1
|
Pleiotropic effects of BDNF on the cerebellum and hippocampus: Implications for neurodevelopmental disorders. Neurobiol Dis 2022; 163:105606. [PMID: 34974125 DOI: 10.1016/j.nbd.2021.105606] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most studied neurotrophins in the mammalian brain, essential not only to the development of the central nervous system but also to synaptic plasticity. BDNF is present in various brain areas, but highest levels of expression are seen in the cerebellum and hippocampus. After birth, BDNF acts in the cerebellum as a mitogenic and chemotactic factor, stimulating the cerebellar granule cell precursors to proliferate, migrate and maturate, while in the hippocampus BDNF plays a fundamental role in synaptic transmission and plasticity, representing a key regulator for the long-term potentiation, learning and memory. Furthermore, the expression of BDNF is highly regulated and changes of its expression are associated with both physiological and pathological conditions. The purpose of this review is to provide an overview of the current state of knowledge on the BDNF biology and its neurotrophic role in the proper development and functioning of neurons and synapses in two important brain areas of postnatal neurogenesis, the cerebellum and hippocampus. Dysregulation of BDNF expression and signaling, resulting in alterations in neuronal maturation and plasticity in both systems, is a common hallmark of several neurodevelopmental diseases, such as autism spectrum disorder, suggesting that neuronal malfunction present in these disorders is the result of excessive or reduced of BDNF support. We believe that the more the relevance of the pathophysiological actions of BDNF, and its downstream signals, in early postnatal development will be highlighted, the more likely it is that new neuroprotective therapeutic strategies will be identified in the treatment of various neurodevelopmental disorders.
Collapse
|
2
|
Ceci FM, Ferraguti G, Petrella C, Greco A, Ralli M, Iannitelli A, Carito V, Tirassa P, Chaldakov GN, Messina MP, Ceccanti M, Fiore M. Nerve Growth Factor in Alcohol Use Disorders. Curr Neuropharmacol 2020; 19:45-60. [PMID: 32348226 PMCID: PMC7903493 DOI: 10.2174/1570159x18666200429003239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/19/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
The nerve growth factor (NGF) belongs to the family of neurotrophic factors. Initially discovered as a signaling molecule involved in the survival, protection, differentiation, and proliferation of sympathetic and peripheral sensory neurons, it also participates in the regulation of the immune system and endocrine system. NGF biological activity is due to the binding of two classes of receptors: the tropomyosin-related kinase A (TrkA) and the low-affinity NGF pan-neurotrophin receptor p75. Alcohol Use Disorders (AUD) are one of the most frequent mental disorders in developed countries, characterized by heavy drinking, despite the negative effects of alcohol on brain development and cognitive functions that cause individual’s work, medical, legal, educational, and social life problems. In addition, alcohol consumption during pregnancy disrupts the development of the fetal brain causing a wide range of neurobehavioral outcomes collectively known as fetal alcohol spectrum disorders (FASD). The rationale of this review is to describe crucial findings on the role of NGF in humans and animals, when exposed to prenatal, chronic alcohol consumption, and on binge drinking.
Collapse
Affiliation(s)
- Flavio Maria Ceci
- Department of Experimental Medicine, Sapienza University Hospital of Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University Hospital of Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University Hospital of Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University Hospital of Rome, Italy
| | - Angela Iannitelli
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Valentina Carito
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| | - George N Chaldakov
- Department of Anatomy and Cell Biology, Medical University, Varna, Bulgaria
| | | | - Mauro Ceccanti
- Centro Riferimento Alcologico Regione Lazio, Sapienza University of Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| |
Collapse
|
3
|
Chang HM, Wu HC, Sun ZG, Lian F, Leung PCK. Neurotrophins and glial cell line-derived neurotrophic factor in the ovary: physiological and pathophysiological implications. Hum Reprod Update 2020; 25:224-242. [PMID: 30608586 PMCID: PMC6390169 DOI: 10.1093/humupd/dmy047] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/22/2018] [Accepted: 12/27/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Neurotrophins [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4)] and glial cell line-derived neurotrophic factor (GDNF) are soluble polypeptide growth factors that are widely recognized for their roles in promoting cell growth, survival and differentiation in several classes of neurons. Outside the nervous system, neurotrophin (NT) and GDNF signaling events have substantial roles in various non-neural tissues, including the ovary. OBJECTIVE AND RATIONALE The molecular mechanisms that promote and regulate follicular development and oocyte maturation have been extensively investigated. However, most information has been obtained from animal models. Even though the fundamental process is highly similar across species, the paracrine regulation of ovarian function in humans remains poorly characterized. Therefore, this review aims to summarize the expression and functional roles of NTs and GDNF in human ovarian biology and disorders, and to describe and propose the development of novel strategies for diagnosing, treating and preventing related abnormalities. SEARCH METHODS Relevant literature in the English language from 1990 to 2018 describing the role of NTs and GDNF in mammalian ovarian biology and phenotypes was comprehensively selected using PubMed, MEDLINE and Google Scholar. OUTCOMES Studies have shown that the neurotrophins NGF, BDNF, NT-3 and NT-4 as well as GDNF and their functional receptors are expressed in the human ovary. Recently, gathered experimental data suggest putative roles for NT and GDNF signaling in the direct control of ovarian function, including follicle assembly, activation of the primordial follicles, follicular growth and development, oocyte maturation, steroidogenesis, ovulation and corpus luteum formation. Additionally, crosstalk occurs between these ovarian regulators and the endocrine signaling system. Dysregulation of the NT system may negatively affect ovarian function, leading to reproductive pathology (decreased ovarian reserve, polycystic ovary syndrome and endometriosis), female infertility and even epithelial ovarian cancers. WIDER IMPLICATIONS A comprehensive understanding of the expression, actions and underlying molecular mechanisms of the NT/GDNF system in the human ovary is essential for novel approaches to therapeutic and diagnostic interventions in ovarian diseases and to develop more safe, effective methods of inducing ovulation in ART in the treatment of female infertility.
Collapse
Affiliation(s)
- Hsun-Ming Chang
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hai-Cui Wu
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhen-Gao Sun
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fang Lian
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peter C K Leung
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Karagyaur M, Rostovtseva A, Semina E, Klimovich P, Balabanyan V, Makarevich P, Popov V, Stambolsky D, Tkachuk V. A Bicistronic Plasmid Encoding Brain-Derived Neurotrophic Factor and Urokinase Plasminogen Activator Stimulates Peripheral Nerve Regeneration After Injury. J Pharmacol Exp Ther 2019; 372:248-255. [DOI: 10.1124/jpet.119.261594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
|
5
|
Puigdellívol M, Saavedra A, Pérez-Navarro E. Cognitive dysfunction in Huntington's disease: mechanisms and therapeutic strategies beyond BDNF. Brain Pathol 2018; 26:752-771. [PMID: 27529673 DOI: 10.1111/bpa.12432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 12/15/2022] Open
Abstract
One of the main focuses in Huntington's disease (HD) research, as well as in most neurodegenerative diseases, is the development of new therapeutic strategies, as currently there is no treatment to delay or prevent the progression of the disease. Neuronal dysfunction and neuronal death in HD are caused by a combination of interrelated pathogenic processes that lead to motor, cognitive and psychiatric symptoms. Understanding how mutant huntingtin impacts on a plethora of cellular functions could help to identify new molecular targets. Although HD has been classically classified as a neurodegenerative disease affecting voluntary movement, lately cognitive dysfunction is receiving increased attention as it is very invalidating for patients. Thus, an ambitious goal in HD research is to find altered molecular mechanisms that contribute to cognitive decline. In this review, we have focused on those findings related to corticostriatal and hippocampal cognitive dysfunction in HD, as well as on the underlying molecular mechanisms, which constitute potential therapeutic targets. These include alterations in synaptic plasticity, transcriptional machinery and neurotrophic and neurotransmitter signaling.
