1
|
Zhang W, Liu Y, Jang H, Nussinov R. CDK2 and CDK4: Cell Cycle Functions Evolve Distinct, Catalysis-Competent Conformations, Offering Drug Targets. JACS AU 2024; 4:1911-1927. [PMID: 38818077 PMCID: PMC11134382 DOI: 10.1021/jacsau.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Cyclin-dependent kinases (CDKs), particularly CDK4 and CDK2, are crucial for cell cycle progression from the Gap 1 (G1) to the Synthesis (S) phase by phosphorylating targets such as the Retinoblastoma Protein (Rb). CDK4, paired with cyclin-D, operates in the long G1 phase, while CDK2 with cyclin-E, manages the brief G1-to-S transition, enabling DNA replication. Aberrant CDK signaling leads to uncontrolled cell proliferation, which is a hallmark of cancer. Exactly how they accomplish their catalytic phosphorylation actions with distinct efficiencies poses the fundamental, albeit overlooked question. Here we combined available experimental data and modeling of the active complexes to establish their conformational functional landscapes to explain how the two cyclin/CDK complexes differentially populate their catalytically competent states for cell cycle progression. Our premise is that CDK catalytic efficiencies could be more important for cell cycle progression than the cyclin-CDK biochemical binding specificity and that efficiency is likely the prime determinant of cell cycle progression. We observe that CDK4 is more dynamic than CDK2 in the ATP binding site, the regulatory spine, and the interaction with its cyclin partner. The N-terminus of cyclin-D acts as an allosteric regulator of the activation loop and the ATP-binding site in CDK4. Integrated with a suite of experimental data, we suggest that the CDK4 complex is less capable of remaining in the active catalytically competent conformation, and may have a lower catalytic efficiency than CDK2, befitting their cell cycle time scales, and point to critical residues and motifs that drive their differences. Our mechanistic landscape may apply broadly to kinases, and we propose two drug design strategies: (i) allosteric Inhibition by conformational stabilization for targeting allosteric CDK4 regulation by cyclin-D, and (ii) dynamic entropy-optimized targeting which leverages the dynamic, entropic aspects of CDK4 to optimize drug binding efficacy.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer
Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yonglan Liu
- Cancer
Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Department
of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
2
|
Ziada S, Diharce J, Serillon D, Bonnet P, Aci-Sèche S. Highlighting the Major Role of Cyclin C in Cyclin-Dependent Kinase 8 Activity through Molecular Dynamics Simulations. Int J Mol Sci 2024; 25:5411. [PMID: 38791449 PMCID: PMC11121562 DOI: 10.3390/ijms25105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Dysregulation of cyclin-dependent kinase 8 (CDK8) activity has been associated with many diseases, including colorectal and breast cancer. As usual in the CDK family, the activity of CDK8 is controlled by a regulatory protein called cyclin C (CycC). But, while human CDK family members are generally activated in two steps, that is, the binding of the cyclin to CDK and the phosphorylation of a residue in the CDK activation loop, CDK8 does not require the phosphorylation step to be active. Another peculiarity of CDK8 is its ability to be associated with CycC while adopting an inactive form. These specificities raise the question of the role of CycC in the complex CDK8-CycC, which appears to be more complex than the other members of the CDK family. Through molecular dynamics (MD) simulations and binding free energy calculations, we investigated the effect of CycC on the structure and dynamics of CDK8. In a second step, we particularly focused our investigation on the structural and molecular basis of the protein-protein interaction between the two partners by finely analyzing the energetic contribution of residues and simulating the transition between the active and the inactive form. We found that CycC has a stabilizing effect on CDK8, and we identified specific interaction hotspots within its interaction surface compared to other human CDK/Cyc pairs. Targeting these specific interaction hotspots could be a promising approach in terms of specificity to effectively disrupt the interaction between CDK8. The simulation of the conformational transition from the inactive to the active form of CDK8 suggests that the residue Glu99 of CycC is involved in the orientation of three conserved arginines of CDK8. Thus, this residue may assume the role of the missing phosphorylation step in the activation mechanism of CDK8. In a more general view, these results point to the importance of keeping the CycC in computational studies when studying the human CDK8 protein in both the active and the inactive form.
Collapse
Affiliation(s)
- Sonia Ziada
- Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d’Orléans 7311, Université d’Orléans BP 6759, 45067 Orléans CEDEX 2, France (P.B.)
| | - Julien Diharce
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, Biologie Intégrée du Globule Rouge, UMR_S 1134, DSIMB Bioinformatics Team, 75014 Paris, France;
| | - Dylan Serillon
- Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d’Orléans 7311, Université d’Orléans BP 6759, 45067 Orléans CEDEX 2, France (P.B.)
| | - Pascal Bonnet
- Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d’Orléans 7311, Université d’Orléans BP 6759, 45067 Orléans CEDEX 2, France (P.B.)
| | - Samia Aci-Sèche
- Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d’Orléans 7311, Université d’Orléans BP 6759, 45067 Orléans CEDEX 2, France (P.B.)
| |
Collapse
|
3
|
Stourac J, Borko S, Khan RT, Pokorna P, Dobias A, Planas-Iglesias J, Mazurenko S, Pinto G, Szotkowska V, Sterba J, Slaby O, Damborsky J, Bednar D. PredictONCO: a web tool supporting decision-making in precision oncology by extending the bioinformatics predictions with advanced computing and machine learning. Brief Bioinform 2023; 25:bbad441. [PMID: 38066711 PMCID: PMC10709543 DOI: 10.1093/bib/bbad441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
PredictONCO 1.0 is a unique web server that analyzes effects of mutations on proteins frequently altered in various cancer types. The server can assess the impact of mutations on the protein sequential and structural properties and apply a virtual screening to identify potential inhibitors that could be used as a highly individualized therapeutic approach, possibly based on the drug repurposing. PredictONCO integrates predictive algorithms and state-of-the-art computational tools combined with information from established databases. The user interface was carefully designed for the target specialists in precision oncology, molecular pathology, clinical genetics and clinical sciences. The tool summarizes the effect of the mutation on protein stability and function and currently covers 44 common oncological targets. The binding affinities of Food and Drug Administration/ European Medicines Agency -approved drugs with the wild-type and mutant proteins are calculated to facilitate treatment decisions. The reliability of predictions was confirmed against 108 clinically validated mutations. The server provides a fast and compact output, ideal for the often time-sensitive decision-making process in oncology. Three use cases of missense mutations, (i) K22A in cyclin-dependent kinase 4 identified in melanoma, (ii) E1197K mutation in anaplastic lymphoma kinase 4 identified in lung carcinoma and (iii) V765A mutation in epidermal growth factor receptor in a patient with congenital mismatch repair deficiency highlight how the tool can increase levels of confidence regarding the pathogenicity of the variants and identify the most effective inhibitors. The server is available at https://loschmidt.chemi.muni.cz/predictonco.
Collapse
Affiliation(s)
- Jan Stourac
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Simeon Borko
- Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
| | - Rayyan T Khan
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petra Pokorna
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Adam Dobias
- Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Stanislav Mazurenko
- Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Gaspar Pinto
- Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Veronika Szotkowska
- Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jaroslav Sterba
- Department of Paediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
4
|
Stamateris RE, Landa-Galvan HV, Sharma RB, Darko C, Redmond D, Rane SG, Alonso LC. Noncanonical CDK4 signaling rescues diabetes in a mouse model by promoting β cell differentiation. J Clin Invest 2023; 133:e166490. [PMID: 37712417 PMCID: PMC10503800 DOI: 10.1172/jci166490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
Expanding β cell mass is a critical goal in the fight against diabetes. CDK4, an extensively characterized cell cycle activator, is required to establish and maintain β cell number. β cell failure in the IRS2-deletion mouse type 2 diabetes model is, in part, due to loss of CDK4 regulator cyclin D2. We set out to determine whether replacement of endogenous CDK4 with the inhibitor-resistant mutant CDK4-R24C rescued the loss of β cell mass in IRS2-deficient mice. Surprisingly, not only β cell mass but also β cell dedifferentiation was effectively rescued, despite no improvement in whole body insulin sensitivity. Ex vivo studies in primary islet cells revealed a mechanism in which CDK4 intervened downstream in the insulin signaling pathway to prevent FOXO1-mediated transcriptional repression of critical β cell transcription factor Pdx1. FOXO1 inhibition was not related to E2F1 activity, to FOXO1 phosphorylation, or even to FOXO1 subcellular localization, but rather was related to deacetylation and reduced FOXO1 abundance. Taken together, these results demonstrate a differentiation-promoting activity of the classical cell cycle activator CDK4 and support the concept that β cell mass can be expanded without compromising function.
Collapse
Affiliation(s)
- Rachel E. Stamateris
- MD/PhD Program, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Huguet V. Landa-Galvan
- Division of Endocrinology, Diabetes and Metabolism and the Joan and Sanford I. Weill Center for Metabolic Health and
| | - Rohit B. Sharma
- Division of Endocrinology, Diabetes and Metabolism and the Joan and Sanford I. Weill Center for Metabolic Health and
| | - Christine Darko
- Division of Endocrinology, Diabetes and Metabolism and the Joan and Sanford I. Weill Center for Metabolic Health and
| | - David Redmond
- Hartman Institute for Therapeutic Regenerative Medicine, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Sushil G. Rane
- Integrative Cellular Metabolism Section, Diabetes, Endocrinology and Obesity Branch, National Institute for Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Laura C. Alonso
- Division of Endocrinology, Diabetes and Metabolism and the Joan and Sanford I. Weill Center for Metabolic Health and
| |
Collapse
|
5
|
Thirumal Kumar D, Shaikh N, Bithia R, Karthick V, George Priya Doss C, Magesh R. Computational screening and structural analysis of Gly201Arg and Gly201Asp missense mutations in human cyclin-dependent kinase 4 protein. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:57-96. [PMID: 37061341 DOI: 10.1016/bs.apcsb.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
The regulatory proteins, cyclins, and cyclin-dependent kinases (CDKs) control the cell cycle progression. CDK4 gene mutations are associated with certain cancers such as melanoma, breast cancer, and rhabdomyosarcoma. Therefore, understanding the mechanisms of cell cycle control and cell proliferation is essential in developing cancer treatment regimens. In this study, we obtained cancer-causing CDK4 mutations from the COSMIC database and subjected them to a series of in silico analyses to identify the most significant mutations. An overall of 238 mutations (119 missense mutations) retrieved from the COSMIC database were investigated for the pathogenic and destabilizing properties using the PredictSNP and iStable algorithms. Further, the amino acid position of the most pathogenic and destabilizing mutations were analyzed to understand the nature of amino acid conservation across the species during the evolution. We observed that the missense mutations G201R and G201D were more significant and the Glycine at position 201 was found to highly conserved. These significant mutations were subjected to molecular dynamics simulation analysis to understand the protein's structural changes. The results from molecular dynamics simulations revealed that both G201R and G201D of CDK4 are capable of altering the protein's native form. On comparison among the most significant mutations, G201R disrupted the protein structure higher than the protein with G201D.
