.120.000235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/16/2020] [Indexed: 01/22/2023] Open
|
11
|
Bobot M, Thomas L, Moyon A, Fernandez S, McKay N, Balasse L, Garrigue P, Brige P, Chopinet S, Poitevin S, Cérini C, Brunet P, Dignat-George F, Burtey S, Guillet B, Hache G. Uremic Toxic Blood-Brain Barrier Disruption Mediated by AhR Activation Leads to Cognitive Impairment during Experimental Renal Dysfunction. J Am Soc Nephrol 2020; 31:1509-1521. [PMID: 32527975 DOI: 10.1681/asn.2019070728] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/30/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Uremic toxicity may play a role in the elevated risk of developing cognitive impairment found among patients with CKD. Some uremic toxins, like indoxyl sulfate, are agonists of the transcription factor aryl hydrocarbon receptor (AhR), which is widely expressed in the central nervous system and which we previously identified as the receptor of indoxyl sulfate in endothelial cells. METHODS To characterize involvement of uremic toxins in cerebral and neurobehavioral abnormalities in three rat models of CKD, we induced CKD in rats by an adenine-rich diet or by 5/6 nephrectomy; we also used AhR-/- knockout mice overloaded with indoxyl sulfate in drinking water. We assessed neurologic deficits by neurobehavioral tests and blood-brain barrier disruption by SPECT/CT imaging after injection of 99mTc-DTPA, an imaging marker of blood-brain barrier permeability. RESULTS In CKD rats, we found cognitive impairment in the novel object recognition test, the object location task, and social memory tests and an increase of blood-brain barrier permeability associated with renal dysfunction. We found a significant correlation between 99mTc-DTPA content in brain and both the discrimination index in the novel object recognition test and indoxyl sulfate concentrations in serum. When we added indoxyl sulfate to the drinking water of rats fed an adenine-rich diet, we found an increase in indoxyl sulfate concentrations in serum associated with a stronger impairment in cognition and a higher permeability of the blood-brain barrier. In addition, non-CKD AhR-/- knockout mice were protected against indoxyl sulfate-induced blood-brain barrier disruption and cognitive impairment. CONCLUSIONS AhR activation by indoxyl sulfate, a uremic toxin, leads to blood-brain barrier disruption associated with cognitive impairment in animal models of CKD.
Collapse
Affiliation(s)
- Mickaël Bobot
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Assistnce Publique - Hôpitaux de Marseille, Marseille, France .,Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France.,Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France
| | - Laurent Thomas
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France.,Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France
| | - Anaïs Moyon
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France.,Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France.,Service de Radiopharmacie, Assistnce Publique - Hôpitaux de Marseille, Marseille, France
| | - Samantha Fernandez
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Nathalie McKay
- Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France
| | - Laure Balasse
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Philippe Garrigue
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France.,Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France.,Service de Radiopharmacie, Assistnce Publique - Hôpitaux de Marseille, Marseille, France
| | - Pauline Brige
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France.,Laboratoire d'Imagerie Interventionelle Expérimentale, Aix-Marseille Université, Marseille, France
| | - Sophie Chopinet
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France.,Laboratoire d'Imagerie Interventionelle Expérimentale, Aix-Marseille Université, Marseille, France.,Service de Chirurgie générale et transplantation hépatique, Hôpital de la Timone, Assistnce Publique - Hôpitaux de Marseille, Marseille, France
| | - Stéphane Poitevin
- Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France
| | - Claire Cérini
- Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France
| | - Philippe Brunet
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Assistnce Publique - Hôpitaux de Marseille, Marseille, France.,Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France
| | - Françoise Dignat-George
- Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France
| | - Stéphane Burtey
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Assistnce Publique - Hôpitaux de Marseille, Marseille, France.,Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France
| | - Benjamin Guillet
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France.,Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France.,Service de Radiopharmacie, Assistnce Publique - Hôpitaux de Marseille, Marseille, France
| | - Guillaume Hache
- Centre Européen de recherche en Imagerie Médicale, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France .,Centre de Recherche en Cardiovasculaireet Nutrition, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Marseille, France.,Pharmacie, Hôpital de la Timone, Assistnce Publique - Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
12
|
Antonescu IE, Karlgren M, Pedersen ML, Simoff I, Bergström CAS, Neuhoff S, Artursson P, Steffansen B, Nielsen CU. Acamprosate Is a Substrate of the Human Organic Anion Transporter (OAT) 1 without OAT3 Inhibitory Properties: Implications for Renal Acamprosate Secretion and Drug-Drug Interactions. Pharmaceutics 2020; 12:pharmaceutics12040390. [PMID: 32344570 PMCID: PMC7238232 DOI: 10.3390/pharmaceutics12040390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/11/2023] Open
Abstract
Acamprosate is an anionic drug substance widely used in treating symptoms of alcohol withdrawal. It was recently shown that oral acamprosate absorption is likely due to paracellular transport. In contrast, little is known about the eliminating mechanism clearing acamprosate from the blood in the kidneys, despite the fact that studies have shown renal secretion of acamprosate. The hypothesis of the present study was therefore that renal organic anion transporters (OATs) facilitate the renal excretion of acamprosate in humans. The aim of the present study was to establish and apply OAT1 (gene product of SLC22A6) and OAT3 (gene product of SLC22A8) expressing cell lines to investigate whether acamprosate is a substrate or inhibitor of OAT1 and/or OAT3. The studies were performed in HEK293-Flp-In cells stably transfected with SLC22A6 or SLC22A8. Protein and functional data showed that the established cell lines are useful for studying OAT1- and OAT3-mediated transport in bi-laboratory studies. Acamprosate inhibited OAT1-mediated p-aminohippuric acid (PAH) uptake but did not inhibit substrate uptake via OAT3 expressing cells, neither when applied concomitantly nor after a 3 h preincubation with acamprosate. The uptake of PAH via OAT1 was inhibited in a competitive manner by acamprosate and cellular uptake studies showed that acamprosate is a substrate for OAT1 with a Km-value of approximately 700 µM. Probenecid inhibited OAT1-mediated acamprosate uptake with a Ki-value of approximately 13 µM, which may translate into an estimated clinically significant DDI index. In conclusion, acamprosate was identified as a substrate of OAT1 but not OAT3.
Collapse
Affiliation(s)
- Irina E. Antonescu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (I.E.A.); (M.L.P.)
| | - Maria Karlgren
- Department of Pharmacy, Uppsala University, Husargatan 3 BMC, SE-751 23 Uppsala, Sweden; (M.K.); (C.A.S.B.); (P.A.)
| | - Maria L. Pedersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (I.E.A.); (M.L.P.)
| | - Ivailo Simoff
- Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Department of Pharmacy, Uppsala University, Husargatan 3 BMC, SE-751 23 Uppsala, Sweden;
| | - Christel A. S. Bergström
- Department of Pharmacy, Uppsala University, Husargatan 3 BMC, SE-751 23 Uppsala, Sweden; (M.K.); (C.A.S.B.); (P.A.)
| | - Sibylle Neuhoff
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK;
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Husargatan 3 BMC, SE-751 23 Uppsala, Sweden; (M.K.); (C.A.S.B.); (P.A.)
- Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Department of Pharmacy, Uppsala University, Husargatan 3 BMC, SE-751 23 Uppsala, Sweden;
| | | | - Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (I.E.A.); (M.L.P.)
- Correspondence: ; Tel.: +45-6550-9427
| |
Collapse
|
13
|
Shimada H, Hashimoto R, Aoki A, Yamada S, Oba KI, Kawase A, Nakanishi T, Iwaki M. The regulatory mechanism involved in the prostaglandin E 2 disposition in carbon tetrachloride-induced liver injury. Prostaglandins Leukot Essent Fatty Acids 2020; 155:102081. [PMID: 32155568 DOI: 10.1016/j.plefa.2020.102081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 01/22/2023]
Abstract
Prostaglandin E2 (PGE2) exhibits hepatoprotective effects against various types of liver injury. However, there is little information on the disposition of endogenous PGE2 during liver injury. In the present study, we attempted to elucidate the mechanism involved in regulating PGE2 distribution during liver injury. Carbon tetrachloride (CCl4) was used to establish a liver injury mouse model. PGE2 was measured by LC-MS/MS. The plasma and hepatic PGE2 levels were significantly increased at 6 to 48 h after CCl4 treatment. The ratio of plasma levels of 13,14-dihydro-15-ketoPGE2 (PGEM), a major PGE2 metabolite, to PGE2 decreased significantly after CCl4 treatment. PGE2 synthesis and expression of enzymes related to PGE2 production were not induced, while the activity and mRNA expression of 15-prostaglandin dehydrogenase (15-PGDH/Hpgd), a major enzyme for PGE2 inactivation, decreased significantly in the liver of CCl4-treated mice compared to that of vehicle-treated control. The plasma and hepatic PGE2 levels were negatively correlated with the hepatic mRNA expression levels of Hpgd. Although the mRNA expression of organic anion transporting polypeptide 2A1 (OATP2A1/Slco2a1), a major PGE2 transporter, was upregulated, other hepatic OATPs decreased significantly at 24 h after CCl4 treatment. Immunohistochemical analysis indicated that 15-PGDH was mainly expressed in endothelial cells and that OATP2A1 was expressed at least in endothelial cells and Kupffer cells in the liver. These results suggest that the decreased 15-PGDH expression in hepatic endothelial cells is the principal mechanism for the increase in hepatic and plasma PGE2 levels due to the CCl4-induced liver injury.