Collapse
Affiliation(s)
- Mar Puigdellívol
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Ana Saavedra
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain
| |
Collapse
|
6
|
Usuki S, Tamura N, Yuyama K, Tamura T, Mukai K, Igarashi Y. Konjac Ceramide (kCer) Regulates NGF-Induced Neurite Outgrowth via the Sema3A Signaling Pathway. J Oleo Sci 2018; 67:77-86. [PMID: 29238028 DOI: 10.5650/jos.ess17141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The tuber of the konjac plant is a source enriched with GlcCer (kGlcCer), and has been used as a dietary supplement to improve the dry skin and itching that are caused by a deficiency of epidermal ceramide. Previously, we showed chemoenzymatically prepared konjac ceramide has a neurite-outgrowth inhibitory effect that is very similar to that of Sema3A and is not seen with animal-type ceramides. While, it has been unclear whether kCer may act on Sema3A or TrkA signaling pathway. In the present study, we showed kCer induces phosphorylation of CRMP2 and microtubules depolymerization via Sema3A signaling pathway not TrkA. It is concluded that kCer may be a potential Sema3A-like agonist that activates Sema3A signaling pathway directly.
Collapse
Affiliation(s)
- Seigo Usuki
- Lipid Biofunction Section, Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University
| | - Noriko Tamura
- National Institute of Advanced Industrial Science and Technology (AIST)
| | - Kohei Yuyama
- Lipid Biofunction Section, Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University
| | - Tomohiro Tamura
- National Institute of Advanced Industrial Science and Technology (AIST)
| | | | - Yasuyuki Igarashi
- Lipid Biofunction Section, Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University
| |
Collapse
|
7
|
Miguez A, García-Díaz Barriga G, Brito V, Straccia M, Giralt A, Ginés S, Canals JM, Alberch J. Fingolimod (FTY720) enhances hippocampal synaptic plasticity and memory in Huntington's disease by preventing p75NTR up-regulation and astrocyte-mediated inflammation. Hum Mol Genet 2015; 24:4958-70. [PMID: 26063761 DOI: 10.1093/hmg/ddv218] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/07/2015] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by motor and cognitive impairments, involving striatum, cortex and hippocampus. Synaptic and memory dysfunction in HD mouse models have been related to low levels of brain-derived neurotrophic factor (BDNF) and imbalance between TrkB and p75(NTR) receptors. In addition, astrocyte over-activation has also been suggested to contribute to HD cognitive deficits. Fingolimod (FTY720), a modulator of sphingosine-1 phosphate (S1P) receptors, has been shown to increase BDNF levels and to reduce astrogliosis, proving its potential to regulate trophic support and inflammatory response. In this view, we have investigated whether FTY720 improves synaptic plasticity and memory in the R6/1 mouse model of HD, through regulation of BDNF signaling and astroglial reactivity. Chronic administration of FTY720 from pre-symptomatic stages ameliorated long-term memory deficits and dendritic spine loss in CA1 hippocampal neurons from R6/1 mice. Furthermore, FTY720 delivery prevented astrogliosis and over-activation of nuclear factor kappa beta (NF-κB) signaling in the R6/1 hippocampus, reducing tumor necrosis factor alpha (TNFα) and induced nitric oxide synthase (iNOS) levels. TNFα decrease correlated with the normalization of p75(NTR) expression in the hippocampus of FTY720-treated R6/1 mice, thus preventing p75(NTR)/TrkB imbalance. In addition, FTY720 increased cAMP levels and promoted phosphorylation of CREB and RhoA in the hippocampus of R6/1 mice, further supporting its role in the enhancement of synaptic plasticity. Our findings provide new insights into the mechanism of action of FTY720 and reveal a novel therapeutic strategy to treat memory deficits in HD.
Collapse
Affiliation(s)
- Andrés Miguez
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Gerardo García-Díaz Barriga
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Verónica Brito
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marco Straccia
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Albert Giralt
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Silvia Ginés
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Josep M Canals
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jordi Alberch
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
8
|
Covaceuszach S, Konarev PV, Cassetta A, Paoletti F, Svergun DI, Lamba D, Cattaneo A. The conundrum of the high-affinity NGF binding site formation unveiled? Biophys J 2015; 108:687-97. [PMID: 25650935 PMCID: PMC4317559 DOI: 10.1016/j.bpj.2014.11.3485] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 11/15/2022] Open
Abstract
The homodimer NGF (nerve growth factor) exerts its neuronal activity upon binding to either or both distinct transmembrane receptors TrkA and p75(NTR). Functionally relevant interactions between NGF and these receptors have been proposed, on the basis of binding and signaling experiments. Namely, a ternary TrkA/NGF/p75(NTR) complex is assumed to be crucial for the formation of the so-called high-affinity NGF binding sites. However, the existence, on the cell surface, of direct extracellular interactions is still a matter of controversy. Here, supported by a small-angle x-ray scattering solution study of human NGF, we propose that it is the oligomerization state of the secreted NGF that may drive the formation of the ternary heterocomplex. Our data demonstrate the occurrence in solution of a concentration-dependent distribution of dimers and dimer of dimers. A head-to-head molecular assembly configuration of the NGF dimer of dimers has been validated. Overall, these findings prompted us to suggest a new, to our knowledge, model for the transient ternary heterocomplex, i.e., a TrkA/NGF/p75(NTR) ligand/receptors molecular assembly with a (2:4:2) stoichiometry. This model would neatly solve the problem posed by the unconventional orientation of p75(NTR) with respect to TrkA, as being found in the crystal structures of the TrkA/NGF and p75(NTR)/NGF complexes.
Collapse
Affiliation(s)
- Sonia Covaceuszach
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Trieste, Italy
| | - Petr V Konarev
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany; Institute of Crystallography, Russian Academy of Sciences, Moscow, Russia
| | - Alberto Cassetta
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Trieste, Italy
| | | | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Doriano Lamba
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Trieste, Italy.
| | - Antonino Cattaneo
- European Brain Research Institute, Roma, Italy; Scuola Normale Superiore, Pisa, Italy.
| |
Collapse
|
9
|
Extracellular pH and neuronal depolarization serve as dynamic switches to rapidly mobilize trkA to the membrane of adult sensory neurons. J Neurosci 2013; 33:8202-15. [PMID: 23658159 DOI: 10.1523/jneurosci.4408-12.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Activation of the nerve growth factor (NGF) receptor trkA and tissue acidosis are critically linked to inflammation-associated nociceptor sensitization. This study explored how increased acidity is linked to sensory neuron sensitization to NGF. Adult Wistar rat primary sensory neurons grown at physiological pH 7.4, then either kept at pH 7.4 or challenged for 30 min in pH 6.5 medium, provided a model of acidosis. Nonpermeabilizing trkA immunofluorescence revealed a significant increase in trkA mobilization to the plasma membrane from intracellular stores in response to proton challenge. This was confirmed using a surface protein biotinylation assay and Brefeldin A disruption of the rough endoplasmic reticulum-Golgi-trans-Golgi network. Mobilization of trkA to the membrane at pH 6.5 was abolished in neurons treated with the acid-sensitive ion channel blocker, amiloride. While elevated levels of NGF-independent trkA phosphorylation occurred at pH 6.5 alone, the level of activation was significantly increased in response to NGF challenge. Exposure of sensory neurons to pH 6.5 medium also resulted in strong calcium (Ca(2+)) transients that were reversible upon reintroduction to physiological pH. The pH 6.5-induced mobilization of trkA to the membrane was Ca(2+) dependent, as BAPTA-AM Ca(2+) chelation abrogated the response. Interestingly, KCl-induced depolarization was sufficient to induce mobilization of trkA to the cell surface at pH 7.4, but did not augment the response to pH 6.5. In conclusion, increased mobilization of trkA to neuronal membranes in response to either acidosis or neuronal depolarization provides two novel mechanisms by which sensory neurons can rapidly sensitize to NGF and has important implications for inflammatory pain states.