Collapse
Affiliation(s)
- D Thirumal Kumar
- Faculty of Allied Health Sciences, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Nishaat Shaikh
- Mahimkar Lab [Tobacco Carcinogenesis Lab], Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer [ACTREC], TATA Memorial Centre, Navi Mumbai, Maharashtra, India
| | - R Bithia
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - V Karthick
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| | - R Magesh
- Department of Biotechnology, FBMS&T, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
Sager RA, Backe SJ, Ahanin E, Smith G, Nsouli I, Woodford MR, Bratslavsky G, Bourboulia D, Mollapour M. Therapeutic potential of CDK4/6 inhibitors in renal cell carcinoma. Nat Rev Urol 2022; 19:305-320. [PMID: 35264774 PMCID: PMC9306014 DOI: 10.1038/s41585-022-00571-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
The treatment of advanced and metastatic kidney cancer has entered a golden era with the addition of more therapeutic options, improved survival and new targeted therapies. Tyrosine kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors and immune checkpoint blockade have all been shown to be promising strategies in the treatment of renal cell carcinoma (RCC). However, little is known about the best therapeutic approach for individual patients with RCC and how to combat therapeutic resistance. Cancers, including RCC, rely on sustained replicative potential. The cyclin-dependent kinases CDK4 and CDK6 are involved in cell-cycle regulation with additional roles in metabolism, immunogenicity and antitumour immune response. Inhibitors of CDK4 and CDK6 are now commonly used as approved and investigative treatments in breast cancer, as well as several other tumours. Furthermore, CDK4/6 inhibitors have been shown to work synergistically with other kinase inhibitors, including mTOR inhibitors, as well as with immune checkpoint inhibitors in preclinical cancer models. The effect of CDK4/6 inhibitors in kidney cancer is relatively understudied compared with other cancers, but the preclinical studies available are promising. Collectively, growing evidence suggests that targeting CDK4 and CDK6 in kidney cancer, alone and in combination with current therapeutics including mTOR and immune checkpoint inhibitors, might have therapeutic benefit and should be further explored.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Garrett Smith
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Imad Nsouli
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Syracuse VA Medical Center, Syracuse, NY, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Syracuse VA Medical Center, Syracuse, NY, USA.
| |
Collapse
|
7
|
Shi J, Sun J, Liu L, Shan T, Meng H, Yang T, Wang S, Wei T, Chen B, Ma Y, Wang Q, Wang H, Liu J, Wang L. P16ink4a overexpression ameliorates cardiac remodeling of mouse following myocardial infarction via CDK4/pRb pathway. Biochem Biophys Res Commun 2022; 595:62-68. [PMID: 35093641 DOI: 10.1016/j.bbrc.2022.01.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/19/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND P16ink4a can accumulate in senescent cells and can be induced by different oncogenic stimulations. These functions make p16ink4a a biomarker of senescence and cancer. However, the exact role of p16ink4a remains unclear in cardiovascular disease. This study was aimed to investigate the role of p16ink4a in cardiac remodeling after myocardial infarction (MI). METHODS In vivo, gain and loss of function experiments using p16ink4a overexpression and knockdown adenovirus were induced to determine the effect of p16ink4a on cardiac structure and function after MI. The in vitro effects of p16ink4a were evaluated by overexpression and knockdown adenovirus of p16ink4a on isolated neonatal mouse cardiac myocytes (NMCMs) and neonatal mouse cardiac fibroblasts (NMCFs). RESULTS Expression level of p16ink4a was increased after MI and enriched in the infarction area. In vivo, overexpression of p16ink4a protected, while knockdown of p16ink4a worsened cardiac function. In vitro, p16ink4a did not influence the hypertrophy of NMCMs. Overexpression of p16ink4a inhibited the proliferation and migration of NMCFs and reduced the level of collagen I and α-SMA. Consistently, knockdown of p16ink4a in vitro displayed the opposite effects. Further mechanism studies revealed that p16ink4a affected the expression level of cyclin-dependent kinase 4 (CDK4) and phosphorylation of retinoblastoma (pRb), which could be a potential pathway in regulating cardiac remodeling after MI. CONCLUSION Overexpression of 16ink4a in cardiac fibroblasts can ameliorate cardiac dysfunction and attenuate pathological cardiac remodeling in mice after MI by regulating the p16ink4a/CDK4/pRb pathway.
Collapse
Affiliation(s)
- Jianzhou Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiateng Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liu Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tiankai Shan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Haoyu Meng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tongtong Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Sibo Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tianwen Wei
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bingrui Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yao Ma
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qiming Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiabao Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Liansheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
8
|
Sun L, Arbesman J. Canonical Signaling Pathways in Melanoma. Clin Plast Surg 2021; 48:551-560. [PMID: 34503716 DOI: 10.1016/j.cps.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Melanoma is the most lethal type of skin cancer, originating from the uncontrolled proliferation of melanocytes. The transformation of normal melanocytes into malignant tumor cells has been a focus of research seeking to better understand melanoma's pathogenesis and develop new therapeutic targets. Over the past few decades, a conglomeration of studies has pinpointed several driver mutations and their associated signaling pathways. In this review, we summarize the key signaling pathways and the driver mutations involved in melanoma tumorigenesis and also discuss the potential underlying mechanisms.
Collapse
Affiliation(s)
- Lillian Sun
- Cleveland Clinic, Lerner College of Medicine at Case Western Reserve University, 9501 Euclid Avenue, Cleveland, OH 44106, USA
| | - Joshua Arbesman
- Department of Dermatology, Cleveland Clinic, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
9
|
Luo H, Liao X, Qin Y, Hou Q, Xue Z, Liu Y, Shen F, Wang Y, Jiang Y, Song L, Chen H, Zhang L, Wei T, Dai L, Yang L, Zhang W, Li Z, Xu H, Zhu J, Shu Y. Longitudinal Genomic Evolution of Conventional Papillary Thyroid Cancer With Brain Metastasis. Front Oncol 2021; 11:620924. [PMID: 34249677 PMCID: PMC8260944 DOI: 10.3389/fonc.2021.620924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 06/04/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Brain metastasis is extremely rare but predicts dismal prognosis in papillary thyroid cancer (PTC). Dynamic evaluation of stepwise metastatic lesions was barely conducted to identify the longitudinal genomic evolution of brain metastasis in PTC. METHOD Chronologically resected specimen was analyzed by whole exome sequencing, including four metastatic lymph nodes (lyn 1-4) and brain metastasis lesion (BM). Phylogenetic tree was reconstructed to infer the metastatic pattern and the potential functional mutations. RESULTS Contrasting with lyn1, ipsilateral metastatic lesions (lyn2-4 and BM) with shared biallelic mutations of TSC2 indicated different genetic originations from multifocal tumors. Lyn 3/4, particularly lyn4 exhibited high genetic similarity with BM. Besides the similar mutational compositions and signatures, shared functional mutations (CDK4 R24C , TP53R342*) were observed in lyn3/4 and BM. Frequencies of these mutations gradually increase along with the metastasis progression. Consistently, TP53 knockout and CDK4 R24C introduction in PTC cells significantly decreased radioiodine uptake and increased metastatic ability. CONCLUSION Genomic mutations in CDK4 and TP53 during the tumor evolution may contribute to the lymph node and brain metastasis of PTC.
Collapse
Affiliation(s)
- Han Luo
- Department of Thyroid and Parathyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Qin
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Hou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhinan Xue
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Liu
- Department of Thyroid and Parathyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Feiyang Shen
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yuelan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Linlin Song
- Department of Thyroid and Parathyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Haining Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyun Zhang
- Department of Thyroid and Parathyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Tao Wei
- Department of Thyroid and Parathyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhihui Li
- Department of Thyroid and Parathyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiang Zhu
- Department of Thyroid and Parathyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Shu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Doktorova TY, Oki NO, Mohorič T, Exner TE, Hardy B. A semi-automated workflow for adverse outcome pathway hypothesis generation: The use case of non-genotoxic induced hepatocellular carcinoma. Regul Toxicol Pharmacol 2020; 114:104652. [PMID: 32251711 DOI: 10.1016/j.yrtph.2020.104652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/10/2020] [Accepted: 03/29/2020] [Indexed: 02/07/2023]
Abstract
The utility of the Adverse Outcome Pathway (AOP) concept has been largely recognized by scientists, however, the AOP generation is still mainly done manually by screening through evidence and extracting probable associations. To accelerate this process and increase the reliability, we have developed an semi-automated workflow for AOP hypothesis generation. In brief, association mining methods were applied to high-throughput screening, gene expression, in vivo and disease data present in ToxCast and Comparative Toxicogenomics Database. This was supplemented by pathway mapping using Reactome to fill in gaps and identify events occurring at the cellular/tissue levels. Furthermore, in vivo data from TG-Gates was integrated to finally derive a gene, pathway, biochemical, histopathological and disease network from which specific disease sub-networks can be queried. To test the workflow, non-genotoxic-induced hepatocellular carcinoma (HCC) was selected as a case study. The implementation resulted in the identification of several non-genotoxic-specific HCC-connected genes belonging to cell proliferation, endoplasmic reticulum stress and early apoptosis. Biochemical findings revealed non-genotoxic-specific alkaline phosphatase increase. The explored non-genotoxic-specific histopathology was associated with early stages of hepatic steatosis, transforming into cirrhosis. This work illustrates the utility of computationally predicted constructs in supporting development by using pre-existing knowledge in a fast and unbiased manner.
Collapse
Affiliation(s)
- Tatyana Y Doktorova
- Edelweiss Connect GmbH, Hochbergerstrasse 60C, Technology Park Basel, Basel, Switzerland.
| | - Noffisat O Oki
- American Association for the Advancement of Science, Science & Technology Policy Fellow, USA; National Institutes of Health, Rockville, MD, USA
| | - Tomaž Mohorič
- Edelweiss Connect GmbH, Hochbergerstrasse 60C, Technology Park Basel, Basel, Switzerland
| | - Thomas E Exner
- Edelweiss Connect GmbH, Hochbergerstrasse 60C, Technology Park Basel, Basel, Switzerland
| | - Barry Hardy
- Edelweiss Connect GmbH, Hochbergerstrasse 60C, Technology Park Basel, Basel, Switzerland
| |
Collapse
|
11
|
El Shamieh S, Saleh F, Assaad S, Farhat F. Next-generation sequencing reveals mutations in RB1, CDK4 and TP53 that may promote chemo-resistance to palbociclib in ovarian cancer. Drug Metab Pers Ther 2019; 34:/j/dmdi.ahead-of-print/dmpt-2018-0027/dmpt-2018-0027.xml. [PMID: 31145688 DOI: 10.1515/dmpt-2018-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/13/2019] [Indexed: 12/18/2022]
Abstract
Because of the profound heterogeneity of ovarian cancer at the clinical, cellular and molecular levels, herein we discuss the molecular findings at the protein and genetic levels seen in our patient. Immunohistochemistry showed a complete loss of phosphatase and tensin homolog, this observation was the reason behind prescribing the CDK4/6 inhibitor palbociclib. However, there was no response to treatment. Next-generation sequencing analysis was performed showing a nonsense mutation, p.R552X in retinoblastoma 1 (RB1). This nonsense variation will possibly lead to a truncated protein lacking the domain responsible for interaction with E2F, an event that will induce cell cycle progression and, thus, be responsible for the chemo-resistance to palbociclib.