Collapse
Affiliation(s)
- Hiroaki Shimada
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Ryota Hashimoto
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Aya Aoki
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Saya Yamada
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Ken-Ichi Oba
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Atsushi Kawase
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Takeo Nakanishi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Japan
| | - Masahiro Iwaki
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan; Pharmaceutical Research and Technology Institute, Kindai University, Osaka 577-8502, Japan; Antiaging Center, Kindai University, Osaka 577-8502, Japan.
| |
Collapse
|
14
|
Chiba S, Ro A, Ikawa T, Oide Y, Mukai T. Interactions of human organic anion transporters 1-4 and human organic cation transporters 1-3 with the stimulant drug methamphetamine and amphetamine. Leg Med (Tokyo) 2020; 44:101689. [PMID: 32109742 DOI: 10.1016/j.legalmed.2020.101689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/29/2020] [Accepted: 02/14/2020] [Indexed: 01/11/2023]
Abstract
Drug membrane transport system proteins, namely, drug transporters, are expressed in the kidney and liver and play a crucial role in the excretion process. This study aimed to elucidate the interactions of the drug transporters human organic anion transporters 1, 2, 3, 4 (hOAT1, 2, 3, 4) and human organic cation transporters 1, 2, 3 (hOCT1, 2, 3), which are expressed primarily in human kidney, liver, and brain, with the stimulants methamphetamine (METH) and amphetamine (AMP). The results of an inhibition study using representative substrates of hOATs and hOCTs showed that METH and AMP significantly inhibited (by >50%) uptake of the hOCT1 and hOCT3 representative substrate 1-methy1-4-phenylpyridinium ion (MPP+) and hOCT2 representative substrate tetraethyl ammonium (TEA). However, METH and AMP did not inhibit uptake of the representative substrates of hOAT1, hOAT2, hOAT3, and hOAT4, (i.e., p-aminohippuric (PAH) acid, prostaglandin F2α (PGF2α), estron sulfate (ES), and ES respectively). Kinetic analyses revealed that METH competitively inhibited hOCT1-mediated MPP+ and hOCT2-mediated TEA uptake (Ki, 16.9 and 78.6 µM, respectively). Similarly, AMP exhibited competitive inhibition, with Ki values of 78.6 and 42.8 µM, respectively. In contrast, hOCT3 exhibited mixed inhibition of representative substrate uptake; hence, calculating Ki values was not possible. Herein, we reveal that hOCTs mediate the inhibition of METH and AMP. The results of this uptake study suggest that METH and AMP bind specifically to hOCT1 and hOCT2 without passing through the cell membrane, with subsequent passage of METH and AMP via hOCT3.
Collapse
Affiliation(s)
- Shoetsu Chiba
- Department of Legal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ward, Kawasaki, Kanagawa 216-8511, Japan.
| | - Ayako Ro
- Department of Legal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ward, Kawasaki, Kanagawa 216-8511, Japan
| | - Toru Ikawa
- Department of Legal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ward, Kawasaki, Kanagawa 216-8511, Japan
| | - Yukino Oide
- Department of Legal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ward, Kawasaki, Kanagawa 216-8511, Japan
| | - Toshiji Mukai
- Department of Legal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ward, Kawasaki, Kanagawa 216-8511, Japan
| |
Collapse
|
15
|
Dragojević J, Mihaljević I, Popović M, Smital T. Zebrafish (Danio rerio) Oat1 and Oat3 transporters and their interaction with physiological compounds. Comp Biochem Physiol B Biochem Mol Biol 2019; 236:110309. [DOI: 10.1016/j.cbpb.2019.110309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/10/2019] [Accepted: 06/24/2019] [Indexed: 01/11/2023]
|
16
|
Kimura T, Tsukada A, Fukutomi T, Ichida K, Ohtsuki S, Sakurai H. Urate Transport via Paracellular Route across Epithelial Cells. Biol Pharm Bull 2019; 42:43-49. [PMID: 30606989 DOI: 10.1248/bpb.b18-00505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Urate is the final oxidation product of purine metabolism in humans. We have recently reported that the paracellular route is the major urate transport pathway across the blood-placental barrier. In this study, the mechanism of urate paracellular transport was investigated in several epithelial cell lines including Madin-Darby canine kidney (MDCK) type I, Lilly Laboratories cell-porcine kidney 1 (LLC-PK1) and Caco-2 cells. Very little urate passed through MDCK and LLC-PK1 cell layers. In contrast, one of the Caco-2 cell lines was found to be urate-permeable. This urate paracellular movement across Caco-2 cell layer was not inhibited by the urate transporter inhibitor benzbromarone but was partially inhibited by 4,4'-diisothiocyanato-2,2'-stilbenedisulfonic acid (DIDS), which inhibits chloride transport. Detection and quantification of claudin proteins that are important for paracellular transport of ions were performed by LC/MS. Claudins 1, 3, 4, 6, 7 and 12 were detected in urate-permeable cell lines, BeWo cells and Caco-2 cells. We compared claudin expression patterns in urate-permeable and urate-non-permeable Caco-2 cells by LC/MS and found that claudin 12 had a higher expression level in urate-permeable Caco-2 cells. Overexpression of these claudins in MDCK cells did not increase urate paracellular transport. Although there were differences in claudin expression pattern between urate-permeable and non-permeable cells, increased expression of single claudin alone did not explain paracellular permeability of urate.
Collapse
Affiliation(s)
- Toru Kimura
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine
| | - Ai Tsukada
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Science.,Department of Regional Food and Pharmaceutical Safety Control Medical Device Safety Control Section, Tokyo Metropolitan Institute of Public Health
| | - Toshiyuki Fukutomi
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine
| | - Kimiyoshi Ichida
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Science
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University
| | - Hiroyuki Sakurai
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine
| |
Collapse
|
17
|
Nakanishi T, Takashima H, Uetoko Y, Komori H, Tamai I. Experimental Evidence for Resecretion of PGE2 across Rat Alveolar Epithelium by OATP2A1/SLCO2A1-Mediated Transcellular Transport. J Pharmacol Exp Ther 2018; 368:317-325. [DOI: 10.1124/jpet.118.249789] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/08/2018] [Indexed: 11/22/2022] Open
|
18
|
The Impact of Uremic Toxins on Cerebrovascular and Cognitive Disorders. Toxins (Basel) 2018; 10:toxins10070303. [PMID: 30037144 PMCID: PMC6071092 DOI: 10.3390/toxins10070303] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022] Open
Abstract
Individuals at all stages of chronic kidney disease (CKD) have a higher risk of developing cognitive disorders and dementia. Stroke is also highly prevalent in this population and is associated with a higher risk of neurological deterioration, in-hospital mortality, and poor functional outcomes. Evidence from in vitro studies and in vivo animal experiments suggests that accumulation of uremic toxins may contribute to the pathogenesis of stroke and amplify vascular damage, leading to cognitive disorders and dementia. This review summarizes current evidence on the mechanisms by which uremic toxins may favour the occurrence of cerebrovascular diseases and neurological complications in CKD.
Collapse
|
19
|
Yasujima T, Murata C, Mimura Y, Murata T, Ohkubo M, Ohta K, Inoue K, Yuasa H. Urate transport function of rat sodium-dependent nucleobase transporter 1. Physiol Rep 2018; 6:e13714. [PMID: 29845779 PMCID: PMC5974720 DOI: 10.14814/phy2.13714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/19/2018] [Accepted: 04/26/2018] [Indexed: 11/29/2022] Open
Abstract
Sodium-dependent nucleobase transporter 1 (SNBT1) is a nucleobase-specific transporter identified in our recent study. In an attempt to search for its potential substrates other than nucleobases in this study, we could successfully find urate, a metabolic derivative of purine nucleobases, as a novel substrate, as indicated by its specific Na+ -dependent and saturable transport, with a Michaelis constant of 433 μmol/L, by rat SNBT1 (rSNBT1) stably expressed in Madin-Darby canine kidney II cells. However, urate uptake was observed only barely in the everted tissue sacs of the rat small intestine, in which rSNBT1 operates for nucleobase uptake. These findings suggested that urate undergoes a futile cycle, in which urate transported into epithelial cells is immediately effluxed back by urate efflux transporters, in the small intestine. In subsequent attempts to examine that possibility, such a futile urate cycle was demonstrated in the human embryonic kidney 293 cell line as a model cell system, where urate uptake induced by transiently introduced rSNBT1 was extensively reduced by the co-introduction of rat breast cancer resistance protein (rBCRP), a urate efflux transporter present in the small intestine. However, urate uptake was not raised in the presence of Ko143, a BCRP inhibitor, in the everted intestinal tissue sacs, suggesting that some other transporter might also be involved in urate efflux. The newly found urate transport function of SNBT1, together with the suggested futile urate cycle in the small intestine, should be of interest for its evolutional and biological implications, although SNBT1 is genetically deficient in humans.