Collapse
|
10
|
Ovejero-Benito MC, Frade JM. Brain-derived neurotrophic factor-dependent cdk1 inhibition prevents G2/M progression in differentiating tetraploid neurons. PLoS One 2013; 8:e64890. [PMID: 23741412 PMCID: PMC3669015 DOI: 10.1371/journal.pone.0064890] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/19/2013] [Indexed: 11/28/2022] Open
Abstract
Neurodegeneration is often associated with DNA synthesis in neurons, the latter usually remaining for a long time as tetraploid cells before dying by apoptosis. The molecular mechanism preventing G2/M transition in these neurons remains unknown, but it may be reminiscent of the mechanism that maintains tetraploid retinal ganglion cells (RGCs) in a G2-like state during normal development, thus preventing their death. Here we show that this latter process, known to depend on brain-derived neurotrophic factor (BDNF), requires the inhibition of cdk1 by TrkB. We demonstrate that a subpopulation of chick RGCs previously shown to become tetraploid co-expresses TrkB and cdk1 in vivo. By using an in vitro system that recapitulates differentiation and cell cycle re-entry of chick retinal neurons we show that BDNF, employed at concentrations specific for the TrkB receptor, reduces the expression of cdk1 in TrkB-positive, differentiating neurons. In this system, BDNF also inhibits the activity of both endogenous cdk1 and exogenously-expressed cdk1/cyclin B1 complex. This inhibition correlates with the phosphorylation of cdk1 at Tyr15, an effect that can be prevented with K252a, a tyrosine kinase inhibitor commonly used to prevent the activity of neurotrophins through their Trk receptors. The effect of BDNF on cdk1 activity is Tyr15-specific since BDNF cannot prevent the activity of a constitutively active form of cdk1 (Tyr15Phe) when expressed in differentiating retinal neurons. We also show that BDNF-dependent phosphorylation of cdk1 at Tyr15 could not be blocked with MK-1775, a Wee1-selective inhibitor, indicating that Tyr15 phosphorylation in cdk1 does not seem to occur through the canonical mechanism observed in proliferating cells. We conclude that the inhibition of both expression and activity of cdk1 through a BDNF-dependent mechanism contributes to the maintenance of tetraploid RGCs in a G2-like state.
Collapse
Affiliation(s)
- María C. Ovejero-Benito
- Department of Molecular, Cellular, and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José M. Frade
- Department of Molecular, Cellular, and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- * E-mail:
| |
Collapse
|
11
|
Imbalance of p75(NTR)/TrkB protein expression in Huntington's disease: implication for neuroprotective therapies. Cell Death Dis 2013; 4:e595. [PMID: 23598407 PMCID: PMC3641339 DOI: 10.1038/cddis.2013.116] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuroprotective therapies based on brain-derived neurotrophic factor (BDNF) administration have been proposed for Huntington's disease (HD) treatment. However, our group has recently reported reduced levels of TrkB in HD mouse models and HD human brain suggesting that besides a decrease on BDNF levels a reduction of TrkB expression could also contribute to diminished neurotrophic support in HD. BDNF can also bind to p75 neurotrophin receptor (p75NTR) modulating TrkB signaling. Therefore, in this study we have analyzed the levels of p75NTR in several HD models, as well as in HD human brain. Our data demonstrates a p75NTR/TrkB imbalance in the striatum of two different HD mouse models, HdhQ111/111 homozygous knockin mice and R6/1 mice that was also manifested in the putamen of HD patients. The imbalance between TrkB and p75NTR levels in a HD cellular model did not affect BDNF-mediated TrkB activation of prosurvival pathways but induced activation of apoptotic cascades as demonstrated by increased JNK phosphorylation. Moreover, BDNF failed to protect mutant huntingtin striatal cells transfected with p75NTR against NMDA-mediated excitotoxicity, which was associated with decreased Akt phosphorylation. Interestingly, lack of Akt activation following BDNF and NMDA treatment correlated with increased PP1 levels. Accordingly, pharmacological inhibition of PP1 by okadaic acid (OA) prevented mutant huntingtin striatal cell death induced by NMDA and BDNF. Altogether, our findings demonstrate that the p75NTR/TrkB imbalance induced by mutant huntingtin in striatal cells associated with the aberrant activity of PP1 disturbs BDNF neuroprotection likely contributing to increasing striatal vulnerability in HD. On the basis of this data we hypothesize that normalization of p75NTR and/or TrkB expression or their signaling will improve BDNF neuroprotective therapies in HD.
Collapse
|
12
|
Identification and evaluation of neutral sphingomyelinase 2 inhibitors. Arch Pharm Res 2011; 34:229-36. [DOI: 10.1007/s12272-011-0208-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 11/03/2010] [Accepted: 11/06/2010] [Indexed: 02/02/2023]
|
13
|
Guillemard V, Ivanisevic L, Garcia AG, Scholten V, Lazo OM, Bronfman FC, Saragovi HU. An agonistic mAb directed to the TrkC receptor juxtamembrane region defines a trophic hot spot and interactions with p75 coreceptors. Dev Neurobiol 2010; 70:150-64. [PMID: 19953569 DOI: 10.1002/dneu.20776] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The D5 domain of TrkC receptors is a docking site for Neurotrophin-3 (NT-3), but other domains may be relevant for function or harmonizing signals with p75(NTR) coreceptors. We report a monoclonal antibody (mAb) 2B7 targeting the juxtamembrane domain of TrkC. mAb 2B7 binds to murine and human TrkC receptors and is a functional agonist that affords activation of TrkC, AKT, and MAPK. These signals result in cell survival but not in cellular differentiation. Monomeric 2B7 Fabs also affords cell survival. Binding of 2B7 mAb and 2B7 Fabs to TrkC are blocked by NT-3 in a dose-dependent manner but not by pro-NT-3. Expression of p75(NTR) coreceptors on the cell surface block the binding and function of mAb 2B7, whereas NT-3 binding and function are enhanced. mAb 2B7 defines a previously unknown neurotrophin receptor functional hot spot; that exclusively generates survival signals; that can be activated by non-dimeric ligands; and potentially unmasks a site for p75-TrkC interactions.
Collapse
Affiliation(s)
- Veronique Guillemard
- Department of Pharmacology and Therapeutics, Lady Davis Research Institute-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Axonal targeting of Trk receptors via transcytosis regulates sensitivity to neurotrophin responses. J Neurosci 2009; 29:11674-85. [PMID: 19759314 DOI: 10.1523/jneurosci.1542-09.2009] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Axonal targeting of trophic receptors is critical for neuronal responses to extracellular developmental cues, yet the underlying trafficking mechanisms remain unclear. Here, we report that tropomyosin-related kinase (Trk) receptors for target-derived neurotrophins are anterogradely trafficked to axons via transcytosis in sympathetic neurons. Using compartmentalized cultures, we show that mature receptors on neuronal soma surfaces are endocytosed and remobilized via Rab11-positive recycling endosomes into axons. Inhibition of dynamin-dependent endocytosis disrupted anterograde transport and localization of TrkA receptors in axons. Anterograde TrkA delivery and exocytosis into axon growth cones is enhanced by nerve growth factor (NGF), acting locally on distal axons. Perturbing endocytic recycling attenuated NGF-dependent signaling and axon growth while enhancing recycling conferred increased neuronal sensitivity to NGF. Our results reveal regulated transcytosis as an unexpected mode of Trk trafficking that serves to rapidly mobilize ready-synthesized receptors to growth cones, thus providing a positive feedback mechanism by which limiting concentrations of target-derived neurotrophins enhance neuronal sensitivity.