Collapse
Affiliation(s)
- Said El Shamieh
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Fatima Saleh
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Shafka Assaad
- Rammal Hassan Rammal Research Laboratory, Physiotoxicity (PhyTox), Faculty of Sciences, Lebanese University, Nabatieh, Lebanon
| | - Fadi Farhat
- Department of Hematology-Oncology, Saint Joseph Faculty of Medicine, Beirut, Lebanon.,Department of Hematology and Oncology, Hammoud Hospital UMC, Saida, Lebanon, Phone: +9613753155
| |
Collapse
|
12
|
Alam MNU. Computational assessment of somatic and germline mutations of p16INK4a: Structural insights and implications in disease. INFORMATICS IN MEDICINE UNLOCKED 2019. [DOI: 10.1016/j.imu.2019.100208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
13
|
Aberrant miRNAs Regulate the Biological Hallmarks of Glioblastoma. Neuromolecular Med 2018; 20:452-474. [PMID: 30182330 DOI: 10.1007/s12017-018-8507-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022]
Abstract
GBM is the highest incidence in primary intracranial malignancy, and it remains poor prognosis even though the patient is gave standard treatment. Despite decades of intense research, the complex biology of GBM remains elusive. In view of eight hallmarks of cancer which were proposed in 2011, studies related to the eight biological capabilities in GBM have made great progress. From these studies, it can be inferred that miRs, as a mode of post-transcriptional regulation, are involved in regulating these malignant biological hallmarks of GBM. Herein, we discuss state-of-the-art research on how aberrant miRs modulate the eight hallmarks of GBM. The upregulation of 'oncomiRs' or the genetic loss of tumor suppressor miRs is associated with these eight biological capabilities acquired during GBM formation. Furthermore, we also discuss the applicable clinical potential of these research results. MiRs may aid in the diagnosis and prognosis of GBM. Moreover, miRs are also therapeutic targets of GBM. These studies will develop and improve precision medicine for GBM in the future.
Collapse
|
14
|
Yang H, Zhao X, Zhao L, Liu L, Li J, Jia W, Liu J, Huang G. PRMT5 competitively binds to CDK4 to promote G1-S transition upon glucose induction in hepatocellular carcinoma. Oncotarget 2018; 7:72131-72147. [PMID: 27708221 PMCID: PMC5342150 DOI: 10.18632/oncotarget.12351] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 09/20/2016] [Indexed: 01/07/2023] Open
Abstract
Although cancer cells are known to be "addicted" to glucose, the effect of glucose in proliferation of these cells remains elusive. Here, we report that upon glucose induction, protein arginine methyltransferase 5 (PRMT5) exerts a profound effect on the G1-S cell cycle progression via directly interacting with cyclin dependent kinase 4 (CDK4) in hepatocellular carcinoma (HCC). Upregulation of both PRMT5 and CDK4 predicts more malignant characteristics in human HCC tissues. Mechanistically, glucose promotes the interaction between PRMT5 and CDK4, which leads to activation of CDK4-RB-E2F-mediated transcription via releasing CDKN2A from CDK4. Moreover, the PRMT5 competitive inhibition of the interaction between CDK4 and CDKN2A is important for glucose-induced growth of HCC cells. Furthermore, the CDK4 mutant R24A weakly binds to PRMT5, inhibiting HCC cell cycle progression and tumor growth. Thus, our findings uncover a critical function for PRMT5 and CDK4 and provide an improved therapeutic strategy against HCC.
Collapse
Affiliation(s)
- Hao Yang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200031, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Li Zhao
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Liu Liu
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jiajin Li
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Wenzhi Jia
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Gang Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200031, China.,Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
15
|
Chen H, Xu X, Wang G, Zhang B, Wang G, Xin G, Liu J, Jiang Q, Zhang H, Zhang C. CDK4 protein is degraded by anaphase-promoting complex/cyclosome in mitosis and reaccumulates in early G 1 phase to initiate a new cell cycle in HeLa cells. J Biol Chem 2017; 292:10131-10141. [PMID: 28446612 DOI: 10.1074/jbc.m116.773226] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/26/2017] [Indexed: 12/29/2022] Open
Abstract
CDK4 regulates G1/S phase transition in the mammalian cell cycle by phosphorylating retinoblastoma family proteins. However, the mechanism underlying the regulation of CDK4 activity is not fully understood. Here, we show that CDK4 protein is degraded by anaphase-promoting complex/cyclosome (APC/C) during metaphase-anaphase transition in HeLa cells, whereas its main regulator, cyclin D1, remains intact but is sequestered in cytoplasm. CDK4 protein reaccumulates in the following G1 phase and shuttles between the nucleus and the cytoplasm to facilitate the nuclear import of cyclin D1. Without CDK4, cyclin D1 cannot enter the nucleus. Point mutations that disrupt CDK4 and cyclin D1 interaction impair the nuclear import of cyclin D1 and the activity of CDK4. RNAi knockdown of CDK4 also induces cytoplasmic retention of cyclin D1 and G0/G1 phase arrest of the cells. Collectively, our data demonstrate that CDK4 protein is degraded in late mitosis and reaccumulates in the following G1 phase to facilitate the nuclear import of cyclin D1 for activation of CKD4 to initiate a new cell cycle in HeLa cells.
Collapse
Affiliation(s)
- Huabo Chen
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaowei Xu
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guopeng Wang
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Boyan Zhang
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Gang Wang
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guangwei Xin
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Junjun Liu
- the Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768
| | - Qing Jiang
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China,
| | - Hongyin Zhang
- the Cancer Research Center, Peking University Hospital, Peking University, Beijing 100871, China, and
| | - Chuanmao Zhang
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China,
| |
Collapse
|
16
|
Tao YF, Wang NN, Xu LX, Li ZH, Li XL, Xu YY, Fang F, Li M, Qian GH, Li YH, Li YP, Wu Y, Ren JL, Du WW, Lu J, Feng X, Wang J, He WQ, Hu SY, Pan J. Molecular mechanism of G 1 arrest and cellular senescence induced by LEE011, a novel CDK4/CDK6 inhibitor, in leukemia cells. Cancer Cell Int 2017; 17:35. [PMID: 28286417 PMCID: PMC5340031 DOI: 10.1186/s12935-017-0405-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/25/2017] [Indexed: 12/30/2022] Open
Abstract
Background Overexpression of cyclin D1 dependent kinases 4 and 6 (CDK4/6) is a common feature of many human cancers including leukemia. LEE011 is a novel inhibitor of both CDK4 and 6. To date, the molecular function of LEE011 in leukemia remains unclear. Methods Leukemia cell growth and apoptosis following LEE011 treatment was assessed through CCK-8 and annexin V/propidium iodide staining assays. Cell senescence was assessed by β-galactosidase staining and p16INK4a expression analysis. Gene expression profiles of LEE011 treated HL-60 cells were investigated using an Arraystar Human LncRNA array. Gene ontology and KEGG pathway analysis were then used to analyze the differentially expressed genes from the cluster analysis. Results Our studies demonstrated that LEE011 inhibited proliferation of leukemia cells and could induce apoptosis. Hoechst 33,342 staining analysis showed DNA fragmentation and distortion of nuclear structures following LEE011 treatment. Cell cycle analysis showed LEE011 significantly induced cell cycle G1 arrest in seven of eight acute leukemia cells lines, the exception being THP-1 cells. β-Galactosidase staining analysis and p16INK4a expression analysis showed that LEE011 treatment can induce cell senescence of leukemia cells. LncRNA microarray analysis showed 2083 differentially expressed mRNAs and 3224 differentially expressed lncRNAs in LEE011-treated HL-60 cells compared with controls. Molecular function analysis showed that LEE011 induced senescence in leukemia cells partially through downregulation of the transcriptional expression of MYBL2. Conclusions We demonstrate for the first time that LEE011 treatment results in inhibition of cell proliferation and induction of G1 arrest and cellular senescence in leukemia cells. LncRNA microarray analysis showed differentially expressed mRNAs and lncRNAs in LEE011-treated HL-60 cells and we demonstrated that LEE011 induces cellular senescence partially through downregulation of the expression of MYBL2. These results may open new lines of investigation regarding the molecular mechanism of LEE011 induced cellular senescence. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0405-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan-Fang Tao
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Na-Na Wang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Li-Xiao Xu
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Zhi-Heng Li
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Xiao-Lu Li
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Yun-Yun Xu
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Fang Fang
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Mei Li
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Guang-Hui Qian
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Yan-Hong Li
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Yi-Ping Li
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Yi Wu
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Jun-Li Ren
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Wei-Wei Du
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jun Lu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Xing Feng
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Wang
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Wei-Qi He
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, China
| | - Shao-Yan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
AL Shabanah OA, Alotaibi MR, Al Rejaie SS, Alhoshani AR, Almutairi MM, Alshammari MA, Hafez MM. Inhibitory Effect of Ginseng on Breast Cancer Cell Line Growth Via Up-Regulation of Cyclin Dependent Kinase Inhibitor, p21 and p53. Asian Pac J Cancer Prev 2016; 17:4965-4971. [PMID: 28032724 PMCID: PMC5454704 DOI: 10.22034/apjcp.2016.17.11.4965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective: Breast cancer is global female health problem worldwide. Most of the currently used agents for breast cancer treatment have toxic side-effects. Ginseng root, an oriental medicine, has many health benefits and may exhibit direct anti-cancer properties. This study was performed to assess the effects of ginseng on breast cancer cell lines. Materials and Methods: Cytotoxicity of ginseng extract was measured by MTT assay after exposure of MDA-MB-231, MCF-10A and MCF-7 breast cancer cells to concentrations of 0.25, 0.5, 1, 1.5, 2 and 2.5 mg/well. Expression levels of p21WAF, p16INK4A, Bcl-2, Bax and P53 genes were analyzed by quantitative real time PCR. Results: The treatment resulted in inhibition of cell proliferation in a dose-and time-dependent manner. p53, p21WAF1and p16INK4A expression levels were up-regulated in ginseng treated MDA-MB-231 and MCF-7 cancer cells compared to untreated controls and in MCF-10A cells. The expression levels of Bcl2 in the MDA-MB-231 and MCF-7 cells were down-regulated. In contrast, that of Bax was significantly up-regulated. Conclusion: The results of this study revealed that ginseng may inhibit breast cancer cell growth by activation of the apoptotic pathway.