Collapse
Affiliation(s)
- Tomoya Yasujima
- Department of BiopharmaceuticsGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Chihiro Murata
- Department of BiopharmaceuticsGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Yoshihisa Mimura
- Department of BiopharmaceuticsGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Tomoaki Murata
- Department of BiopharmaceuticsGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Masahiko Ohkubo
- Department of BiopharmaceuticsGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Kinya Ohta
- College of PharmacyKinjo Gakuin UniversityNagoyaJapan
| | - Katsuhisa Inoue
- Department of BiopharmaceuticsSchool of PharmacyTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Hiroaki Yuasa
- Department of BiopharmaceuticsGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| |
Collapse
|
20
|
Organic solute carrier 22 (SLC22) family: Potential for interactions with food, herbal/dietary supplements, endogenous compounds, and drugs. J Food Drug Anal 2018; 26:S45-S60. [PMID: 29703386 PMCID: PMC9326878 DOI: 10.1016/j.jfda.2018.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 02/07/2023] Open
|
21
|
Iwaki M, Shimada H, Irino Y, Take M, Egashira S. Inhibition of Methotrexate Uptake via Organic Anion Transporters OAT1 and OAT3 by Glucuronides of Nonsteroidal Anti-inflammatory Drugs. Biol Pharm Bull 2018; 40:926-931. [PMID: 28566636 DOI: 10.1248/bpb.b16-00970] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Combination therapy of non-steroidal anti-inflammatory drugs (NSAIDs) and methotrexate (MTX) sometimes triggers adverse effects, such as liver injury, renal failure, gastrointestinal disorders, and myelosuppression, owing to the reduction of MTX clearance. Previous reports have suggested that NSAIDs inhibit renal MTX uptake via organic anion transporters (OATs) and reduced folate transporter (RFC)-1 and efflux via multidrug resistance-associated proteins (MRPs). Recently, our laboratory found inhibitory effects of NSAIDs-glucuronide (NSAIDs-Glu), a major metabolite of NSAIDs, on MRP-mediated MTX transport as a new site of interaction between MTX and NSAIDs. However, it remains unclear that whether NSAIDs-Glu inhibit renal uptake of MTX. Therefore, the present study aimed to evaluate inhibitory effects of several NSAIDs-Glu (diclofenac, R- and S-ibuprofen, R- and S-flurbiprofen, and R- and S-naproxen) on human OAT1 and OAT3-mediated MTX transport. In this study, [3H]MTX uptake was observed by using human OAT1 and OAT3-overexpressing HEK293 cells in the presence or absence of NSAIDs-Glu. All examined NSAIDs-Glu exhibited concentration-dependent inhibitory effects on MTX uptake via OAT1 and OAT3. Our results indicated that NSAIDs-Glu are more potent (5- to 15-fold) inhibitors of OAT3 than OAT1. Moreover, stereoselective inhibitory effects of NSAIDs-Glu on OATs-mediated MTX uptake were not observed, unlike on MRPs-mediated transport. These findings suggest that inhibition of OAT1 and OAT3-mediated renal uptake of MTX by plasma NSAIDs-Glu may be one of the competitive sites underlying complex drug interaction between MTX and NSAIDs.
Collapse
Affiliation(s)
- Masahiro Iwaki
- Department of Pharmacy, Faculty of Pharmacy, Kindai University
| | - Hiroaki Shimada
- Department of Pharmacy, Faculty of Pharmacy, Kindai University
| | - Yuri Irino
- Department of Pharmacy, Faculty of Pharmacy, Kindai University
| | - Manami Take
- Department of Pharmacy, Faculty of Pharmacy, Kindai University
| | | |
Collapse
|
22
|
Zhang Z, Tachikawa M, Uchida Y, Terasaki T. Drug Clearance from Cerebrospinal Fluid Mediated by Organic Anion Transporters 1 (Slc22a6) and 3 (Slc22a8) at Arachnoid Membrane of Rats. Mol Pharm 2018; 15:911-922. [PMID: 29436232 DOI: 10.1021/acs.molpharmaceut.7b00852] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although arachnoid mater epithelial cells form the blood-arachnoid barrier (BAB), acting as a blood-CSF interface, it has been generally considered that the BAB is impermeable to water-soluble substances and plays a largely passive role. Here, we aimed to clarify the function of transporters at the BAB in regulating CSF clearance of water-soluble organic anion drugs based on quantitative targeted absolute proteomics (QTAP) and in vivo analyses. Protein expression levels of 61 molecules, including 19 ATP-binding-cassette (ABC) transporters and 32 solute-carrier (SLC) transporters, were measured in plasma membrane fraction of rat leptomeninges using QTAP. Thirty-three proteins were detected; others were under the quantification limits. Expression levels of multidrug resistance protein 1 (Mdr1a/P-gp/Abcb1a) and breast cancer resistance protein (Bcrp/Abcg2) were 16.6 and 3.27 fmol/μg protein (51.9- and 9.82-fold greater than in choroid plexus, respectively). Among those organic anion transporters detected only at leptomeninges, not choroid plexus, organic anion transporter 1 (oat1/Slc22a6) showed the greatest expression (2.73 fmol/μg protein). On the other hand, the protein expression level of oat3 at leptomeninges was 6.65 fmol/μg protein, and the difference from choroid plexus was within two-fold. To investigate oat1's role, we injected para-aminohippuric acid (PAH) with or without oat1 inhibitors into cisterna magna (to minimize the contribution of choroid plexus function) of rats. A bulk flow marker, FITC-inulin, was not taken up from CSF up to 15 min, whereas uptake clearance of PAH was 26.5 μL/min. PAH uptake was completely blocked by 3 mM cephalothin (inhibits both oat1 and oat3), while 17% of PAH uptake was inhibited by 0.2 mM cephalothin (selectively inhibits oat3). These results indicate that oat1 and oat3 at the BAB provide a distinct clearance pathway of organic anion drugs from CSF independently of choroid plexus.
Collapse
Affiliation(s)
- Zhengyu Zhang
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| |
Collapse
|
23
|
Hamada Y, Ikemura K, Iwamoto T, Okuda M. Stereoselective Inhibition of Renal Basolateral Human Organic Anion Transporter 3 by Lansoprazole Enantiomers. Pharmacology 2018; 101:176-183. [PMID: 29353278 DOI: 10.1159/000485920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022]
Abstract
Lansoprazole, a proton pump inhibitor, potently inhibits human organic anion transporter, hOAT3 (SLC22A8). Lansoprazole has an asymmetric atom in its structure and is clinically administered as a racemic mixture of (R)-and (S)-enantiomers. However, little is known about the stereoselective inhibitory potencies of lansoprazole against hOAT3 and its homolog, hOAT1. In the present study, the stereoselective inhibitory effect of lansoprazole was evaluated using hOAT1-and hOAT3-expressing cultured cells. hOAT1 and hOAT3 transported [14C]p-aminohippurate and [3H]estrone-3-sulfate (ES) with Michaelis-Menten constants of 29.8 ± 4.0 and 30.1 ± 9.0 µmol/L respectively. Lansoprazole enantiomers inhibited hOAT1- and hOAT3-mediated transport of each substrate in a concentration-dependent manner. The IC50 value of (S)-lansoprazole against hOAT3-mediated transport of [3H]ES (0.61 ± 0.08 µmol/L) was significantly lower than that of (R)-lansoprazole (1.75 ± 0.31 µmol/L). In contrast, stereoselectivity was not demonstrated for the inhibition of hOAT1. Furthermore, (S)-lansoprazole inhibited hOAT3-mediated transport of pemetrexed and methotrexate (hOAT3 substrates) more strongly than the corresponding (R)-lansoprazole. This study is the first to demonstrate that the stereoselective inhibitory potency of (S)-lansoprazole against hOAT3 is greater than that of (R)-lansoprazole. The present findings provide novel information about the drug interactions associated with lansoprazole.
Collapse
Affiliation(s)
- Yugo Hamada
- Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kenji Ikemura
- Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Pharmacy, Mie University Hospital, Tsu, Japan
| | - Takuya Iwamoto
- Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Pharmacy, Mie University Hospital, Tsu, Japan
| | - Masahiro Okuda
- Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Pharmacy, Mie University Hospital, Tsu, Japan
| |
Collapse
|
24
|
Sato E, Saigusa D, Mishima E, Uchida T, Miura D, Morikawa-Ichinose T, Kisu K, Sekimoto A, Saito R, Oe Y, Matsumoto Y, Tomioka Y, Mori T, Takahashi N, Sato H, Abe T, Niwa T, Ito S. Impact of the Oral Adsorbent AST-120 on Organ-Specific Accumulation of Uremic Toxins: LC-MS/MS and MS Imaging Techniques. Toxins (Basel) 2017; 10:toxins10010019. [PMID: 29283413 PMCID: PMC5793106 DOI: 10.3390/toxins10010019] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/14/2017] [Accepted: 12/26/2017] [Indexed: 12/31/2022] Open
Abstract
Elevated circulating uremic toxins are associated with a variety of symptoms and organ dysfunction observed in patients with chronic kidney disease (CKD). Indoxyl sulfate (IS) and p-cresyl sulfate (PCS) are representative uremic toxins that exert various harmful effects. We recently showed that IS induces metabolic alteration in skeletal muscle and causes sarcopenia in mice. However, whether organ-specific accumulation of IS and PCS is associated with tissue dysfunction is still unclear. We investigated the accumulation of IS and PCS using liquid chromatography/tandem mass spectrometry in various tissues from mice with adenine-induced CKD. IS and PCS accumulated in all 15 organs analyzed, including kidney, skeletal muscle, and brain. We also visualized the tissue accumulation of IS and PCS with immunohistochemistry and mass spectrometry imaging techniques. The oral adsorbent AST-120 prevented some tissue accumulation of IS and PCS. In skeletal muscle, reduced accumulation following AST-120 treatment resulted in the amelioration of renal failure-associated muscle atrophy. We conclude that uremic toxins can accumulate in various organs and that AST-120 may be useful in treating or preventing organ dysfunction in CKD, possibly by reducing tissue accumulation of uremic toxins.