Collapse
|
15
|
Wilson-Gerwing TD, Johnston JM, Verge VMK. p75 neurotrophin receptor is implicated in the ability of neurotrophin-3 to negatively modulate activated ERK1/2 signaling in TrkA-expressing adult sensory neurons. J Comp Neurol 2009; 516:49-58. [PMID: 19565663 DOI: 10.1002/cne.22098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neurotrophin-3 (NT-3) can negatively modulate trkA and associated phenotype in intact sensory neurons, while positively regulating trkC and associated phenotype. How NT-3 effects this response is not clear. Whether NT-3 exerts a differential influence on levels of activated ERK1/2 signaling in trkA- versus trkC-mRNA-positive subpopulations of neurons and the role that the common neurotrophin receptor, p75NTR, plays in this response was assessed by examining alterations in the levels of phospho-ERK1/2 immunofluorescence signal over nuclei of sensory neurons expressing trkA alone, trkC alone, or both trkA and trkC mRNA. NT-3 intrathecal infusion differentially modulated nuclear phospho-ERK1/2 levels detected over neurons expressing trkA alone or trkC alone. Levels were significantly decreased over nuclei of neurons expressing trkA alone and significantly increased over the nuclei of neurons expressing trkC alone. Neurons expressing both trkA and trkC or neurons expressing neither trkA nor trkC had no significant alteration in phospho-ERK1/2. Antisense oligonucleotides directed against p75NTR were infused intrathecally with or without NT-3 infusion to examine the impact of suppressing p75NTR expression on the ability of NT-3 to diminish phospho-ERK1/2 signaling in neurons expressing only trkA. NT-3 did not significantly attenuate levels of phospho-ERK1/2 when p75NTR expression was suppressed by antisense infusion, despite being able to do so when NT-3 was infused alone. In conclusion, NT-3's ability to negatively modulate ERK1/2 signaling in a p75-dependent manner in sensory neurons that express trkA to the exclusion of trkC provides a feasible mechanism by which it negatively modulates other aspects of nociceptive phenotype in these neurons.
Collapse
Affiliation(s)
- Tracy D Wilson-Gerwing
- Department of Anatomy and Cell Biology, Cameco MS Neuroscience Research Center University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | |
Collapse
|
16
|
Nerve growth factor in rheumatic diseases. Semin Arthritis Rheum 2009; 40:109-26. [PMID: 19481238 DOI: 10.1016/j.semarthrit.2009.03.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 02/20/2009] [Accepted: 03/16/2009] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The nervous system modulates the immune response in many autoimmune syndromes by neurogenic inflammation. One of the pivotal mediators is nerve growth factor (NGF), which is known for its effects on neuronal survival and growth. There is considerable evidence that NGF acts as an important mediator of many immune responses. This article reviews the role of NGF in rheumatic diseases and strategies for potential therapeutic interventions. METHODS We conducted a database search using Medline and Medpilot. Eight hundred abstracts containing the keyword NGF and 1 of the following terms were reviewed: arthritis, neurogenic inflammation, rheumatoid arthritis, osteoarthritis, collagen arthritis, arteritis, psoriasis, psoriatic arthritis, Sjogren syndrome, systemic lupus erythematosus, gout, osteoporosis, lower back pain, lumbar disc herniation, nerve root compression, spondyloarthritis, spondylarthropathy, algoneurodystrophy, fibromyalgia, Kawasaki syndrome, polyarteritis nodosa, cytokine, vasculitis, pain, therapy, and antagonist. Articles were analyzed based on relevance and content. Most clinical trials and studies with human specimens were included. Studies with experimental animal models were selected if they contained relevant data. RESULTS NGF is overexpressed in many inflammatory and degenerative rheumatic diseases. Concentrations differ to some extent and sometimes even show contradictory results. NGF is found in serum, synovial fluid, and cerebrospinal fluid, and tissue specimens. NGF concentrations can be correlated with the extent of inflammation and/or clinical activity in many conditions. In rheumatoid arthritis, NGF levels are significantly higher as compared with osteoarthritis. CONCLUSIONS NGF is a significant mediator and modulator of inflammation. NGF sometimes shows detrimental and sometimes regenerative activity. These findings indicate potential therapeutic interventions using either NGF antagonists or recombinant NGF.
Collapse
|
17
|
The protein phosphatase 2A regulatory subunits B'beta and B'delta mediate sustained TrkA neurotrophin receptor autophosphorylation and neuronal differentiation. Mol Cell Biol 2008; 29:662-74. [PMID: 19029245 DOI: 10.1128/mcb.01242-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nerve growth factor (NGF) is critical for the differentiation and maintenance of neurons in the peripheral and central nervous system. Sustained autophosphorylation of the TrkA receptor tyrosine kinase and long-lasting activation of downstream kinase cascades are hallmarks of NGF signaling, yet our knowledge of the molecular mechanisms underlying prolonged TrkA activity is incomplete. Protein phosphatase 2A (PP2A) is a heterotrimeric Ser/Thr phosphatase composed of a scaffolding, catalytic, and regulatory subunit (B, B', and B" gene families). Here, we employ a combination of pharmacological inhibitors, regulatory subunit overexpression, PP2A scaffold subunit exchange, and RNA interference to show that PP2A containing B' family regulatory subunits participates in sustained NGF signaling in PC12 cells. Specifically, two neuron-enriched regulatory subunits, B'beta and B'delta, recruit PP2A into a complex with TrkA to dephosphorylate the NGF receptor on Ser/Thr residues and to potentiate its intrinsic Tyr kinase activity. Acting at the receptor level, PP2A/ B'beta and B'delta enhance NGF (but not epidermal growth factor or fibroblast growth factor) signaling through the Akt and Ras-mitogen-activated protein kinase cascades and promote neuritogenesis and differentiation of PC12 cells. Thus, select PP2A heterotrimers oppose desensitization of the TrkA receptor tyrosine kinase, perhaps through dephosphorylation of inhibitory Ser/Thr phosphorylation sites on the receptor itself, to maintain neurotrophin-mediated developmental and survival signaling.
Collapse
|
18
|
Developmental axon pruning mediated by BDNF-p75NTR-dependent axon degeneration. Nat Neurosci 2008; 11:649-58. [PMID: 18382462 DOI: 10.1038/nn.2114] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 03/25/2008] [Indexed: 02/04/2023]
Abstract
The mechanisms that regulate the pruning of mammalian axons are just now being elucidated. Here, we describe a mechanism by which, during developmental sympathetic axon competition, winning axons secrete brain-derived neurotrophic factor (BDNF) in an activity-dependent fashion, which binds to the p75 neurotrophin receptor (p75NTR) on losing axons to cause their degeneration and, ultimately, axon pruning. Specifically, we found that pruning of rat and mouse sympathetic axons that project to the eye requires both activity-dependent BDNF and p75NTR. p75NTR and BDNF are also essential for activity-dependent axon pruning in culture, where they mediate pruning by directly causing axon degeneration. p75NTR, which is enriched in losing axons, causes axonal degeneration by suppressing TrkA-mediated signaling that is essential for axonal maintenance. These data provide a mechanism that explains how active axons can eliminate less-active, competing axons during developmental pruning by directly promoting p75NTR-mediated axonal degeneration.