Collapse
Affiliation(s)
- Othman A AL Shabanah
- College of Pharmacy, Pharmacology and Toxicology Department, Kind Saud University, Riyadh, Kingdom of Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|
18
|
Kong Y, Sharma RB, Nwosu BU, Alonso LC. Islet biology, the CDKN2A/B locus and type 2 diabetes risk. Diabetologia 2016; 59:1579-93. [PMID: 27155872 PMCID: PMC4930689 DOI: 10.1007/s00125-016-3967-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/29/2016] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes, fuelled by the obesity epidemic, is an escalating worldwide cause of personal hardship and public cost. Diabetes incidence increases with age, and many studies link the classic senescence and ageing protein p16(INK4A) to diabetes pathophysiology via pancreatic islet biology. Genome-wide association studies (GWASs) have unequivocally linked the CDKN2A/B locus, which encodes p16 inhibitor of cyclin-dependent kinase (p16(INK4A)) and three other gene products, p14 alternate reading frame (p14(ARF)), p15(INK4B) and antisense non-coding RNA in the INK4 locus (ANRIL), with human diabetes risk. However, the mechanism by which the CDKN2A/B locus influences diabetes risk remains uncertain. Here, we weigh the evidence that CDKN2A/B polymorphisms impact metabolic health via islet biology vs effects in other tissues. Structured in a bedside-to-bench-to-bedside approach, we begin with a summary of the evidence that the CDKN2A/B locus impacts diabetes risk and a brief review of the basic biology of CDKN2A/B gene products. The main emphasis of this work is an in-depth look at the nuanced roles that CDKN2A/B gene products and related proteins play in the regulation of beta cell mass, proliferation and insulin secretory function, as well as roles in other metabolic tissues. We finish with a synthesis of basic biology and clinical observations, incorporating human physiology data. We conclude that it is likely that the CDKN2A/B locus influences diabetes risk through both islet and non-islet mechanisms.
Collapse
Affiliation(s)
- Yahui Kong
- AS7-2047, Division of Diabetes, Department of Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Rohit B Sharma
- AS7-2047, Division of Diabetes, Department of Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Benjamin U Nwosu
- Division of Endocrinology, Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA
| | - Laura C Alonso
- AS7-2047, Division of Diabetes, Department of Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
19
|
Pérez PA, Petiti JP, Wagner IA, Sabatino ME, Sasso CV, De Paul AL, Torres AI, Gutiérrez S. Inhibitory role of ERβ on anterior pituitary cell proliferation by controlling the expression of proteins related to cell cycle progression. Mol Cell Endocrinol 2015; 415:100-13. [PMID: 26282612 DOI: 10.1016/j.mce.2015.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 02/07/2023]
Abstract
Considering that the role of ERβ in the growth of pituitary cells is not well known, the aim of this work was to determine the expression of ERβ in normal and tumoral cells and to investigate its implications in the proliferative control of this endocrine gland, by analyzing the participation of cyclin D1, Cdk4 and p21. Our results showed that the expression of ERβ decreased during pituitary tumoral development induced by chronic E2 stimulation. The 20 ± 1.6% of normal adenohypophyseal cells expressed ERβ, with this protein being reduced in the hyperplastic/adenomatous pituitary: at 20 days the ERβ+ population was 10.7 ± 2.2%, while after 40 and 60 days of treatment an almost complete loss in the ERβ expression was observed (40 d: 1 ± 0.6%; 60 d: 2 ± 0.6%). The ERα/β ratio increased starting from tumors at 40 days, mainly due to the loss of ERβ expression. The cell proliferation was analyzed in normal and hyperplastic pituitary and also in GH3β- and GH3β+ which contained different levels of ERβ expression, and therefore different ERα/β ratios. The over-expression of ERβ inhibited the GH3 cell proliferation and expression of cyclin D1 and ERα. Also, the ERβ activation by its agonist DPN changed the subcellular localization of p21, inducing an increase in the p21 nuclear expression, where it acts as a tumoral suppressor. These results show that ERβ exerts an inhibitory role on pituitary cell proliferation, and that this effect may be partially due to the modulation of some key regulators of the cell cycle, such as cyclin D1 and p21. These data contribute significantly to the understanding of the ER effects in the proliferative control of pituitary gland, specifically related to the ERβ function in the E2 actions on this endocrine gland.
Collapse
Affiliation(s)
- Pablo A Pérez
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Juan P Petiti
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ignacio A Wagner
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria E Sabatino
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Corina V Sasso
- Laboratorio de Hormonas y Biología del Cáncer, Instituto de Medicina y Biología Experimental de Cuyo, (IMBECU-CONICET), CCT-Mendoza, Mendoza, Argentina
| | - Ana L De Paul
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alicia I Torres
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Silvina Gutiérrez
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
20
|
Appelqvist F, Yhr M, Erlandson A, Martinsson T, Enerbäck C. Deletion of the MGMT gene in familial melanoma. Genes Chromosomes Cancer 2014; 53:703-11. [PMID: 24801985 DOI: 10.1002/gcc.22180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/08/2014] [Indexed: 11/09/2022] Open
Abstract
The DNA repair gene MGMT (O-6-methylguanine-DNA methyltransferase) is important for maintaining normal cell physiology and genomic stability. Alterations in MGMT play a critical role in the development of several types of cancer, including glioblastoma, lung cancer, and colorectal cancer. The purpose of this study was to explore the function of genetic alterations in MGMT and their connection with familial melanoma (FM). Using multiplex ligation-dependent probe amplification, we identified a deletion that included the MGMT gene in one of 64 families with a melanoma predisposition living in western Sweden. The mutation segregated with the disease as a heterozygous deletion in blood-derived DNA, but a homozygous deletion including the promoter region and exon 1 was seen in tumor tissue based on Affymetrix 500K and 6.0 arrays. By sequence analysis of the MGMT gene in the other 63 families with FM from western Sweden, we identified four common polymorphisms, nonfunctional, as predominantly described in previous studies. We conclude that inherited alterations in the MGMT gene might be a rare cause of FM, and we suggest that MGMT contributes to melanoma predisposition.
Collapse
Affiliation(s)
- Frida Appelqvist
- Department of Dermatology, Institute of Clinical Sciences, Sahlgrenska University Hospital, SE-413 45, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
21
|
Lambert JP, Ivosev G, Couzens AL, Larsen B, Taipale M, Lin ZY, Zhong Q, Lindquist S, Vidal M, Aebersold R, Pawson T, Bonner R, Tate S, Gingras AC. Mapping differential interactomes by affinity purification coupled with data-independent mass spectrometry acquisition. Nat Methods 2013; 10:1239-45. [PMID: 24162924 PMCID: PMC3882083 DOI: 10.1038/nmeth.2702] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 09/24/2013] [Indexed: 01/04/2023]
Abstract
Characterizing changes in protein-protein interactions associated with sequence variants (e.g. disease-associated mutations or splice forms) or following exposure to drugs, growth factors or hormones is critical to understanding how protein complexes are built, localized and regulated. Affinity purification (AP) coupled with mass spectrometry permits the analysis of protein interactions under near-physiological conditions, yet monitoring interaction changes requires the development of a robust and sensitive quantitative approach, especially for large-scale studies where cost and time are major considerations. To this end, we have coupled AP to data-independent mass spectrometric acquisition (SWATH), and implemented an automated data extraction and statistical analysis pipeline to score modulated interactions. Here, we use AP-SWATH to characterize changes in protein-protein interactions imparted by the HSP90 inhibitor NVP-AUY922 or melanoma-associated mutations in the human kinase CDK4. We show that AP-SWATH is a robust label-free approach to characterize such changes, and propose a scalable pipeline for systems biology studies.
Collapse
Affiliation(s)
- Jean-Philippe Lambert
- 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. [2]
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sun Y, Lou X, Yang M, Yuan C, Ma L, Xie BK, Wu JM, Yang W, Shen SX, Xu N, Liao DJ. Cyclin-dependent kinase 4 may be expressed as multiple proteins and have functions that are independent of binding to CCND and RB and occur at the S and G 2/M phases of the cell cycle. Cell Cycle 2013; 12:3512-25. [PMID: 24091631 DOI: 10.4161/cc.26510] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cyclin-dependent kinase 4 (CDK4) is known to be a 33 kD protein that drives G 1 phase progression of the cell cycle by binding to a CCND protein to phosphorylate RB proteins. Using different CDK4 antibodies in western blot, we detected 2 groups of proteins around 40 and 33 kD, respectively, in human and mouse cells; each group often appeared as a duplet or triplet of bands. Some CDK4 shRNAs could decrease the 33 kD wild-type (wt) CDK4 but increase some 40 kD proteins, whereas some other shRNAs had the opposite effects. Liquid chromatography-mass spectrometry/mass spectrometry analysis confirmed the existence of CDK4 isoforms smaller than 33 kD but failed to identify CDK4 at 40 kD. We cloned one CDK4 mRNA variant that lacks exon 2 and encodes a 26 kD protein without the first 74 amino acids of the wt CDK4, thus lacking the ATP binding sequence and the PISTVRE domain required for binding to CCND. Co-IP assay confirmed that this ΔE2 protein lost CCND1- and RB1-binding ability. Moreover, we found, surprisingly, that the wt CDK4 and the ΔE2 could inhibit G 1-S progression, accelerate S-G 2/M progression, and enhance or delay apoptosis in a cell line-specific manner in a situation where the cells were treated with a CDK4 inhibitor or the cells were serum-starved and then replenished. Hence, CDK4 seems to be expressed as multiple proteins that react differently to different CDK4 antibodies, respond differently to different shRNAs, and, in some situations, have previously unrecognized functions at the S-G 2/M phases of the cell cycle via mechanisms independent of binding to CCND and RB.
Collapse
Affiliation(s)
- Yuan Sun
- Hormel Institute; The University of Minnesota; Austin, MN USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Deng X, Ma L, Wu M, Zhang G, Jin C, Guo Y, Liu R. miR-124 radiosensitizes human glioma cells by targeting CDK4. J Neurooncol 2013; 114:263-74. [PMID: 23761023 DOI: 10.1007/s11060-013-1179-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 06/02/2013] [Indexed: 12/15/2022]
Abstract
The aberrant expression of cyclin-dependent kinase-4 (CDK4) has previously been observed in human brain glioma. Furthermore, it is observed that up-regulation of CDK4 is associated with therapy resistance and relapse. However, the mechanisms behind these phenomena remain unclear. Here, we demonstrated that elevated CDK4 expression is correlated with poor prognosis in glioma after radiotherapy and that CDK4 knockdown conferred radiosensitivity in glioma cell lines. CDK4 was identified as potential downstream target of miR-124 through bioinformatics analysis and dual-firefly luciferase reporter assay. Furthermore, restoration of miR-124 could confer radiosensitivity. Cell differentiation agent-2 (CDA-2) mimicked the effect of miR-124 restoration and CDK4 knockdown, and sensitized xenografts to radiation in an animal model. Our findings demonstrated for the first time that CDK4 was a downstream target of miR-124 and that CDA-2 could radiosensitize Glioblastoma multiforme cells through the MiR-124-CDK4 axis.