Collapse
Affiliation(s)
- Emiko Sato
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan.
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan.
| | - Eikan Mishima
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | - Taeko Uchida
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan.
| | - Daisuke Miura
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka 812-8582, Japan.
| | | | - Kiyomi Kisu
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | - Akiyo Sekimoto
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan.
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | - Ritsumi Saito
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan.
| | - Yuji Oe
- Division of Feto-Maternal Medical Science, Department of Community Medical Support, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8574, Japan.
| | - Yotaro Matsumoto
- Division of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan.
| | - Yoshihisa Tomioka
- Division of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan.
| | - Takefumi Mori
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
- Division of Integrative Renal Replacement Therapy, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | - Nobuyuki Takahashi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan.
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | - Hiroshi Sato
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan.
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | - Takaaki Abe
- Division of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai 980-8574, Japan.
| | | | - Sadayoshi Ito
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| |
Collapse
|
25
|
Nakanishi T, Tamai I. Roles of Organic Anion Transporting Polypeptide 2A1 (OATP2A1/SLCO2A1) in Regulating the Pathophysiological Actions of Prostaglandins. AAPS JOURNAL 2017; 20:13. [PMID: 29204966 DOI: 10.1208/s12248-017-0163-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/17/2017] [Indexed: 02/06/2023]
Abstract
Solute carrier organic anion transporter family member 2A1 (OATP2A1, encoded by the SLCO2A1 gene), which was initially identified as prostaglandin transporter (PGT), is expressed ubiquitously in tissues and mediates the distribution of prostanoids, such as PGE2, PGF2α, PGD2 and TxB2. It is well known to play a key role in the metabolic clearance of prostaglandins, which are taken up into the cell by OATP2A1 and then oxidatively inactivated by 15-ketoprostaglandin dehydrogenase (encoded by HPGD); indeed, OATP2A1-mediated uptake is the rate-limiting step of PGE2 catabolism. Consequently, since OATP2A1 activity is required for termination of prostaglandin signaling via prostanoid receptors, its inhibition can enhance such signaling. On the other hand, OATP2A1 can also function as an organic anion exchanger, mediating efflux of prostaglandins in exchange for import of anions such as lactate, and in this context, it plays a role in the release of newly synthesized prostaglandins from cells. These different functions likely operate in different compartments within the cell. OATP2A1 is reported to function at cytoplasmic vesicle/organelle membranes. As a regulator of the levels of physiologically active prostaglandins, OATP2A1 is implicated in diverse physiological and pathophysiological processes in many organs. Recently, whole exome analysis has revealed that recessive mutations in SLCO2A1 cause refractory diseases in humans, including primary hypertrophic osteoarthropathy (PHO) and chronic non-specific ulcers in small intestine (CNSU). Here, we review and summarize recent information on the molecular functions of OATP2A1 and on its physiological and pathological significance.
Collapse
Affiliation(s)
- Takeo Nakanishi
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| | - Ikumi Tamai
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
26
|
Nakanishi T, Ohno Y, Aotani R, Maruyama S, Shimada H, Kamo S, Oshima H, Oshima M, Schuetz JD, Tamai I. A novel role for OATP2A1/SLCO2A1 in a murine model of colon cancer. Sci Rep 2017; 7:16567. [PMID: 29185482 PMCID: PMC5707394 DOI: 10.1038/s41598-017-16738-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/16/2017] [Indexed: 11/24/2022] Open
Abstract
Prostaglandin E2 (PGE2) is associated with proliferation and angiogenesis in colorectal tumours. The role of prostaglandin transporter OATP2A1/SLCO2A1 in colon cancer tumorogenesis is unknown. We evaluated mice of various Slco2a1 genotypes in a murine model of colon cancer, the adenomatous polyposis (APC) mutant (Apc∆716/+) model. Median lifespan was significantly extended from 19 weeks in Slco2a1+/+/ApcΔ716/+ mice to 25 weeks in Slco2a1−/−/ApcΔ716/+ mice. Survival was directly related to a reduction in the number of large polyps in the Slco2a1−/−/Apc∆716/+ compared to the Slco2a1+/+/ApcΔ716/+ or Slco2a1+/−/ApcΔ716/+mice. The large polyps from the Slco2a1−/−/Apc∆716/+ mice had significant reductions in microvascular density, consistent with the high expression of Slco2a1 in the tumour-associated vascular endothelial cells. Chemical suppression of OATP2A1 function significantly reduced tube formation and wound-healing activity of PGE2 in human vascular endothelial cells (HUVECs) although the amount of extracellular PGE2 was not affected by an OATP2A1 inhibitor. Further an in vivo model of angiogenesis, showed a significant reduction of haemoglobin content (54.2%) in sponges implanted into Slco2a1−/−, compared to wildtype mice. These studies indicate that OATP2A1 is likely to promote tumorogenesis by PGE2 uptake into the endothelial cells, suggesting that blockade of OATP2A1 is an additional pharmacologic strategy to improve colon cancer outcomes.
Collapse
Affiliation(s)
| | | | - Rika Aotani
- Kanazawa University, Kanazawa, 920-1192, Japan
| | | | - Hiroaki Shimada
- Kanazawa University, Kanazawa, 920-1192, Japan.,Faculty of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | | | - Hiroko Oshima
- Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masanobu Oshima
- Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ikumi Tamai
- Kanazawa University, Kanazawa, 920-1192, Japan
| |
Collapse
|
27
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
28
|
Xenobiotic transporters and kidney injury. Adv Drug Deliv Rev 2017; 116:73-91. [PMID: 28111348 DOI: 10.1016/j.addr.2017.01.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/02/2017] [Accepted: 01/13/2017] [Indexed: 02/07/2023]
Abstract
Renal proximal tubules are targets for toxicity due in part to the expression of transporters that mediate the secretion and reabsorption of xenobiotics. Alterations in transporter expression and/or function can enhance the accumulation of toxicants and sensitize the kidneys to injury. This can be observed when xenobiotic uptake by carrier proteins is increased or efflux of toxicants and their metabolites is reduced. Nephrotoxic chemicals include environmental contaminants (halogenated hydrocarbon solvents, the herbicide paraquat, the fungal toxin ochratoxin, and heavy metals) as well as pharmaceuticals (certain beta-lactam antibiotics, antiviral drugs, and chemotherapeutic drugs). This review explores the mechanisms by which transporters mediate the entry and exit of toxicants from renal tubule cells and influence the degree of kidney injury. Delineating how transport proteins regulate the renal accumulation of toxicants is critical for understanding the likelihood of nephrotoxicity resulting from competition for excretion or genetic polymorphisms that affect transporter function.
Collapse
|
29
|
Zhou F, Zhu L, Wang K, Murray M. Recent advance in the pharmacogenomics of human Solute Carrier Transporters (SLCs) in drug disposition. Adv Drug Deliv Rev 2017; 116:21-36. [PMID: 27320645 DOI: 10.1016/j.addr.2016.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022]
Abstract
Drug pharmacokinetics is influenced by the function of metabolising enzymes and influx/efflux transporters. Genetic variability of these genes is known to impact on clinical therapies. Solute Carrier Transporters (SLCs) are the primary influx transporters responsible for the cellular uptake of drug molecules, which consequently, impact on drug efficacy and toxicity. The Organic Anion Transporting Polypeptides (OATPs), Organic Anion Transporters (OATs) and Organic Cation Transporters (OCTs/OCTNs) are the most important SLCs involved in drug disposition. The information regarding the influence of SLC polymorphisms on drug pharmacokinetics is limited and remains a hot topic of pharmaceutical research. This review summarises the recent advance in the pharmacogenomics of SLCs with an emphasis on human OATPs, OATs and OCTs/OCTNs. Our current appreciation of the degree of variability in these transporters may contribute to better understanding the inter-patient variation of therapies and thus, guide the optimisation of clinical treatments.
Collapse
|
30
|
Thakkar N, Slizgi JR, Brouwer KLR. Effect of Liver Disease on Hepatic Transporter Expression and Function. J Pharm Sci 2017; 106:2282-2294. [PMID: 28465155 DOI: 10.1016/j.xphs.2017.04.053] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/27/2022]
Abstract
Liver disease can alter the disposition of xenobiotics and endogenous substances. Regulatory agencies such as the Food and Drug Administration and the European Medicines Evaluation Agency recommend, if possible, studying the effect of liver disease on drugs under development to guide specific dose recommendations in these patients. Although extensive research has been conducted to characterize the effect of liver disease on drug-metabolizing enzymes, emerging data have implicated that the expression and function of hepatobiliary transport proteins also are altered in liver disease. This review summarizes recent developments in the field, which may have implications for understanding altered disposition, safety, and efficacy of new and existing drugs. A brief review of liver physiology and hepatic transporter localization/function is provided. Then, the expression and function of hepatic transporters in cholestasis, hepatitis C infection, hepatocellular carcinoma, human immunodeficiency virus infection, nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, and primary biliary cirrhosis are reviewed. In the absence of clinical data, nonclinical information in animal models is presented. This review aims to advance the understanding of altered expression and function of hepatic transporters in liver disease and the implications of such changes on drug disposition.