Collapse
|
19
|
Ramer LM, McPhail LT, Borisoff JF, Soril LJJ, Kaan TKY, Lee JHT, Saunders JWT, Hwi LPR, Ramer MS. Endogenous TrkB ligands suppress functional mechanosensory plasticity in the deafferented spinal cord. J Neurosci 2007; 27:5812-22. [PMID: 17522325 PMCID: PMC6672770 DOI: 10.1523/jneurosci.0491-07.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Dorsal root injury (DRI) disrupts the flow of sensory information to the spinal cord. Although primary afferents do not regenerate to their original targets, spontaneous recovery can, by unknown mechanisms, occur after DRI. Here, we show that brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), but not nerve growth factor or neurotrophin-4, are upregulated in the spinal gray matter after DRI. Because endogenous BDNF and NT-3 have well established roles in synaptic and axonal plasticity, we hypothesized that they contributed to spontaneous recovery after DRI. We first developed a model of DRI-induced mechanosensory dysfunction: rat C7/8 DRI produced a deficit in low-threshold cutaneous mechanosensation that spontaneously improved within 10 d but did not recover completely. To determine the effects of endogenous BDNF and NT-3, we administered TrkB-Fc or TrkC-Fc fusion proteins throughout the recovery period. To our surprise, TrkB-Fc stimulated complete recovery of mechanosensation by 6 d after DRI. It also stimulated mechanosensory axon sprouting but prevented deafferentation-induced serotonergic sprouting. TrkC-Fc had no effect on low-threshold mechanosensory behavior or axonal plasticity. There was no mechanosensory improvement with single-bolus TrkB-Fc infusions at 10 d after DRI (despite significantly reducing rhizotomy-induced cold pain), indicating that neuromodulatory effects of BDNF did not underlie mechanosensory recovery. Continuous infusion of the pan-neurotrophin antagonist K252a also stimulated behavioral and anatomical plasticity, indicating that these effects of TrkB-Fc treatment occurred independent of signaling by other neurotrophins. These results illustrate a novel, plasticity-suppressing effect of endogenous TrkB ligands on mechanosensation and mechanosensory primary afferent axons after spinal deafferentation.
Collapse
Affiliation(s)
- Leanne M. Ramer
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Lowell T. McPhail
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Jaimie F. Borisoff
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
- Neil Squire Society, Vancouver, British Columbia, Canada V5M 4L9
| | - Lesley J. J. Soril
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Timothy K. Y. Kaan
- Neurorestoration Group, King's College London, Wolfson Centre for Age-Related Diseases, Guy's Campus, London SE1 1UL, United Kingdom
| | - Jae H. T. Lee
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - James W. T. Saunders
- University of British Columbia Faculty of Medicine, Vancouver, British Columbia, Canada V5Z 4E3, and
| | - Lucy P. R. Hwi
- University of Manitoba Faculty of Medicine, Undergraduate Medical Education, Winnipeg, Manitoba, Canada R3E 3P5
| | - Matt S. Ramer
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
20
|
Abstract
Neurotrophins are a family of closely related proteins that were identified initially as survival factors for sensory and sympathetic neurons, and have since been shown to control many aspects of survival, development and function of neurons in both the peripheral and the central nervous systems. Each of the four mammalian neurotrophins has been shown to activate one or more of the three members of the tropomyosin-related kinase (Trk) family of receptor tyrosine kinases (TrkA, TrkB and TrkC). In addition, each neurotrophin activates p75 neurotrophin receptor (p75NTR), a member of the tumour necrosis factor receptor superfamily. Through Trk receptors, neurotrophins activate Ras, phosphatidyl inositol-3 (PI3)-kinase, phospholipase C-gamma1 and signalling pathways controlled through these proteins, such as the MAP kinases. Activation of p75NTR results in activation of the nuclear factor-kappaB (NF-kappaB) and Jun kinase as well as other signalling pathways. Limiting quantities of neurotrophins during development control the number of surviving neurons to ensure a match between neurons and the requirement for a suitable density of target innervation. The neurotrophins also regulate cell fate decisions, axon growth, dendrite growth and pruning and the expression of proteins, such as ion channels, transmitter biosynthetic enzymes and neuropeptide transmitters that are essential for normal neuronal function. Continued presence of the neurotrophins is required in the adult nervous system, where they control synaptic function and plasticity, and sustain neuronal survival, morphology and differentiation. They also have additional, subtler roles outside the nervous system. In recent years, three rare human genetic disorders, which result in deleterious effects on sensory perception, cognition and a variety of behaviours, have been shown to be attributable to mutations in brain-derived neurotrophic factor and two of the Trk receptors.
Collapse
Affiliation(s)
- Louis F Reichardt
- Neuroscience Program, Department of Physiology and Howard Hughes Medical Institute, University of California-San Francisco, 1550 Fourth Street, Rock Hall 284a, San Francisco, CA 94158, USA.
| |
Collapse
|
21
|
Ramer LM, Ramer MS, Steeves JD. Setting the stage for functional repair of spinal cord injuries: a cast of thousands. Spinal Cord 2005; 43:134-61. [PMID: 15672094 DOI: 10.1038/sj.sc.3101715] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we review mechanisms and molecules that necessitate protection and oppose axonal growth in the injured spinal cord, representing not only a cast of villains but also a company of therapeutic targets, many of which have yet to be fully exploited. We next discuss recent progress in the fields of bridging, overcoming conduction block and rehabilitation after spinal cord injury (SCI), where several treatments in each category have entered the spotlight, and some are being tested clinically. Finally, studies that combine treatments targeting different aspects of SCI are reviewed. Although experiments applying some treatments in combination have been completed, auditions for each part in the much-sought combination therapy are ongoing, and performers must demonstrate robust anatomical regeneration and/or significant return of function in animal models before being considered for a lead role.
Collapse
Affiliation(s)
- L M Ramer
- ICORD (International Collaboration on Repair Discoveries), The University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
22
|
Saxena S, Howe CL, Cosgaya JM, Hu M, Weis J, Krüttgen A. Differences in the surface binding and endocytosis of neurotrophins by p75NTR. Mol Cell Neurosci 2004; 26:292-307. [PMID: 15207854 DOI: 10.1016/j.mcn.2004.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Revised: 02/10/2004] [Accepted: 02/13/2004] [Indexed: 01/22/2023] Open
Abstract
Neurotrophins transmit signals retrogradely from synapses to cell bodies by two different types of surface receptors, p75NTR and Trks. Compared to TrkA, the function of p75NTR in nerve growth factor (NGF) endocytosis is less clear, and it is unknown whether p75NTR by itself may internalize other neurotrophins besides NGF. We directly compared TrkA and p75NTR for their ability to internalize NGF, and we also examined the endocytosis of iodinated brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) by p75NTR. Cells expressing solely TrkA internalized NGF more efficiently than cells expressing p75NTR. Surprisingly, cells expressing only p75NTR internalized far more BDNF or NT3 than NGF. Moreover, p75NTR was more important for surface binding than for intracellular accumulation of each neurotrophin. Finally, we established a mechanistic role for the clathrin pathway in p75NTR endocytosis. Our results suggest that p75NTR may have multiple roles in different subcellular locations, functioning both at the cell surface and also within endocytic compartments.
Collapse
Affiliation(s)
- Smita Saxena
- Division of Neuropathology, Institute of Pathology, University of Bern, CH-3010 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
23
|
Zhang YH, Nicol GD. NGF-mediated sensitization of the excitability of rat sensory neurons is prevented by a blocking antibody to the p75 neurotrophin receptor. Neurosci Lett 2004; 366:187-92. [PMID: 15276244 DOI: 10.1016/j.neulet.2004.05.042] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 05/12/2004] [Accepted: 05/15/2004] [Indexed: 12/21/2022]
Abstract
Nerve growth factor (NGF) can play a causal role in the initiation of hyperalgesia. Recent work demonstrates that NGF can act directly on nociceptive sensory neurons to augment their sensitivity to a variety of stimuli. Based on the existing literature, it is not clear whether this sensitization is mediated by the high-affinity TrkA receptor or the low-affinity p75 neurotrophin receptor. We examined whether a blocking antibody to the p75 neurotrophin receptor can prevent the NGF-induced enhancement of excitability in capsaicin-sensitive small-diameter sensory neurons that have been isolated from the adult rat. In this report, pretreatment with the p75 blocking antibody completely prevents the NGF-induced increase in the number of action potentials evoked by a ramp of depolarizing current as well as the suppression of a delayed rectifier-type of potassium current(s) in these neurons. Although the sensitization by NGF was blocked, the antibody had no effect on the capacity of ceramide, a putative downstream signaling molecule, to either enhance the excitability or inhibit the potassium current. These results indicate that NGF can increase the excitability of nociceptive sensory neurons through activation of the p75 neurotrophin receptor and its consequent liberation of ceramide from neuronal sphingomyelins.