Collapse
Affiliation(s)
- Xubin Deng
- Cancer Institute of Southern Medical University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
24
|
Puntervoll HE, Yang XR, Vetti HH, Bachmann IM, Avril MF, Benfodda M, Catricalà C, Dalle S, Duval-Modeste AB, Ghiorzo P, Grammatico P, Harland M, Hayward NK, Hu HH, Jouary T, Martin-Denavit T, Ozola A, Palmer JM, Pastorino L, Pjanova D, Soufir N, Steine SJ, Stratigos AJ, Thomas L, Tinat J, Tsao H, Veinalde R, Tucker MA, Bressac-de Paillerets B, Newton-Bishop JA, Goldstein AM, Akslen LA, Molven A. Melanoma prone families with CDK4 germline mutation: phenotypic profile and associations with MC1R variants. J Med Genet 2013; 50:264-70. [PMID: 23384855 PMCID: PMC3607098 DOI: 10.1136/jmedgenet-2012-101455] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background CDKN2A and CDK4 are high risk susceptibility genes for cutaneous malignant melanoma. Melanoma families with CDKN2A germline mutations have been extensively characterised, whereas CDK4 families are rare and lack a systematic investigation of their phenotype. Methods All known families with CDK4 germline mutations (n=17) were recruited for the study by contacting the authors of published papers or by requests via the Melanoma Genetics Consortium (GenoMEL). Phenotypic data related to primary melanoma and pigmentation characteristics were collected. The CDK4 exon 2 and the complete coding region of the MC1R gene were sequenced. Results Eleven families carried the CDK4 R24H mutation whereas six families had the R24C mutation. The total number of subjects with verified melanoma was 103, with a median age at first melanoma diagnosis of 39 years. Forty-three (41.7%) subjects had developed multiple primary melanomas (MPM). A CDK4 mutation was found in 89 (including 62 melanoma cases) of 209 tested subjects. CDK4 positive family members (both melanoma cases and unaffected subjects) were more likely to have clinically atypical nevi than CDK4 negative family members (p<0.001). MPM subjects had a higher frequency of MC1R red hair colour variants compared with subjects with one tumour (p=0.010). Conclusion Our study shows that families with CDK4 germline mutations cannot be distinguished phenotypically from CDKN2A melanoma families, which are characterised by early onset of disease, increased occurrence of clinically atypical nevi, and development of MPM. In a clinical setting, the CDK4 gene should therefore always be examined when a melanoma family tests negative for CDKN2A mutation.
Collapse
Affiliation(s)
- Hanne Eknes Puntervoll
- Section for Pathology, The Gade Institute, University of Bergen, Haukeland University Hospital, N-5021 Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sabir M, Baig RM, Mahjabeen I, Kayani MA. Novel germline CDK4 mutations in patients with head and neck cancer. Hered Cancer Clin Pract 2012; 10:11. [PMID: 22932448 PMCID: PMC3488972 DOI: 10.1186/1897-4287-10-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/13/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Cyclin-dependent kinase 4 (CDK4) together with its regulatory subunit cyclin D1, governs cell cycle progression through G1 phase. Cyclin-dependent kinase inhibitors, including p16INK4A in turn regulate CDK4. In particular, deregulation of the p16/CDK4/cyclin D1 complex has been established in a variety of human tumors including gliomas, sarcomas, melanoma, breast and colorectal cancer. However, changes in CDK4 have rarely been observed. METHOD In this study we used a combination of PCR-SSCP and direct sequencing for mutational screening of CDK4. DNA was isolated from peripheral blood leukocyte of patients with squamous cell carcinoma of head and neck, for screening germline mutations in coding regions of CDK4. RESULTS Variations observed in exon 2 and 5 were three missense mutations, g5051G > C (Ser52Thr), g5095G > C (Glu67Gln), g5906C > A, g5907C > G (Pro194Ser) and novel frame shift mutations g7321_23delTGA, g7121_7122insG, g7143delG in exon 7 and 3'UTR respectively. CONCLUSION In conclusion, two novel mutations were found in N terminal domain which indicates that CDK4 mutation may play a major role in the development and progression of squamous cell carcinoma of head and neck.
Collapse
Affiliation(s)
- Maimoona Sabir
- Cancer Genetics Lab, Department of Biosciences, COMSATS Institute of Information Technology, Park Road Chak shahzad, Islamabad, Pakistan
| | - Ruqia Mehmood Baig
- Cancer Genetics Lab, Department of Biosciences, COMSATS Institute of Information Technology, Park Road Chak shahzad, Islamabad, Pakistan
| | - Ishrat Mahjabeen
- Cancer Genetics Lab, Department of Biosciences, COMSATS Institute of Information Technology, Park Road Chak shahzad, Islamabad, Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics Lab, Department of Biosciences, COMSATS Institute of Information Technology, Park Road Chak shahzad, Islamabad, Pakistan
| |
Collapse
|
26
|
Dutton-Regester K, Irwin D, Hunt P, Aoude LG, Tembe V, Pupo GM, Lanagan C, Carter CD, O'Connor L, O'Rourke M, Scolyer RA, Mann GJ, Schmidt CW, Herington A, Hayward NK. A high-throughput panel for identifying clinically relevant mutation profiles in melanoma. Mol Cancer Ther 2012; 11:888-97. [PMID: 22383533 DOI: 10.1158/1535-7163.mct-11-0676] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Success with molecular-based targeted drugs in the treatment of cancer has ignited extensive research efforts within the field of personalized therapeutics. However, successful application of such therapies is dependent on the presence or absence of mutations within the patient's tumor that can confer clinical efficacy or drug resistance. Building on these findings, we developed a high-throughput mutation panel for the identification of frequently occurring and clinically relevant mutations in melanoma. An extensive literature search and interrogation of the Catalogue of Somatic Mutations in Cancer database identified more than 1,000 melanoma mutations. Applying a filtering strategy to focus on mutations amenable to the development of targeted drugs, we initially screened 120 known mutations in 271 samples using the Sequenom MassARRAY system. A total of 252 mutations were detected in 17 genes, the highest frequency occurred in BRAF (n = 154, 57%), NRAS (n = 55, 20%), CDK4 (n = 8, 3%), PTK2B (n = 7, 2.5%), and ERBB4 (n = 5, 2%). Based on this initial discovery screen, a total of 46 assays interrogating 39 mutations in 20 genes were designed to develop a melanoma-specific panel. These assays were distributed in multiplexes over 8 wells using strict assay design parameters optimized for sensitive mutation detection. The final melanoma-specific mutation panel is a cost effective, sensitive, high-throughput approach for identifying mutations of clinical relevance to molecular-based therapeutics for the treatment of melanoma. When used in a clinical research setting, the panel may rapidly and accurately identify potentially effective treatment strategies using novel or existing molecularly targeted drugs.
Collapse
Affiliation(s)
- Ken Dutton-Regester
- Queensland Institute of Medical Research, Oncogenomics Laboratory, Queensland University of Technology, Brisbane, Queensland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Biggar KK, Storey KB. Perspectives in cell cycle regulation: lessons from an anoxic vertebrate. Curr Genomics 2011; 10:573-84. [PMID: 20514219 PMCID: PMC2817888 DOI: 10.2174/138920209789503905] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 08/04/2009] [Accepted: 08/06/2009] [Indexed: 01/07/2023] Open
Abstract
The ability of an animal, normally dependent on aerobic respiration, to suspend breathing and enter an anoxic state for long term survival is clearly a fascinating feat, and has been the focus of numerous biochemical studies. When anoxia tolerant turtles are faced with periods of oxygen deprivation, numerous physiological and biochemical alterations take place in order to facilitate vital reductions in ATP consumption. Such strategies include reversible post-translational modifications as well as the implementation of translation and transcription controls facilitating metabolic depression. Although it is clear that anoxic survival relies on the suppression of ATP consuming processes, the state of the cell cycle in anoxia tolerant vertebrates remain elusive. Several anoxia tolerant invertebrate and embryonic vertebrate models display cell cycle arrest when presented with anoxic stress. Despite this, the cell cycle has not yet been characterized for anoxia tolerant turtles. Understanding how vertebrates respond to anoxia can have important clinical implications. Uncontrollable cellular proliferation and hypoxic tumor progression are inescapably linked in vertebrate tissues. Consequentially, the molecular mechanisms controlling these processes have profound clinical consequences. This review article will discuss the theory of cell cycle arrest in anoxic vertebrates and more specifically, the control of the retinoblastoma pathway, the molecular markers of cell cycle arrest, the activation of checkpoint kinases, and the possibility of translational controls implemented by microRNAs.
Collapse
Affiliation(s)
- Kyle K Biggar
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | | |
Collapse
|
28
|
Kitamura R, Fukatsu R, Kakusho N, Cho YS, Taniyama C, Yamazaki S, Toh GT, Yanagi K, Arai N, Chang HJ, Masai H. Molecular mechanism of activation of human Cdc7 kinase: bipartite interaction with Dbf4/activator of S phase kinase (ASK) activation subunit stimulates ATP binding and substrate recognition. J Biol Chem 2011; 286:23031-43. [PMID: 21536671 DOI: 10.1074/jbc.m111.243311] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdc7 is a serine/threonine kinase conserved from yeasts to human and is known to play a key role in the regulation of initiation at each replication origin. Its catalytic function is activated via association with the activation subunit Dbf4/activator of S phase kinase (ASK). It is known that two conserved motifs of Dbf4/ASK are involved in binding to Cdc7, and both are required for maximum activation of Cdc7 kinase. Cdc7 kinases possess unique kinase insert sequences (kinase insert I-III) that are inserted at defined locations among the conserved kinase domains. However, precise mechanisms of Cdc7 kinase activation are largely unknown. We have identified two segments on Cdc7, DAM-1 (Dbf4/ASK interacting motif-1; amino acids 448-457 near the N terminus of kinase insert III) and DAM-2 (C-terminal 10-amino acid segment), that interact with motif-M and motif-C of ASK, respectively, and are essential for kinase activation by ASK. The C-terminal 143-amino acid polypeptide (432-574) containing DAM-1 and DAM-2 can interact with Dbf4/ASK. Characterization of the purified ASK-free Cdc7 and Cdc7-ASK complex shows that ATP binding of the Cdc7 catalytic subunit requires Dbf4/ASK. However, the "minimum" Cdc7, lacking the entire kinase insert II and half of kinase insert III, binds to ATP and shows autophosphorylation activity in the absence of ASK. However, ASK is still required for phosphorylation of exogenous substrates by the minimum Cdc7. These results indicate bipartite interaction between Cdc7 and Dbf4/ASK subunits facilitates ATP binding and substrate recognition by the Cdc7 kinase.