Collapse
Affiliation(s)
- Nilay Thakkar
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jason R Slizgi
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.
| |
Collapse
|
31
|
Murray M, Zhou F. Trafficking and other regulatory mechanisms for organic anion transporting polypeptides and organic anion transporters that modulate cellular drug and xenobiotic influx and that are dysregulated in disease. Br J Pharmacol 2017; 174:1908-1924. [PMID: 28299773 DOI: 10.1111/bph.13785] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 12/25/2022] Open
Abstract
Organic anion transporters (OATs) and organic anion-transporting polypeptides (OATPs), encoded by a number of solute carrier (SLC)22A and SLC organic anion (SLCO) genes, mediate the absorption and distribution of drugs and other xenobiotics. The regulation of OATs and OATPs is complex, comprising both transcriptional and post-translational mechanisms. Plasma membrane expression is required for cellular substrate influx by OATs/OATPs. Thus, interest in post-translational regulatory processes, including membrane targeting, endocytosis, recycling and degradation of transporter proteins, is increasing because these are critical for plasma membrane expression. After being synthesized, transporters undergo N-glycosylation in the endoplasmic reticulum and Golgi apparatus and are delivered to the plasma membrane by vesicular transport. Their expression at the cell surface is maintained by de novo synthesis and recycling, which occurs after clathrin- and/or caveolin-dependent endocytosis of existing protein. Several studies have shown that phosphorylation by signalling kinases is important for the internalization and recycling processes, although the transporter protein does not appear to be directly phosphorylated. After internalization, transporters that are targeted for degradation undergo ubiquitination, most likely on intracellular loop residues. Epigenetic mechanisms, including methylation of gene regulatory regions and transcription from alternate promoters, are also significant in the regulation of certain SLC22A/SLCO genes. The membrane expression of OATs/OATPs is dysregulated in disease, which affects drug efficacy and detoxification. Several transporters are expressed in the cytoplasmic subcompartment in disease states, which suggests that membrane targeting/internalization/recycling may be impaired. This article focuses on recent developments in OAT and OATP regulation, their dysregulation in disease and the significance for drug therapy.
Collapse
Affiliation(s)
- Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Fanfan Zhou
- Faculty of Pharmacy, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
32
|
Shen H, Lai Y, Rodrigues AD. Organic Anion Transporter 2: An Enigmatic Human Solute Carrier. Drug Metab Dispos 2016; 45:228-236. [PMID: 27872146 DOI: 10.1124/dmd.116.072264] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/17/2016] [Indexed: 12/28/2022] Open
Abstract
As a member of the solute carrier 22A (SLC22A) family, organic anion transporter 2 (OAT2; SLC22A7) is emerging as an important drug transporter because of its expression in both the liver and kidney, two major eliminating organs, and its ability to transport not only a wide variety of xenobiotics but also numerous physiologically important endogenous compounds, like creatinine and cGMP. However, OAT2 has received relatively little attention compared with other OATs and solute carriers (SLCs), like organic cation transporters, sodium-dependent taurocholate cotransporting polypeptide, multidrug and toxin extrusion proteins, and organic anion-transporting polypeptides. Overall, the literature describing OAT2 is rapidly evolving, with numerous publications contradicting each other regarding the transport mechanism, tissue distribution, and transport of creatinine and cGMP, two important endogenous OAT2 substrates. Despite its status as a liver and kidney SLC, tools for assessing its activity and inhibition are lacking, and its role in drug disposition and elimination remains to be defined. The current review focuses on the available and emerging literature describing OAT2. We envision that OAT2 will gain more prominence as its expression, substrate, and inhibitor profile is investigated further and compared with other SLCs.
Collapse
Affiliation(s)
- Hong Shen
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, Princeton, New Jersey (H.S., Y.L.), and Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer World Wide Research and Development, Groton, Connecticut (A.D.R.)
| | - Yurong Lai
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, Princeton, New Jersey (H.S., Y.L.), and Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer World Wide Research and Development, Groton, Connecticut (A.D.R.)
| | - A David Rodrigues
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Research and Development, Princeton, New Jersey (H.S., Y.L.), and Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer World Wide Research and Development, Groton, Connecticut (A.D.R.)
| |
Collapse
|
33
|
Natural Products Improving Hyperuricemia with Hepatorenal Dual Effects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7390504. [PMID: 27847526 PMCID: PMC5099468 DOI: 10.1155/2016/7390504] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/16/2016] [Accepted: 09/28/2016] [Indexed: 11/17/2022]
Abstract
This review aims to put forth an overview of natural products reducing uric acid level with hepatorenal dual effects. The prevalence of hyperuricemia increased rapidly in recent years and has closely interdependent relationship with other metabolic disorders. Current therapeutically used drugs including a few uricostatic and uricosuric chemical drugs are proved efficient to control serum uric acid level. However, their side effects as well as contraindication in some cases with liver, kidney injury, or other conditions frequently limit their clinic application. More attention thus has been paid to natural products as an alternative means in treating hyperuricemia. Many natural products have been proved efficient in downregulating uric acid level, among which some can improve hyperuricemia with hepatorenal dual effects. It means these natural products can regulate both the production and the excretion of uric acid by targeting the key metabolic enzymes mainly in liver or uric acid transporters in kidneys. Thus, these natural products could have stronger efficacy and broader application, which may be developed for the treatment of hyperuricemia in clinic.
Collapse
|
34
|
Otani N, Ouchi M, Hayashi K, Jutabha P, Anzai N. Roles of organic anion transporters (OATs) in renal proximal tubules and their localization. Anat Sci Int 2016; 92:200-206. [DOI: 10.1007/s12565-016-0369-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/27/2016] [Indexed: 11/28/2022]
|
35
|
Renal drug transporters and their significance in drug-drug interactions. Acta Pharm Sin B 2016; 6:363-373. [PMID: 27709005 PMCID: PMC5045553 DOI: 10.1016/j.apsb.2016.07.013] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 12/12/2022] Open
Abstract
The kidney is a vital organ for the elimination of therapeutic drugs and their metabolites. Renal drug transporters, which are primarily located in the renal proximal tubules, play an important role in tubular secretion and reabsorption of drug molecules in the kidney. Tubular secretion is characterized by high clearance capacities, broad substrate specificities, and distinct charge selectivity for organic cations and anions. In the past two decades, substantial progress has been made in understanding the roles of transporters in drug disposition, efficacy, toxicity and drug-drug interactions (DDIs). In the kidney, several transporters are involved in renal handling of organic cation (OC) and organic anion (OA) drugs. These transporters are increasingly recognized as the target for clinically significant DDIs. This review focuses on the functional characteristics of major human renal drug transporters and their involvement in clinically significant DDIs.
Collapse
Key Words
- ABC, ATP-binding cassette
- ATP, adenosine triphosphate
- AUC, area under the plasma concentration curve
- BBB, blood–brain barrier
- CHO, Chinese hamster ovary
- CL, plasma clearance
- CLR, renal clearance
- Cmax, maximum plasma concentration
- DDIs, drug–drug interactions
- Drug–drug interactions
- FDA, U.S. Food and Drug Administration
- GSH, glutathione
- HEK, human embryonic kidney
- IC50, half maximal inhibitory concentration
- ITC, International Transporter Consortium
- Ki, inhibitory constant
- MATE, multidrug and toxin extrusion protein
- MPP+, 1-methyl-4-phenylpyridimium
- MRP, multidrug resistance-associated protein
- MSD, membrane-spanning domain
- MW, molecular weight
- NBD, nucleotide-binding domain
- NME, new molecular entity
- NSAID, non-steroidal anti-inflammatory drugs
- Nephrotoxicity
- OA, organic anion
- OAT or Oat, organic anion transporters
- OATP or Oatp, organic anion-transporting peptide
- OC, organic cation
- OCT or Oct, organic cation transporter
- OCTN, Organic zwitterions/cation transporters
- Organic anions
- Organic cations
- P-gp, P-glycoprotein
- PAH, p-aminohippurate
- Renal drug transporters
- SLC, solute carrier
- SNP, single-nucleotide polymorphism
- TEA, tetraethylammonium
- TMD, transmembrane domain
- URAT, urate transporter
- fe, fraction of the absorbed dose excreted unchanged in urine
Collapse
|
36
|
Ikemura K, Hamada Y, Kaya C, Enokiya T, Muraki Y, Nakahara H, Fujimoto H, Kobayashi T, Iwamoto T, Okuda M. Lansoprazole Exacerbates Pemetrexed-Mediated Hematologic Toxicity by Competitive Inhibition of Renal Basolateral Human Organic Anion Transporter 3. ACTA ACUST UNITED AC 2016; 44:1543-9. [PMID: 27465369 DOI: 10.1124/dmd.116.070722] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/18/2016] [Indexed: 11/22/2022]
Abstract
Pemetrexed, a multitargeted antifolate, is eliminated by tubular secretion via human organic anion transporter 3 (hOAT3). Although proton pump inhibitors (PPIs) are frequently used in cancer patients, the drug interaction between PPIs and pemetrexed remains to be clarified. In this study, we examined the drug interaction between pemetrexed and PPIs in hOAT3-expressing cultured cells, and retrospectively analyzed the impact of PPIs on the development of hematologic toxicity in 108 patients who received pemetrexed and carboplatin treatment of nonsquamous non-small cell lung cancer for the first time between January 2011 and June 2015. We established that pemetrexed was transported via hOAT3 (Km = 68.3 ± 11.1 µM). Lansoprazole, rabeprazole, pantoprazole, esomeprazole, omeprazole, and vonoprazan inhibited hOAT3-mediated uptake of pemetrexed in a concentration-dependent manner. The inhibitory effect of lansoprazole was much greater than those of other PPIs and the apparent IC50 value of lansoprazole against pemetrexed transport via hOAT3 was 0.57 ± 0.17 µM. The inhibitory type of lansoprazole was competitive. In a retrospective study, multivariate analysis revealed that coadministration of lansoprazole, but not other PPIs, with pemetrexed and carboplatin was an independent risk factor significantly contributing to the development of hematologic toxicity (odds ratio: 10.004, P = 0.005). These findings demonstrated that coadministration of lansoprazole could exacerbate the hematologic toxicity associated with pemetrexed, at least in part, by competitive inhibition of hOAT3. Our results would aid clinicians to make decisions of coadministration drugs to avoid drug interaction-induced side effects for achievement of safe and appropriate chemotherapy with pemetrexed.