Collapse
Affiliation(s)
- Y H Zhang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | | |
Collapse
|
24
|
Rudzinski M, Wong TP, Saragovi HU. Changes in retinal expression of neurotrophins and neurotrophin receptors induced by ocular hypertension. ACTA ACUST UNITED AC 2004; 58:341-54. [PMID: 14750147 DOI: 10.1002/neu.10293] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Open angle glaucoma is defined as a progressive and time-dependent death of retinal ganglion cells concomitant with high intraocular pressure, leading to loss of visual field. Because neurotrophins are a family of growth factors that support neuronal survival, we hypothesized that quantitative and qualitative changes in neurotrophins or their receptors may take place early in ocular hypertension, preceding extensive cell death and clinical features of glaucoma. We present molecular, biochemical, and phenotypic evidence that significant neurotrophic changes occur in retina, which correlate temporally with retinal ganglion cell death. After 7 days of ocular hypertension there is a transient up-regulation of retinal NGF, while its receptor TrkA is up-regulated in a sustained fashion in retinal neurons. After 28 days of ocular hypertension there is sustained up-regulation of retinal BDNF, but its receptor TrkB remains unchanged. Throughout, NT-3 levels remain unchanged but there is an early and sustained increase of its receptor TrkC in Müller cells but not in retinal ganglion cells. These newly synthesized glial TrkC receptors are truncated, kinase-dead isoforms. Expression of retinal p75 also increases late at day 28. Asymmetric up-regulation of neurotrophins and neurotrophin receptors may preclude efficient neurotrophic rescue of RGCs from apoptosis. A possible rationale for therapeutic intervention with Trk receptor agonists and p75 receptor antagonists is proposed.
Collapse
MESH Headings
- Animals
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Disease Models, Animal
- Disease Progression
- Glaucoma, Open-Angle/metabolism
- Glaucoma, Open-Angle/pathology
- Glaucoma, Open-Angle/physiopathology
- Glial Fibrillary Acidic Protein/metabolism
- Immunohistochemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Nerve Degeneration/metabolism
- Nerve Degeneration/pathology
- Nerve Degeneration/physiopathology
- Nerve Growth Factor/genetics
- Nerve Growth Factor/metabolism
- Nerve Growth Factors/genetics
- Nerve Growth Factors/metabolism
- Neurotrophin 3/genetics
- Neurotrophin 3/metabolism
- Ocular Hypertension/metabolism
- Ocular Hypertension/pathology
- Ocular Hypertension/physiopathology
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor, Nerve Growth Factor
- Receptor, trkA
- Receptor, trkB/genetics
- Receptor, trkB/metabolism
- Receptor, trkC/genetics
- Receptor, trkC/metabolism
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Retina/metabolism
- Retina/pathology
- Retinal Ganglion Cells/metabolism
- Retinal Ganglion Cells/pathology
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Marcelo Rudzinski
- Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | | | | |
Collapse
|
25
|
Abstract
Trk receptors are a family of three receptor tyrosine kinases, each of which can be activated by one or more of four neurotrophins-nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophins 3 and 4 (NT3 and NT4). Neurotrophin signaling through these receptors regulates cell survival, proliferation, the fate of neural precursors, axon and dendrite growth and patterning, and the expression and activity of functionally important proteins, such as ion channels and neurotransmitter receptors. In the adult nervous system, the Trk receptors regulate synaptic strength and plasticity. The cytoplasmic domains of Trk receptors contain several sites of tyrosine phosphorylation that recruit intermediates in intracellular signaling cascades. As a result, Trk receptor signaling activates several small G proteins, including Ras, Rap-1, and the Cdc-42-Rac-Rho family, as well as pathways regulated by MAP kinase, PI 3-kinase and phospholipase-C-gamma (PLC-gamma). Trk receptor activation has different consequences in different cells, and the specificity of downstream Trk receptor-mediated signaling is controlled through expression of intermediates in these signaling pathways and membrane trafficking that regulates localization of different signaling constituents. Perhaps the most fascinating aspect of Trk receptor-mediated signaling is its interplay with signaling promoted by the pan-neurotrophin receptor p75NTR. p75NTR activates a distinct set of signaling pathways within cells that are in some instances synergistic and in other instances antagonistic to those activated by Trk receptors. Several of these are proapoptotic but are suppressed by Trk receptor-initiated signaling. p75NTR also influences the conformations of Trk receptors; this modifies ligand-binding specificity and affinity with important developmental consequences.
Collapse
Affiliation(s)
- Eric J Huang
- Department of Pathology, University of California Veterans Administration Medical Center, San Francisco, California 94143, USA.
| | | |
Collapse
|
26
|
Gratto KA, Verge VMK. Neurotrophin-3 down-regulates trkA mRNA, NGF high-affinity binding sites, and associated phenotype in adult DRG neurons. Eur J Neurosci 2003; 18:1535-48. [PMID: 14511333 DOI: 10.1046/j.1460-9568.2003.02881.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurotrophin-3 (NT-3) binds to multiple trks, not only its initially identified receptor trkC. Recent studies in our laboratory show that NT-3 negatively regulates nociceptive phenotype associated with the trkA subpopulation. Due to the extensive overlap in trkA and trkC expression it is uncertain whether there is a direct influence of NT-3 on trkA in adult sensory neurons. Thus, the aim of this study was to examine whether NT-3 might alter trkA and associated neuronal phenotype outside of the trkC subpopulation. The effect of a seven-day intrathecal infusion of NT-3 on intact, uninjured adult rat dorsal root ganglion neurons was investigated. Serial sections were processed for receptor radioautography or in situ hybridization to identify and colocalize neurons expressing high-affinity nerve growth factor (NGF) binding sites, substance P (SP), trkC, or trkA mRNAs and to examine the influence of NT-3 on these populations. NT-3 does not appear to alter trkC expression, but evokes a notable reduction in trkA, high-affinity NGF binding sites, and SP levels. It is unlikely that signalling by trkC greatly influences this response because the down-regulation of SP occurs most notably in trkA neurons that lack trkC. Moreover, we have shown here that message levels of two trkA isoforms are differentially modulated by NT-3; infusion results in greater down-regulation of the noninsert containing isoform. These findings suggest a clinically relevant role for NT-3 as an antagonist to NGF, but also raise the caution that not just trkC-positive neurons are influenced following exposure to the neurotrophin.
Collapse
Affiliation(s)
- Kelly A Gratto
- Department of Anatomy and Cell Biology, Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | | |
Collapse
|
27
|
Ivanisevic L, Banerjee K, Saragovi HU. Differential cross-regulation of TrkA and TrkC tyrosine kinase receptors with p75. Oncogene 2003; 22:5677-85. [PMID: 12944916 DOI: 10.1038/sj.onc.1206864] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neurotrophins neurotrophin-3 (NT-3), brain-derived growth factor (BDNF) and nerve growth factor (NGF) bind to the p75 receptor, but each neurotrophin also binds a more selective Trk receptor (e.g. TrkA-NGF and TrkC-NT-3). The biochemical signals following engagement of either Trk or p75 with ligands are well understood, but long-term biological outcomes (trophic, proapoptotic or differentiative) remain unclear because they are cell/tissue specific. For example, Trk receptors are usually trophic but when overexpressed they can be proapoptotic in neuroblastomas and medulloblastomas. We hypothesized that coexpression of Trk and p75 receptors may lead to cross-regulation of signals and different biological outcomes; and used receptor-selective ligands to study cross-regulation by these receptors. We show that in the absence of Trk activation, expression of TrkC is permissive of p75 trophic and differentiation signals induced by p75 ligands, whereas expression of TrkA abolishes trophic and differentiation signals induced by p75 ligands. In contrast, in the presence of Trk activation, p75 ligands can regulate TrkA-mediated survival and TrkC-mediated differentiation. Therefore, a complex homeostasis of p75-selective and Trk-selective signals may determine the fate of cells expressing both receptors.