Collapse
Affiliation(s)
- Ryo Kitamura
- Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Buecher B, Gauthier-Villars M, Desjardins L, Lumbroso-Le Rouic L, Levy C, De Pauw A, Bombled J, Tirapo C, Houdayer C, Bressac-de Paillerets B, Stoppa-Lyonnet D. Contribution of CDKN2A/P16 INK4A, P14 ARF, CDK4 and BRCA1/2 germline mutations in individuals with suspected genetic predisposition to uveal melanoma. Fam Cancer 2010; 9:663-7. [DOI: 10.1007/s10689-010-9379-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Tang XH, Su D, Albert M, Scognamiglio T, Gudas LJ. Overexpression of lecithin:retinol acyltransferase in the epithelial basal layer makes mice more sensitive to oral cavity carcinogenesis induced by a carcinogen. Cancer Biol Ther 2009; 8:1212-3. [PMID: 19471114 DOI: 10.4161/cbt.8.13.8630] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lecithin:retinol acyltransferase (LRAT) is an enzyme that converts retinol (vitamin A) to retinyl esters. Its expression is often reduced in human cancers, including oral cavity cancers. We investigated the effects of ectopic expression of human lecithin:retinol acyltransferase (LRAT) on murine oral cavity carcinogenesis induced by the carcinogen 4-nitroquinoline 1-oxide (4-NQO). We targeted human LRAT expression specifically to the basal layer of mouse skin and oral cavity epithelia by using a portion of the human cytokeratin 14 (K14) promoter. High levels of human LRAT transgene transcripts were detected in the tongues and skin of adult transgenic positive (TG+) mice, but not in transgenic negative (TG-) mice. The retinyl ester levels in skin of LRAT TG+ mice were 32% +/- 5.4% greater than those in TG- mice, and topical treatment of the back skin with retinol resulted in greater increases in retinyl esters (from 6.9- to 14.3-fold in different TG+ mice) in TG+ mouse skin than in TG- mouse skin (1.3 fold). While carcinogen (4-NQO) treatment induced multifocal precancerous and cancer lesions in the tongues of both TG positive (n=16) and negative mice (n=22), higher percentages of transgenic positive mice (62.5%) developed more severe tongue lesions (grades 3 and 4) than transgenic negative mice (24.8%) after 4-NQO treatment (p < 0.05). Carcinogen treatment also resulted in greater percentages of transgenic positive mouse tongues with hyperplasia (71.4%), dysplasia (85.7%, p < 0.05), and carcinoma (28.6%) than transgenic negative mouse tongues (53.3%, 46.7%, and 20%, respectively). Moreover, we observed higher cyclooxygenase-2 (Cox-2) and lower RARbeta(2) mRNA levels in TG+ mouse tongues as compared to TG- mouse tongues after 4-NQO treatment (p < 0.05). Taken together, these data show that overexpression of human LRAT specifically in oral basal epithelial cells makes these cells more sensitive to carcinogen induced tumorigenesis.
Collapse
Affiliation(s)
- Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
31
|
Ibrahim N, Haluska FG. Molecular pathogenesis of cutaneous melanocytic neoplasms. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2009; 4:551-79. [PMID: 19400696 DOI: 10.1146/annurev.pathol.3.121806.151541] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Melanoma is the deadliest form of skin cancer without an effective treatment. An understanding of the genetic basis of melanoma has recently shed light on some of the mechanisms of melanomagenesis. This review explores the major genes involved in familial and sporadic cutaneous melanoma with an emphasis on CDKN2A, CDK4, MC1R, and MAPK pathway targets (e.g., RAS and BRAF), apoptosis regulators (e.g., BCL-2, AKT, and APAF-1), and the tumor-suppressor genes TP53 and PTEN. New directions for therapeutics based on our current knowledge of the genes implicated in melanoma are also discussed.
Collapse
Affiliation(s)
- Nageatte Ibrahim
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA.
| | | |
Collapse
|
32
|
Identification of a CDK4 R24H mutation-positive melanoma family by analysis of early-onset melanoma patients in Latvia. Melanoma Res 2009; 19:119-22. [PMID: 19238106 DOI: 10.1097/cmr.0b013e3283287d3e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have analysed 47 early-onset (< or =40 years) Latvian melanoma patients for the involvement of the melanoma susceptibility loci CDKN2A and CDK4. We observed no disease-related mutations in CDKN2A, but one patient had a CDK4 R24H mutation and strong family history of melanoma. Haplotype analysis using microsatellite markers and single nucleotide polymorphisms showed that the Latvian haplotype is unique compared with that of other melanoma families with the R24H mutation. This finding supports the proposal that codon 24 is a mutational hotspot in the CDK4 gene.
Collapse
|
33
|
Crystal structure of human CDK4 in complex with a D-type cyclin. Proc Natl Acad Sci U S A 2009; 106:4166-70. [PMID: 19237565 DOI: 10.1073/pnas.0809645106] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cyclin D1-cyclin-dependent kinase 4 (CDK4) complex is a key regulator of the transition through the G(1) phase of the cell cycle. Among the cyclin/CDKs, CDK4 and cyclin D1 are the most frequently activated by somatic genetic alterations in multiple tumor types. Thus, aberrant regulation of the CDK4/cyclin D1 pathway plays an essential role in oncogenesis; hence, CDK4 is a genetically validated therapeutic target. Although X-ray crystallographic structures have been determined for various CDK/cyclin complexes, CDK4/cyclin D1 has remained highly refractory to structure determination. Here, we report the crystal structure of CDK4 in complex with cyclin D1 at a resolution of 2.3 A. Although CDK4 is bound to cyclin D1 and has a phosphorylated T-loop, CDK4 is in an inactive conformation and the conformation of the heterodimer diverges from the previously known CDK/cyclin binary complexes, which suggests a unique mechanism for the process of CDK4 regulation and activation.
Collapse
|
34
|
Affiliation(s)
- Nadem Soufir
- Department of Dermatology, Laboratoire de Biochimie Hormonale et Génétique, IFR02, Hopital Bichat-Claude Bernard, 46rue Henri Huchard, Paris, France
| | | | | |
Collapse
|
35
|
Fahham N, Ghahremani MH, Sardari S, Vaziri B, Ostad SN. Simulation of different truncated p16(INK4a) forms and in silico study of interaction with Cdk4. Cancer Inform 2008; 7:1-11. [PMID: 19352455 PMCID: PMC2664699 DOI: 10.4137/cin.s878] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Protein-protein interactions studies can greatly increase the amount of structural and functional information pertaining to biologically active molecules and processes. The information obtained from such studies can lead to design and application of new modification in order to obtain a desired bioactivity. Many application packages and servers performing docking, such as HEX, DOT, AUTODOCK, and ZDOCK are now available for predicting the lowest free energy state of a protein complex. In this study, we have focused on cyclin-dependent kinase 4 (Cdk4), a key molecule in the regulation of cell cycle progression at the G1-S phase restriction point and p16INK4a, a tumor suppressor which inhibits Cdk4 activity. Truncated structures were created to find the more critical regions of p16 for interaction. The tertiary structures were determined by ProSAL, GENO3D Web Server. We evaluated their interactions with Cdk4 using two docking systems, HEX 4.5 and DOT 1. Calculations were performed on a high-speed computer. Minimizations and visualizations were carried out by PdbViewer 3.7. Considering shape and shape/electrostatic total energy, structures containing ANK II, III and IV motifs that lack the N-terminal region of the full length p16 molecule showed the best fit complexes among the p16 truncated forms. The free energies were compatible with that of p16 full length original form, the full length. It seems that the N-terminal of the molecule is not crucial for the interaction since the truncated structure containing only this region did not show a good total energy.
Collapse
Affiliation(s)
- Najmeh Fahham
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute, Tehran, Iran
| | | | | | | | | |
Collapse
|
36
|
Kolupaeva V, Laplantine E, Basilico C. PP2A-mediated dephosphorylation of p107 plays a critical role in chondrocyte cell cycle arrest by FGF. PLoS One 2008; 3:e3447. [PMID: 18927618 PMCID: PMC2562983 DOI: 10.1371/journal.pone.0003447] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 09/19/2008] [Indexed: 11/23/2022] Open
Abstract
FGF signaling inhibits chondrocyte proliferation, a cell type-specific response that is the basis for several genetic skeletal disorders caused by activating FGFR mutations. This phenomenon requires the function of the p107 and p130 members of the Rb protein family, and p107 dephosphorylation is one of the earliest distinguishing events in FGF-induced growth arrest. To determine whether p107 dephoshorylation played a critical role in the chondrocyte response to FGF, we sought to counteract this process by overexpressing in RCS chondrocytes the cyclin D1/cdk4 kinase complex. CyclinD/cdk4-expressing RCS cells became resistant to FGF-induced p107 dephosphorylation and growth arrest, and maintained significantly high levels of cyclin E/cdk2 activity and of phosphorylated p130 at later times of FGF treatment. We explored the involvement of a phosphatase in p107 dephosphorylation. Expression of the SV40 small T-Ag, which inhibits the activity of the PP2A phosphatase, or knockdown of the expression of the PP2A catalytic subunit by RNA interference prevented p107 dephosphorylation and FGF-induced growth arrest of RCS cells. Furthermore, an association between p107 and PP2A was induced by FGF treatment. Our data show that p107 dephosphorylation is a key event in FGF-induced cell cycle arrest and indicate that in chondrocytes FGF activates the PP2A phosphatase to promote p107 dephosphorylation.
Collapse
Affiliation(s)
- Victoria Kolupaeva
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Emmanuel Laplantine
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Claudio Basilico
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
37
|
Chow R, Olesen J, Onyskiw C, Baksh S. Mitotic regulation of CDK4 by the serine/threonine phosphatase, calcineurin. Biochem Biophys Res Commun 2007; 363:506-12. [PMID: 17892862 DOI: 10.1016/j.bbrc.2007.08.197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2007] [Accepted: 08/29/2007] [Indexed: 11/25/2022]
Abstract
Calcineurin was demonstrated to regulate the phosphorylation of threonine (T)-172 of CDK4. We further investigated how calcineurin can regulate this essential post-translational modification on CDK4. In this study, we demonstrate that calcineurin can associate predominantly with the cytoplasmic form of CDK4 in the absence of cyclin D. The inhibition of calcineurin phosphatase activity resulted in the specific increase of the phosphorylation and activity levels of CDK4 within the mitotic fraction. The association of calcineurin with CDK4 peaked during the mitotic phase of the cell cycle and coincided with reduction of CDK4 phosphorylation. Using structural mutants to CDK4, we localized the interaction site of calcineurin within the amino terminal residues of CDK4 that are important for both cyclin D and p16INK4a binding. Our data suggest that calcineurin may regulate the kinase activity of CDK4 in a cell cycle-dependent manner and may be an important component of the negative regulation of CDK4.