Collapse
Affiliation(s)
- Kenji Ikemura
- Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu (K.I., Y.H., T.I., M.O.); Department of Pharmacy, Mie University Hospital, Tsu (K.I., T.E., Y.M., T.I., M.O.); Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka (C.K.); Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu (H.N., H.F., T.K.), Mie, Japan
| | - Yugo Hamada
- Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu (K.I., Y.H., T.I., M.O.); Department of Pharmacy, Mie University Hospital, Tsu (K.I., T.E., Y.M., T.I., M.O.); Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka (C.K.); Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu (H.N., H.F., T.K.), Mie, Japan
| | - Chinatsu Kaya
- Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu (K.I., Y.H., T.I., M.O.); Department of Pharmacy, Mie University Hospital, Tsu (K.I., T.E., Y.M., T.I., M.O.); Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka (C.K.); Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu (H.N., H.F., T.K.), Mie, Japan
| | - Tomoyuki Enokiya
- Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu (K.I., Y.H., T.I., M.O.); Department of Pharmacy, Mie University Hospital, Tsu (K.I., T.E., Y.M., T.I., M.O.); Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka (C.K.); Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu (H.N., H.F., T.K.), Mie, Japan
| | - Yuichi Muraki
- Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu (K.I., Y.H., T.I., M.O.); Department of Pharmacy, Mie University Hospital, Tsu (K.I., T.E., Y.M., T.I., M.O.); Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka (C.K.); Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu (H.N., H.F., T.K.), Mie, Japan
| | - Hiroki Nakahara
- Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu (K.I., Y.H., T.I., M.O.); Department of Pharmacy, Mie University Hospital, Tsu (K.I., T.E., Y.M., T.I., M.O.); Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka (C.K.); Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu (H.N., H.F., T.K.), Mie, Japan
| | - Hajime Fujimoto
- Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu (K.I., Y.H., T.I., M.O.); Department of Pharmacy, Mie University Hospital, Tsu (K.I., T.E., Y.M., T.I., M.O.); Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka (C.K.); Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu (H.N., H.F., T.K.), Mie, Japan
| | - Tetsu Kobayashi
- Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu (K.I., Y.H., T.I., M.O.); Department of Pharmacy, Mie University Hospital, Tsu (K.I., T.E., Y.M., T.I., M.O.); Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka (C.K.); Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu (H.N., H.F., T.K.), Mie, Japan
| | - Takuya Iwamoto
- Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu (K.I., Y.H., T.I., M.O.); Department of Pharmacy, Mie University Hospital, Tsu (K.I., T.E., Y.M., T.I., M.O.); Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka (C.K.); Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu (H.N., H.F., T.K.), Mie, Japan
| | - Masahiro Okuda
- Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu (K.I., Y.H., T.I., M.O.); Department of Pharmacy, Mie University Hospital, Tsu (K.I., T.E., Y.M., T.I., M.O.); Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka (C.K.); Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu (H.N., H.F., T.K.), Mie, Japan
| |
Collapse
|
37
|
Mechanisms involved in the transport of mercuric ions in target tissues. Arch Toxicol 2016; 91:63-81. [PMID: 27422290 DOI: 10.1007/s00204-016-1803-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/07/2016] [Indexed: 01/16/2023]
Abstract
Mercury exists in the environment in various forms, all of which pose a risk to human health. Despite guidelines regulating the industrial release of mercury into the environment, humans continue to be exposed regularly to various forms of this metal via inhalation or ingestion. Following exposure, mercuric ions are taken up by and accumulate in numerous organs, including brain, intestine, kidney, liver, and placenta. In order to understand the toxicological effects of exposure to mercury, a thorough understanding of the mechanisms that facilitate entry of mercuric ions into target cells must first be obtained. A number of mechanisms for the transport of mercuric ions into target cells and organs have been proposed in recent years. However, the ability of these mechanisms to transport mercuric ions and the regulatory features of these carriers have not been characterized completely. The purpose of this review is to summarize the current findings related to the mechanisms that may be involved in the transport of inorganic and organic forms of mercury in target tissues and organs. This review will describe mechanisms known to be involved in the transport of mercury and will also propose additional mechanisms that may potentially be involved in the transport of mercuric ions into target cells.
Collapse
|
38
|
Tran HX, Herrington JD. Effect of ceftriaxone and cefepime on high-dose methotrexate clearance. J Oncol Pharm Pract 2016; 22:801-805. [DOI: 10.1177/1078155215608524] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Numerous drug interactions with methotrexate have been identified, which can lead to serious life-threatening effects. Up to 90% of methotrexate is excreted unchanged in the urine with primary excretion dependent on organic anion transport in the renal proximal tubule. The two pathways responsible for methotrexate secretion are organic anion transport 1 and primarily organic anion transport 3. Penicillins undergo tubular secretion via organic anion transport, and cephalosporins are believed to also possess a similar risk when administered with methotrexate; however, there are no human studies observing this interaction with cephalosporins and methotrexate. Ceftriaxone undergoes biliary clearance and has low affinity for the same organic anion transports as methotrexate; therefore, ceftriaxone has a low potential to interact with methotrexate. Cefepime is primarily secreted by organic cation transport N2, and also has a low potential to interact with methotrexate. This case report describes the pharmacokinetic effect of concomitant beta-lactam therapy in a patient receiving high-dose methotrexate.
Collapse
Affiliation(s)
- Hieu X Tran
- Department of Pharmacy, Baylor University Medical Center, Baylor Scott & White Health, Dallas, Texas, USA
| | - Jon D Herrington
- Department of Pharmacy, Scott & White Memorial Hospital, Baylor Scott & White Health, Temple, Texas, USA
- Department of Medicine, Health Science Center, Texas A&M University, Temple, Texas, USA
| |
Collapse
|
39
|
Abstract
The kidney plays a vital role in the elimination of xenobiotics including drugs, toxins, and endogenous metabolites. Renal drug elimination involves 3 major processes: glomerular filtration, tubular secretion, and tubular reabsorption. Although glomerular filtration is a simple unidirectional diffusion process, renal tubular secretion and/or reabsorption can involve saturable processes mediated by multiple highly specialized membrane transport systems. Current research has identified that these transport proteins play a significant role in the efficient removal and/or reabsorption of pharmacological agents. Since the majority of membrane transporters have broad substrate specificity, there is a significant risk for drug-drug interactions through competition for similar transport pathways. This article will focus on the cellular expression, localization, and transport properties of various renal drug transport systems (ie, organic anion, organic cation, nucleoside, and adenosine triphosphate [ATP]-dependent efflux transporters). Specific examples of drugs that are transported by each of these mechanisms will be provided. Clinically relevant drug-drug interactions involving renal drug transporters will be discussed to guide the clinician in understanding and preventing these interactions.
Collapse
Affiliation(s)
- Patrick T. Ronaldson
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto,
| |
Collapse
|
40
|
Soares RV, Do TM, Mabondzo A, Pons G, Chhun S. Ontogeny of ABC and SLC transporters in the microvessels of developing rat brain. Fundam Clin Pharmacol 2016; 30:107-16. [PMID: 26662930 DOI: 10.1111/fcp.12175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/19/2015] [Accepted: 12/08/2015] [Indexed: 01/01/2023]
Abstract
The blood-brain barrier (BBB) is responsible for the control of solutes' concentration in the brain. Tight junctions and multiple ATP-binding cassette (ABC) and SoLute Carrier (SLC) efflux transporters protect brain cells from xenobiotics, therefore reducing brain exposure to intentionally administered drugs. In epilepsy, polymorphisms and overexpression of efflux transporters genes could be associated with pharmacoresistance. The ontogeny of these efflux transporters should also be addressed because their expression during development may be related to different brain exposure to antiepileptic drugs in the immature brain. We detected statistically significant higher expression of Abcb1b and Slc16a1 genes, and lower expression of Abcb1a and Abcg2 genes between the post-natal day 14 (P14) and the adult rat microvessels. P-gP efflux activity was also shown to be lower in P14 rats when compared with the adults. The P-gP proteins coded by rodent genes Abcb1a and Abcb1b are known to have different substrate affinities. The role of the Abcg2 gene is less clear in pharmacoresistance in epilepsy, nonetheless the coded protein Bcrp is frequently associated with drug resistance. Finally, we observed a higher expression of the Mct1 transporter gene in the P14 rat brain microvessels. Accordingly to our results, we suppose that age may be another factor influencing brain exposure to antiepileptics as a consequence of different expression patterns of efflux transporters between the adult and immature BBB.