Collapse
Affiliation(s)
- Ljubica Ivanisevic
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | | | | |
Collapse
|
28
|
Lad SP, Peterson DA, Bradshaw RA, Neet KE. Individual and combined effects of TrkA and p75NTR nerve growth factor receptors. A role for the high affinity receptor site. J Biol Chem 2003; 278:24808-17. [PMID: 12702729 DOI: 10.1074/jbc.m212270200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A long-standing question in neurotrophin signal transduction is whether heteromeric TrkA-p75NTR complexes possess signaling capabilities that are significantly different from homo-oligomeric TrkA or p75NTR alone. To address this issue, various combinations of transfected PC12 cells expressing a platelet-derived growth factor receptor-TrkA chimera and the p75NTR-selective nerve growth factor mutant (Delta9/13 NGF) were utilized to selectively stimulate TrkA or p75NTR signaling, respectively. The contribution of individual and combined receptor effects was analyzed in terms of downstream signaling and certain end points. The results suggest two unique functions for the high affinity heteromeric NGF receptor site: (a) integration of both the MAPK and Akt pathways in the production of NGF-induced neurite outgrowth, and (b) rapid and sustained activation of the Akt pathway, with consequent long term cellular survival. Whereas activation of TrkA signaling is sufficient for eliciting neurite outgrowth in PC12 cells, signaling through p75NTR plays a modulatory role, especially in the increased formation of fine, synaptic "bouton-like" structures, in which both TrkA and p75NTR appear to co-localize. In addition, a new interaction in the TrkA/p75NTR heteromeric receptor signal transduction network was revealed, namely that NGF-induced activation of the MAPK pathway appears to inhibit the parallel NGF-induced Akt pathway.
Collapse
Affiliation(s)
- Shivanand P Lad
- Department of Biochemistry and Molecular Biology, University of Health Sciences/The Chicago Medical School, North Chicago, Illinois 60064, USA
| | | | | | | |
Collapse
|
29
|
Boyd JG, Gordon T. Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol Neurobiol 2003; 27:277-324. [PMID: 12845152 DOI: 10.1385/mn:27:3:277] [Citation(s) in RCA: 352] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2002] [Accepted: 11/22/2002] [Indexed: 02/06/2023]
Abstract
Over a half a century of research has confirmed that neurotrophic factors promote the survival and process outgrowth of isolated neurons in vitro. The mechanisms by which neurotrophic factors mediate these survival-promoting effects have also been well characterized. In vivo, peripheral neurons are critically dependent on limited amounts of neurotrophic factors during development. After peripheral nerve injury, the adult mammalian peripheral nervous system responds by making neurotrophic factors once again available, either by autocrine or paracrine sources. Three families of neurotrophic factors were compared, the neurotrophins, the GDNF family of neurotrophic factors, and the neuropoetic cytokines. Following a general overview of the mechanisms by which these neurotrophic factors mediate their effects, we reviewed the temporal pattern of expression of the neurotrophic factors and their receptors by axotomized motoneurons as well as in the distal nerve stump after peripheral nerve injury. We discussed recent experiments from our lab and others which have examined the role of neurotrophic factors in peripheral nerve injury. Although our understanding of the mechanisms by which neurotrophic factors mediate their effects in vivo are poorly understood, evidence is beginning to emerge that similar phenomena observed in vitro also apply to nerve regeneration in vivo.
Collapse
Affiliation(s)
- J Gordon Boyd
- Department of Anatomy and Cell Biology, Queen's University, Kingston, ON, Canada.
| | | |
Collapse
|
30
|
Lachyankar MB, Condon PJ, Daou MC, De AK, Levine JB, Obermeier A, Ross AH. Novel functional interactions between Trk kinase and p75 neurotrophin receptor in neuroblastoma cells. J Neurosci Res 2003; 71:157-72. [PMID: 12503079 DOI: 10.1002/jnr.10480] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To understand the functional interactions between the TrkA and p75 nerve growth factor (NGF) receptors, we stably transfected LAN5 neuroblastoma cells with an expression vector for ET-R, a chimeric receptor with the extracellular domain of the epidermal growth factor receptor (EGFR), and the TrkA transmembrane and intracellular domains. EGF activated the ET-R kinase and induced partial differentiation. NGF, which can bind to endogenous p75, did not induce differentiation but enhanced the EGF-induced response, leading to differentiation of almost all cells. A mutated NGF, 3T-NGF, that binds to TrkA but not to p75 did not synergize with EGF. Enhancement of EGF-induced differentiation required at least nanomolar concentrations of NGF, consistent with the low-affinity p75 binding site. EGF may induce a limited number of neuronal cells because it also enhanced apoptosis. Both NGF and a caspase inhibitor reduced apoptosis and, thereby, enhanced differentiation. NGF seems to enhance survival through the phosphatidylinositol-3 kinase (PI3K) pathway. Consistent with this hypothesis, Akt, a downstream effector of the PI3K pathway, was hyperphosphorylated in the presence of EGF+NGF. These results demonstrate that TrkA kinase initiates differentiation, and p75 enhances differentiation by rescuing differentiating cells from apoptosis via the PI3K pathway. Even though both EGF and NGF are required for differentiation of LAN5/ET-R cells, only NGF is required for survival of the differentiated cells. In the absence of NGF, the cells die by an apoptotic mechanism, involving caspase-3. An anti-p75 antibody blocked the survival effect of NGF. Brain-derived neurotrophic factor also enhanced cell survival, indicating that in differentiated cells, NGF acts through the p75 receptor to prevent apoptosis.
Collapse
Affiliation(s)
- Mahesh B Lachyankar
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Karchewski LA, Gratto KA, Wetmore C, Verge VMK. Dynamic patterns of BDNF expression in injured sensory neurons: differential modulation by NGF and NT-3. Eur J Neurosci 2002; 16:1449-62. [PMID: 12405958 DOI: 10.1046/j.1460-9568.2002.02205.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
It has been suggested that altered retrograde neurotrophin support contributes to the phenotypic switch observed in BDNF expression in injured sensory neurons. Thus, modulatory influences of NGF and NT-3 on BDNF expression in injured adult rat DRG neurons were examined using in situ hybridization and immunohistochemical approaches. Quantitative analysis reveals a biphasic response to sciatic nerve injury, whereby in the first day following injury, BDNF expression is up-regulated in approximately 83% of injured neurons including all small neurons, and a larger pool of trkB expressing neurons than in intact. By 1 week and up to 3 weeks later expression is still seen in approximately 66% of injured neurons, but the characteristic phenotypic switch in the subpopulations expressing BDNF occurs, whereby expression in the trkA population is reduced and expression in trkB- and in trkC-positive neurons is elevated. NGF infusion results in elevated levels of BDNF expression in both intact and injured trkA-positive neurons, accompanied by reduced trkB expression. NT-3 acts in an opposite fashion effecting a down-regulation in BDNF expression in intact neurons and preventing/reducing the injury-associated increases in BDNF expression in both trkC- and nontrkC-expressing subpopulations of injured neurons. These effects suggest NGF can regulate BDNF expression in trkA-expressing neurons regardless of the axonal state and that elevated levels of BDNF may contribute to the down-regulation in trkB expression associated with these states. Furthermore, the findings demonstrate that NT-3 can act in an antagonistic fashion to NGF in the regulation of BDNF expression in intact neurons, and mitigate BDNF's expression in injured neurons.