Collapse
Affiliation(s)
- Renfred Chow
- Department of Pediatrics, University of Alberta, Room B066, Dentistry/Pharmacy Centre, Edmonton, Alta, Canada T6G 2N8
| | | | | | | |
Collapse
|
38
|
Nadal A, Jares P, Pinyol M, Conde L, Romeu C, Fernández PL, Campo E, Cardesa A. Association of CDK4 and CCND1 mRNA overexpression in laryngeal squamous cell carcinomas occurs without CDK4 amplification. Virchows Arch 2007; 450:161-7. [PMID: 17139501 DOI: 10.1007/s00428-006-0314-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 09/07/2006] [Indexed: 02/06/2023]
Abstract
CDK4 is involved in the control of G1-S phase transition as a part of the CCND1/CDK4 complexes. CCNDI and CDK4 gene alterations have been implicated in the development of different tumors. CCND1 has been associated with progression in laryngeal carcinomas. CDK4 protein overexpression was described associated to CCND 1 overexpression in these tumors. However, the mechanisms implicated were not known. We analyzed CDK4 gene alterations and mRNA expression in a series of carcinomas of the larynx, and the results were compared to CCND1 expression and clinicopathological characteristics of the patients. CDK4 mRNA was overexpressed in 42 out of 60 tumors (70%) associated with CCND1 mRNA overexpression because 15 out of 16 cases with high CCND1 levels showed simultaneous increased levels of CDK4 mRNA (p = 0.023) and 12 (87%) of the tumors overexpressing both genes were in stage 4. No CDK4 gene amplifications, rearrangements, or mutations were detected in any of the tumors, including 24 overexpressed cases. These findings confirm that CDK4 overexpression is a frequent phenomenon in laryngeal carcinomas, which occurs at the transcriptional level but is related neither to gene amplification nor to gene mutation, and suggest that cooperation with CCND1 may be involved in the progression of laryngeal tumors.
Collapse
Affiliation(s)
- Alfons Nadal
- Anatomia Patologica, Hospital Clinic, Institut d'Investigacions Biomediques August Pi i Sunyer, Villarroel 170, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Pjanova D, Engele L, Randerson-Moor JA, Harland M, Bishop DT, Newton Bishop JA, Taylor C, Debniak T, Lubinski J, Kleina R, Heisele O. CDKN2A and CDK4 variants in Latvian melanoma patients: analysis of a clinic-based population. Melanoma Res 2007; 17:185-91. [PMID: 17505264 DOI: 10.1097/cmr.0b013e328014a2cd] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Germline mutations of the CDKN2A and CDK4 genes explain a significant proportion of familial melanoma. To date, there have been few published estimations of the prevalence of such mutations in sporadic melanoma patients. In this study, we investigated CDKN2A and CDK4 exon 2 for germline mutations in 125 consecutive cutaneous malignant melanoma patients recruited through the Latvian Oncological Center, using amplicon melting analysis and sequencing. No disease-related CDKN2A germline mutations were identified in any of the melanoma patients analysed but the previously described CDK4 mutation, Arg24His, was found in one patient with a family history of melanoma. CDKN2A polymorphisms were studied as putative low penetrance susceptibility genes. The proportion of cases with polymorphisms in this Latvian melanoma population was Ala148Thr (c.442G>A) (6%), 500 C/G (c.*29C>G) (18%), and 540 C/T (c.*69C>T) (20%); however, only the frequency of the Ala148Thr polymorphism was higher in melanoma patients than in 203 controls (6 versus 1%, P=0.03). Ala148Thr has also been reported in association with melanoma in a Polish series but not in an English series. We therefore examined the Ala148Thr carrier's haplotype in 10 Latvian and 39 Polish samples. No significant difference was seen between these populations and the predominant haplotype observed in English samples, giving no indication that the discrepancy could be explained by population differences in linkage disequilibrium. In summary, our results show that germline mutations at the CDKN2A locus are rare in sporadic melanoma in Latvia. The study does, however, provide some additional evidence for a role for the CDKN2A polymorphism Ala148Thr as a low penetrance susceptibility gene. The detected CDK4 exon 2 mutation was found in only the seventh family identified worldwide with a germline CDK4 mutation.
Collapse
Affiliation(s)
- Dace Pjanova
- Latvian Biomedical Research and Study Centre, Riga, Latvia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
With the advent of modern molecular genetics, molecular biology and biochemistry has come a revolution in oncology drug discovery research. We are rapidly developing an increased understanding in the mechanisms driving cellular proliferation, transformation, differentiation and metastasis. The hope is that from these advances will emerge novel therapeutics that are more specific, more efficacious and less toxic than their predecessors. Uncontrolled proliferation is a hallmark of a cancer cell. Over the past two decades it has become increasingly clear that molecules that directly control cell cycle progression accumulate defects during tumourigenesis. These defects can result in the loss of checkpoint control and/or the inappropriate activation of the 'drivers' of cell cycle progression, the cyclin-dependent kinases (cdks). This review will describe the recent advances in our understanding of cell cycle regulation and its relation to tumourigenesis, and highlight the potential for the development of novel anticancer therapeutics.
Collapse
Affiliation(s)
- K R Webster
- Department of Oncology Drug Discovery, Bristol-Myers Squibb Pharmaceutical Research Institute, PO Box 4000, Princeton, NJ 08543-4000, USA.
| |
Collapse
|
41
|
Molven A, Grimstvedt MB, Steine SJ, Harland M, Avril MF, Hayward NK, Akslen LA. A large Norwegian family with inherited malignant melanoma, multiple atypical nevi, andCDK4 mutation. Genes Chromosomes Cancer 2005; 44:10-8. [PMID: 15880589 DOI: 10.1002/gcc.20202] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mutations in two loci encoding cell-cycle-regulatory proteins have been shown to cause familial malignant melanoma. About 20% of melanoma-prone families bear a mutation in the CDKN2A locus, which encodes two unrelated proteins, p16INK4A and p14ARF. Mutations in the other locus, CDK4, are much rarer and have been linked to the disease in only three families worldwide. In the 1960s, a large Norwegian pedigree with multiple atypical nevi and malignant melanomas was identified. Subsequently, six generations and more than 100 family members were traced and 20 cases of melanoma verified. In this article, we report that CDK4 codon 24 is mutated from CGT to CAT (Arg24His) in this unusually large melanoma kindred. Intriguingly, one of the family members had ocular melanoma, but the CDK4 mutation could not be detected in archival tissue samples from this subject. Thus, the case of ocular melanoma in this family was sporadic, suggesting an etiology different from that of the skin tumors. The CDK4 mutation in the Norwegian family was identical to that in melanoma families in France, Australia, and England. Haplotype analysis using microsatellite markers flanking the CDK4 gene and single-nucleotide polymorphisms within the gene did not support the possibility that there was a common founder, but rather indicated at least two independent mutational events. All CDK4 melanoma families known to date have a substitution of amino acid 24. In addition to resulting from selection pressure, this observation may be explained by the CG dinucleotide of codon 24 representing a mutational hot spot in the CDK4 gene.
Collapse
Affiliation(s)
- Anders Molven
- Section for Pathology, The Gade Institute, University of Bergen, Haukeland University Hospital, Bergen, Norway.
| | | | | | | | | | | | | |
Collapse
|
42
|
Chin D, Boyle GM, Theile DR, Parsons PG, Coman WB. Molecular introduction to head and neck cancer (HNSCC) carcinogenesis. ACTA ACUST UNITED AC 2004; 57:595-602. [PMID: 15380692 DOI: 10.1016/j.bjps.2004.06.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2004] [Accepted: 06/10/2004] [Indexed: 01/10/2023]
Abstract
Of all human cancers, HNSCC is the most distressing affecting pain, disfigurement, speech and the basic survival functions of breathing and swallowing. Mortality rates have not significantly changed in the last 40 years despite advances in radiotherapy and surgical treatment. Molecular markers are currently being identified that can determine prognosis preoperatively by routine tumour biopsy leading to improved management of HNSCC patients. The approach could help decide which early stage patient should have adjuvant neck dissection and radiotherapy, and whether later stage patients with operable lesions would benefit from resection and reconstructive surgery or adopt a conservative approach to patients with poor prognosis regardless of treatment. In the future, understanding these basic genetic changes in HNSCC would be important for the management of HNSCC.
Collapse
Affiliation(s)
- David Chin
- Queensland Institute of Medical Research, Melanoma Genomics Group, Dept of Plastic Surgery and Head and Neck Unit, University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia.
| | | | | | | | | |
Collapse
|
43
|
Tang XH, Knudsen B, Bemis D, Tickoo S, Gudas LJ. Oral cavity and esophageal carcinogenesis modeled in carcinogen-treated mice. Clin Cancer Res 2004; 10:301-13. [PMID: 14734483 DOI: 10.1158/1078-0432.ccr-0999-3] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Squamous cell carcinoma of the oral cavity is one of the most common human neoplasms, and prevention of these carcinomas requires a better understanding of the carcinogenesis process and a model system in which cancer chemoprevention agents can be tested. We have developed a mouse model using the carcinogen 4-nitroquinoline 1-oxide (4-NQO) in the drinking water to induce tumorigenesis in the mouse oral cavity. EXPERIMENTAL DESIGN 4-NQO was delivered by tongue painting or drinking water to two mouse strains, CBA and C57Bl/6. The incidences of oral cavity carcinogenesis were then compared. In addition, we examined the expression of some of the molecular markers associated with the process of human oral cavity and esophageal carcinogenesis, such as keratin (K) 1, K14, p16, and epidermal growth factor receptor, by immunohistochemistry. RESULTS After treatment with 4-NQO in the drinking water, massive tumors were observed on the tongues of both CBA and C57Bl/6 female mice. Pathological analyses indicated that flat squamous dysplasias, exophytic papillary squamous tumors (papillomas), and invasive squamous cell carcinomas were present. Immunohistochemistry analyses showed that 4-NQO changed the expression patterns of the intermediate filament proteins K14 and K1. K14 was expressed in the epithelial suprabasal layers, in addition to the basal layer, in tongues from carcinogen-treated animals. In contrast, control animals expressed K14 only in the basal layer. Moreover, we observed more bromodeoxyuridine staining in the tongue epithelia of 4-NQO-treated mice. Reduced expression of the cell cycle inhibitor, p16, was observed, whereas 4-NQO treatment caused an increase in epidermal growth factor receptor expression in the mouse tongues. Interestingly, similar features of carcinogenesis, including multiple, large (up to 0.5 cm) exophytic papillary squamous tumors and invasive squamous cell carcinomas, increased bromodeoxyuridine staining, and increased K14 expression, were also observed in the esophagi of 4-NQO-treated mice. However, no tumors were observed in the remainder of digestive tract (including the forestomach, intestine, and colon) or in the lungs or livers of 4-NQO-treated mice. These results indicate that this murine 4-NQO-induced oral and esophageal carcinogenesis model simulates many aspects of human oral cavity and esophageal carcinogenesis. CONCLUSIONS The availability of this mouse model should permit analysis of oral cavity and esophageal cancer development in various mutant and transgenic mouse strains. This model will also allow testing of cancer chemopreventive drugs in various transgenic mouse strains.