Collapse
Affiliation(s)
- Ricardo V Soares
- Inserm U1129, Paris, France.,University Paris Descartes, Faculty of Medicine, Paris, France.,CEA, Direction des Sciences du Vivant, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | - Tuan M Do
- CEA, Direction des Sciences du Vivant, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | - Aloïse Mabondzo
- CEA, Direction des Sciences du Vivant, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | - Gérard Pons
- Inserm U1129, Paris, France.,University Paris Descartes, Faculty of Medicine, Paris, France
| | - Stéphanie Chhun
- University Paris Descartes, Faculty of Medicine, Paris, France.,Inserm U1151, INEM, Paris, France.,APHP, Hôpital Universitaire Necker-Enfants Malades, Laboratoire d'immunologie biologique, Paris, France
| |
Collapse
|
41
|
Kasai T, Nakanishi T, Ohno Y, Shimada H, Nakamura Y, Arakawa H, Tamai I. Role of OATP2A1 in PGE(2) secretion from human colorectal cancer cells via exocytosis in response to oxidative stress. Exp Cell Res 2016; 341:123-31. [PMID: 26850138 DOI: 10.1016/j.yexcr.2016.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 12/30/2022]
Abstract
Chronic inflammation induced by reactive oxygen species is associated with increased risk of developing colorectal cancer (CRC), and prostaglandin E2 (PGE2), which serves as a key mediator of inflammatory responses, plays an important role in CRC initiation and progression. Therefore, in the present study, we aimed to investigate the role of prostaglandin transporter OATP2A1/SLCO2A1 in the changes of PGE2 disposition in CRC cells in response to oxidative stress. H2O2 induced translocation of cytoplasmic OATP2A1 to plasma membranes in LoVo and COLO 320DM cells, but not in Caco-2 cells. The shift of subcellular OATP2A1 was abolished in the presence of anti-oxidant N-acetyl-L-cysteine or an inhibitor of protein kinase C, which evokes exocytosis. Exposure of LoVo cells to H2O2 caused an increase in the amount of extracellular PGE2 without changing the sum of intra- and extracellular PGE2. OATP2A1 knockdown decreased extracellular PGE2 in LoVo cells. In addition, extracellular PGE2 was significantly reduced by exocytosis inhibitor cytochalasin D, suggesting that H2O2-induced PGE2 release occurs in an exocytotic manner. Furthermore, mRNA expression of vascular endothelial growth factor (VEGF) was significantly reduced in LoVo cells by knockdown of OATP2A1. These results suggest that cytoplasmic OATP2A1 likely facilitates PGE2 loading into suitable intracellular compartment(s) for efficient exocytotic PGE2 release from CRC cells exposed to oxidative stress.
Collapse
Affiliation(s)
- Taku Kasai
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yasuhiro Ohno
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hiroaki Shimada
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshinobu Nakamura
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
42
|
Wei L, Tominaga H, Ohgaki R, Wiriyasermkul P, Hagiwara K, Okuda S, Kaira K, Kato Y, Oriuchi N, Nagamori S, Kanai Y. Transport of 3-fluoro-l-α-methyl-tyrosine (FAMT) by organic ion transporters explains renal background in [18F]FAMT positron emission tomography. J Pharmacol Sci 2016; 130:101-9. [DOI: 10.1016/j.jphs.2016.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/17/2015] [Accepted: 01/06/2016] [Indexed: 12/21/2022] Open
|
43
|
Gose T, Nakanishi T, Kamo S, Shimada H, Otake K, Tamai I. Prostaglandin transporter (OATP2A1/SLCO2A1) contributes to local disposition of eicosapentaenoic acid-derived PGE3. Prostaglandins Other Lipid Mediat 2015; 122:10-7. [PMID: 26692285 DOI: 10.1016/j.prostaglandins.2015.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/12/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022]
Abstract
Eicosapentaenoic acid (EPA)-derived prostaglandin E3 (PGE3) possesses an anti-inflammatory effect; however, information for transporters that regulate its peri-cellular concentration is limited. The present study, therefore, aimed to clarify transporters involved in local disposition of PGE3. PGE3 uptake was assessed in HEK293 cells transfected with OATP2A1/SLCO2A1, OATP1B1/SLCO1B1, OATP2B1/SLCO2B1, OAT1/SLC22A6, OCT1/SLC22A1 or OCT2/SLC22A2 genes, compared with HEK293 cells transfected with plasmid vector alone (Mock). PGE3 uptake by OATP2A1-expressing HEK293 cells (HEK/2A1) was the highest and followed by HEK/1B1, while no significantly higher uptake of PGE3 than Mock cells was detected by other transporters. Saturation kinetics in PGE3 uptake by HEK/2A1 estimated the Km as 7.202 ± 0.595 μM, which was 22 times higher than that of PGE2 (Km=0.331 ± 0.131 μM). Furthermore, tissue disposition of PGE3 was examined in wild-type (WT) and Slco2a1-deficient (Slco2a1(-/-)) mice after oral administration of EPA ethyl ester (EPA-E) when they underwent intraperitoneal injection of endotoxin (e.g., lipopolysaccharide). PGE3 concentration was significantly higher in the lung, and tended to increase in the colon, stomach, and kidney of Slco2a1(-/-), compared to WT mice. Ratio of PGE2 metabolite 15-keto PGE2 over PGE2 concentration was significantly lower in the lung and colon of Slco2a1(-/-) than that of WT mice, suggesting that PGE3 metabolism is downregulated in Slco2a1(-/-) mice. In conclusion, PGE3 was found to be a substrate of OATP2A1, and local disposition of PGE3 could be regulated by OATP2A1 at least in the lung.
Collapse
Affiliation(s)
- Tomoka Gose
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Shunsuke Kamo
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiroaki Shimada
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Katsumasa Otake
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
44
|
Kawase A, Yamamoto T, Egashira S, Iwaki M. Stereoselective Inhibition of Methotrexate Excretion by Glucuronides of Nonsteroidal Anti-inflammatory Drugs via Multidrug Resistance Proteins 2 and 4. ACTA ACUST UNITED AC 2015; 356:366-74. [DOI: 10.1124/jpet.115.229104] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022]
|
45
|
Shimada H, Nakamura Y, Nakanishi T, Tamai I. OATP2A1/SLCO2A1-mediated prostaglandin E2 loading into intracellular acidic compartments of macrophages contributes to exocytotic secretion. Biochem Pharmacol 2015; 98:629-38. [PMID: 26474801 DOI: 10.1016/j.bcp.2015.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/09/2015] [Indexed: 12/19/2022]
Abstract
There is significant evidence that the inducible cyclooxygenase isoform (COX-2) regulates the pericellular concentration of PGE2; however, the mechanism of the secretory process remains unclear. The present study, therefore, aimed to evaluate the role of prostaglandin transporter (OATP2A1) in PGE2 secretion from macrophages. Immunofluorescence staining for Oatp2a1 (Slco2a1) was primarily detected in cytoplasmic domains, and was partially co-localized with anti-PGE2 antibody, LysoTracker®, and anti-lysosome-associated membrane protein (Lamp) 1 antibody in murine macrophage-derived RAW264 cells and peritoneal macrophages (PMs). PGE2 uptake by subcellular fraction containing light lysosomes was reduced significantly in the presence of an OATP inhibitor and in Slco2a1(+/-) PMs. Secretion of PGE2 and lysosome-specific N-acetyl-β-d-glucosaminidase was enhanced in activated macrophagic cells, and diminished significantly under the Ca(2+)-depleted condition. The amount of PGE2 secreted from lipopolysaccharide-activated Slco2a1(-/-) PMs was significantly lower than that from PMs from wild type (WT) mice. Expression of Cox-2 and 15-hydroxyprostaglandin dehydrogenase (15-Pgdh) was unchanged between PMs from Slco2a1(-/-) and WT mice. These results suggest that OATP2A1 is involved in PGE2-loading into intracellular acidic compartments, including light lysosomes. Thus, OATP2A1 contributes to PGE2 secretion by macrophages via exocytosis induced by Ca(2+) influx, independently of PGE2 synthesis and metabolism.