Collapse
Affiliation(s)
- Xiao-Han Tang
- Departments of Pharmacology and Pathology, Weill Medical College of Cornell University, New York, New York
| | | | | | | | | |
Collapse
|
44
|
Hashimoto T, He Z, Ma WY, Schmid PC, Bode AM, Yang CS, Dong Z. Caffeine inhibits cell proliferation by G0/G1 phase arrest in JB6 cells. Cancer Res 2004; 64:3344-9. [PMID: 15126379 DOI: 10.1158/0008-5472.can-03-3453] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Caffeine is a major biologically active constituent in coffee and tea. Because caffeine has been reported to inhibit carcinogenesis in UVB-exposed mice, the cancer-preventing effect of caffeine has attracted considerable attention. In the present study, the effect of caffeine in quiescent (G0 phase) cells was investigated. Pretreatment with caffeine suppressed cell proliferation in a dose-dependent manner 36 h after addition of fetal bovine serum as a cell growth stimulator. Analysis by flow cytometry showed that caffeine suppressed cell cycle progression at the G0/G1 phase, i.e., 18 h after addition of fetal bovine serum, the percentages of cells in G0/G1 phase in 1 mM caffeine-treated cells and in caffeine-untreated cells were 61.7 and 29.0, respectively. The percentage of cells in G0/G1 phase at 0 h was 75.5. Caffeine inhibited phosphorylation of retinoblastoma protein at Ser780 and Ser807/Ser811, the sites where retinoblastoma protein has been reported to be phosphorylated by cyclin-dependent kinase 4 (cdk4). Furthermore, caffeine inhibited the activation of the cyclin D1-cdk4 complex in a dose-dependent manner. However this compound did not directly inhibit the activity of this complex. In addition, caffeine did not affect p16INK4 or p27Kip1 protein levels, but inhibited the phosphorylation of protein kinase B (Akt) and glycogen synthase kinase 3beta. Our results showed that caffeine suppressed the progression of quiescent cells into the cell cycle. The inhibitory mechanism may be due to the inhibition of cell growth signal-induced activation of cdk4, which may be involved in the inhibition of carcinogenesis in vivo.
Collapse
Affiliation(s)
- Takashi Hashimoto
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Semczuk A, Boltze C, Marzec B, Szczygielska A, Roessner A, Schneider-Stock R. p16INK4A alterations are accompanied by aberrant protein immunostaining in endometrial carcinomas. J Cancer Res Clin Oncol 2003; 129:589-96. [PMID: 12920579 DOI: 10.1007/s00432-003-0482-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Accepted: 07/04/2003] [Indexed: 11/25/2022]
Abstract
PURPOSE To date, the significance of p16INK4A tumor suppressor gene inactivation in sporadic endometrial cancer (EC) has only rarely been described. In this study, we examined the alteration type and frequency of gene alterations [point mutations, aberrant promoter methylation and loss of heterozygosity (LOH)] in 50 sporadic ECs, and correlated the genetic findings with the immunohistochemical expression of the p16INK4A protein and the classical clinicopathological features. METHODS Gene mutations were detected by PCR-SSCP-sequencing analysis, promoter hypermethylation by methylation-specific PCR (MSP), and LOH by PCR of the STS-marker c5.1. RESULTS In total, p16INK4A alterations were found in 14 of 50 (28%) sporadic ECs. In six (12%) cases, two alterations occurred simultaneously. Partial p16INK4A deletions were found in four of 50 (8%) samples. There was one missense mutation (codon 70; CCC-->GCC) and one frameshift mutation (1-bp deletion in exon 2). Only 2 of 47 (4.2%) tumors exhibited aberrant promoter methylation. An allelic loss was detected in 12 of 50 (24%) carcinomas with a higher incidence in advanced endometrial carcinomas than in early-stage uterine tumors. p16INK4A alterations were generally accompanied by gene silencing, confirmed by aberrant protein immunostaining ( r=-0.442; P=0.001). There was a significant difference in the frequency of p16INK4A alterations between early (stage I; 18%) and advanced (stages II-IV; 58%) ECs ( P=0.022). One case showed complete protein loss, but absence of genetic alterations. CONCLUSIONS Our data indicate that p16INK4A inactivation plays a role in the tumorigenesis of the subset of sporadic ECs, particularly in cases exhibiting an aggressive clinical behavior. We demonstrate that p16INK4A methylation can act efficiently and similarly to other genetic alterations as one of the two necessary hits according to the Knudson two-hit hypothesis of tumor suppressor gene inactivation.
Collapse
Affiliation(s)
- Andrzej Semczuk
- 2nd Department of Gynecology, Lublin University School of Medicine, 8 Jaczewski Street, 20-954, Lublin, Poland.
| | | | | | | | | | | |
Collapse
|
46
|
Kadekaro AL, Kavanagh RJ, Wakamatsu K, Ito S, Pipitone MA, Abdel-Malek ZA. Cutaneous photobiology. The melanocyte vs. the sun: who will win the final round? PIGMENT CELL RESEARCH 2003; 16:434-47. [PMID: 12950718 DOI: 10.1034/j.1600-0749.2003.00088.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Solar ultraviolet radiation (UV) is a major environmental factor that dramatically alters the homeostasis of the skin as an organ by affecting the survival, proliferation and differentiation of various cutaneous cell types. The effects of UV on the skin include direct damage to DNA, apoptosis, growth arrest, and stimulation of melanogenesis. Long-term effects of UV include photoaging and photocarcinogenesis. Epidermal melanocytes synthesize two main types of melanin: eumelanin and pheomelanin. Melanin, particularly eumelanin, represents the major photoprotective mechanism in the skin. Melanin limits the extent of UV penetration through the epidermal layers, and scavenges reactive oxygen radicals that may lead to oxidative DNA damage. The extent of UV-induced DNA damage and the incidence of skin cancer are inversely correlated with total melanin content of the skin. Given the importance of the melanocyte in guarding against the adverse effects of UV and the fact that the melanocyte has a low self-renewal capacity, it is critical to maintain its survival and genomic integrity in order to prevent malignant transformation to melanoma, the most fatal form of skin cancer. Melanocyte transformation to melanoma involves the activation of certain oncogenes and the inactivation of specific tumor suppressor genes. This review summarizes the current state of knowledge about the role of melanin and the melanocyte in photoprotection, the responses of melanocytes to UV, the signaling pathways that mediate the biological effects of UV on melanocytes, and the most common genetic alterations that lead to melanoma.
Collapse
Affiliation(s)
- Ana Luisa Kadekaro
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0592, USA
| | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Daniel Batlle
- Division of Nephrology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611-3008, USA.
| |
Collapse
|
48
|
Zeng L, Kanwar YS, Amro N, Phillips C, Molitch M, Batlle D, Danesh FR. Epigenetic and genetic analysis of p16 in dermal fibroblasts from type 1 diabetic patients with nephropathy. Kidney Int 2003; 63:2094-102. [PMID: 12753296 DOI: 10.1046/j.1523-1755.2003.00013.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Several studies have shown that cultured skin fibroblasts from patients with diabetic nephropathy (DN) exhibit a hyperplastic growth phenotype. Increased DNA synthesis in cells from patients with DN may ultimately involve alterations in cell cycle regulatory proteins. p16 protein is a member of INK4 family of cyclin-dependent kinase inhibitors, which plays an important role in cell cycle regulation. In this study, we examined the correlation between p16 protein expression in cultured dermal fibroblasts from type 1 diabetic patients and the presence of DN. METHOD Western blot analysis was performed to compare p16 protein expression in skin fibroblasts from patients with DN as compared to control subjects, diabetic patients without DN, and nondiabetic patients with nephropathy. Transcriptional regulation of the p16 gene was assessed using competitive reverse transcription-polymerase chain reaction (RT-PCR). Methylation status of the promoter region of p16 was examined using methylation-specific PCR, and we used single-stranded conformational polymorphism (SSCP)-PCR to assess p16 single-nucleotide polymorphism. RESULTS Cells from diabetic patients with DN had nondetectable to significantly lower protein expression of p16. Similarly, mRNA expression of p16 was significantly lower in diabetic patients with DN. No hypermethylation of p16 gene was detected, and no abnormal migrating bands were noticed on SSCP-PCR analysis in cells from patients with DN. CONCLUSION Our data indicate that cells from patients with DN exhibit significantly lower protein and mRNA expression of p16. This study could have not only important implications for the understanding of the pathogenesis of DN, but also the absence of p16 may ultimately serve as an early marker for DN.
Collapse
Affiliation(s)
- Lixia Zeng
- Department of Medicine, Division of Nephrology/Hypertension, The Feinberg School of Medicine of Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Mori N, Yang R, Kawamata N, Miller CW, Mizoguchi H, Koeffler HP. Absence of R24C mutation of the CDK4 gene in leukemias and solid tumors. Int J Hematol 2003; 77:259-62. [PMID: 12731669 DOI: 10.1007/bf02983783] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A mutation of the p16(INK4a)-binding domain of the cyclin dependent kinase 4 (CDK4) gene, R24C, has been reported in some cases of melanoma. This mutation prevented binding of the CDK4 inhibitor p16(INK48) to CDK4. To determine the relevance of the mutation, we performed polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) analysis in diverse types of human leukemias and solid tumors. No mobility shifts indicating sequence alterations were observed in 273 tumors and 49 cell lines from diverse kinds of tumors These results suggest that in contrast to melanoma, in many other types of human neoplasms the mutation of the CDK4 gene is very rare. To better understand these findings, we randomly mutagenized the CDK4 gene and used the yeast two-hybrid method to screen for CDK4 mutants that had lost the ability to bind to p16(INK4a). Sequence analysis and in vitro kinase assays showed that most of the mutations that disrupted interactions with p16(INK4) also knocked out the activity of CDK4. This result may explain the rareness of CDK4 mutations in human tumors.
Collapse
Affiliation(s)
- Naoki Mori
- Department of Medicine, Division of Hematology and Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, California, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
We have investigated the contribution of CDK4 and CDK2 inhibition to G1 arrest in colon cancers following inhibition of the MEK/MAP kinase pathway. CDK4 inhibition is sufficient to cause arrest, but inhibition of CDK2 by p27 Kip1 redistribution or ectopic expression has no effect on proliferation. Likewise, inhibition of CDK2 through expression of dominant-negative (DN) CDK2 or antisense oligonucleotides did not prevent cell proliferation in these cells. We therefore tested whether CDK2 activity is dispensable in other cells. Surprisingly, osteosarcomas and Rb-negative cervical cancers continued to proliferate after depletion of CDK2 through antisense oligonucleotides or small interfering (si) RNA. Here we report of sustained cell proliferation in the absence of CDK2, and we suggest that CDK2 is not a suitable target for cancer therapy.
Collapse
Affiliation(s)
- Osamu Tetsu
- Cancer Research Institute and Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|