Collapse
Affiliation(s)
- Hiroaki Shimada
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshinobu Nakamura
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takeo Nakanishi
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Ikumi Tamai
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
46
|
Bhowmik A, Khan R, Ghosh MK. Blood brain barrier: a challenge for effectual therapy of brain tumors. BIOMED RESEARCH INTERNATIONAL 2015; 2015:320941. [PMID: 25866775 PMCID: PMC4383356 DOI: 10.1155/2015/320941] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/27/2014] [Accepted: 11/04/2014] [Indexed: 01/01/2023]
Abstract
Brain tumors are one of the most formidable diseases of mankind. They have only a fair to poor prognosis and high relapse rate. One of the major causes of extreme difficulty in brain tumor treatment is the presence of blood brain barrier (BBB). BBB comprises different molecular components and transport systems, which in turn create efflux machinery or hindrance for the entry of several drugs in brain. Thus, along with the conventional techniques, successful modification of drug delivery and novel therapeutic strategies are needed to overcome this obstacle for treatment of brain tumors. In this review, we have elucidated some critical insights into the composition and function of BBB and along with it we have discussed the effective methods for delivery of drugs to the brain and therapeutic strategies overcoming the barrier.
Collapse
Affiliation(s)
- Arijit Bhowmik
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Rajni Khan
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Mrinal Kanti Ghosh
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
47
|
Sanchez-Covarrubias L, Slosky LM, Thompson BJ, Davis TP, Ronaldson PT. Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Des 2014; 20:1422-49. [PMID: 23789948 DOI: 10.2174/13816128113199990463] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/18/2013] [Indexed: 01/11/2023]
Abstract
The blood-brain barrier (BBB) and blood-cerebrospinal fluid (BCSF) barriers are critical determinants of CNS homeostasis. Additionally, the BBB and BCSF barriers are formidable obstacles to effective CNS drug delivery. These brain barrier sites express putative influx and efflux transporters that precisely control permeation of circulating solutes including drugs. The study of transporters has enabled a shift away from "brute force" approaches to delivering drugs by physically circumventing brain barriers towards chemical approaches that can target specific compounds of the BBB and/or BCSF barrier. However, our understanding of transporters at the BBB and BCSF barriers has primarily focused on understanding efflux transporters that efficiently prevent drugs from attaining therapeutic concentrations in the CNS. Recently, through the characterization of multiple endogenously expressed uptake transporters, this paradigm has shifted to the study of brain transporter targets that can facilitate drug delivery (i.e., influx transporters). Additionally, signaling pathways and trafficking mechanisms have been identified for several endogenous BBB/BCSF transporters, thereby offering even more opportunities to understand how transporters can be exploited for optimization of CNS drug delivery. This review presents an overview of the BBB and BCSF barrier as well as the many families of transporters functionally expressed at these barrier sites. Furthermore, we present an overview of various strategies that have been designed and utilized to deliver therapeutic agents to the brain with a particular emphasis on those approaches that directly target endogenous BBB/BCSF barrier transporters.
Collapse
Affiliation(s)
| | | | | | | | - Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050.
| |
Collapse
|
48
|
Hurba O, Mancikova A, Krylov V, Pavlikova M, Pavelka K, Stibůrková B. Complex analysis of urate transporters SLC2A9, SLC22A12 and functional characterization of non-synonymous allelic variants of GLUT9 in the Czech population: no evidence of effect on hyperuricemia and gout. PLoS One 2014; 9:e107902. [PMID: 25268603 PMCID: PMC4182324 DOI: 10.1371/journal.pone.0107902] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/18/2014] [Indexed: 11/24/2022] Open
Abstract
Objective Using European descent Czech populations, we performed a study of SLC2A9 and SLC22A12 genes previously identified as being associated with serum uric acid concentrations and gout. This is the first study of the impact of non-synonymous allelic variants on the function of GLUT9 except for patients suffering from renal hypouricemia type 2. Methods The cohort consisted of 250 individuals (150 controls, 54 nonspecific hyperuricemics and 46 primary gout and/or hyperuricemia subjects). We analyzed 13 exons of SLC2A9 (GLUT9 variant 1 and GLUT9 variant 2) and 10 exons of SLC22A12 by PCR amplification and sequenced directly. Allelic variants were prepared and their urate uptake and subcellular localization were studied by Xenopus oocytes expression system. The functional studies were analyzed using the non-parametric Wilcoxon and Kruskall-Wallis tests; the association study used the Fisher exact test and linear regression approach. Results We identified a total of 52 sequence variants (12 unpublished). Eight non-synonymous allelic variants were found only in SLC2A9: rs6820230, rs2276961, rs144196049, rs112404957, rs73225891, rs16890979, rs3733591 and rs2280205. None of these variants showed any significant difference in the expression of GLUT9 and in urate transport. In the association study, eight variants showed a possible association with hyperuricemia. However, seven of these were in introns and the one exon located variant, rs7932775, did not show a statistically significant association with serum uric acid concentration. Conclusion Our results did not confirm any effect of SLC22A12 and SLC2A9 variants on serum uric acid concentration. Our complex approach using association analysis together with functional and immunohistochemical characterization of non-synonymous allelic variants did not show any influence on expression, subcellular localization and urate uptake of GLUT9.
Collapse
Affiliation(s)
- Olha Hurba
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Andrea Mancikova
- Charles University in Prague, Faculty of Science, Department of Cell Biology, Prague, Czech Republic
| | - Vladimir Krylov
- Charles University in Prague, Faculty of Science, Department of Cell Biology, Prague, Czech Republic
| | - Marketa Pavlikova
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | | | - Blanka Stibůrková
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
- Institute of Rheumatology, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
49
|
Li Q, Shu Y. Role of solute carriers in response to anticancer drugs. MOLECULAR AND CELLULAR THERAPIES 2014; 2:15. [PMID: 26056583 PMCID: PMC4452062 DOI: 10.1186/2052-8426-2-15] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/14/2014] [Indexed: 12/20/2022]
Abstract
Membrane transporters play critical roles in moving a variety of anticancer drugs across cancer cell membrane, thereby determining chemotherapy efficacy and/or toxicity. The retention of anticancer drugs in cancer cells is the result of net function of efflux and influx transporters. The ATP-binding cassette (ABC) transporters are mainly the efflux transporters expressing at cancer cells, conferring the chemo-resistance in various malignant tumors, which has been well documented over the past decades. However, the function of influx transporters, in particular the solute carriers (SLC) in cancer cells, has only been recently well recognized to have significant impact on cancer therapy. The SLC transporters not only directly bring anticancer agents into cancer cells but also serve as the uptake mediators of essential nutrients for tumor growth and survival. In this review, we concentrate on the interaction of SLC transporters with anticancer drugs and nutrients, and their impact on chemo-sensitivity or -resistance of cancer cells. The differential expression patterns of SLC transporters between normal and tumor tissues may be well utilized to achieve specific delivery of chemotherapeutic agents.
Collapse
Affiliation(s)
- Qing Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, Maryland USA ; Institute of Clinical Pharmacology, Central South University, Changsha, Hunan 410078 China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, Maryland USA
| |
Collapse
|
50
|
Uehara I, Kimura T, Tanigaki S, Fukutomi T, Sakai K, Shinohara Y, Ichida K, Iwashita M, Sakurai H. Paracellular route is the major urate transport pathway across the blood-placental barrier. Physiol Rep 2014; 2:2/5/e12013. [PMID: 24844637 PMCID: PMC4098741 DOI: 10.14814/phy2.12013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Urate, the final oxidation product of purine metabolism, is excreted into urine in humans. Clinically, increased serum urate levels are indicative of pregnancy‐induced hypertension (PIH). However, how urate is handled in the placenta is still largely unknown. In this study, we compared maternal serum urate levels with those of umbilical cord blood and investigated urate transport mechanisms in BeWo cells, a trophoblast‐derived cell line. The maternal and umbilical cord blood samples and placentas were collected from patients undergoing cesarean section at Kyorin University Hospital after obtaining informed consents. There were no significant differences in serum urate levels between maternal blood and umbilical cord blood, and between umbilical cord vein and arterial blood, suggesting that urate is freely movable at the placenta and that fetus is not a major source of urate production. RT‐PCR and immunohistochemistry showed that urate transporters including OAT4, OAT10, GLUT9/URATv1 and ABCG2 were expressed in the syncytiotrophoblast cells in the placenta as well as BeWo cells. Despite expressing aforementioned urate transporters BeWo cells did not take up urate. After confirming the formation of tight junctions of these cells cultured on the transwell, urate transport between upper and lower chambers was measured. Urate moved through BeWo cell monolayers with nonsaturation kinetics and this movement was observed even when the cells were incubated at 4°C, suggesting that urate moves through the paracellular route by simple diffusion. Serum urate concentration was identical between mother and fetus, indicating that urate can pass through blood‐placental barrier. Using trophoblast‐derived BeWo cell monolayer, this study demonstrated that urate moved through BeWo cell monolayer via paracellular route.
Collapse
Affiliation(s)
- Ichiro Uehara
- Department of Obstetrics and Gynecology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Toru Kimura
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Shinji Tanigaki
- Department of Obstetrics and Gynecology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Toshiyuki Fukutomi
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Keiji Sakai
- Department of Obstetrics and Gynecology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Yoshihiko Shinohara
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Hachiouji, Tokyo, Japan
| | - Kimiyoshi Ichida
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Hachiouji, Tokyo, Japan
| | - Mitsutoshi Iwashita
- Department of Obstetrics and Gynecology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Hiroyuki Sakurai
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| |
Collapse
|