Collapse
MESH Headings
- Animals
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/metabolism
- Cell Size/physiology
- Ganglia, Spinal/injuries
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/physiopathology
- Gene Expression/drug effects
- Gene Expression/physiology
- Immunohistochemistry
- Male
- Nerve Growth Factor/metabolism
- Nerve Growth Factor/pharmacology
- Nerve Regeneration/drug effects
- Nerve Regeneration/physiology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neurons, Afferent/pathology
- Neurotrophin 3/metabolism
- Neurotrophin 3/pharmacology
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor, trkA/genetics
- Receptor, trkA/metabolism
- Receptor, trkB/genetics
- Receptor, trkB/metabolism
- Receptor, trkC/genetics
- Receptor, trkC/metabolism
- Sciatic Nerve/injuries
- Sciatic Nerve/metabolism
- Sciatic Nerve/physiopathology
- Time Factors
Collapse
Affiliation(s)
- L A Karchewski
- Department of Anat. & Cell Biol., University of Saskatchewan, S7N 5E5, Canada
| | | | | | | |
Collapse
|
32
|
Mamidipudi V, Wooten MW. Dual role for p75(NTR) signaling in survival and cell death: can intracellular mediators provide an explanation? J Neurosci Res 2002; 68:373-84. [PMID: 11992464 DOI: 10.1002/jnr.10244] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Several recent reports support a dual role of p75(NTR) in cell death, as well as survival, depending on the physiological or developmental stage of the cells. Coexpression of the TrkA receptor with p75(NTR) further enhances the complexity of nerve growth factor (NGF) signaling. Recent identification of serine/threonine kinases that interact with the p75(NTR) provides an explanation for the lack of an apparent kinase domain needed for signaling. In this report, we review the possible roles of the intracellular proteins that directly interact with the p75(NTR), atypical protein kinase C (PKC) binding protein, p62 and second messengers in the functional antagonism exhibited by TrkA and p75(NTR) with an emphasis on the nuclear factor-kappa B activation pathway.
Collapse
Affiliation(s)
- Vidya Mamidipudi
- Department of Biological Sciences, Program in Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | | |
Collapse
|
33
|
Meusburger SM, Keast JR. Testosterone and nerve growth factor have distinct but interacting effects on structure and neurotransmitter expression of adult pelvic ganglion cells in vitro. Neuroscience 2002; 108:331-40. [PMID: 11734365 DOI: 10.1016/s0306-4522(01)00420-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Circulating testosterone has potent effects on the structure and function of many pelvic ganglion cells in adult rats in vivo. However not all androgen-sensitive pelvic neurones possess androgen receptors and testosterone effects may therefore be indirect, by an action on the target organs. Here we have examined if testosterone influences neuronal structure in vitro in pelvic ganglion cells cultured from adult male rats. We have also used multiple label immunofluorescence to monitor the expression of transmitter-synthesising enzymes and peptides under various culture conditions. Testosterone was a more potent stimulant of noradrenergic soma growth in culture than nerve growth factor. Whereas nerve growth factor increased the number, branching and length of neurites, testosterone stimulated growth of a small number of very short processes, each of which bore numerous short protrusions. Testosterone also impeded the longer neurite growth induced by nerve growth factor. Many pelvic ganglion cells altered their expression of transmitters/neuropeptides under different culture conditions. In particular, under control conditions or during nerve growth factor treatment, vasoactive intestinal peptide was up-regulated in noradrenergic and cholinergic neurones; testosterone impeded this up-regulation in noradrenergic neurones. Choline acetyltransferase immunoreactivity could only be visualised when nerve growth factor was present in the cultures, and cholinergic neurones showed less neurite outgrowth than noradrenergic neurones under all culture conditions. Nerve growth factor did not stimulate levels of this enzyme as strongly if testosterone was present. This study has shown that testosterone has potent effects on the structure of many pelvic ganglion cells in vitro. It is possible that these effects are mediated indirectly, e.g. by stimulating glial-derived substances, however our results suggest that the effects are not mediated by nerve growth factor. The results also show that testosterone influences some of the actions of nerve growth factor, suggesting that there may be complex interactions between steroid signalling and neurotrophic factors in maintaining neuronal structure and function in vivo.
Collapse
Affiliation(s)
- S M Meusburger
- Department of Physiology and Pharmacology, University of Queensland, St Lucia, Qld 4072, Australia
| | | |
Collapse
|
34
|
Seo H, Ferree AW, Isacson O. Cortico-hippocampal APP and NGF levels are dynamically altered by cholinergic muscarinic antagonist or M1 agonist treatment in normal mice. Eur J Neurosci 2002; 15:498-506. [PMID: 11876777 DOI: 10.1046/j.0953-816x.2001.01884.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To determine whether altered cholinergic neurotransmission can modify the long-term secretion of amyloid precursor protein (APP), endogenous levels of APP and nerve growth factor (NGF), we administered a selective M1 muscarinic receptor agonist (RS86) or the muscarinic antagonist, atropine, for 7 days in vivo into young adult mice (C57BL/6j). The levels of NGF and total APP in the hippocampus, frontal cortex, striatum, parietal cortex and cerebrospinal fluid (CSF) were examined by ELISA and Western blot. We found that this repeated i.m. administration of M1 receptor agonist resulted in decreased total APP levels in the hippocampus, frontal cortex and parietal cortex, and increased secreted alpha-APPs levels in the CSF. M1 agonist treatment also resulted in decreased NGF levels in the hippocampus and CSF. These effects of the M1 muscarinic agonist could be blocked by atropine, which by itself elevated tissue levels of total APP. Interestingly, we found that the decrease of total APP in the hippocampus and striatum after M1 agonist treatment inversely correlated with the change in NGF levels. These data suggest that a sustained increased cholinergic, M1-mediated neurotransmission will enhance secretion of alpha-APPs in CSF and adaptively reduce the levels of total APP and NGF in the corticohippocampal regions of normal mice. The dynamic and adaptive regulation linking total APP and NGF levels in normal adult mice is relevant for understanding the pathophysiology of conditions with cholinergic and APP related pathologies, like Alzheimer's disease and Down's syndrome.
Collapse
Affiliation(s)
- Hyemyung Seo
- Neuroregeneration Laboratories, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | | | | |
Collapse
|
35
|
Boyd JG, Gordon T. The neurotrophin receptors, trkB and p75, differentially regulate motor axonal regeneration. JOURNAL OF NEUROBIOLOGY 2001; 49:314-25. [PMID: 11745667 DOI: 10.1002/neu.10013] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neurotrophic factors that support neuronal survival are implicated in axonal regeneration after injury. Specifically, a strong role for BDNF in motor axonal regeneration has been suggested based on its pattern of expression after injury, as well as the expression of its receptors, trkB and p75. Despite considerable in vitro evidence, which demonstrate specific and distinct physiological responses elicited following trkB and p75 activation, relatively little is known about the function of these receptors in vivo. To investigate the roles of the trkB and p75 receptors in motor axonal regeneration, we have used a tibial (TIB)- common peroneal (CP) cross suture paradigm in p75 homozygous (-/-) knockout mice, trkB heterozygous (+/-) knockout mice, as well as in their wild-type controls. Contralateral intact TIB motoneurons, and axotomized TIB motoneurons that regenerated their axons 10 mm into the CP distal nerve stump were identified by fluorescent retrograde tracers and counted in the T11-L1 spinal segments. Regeneration was evaluated 2, 3, 4, 6, and 8 weeks after nerve repair. Compared to wild-type animals, there are significantly fewer intact TIB motoneurons in p75 (-/-), but not trkB (+/-) mice. The number of motoneurons that regenerated their axons was significantly increased in the p75 (-/-) knockout mice, but significantly attenuated in the trkB (+/-) mice compared to wild-type controls. These results suggest that p75 is important for motoneuronal survival during development, but p75 expression after injury serves to inhibit motor axonal regeneration. In addition, full expression of trkB is critical for complete axonal regeneration to proceed.
Collapse
Affiliation(s)
- J G Boyd
- University Centre for Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, 523 Heritage Medical Research Centre, Edmonton, AB T6G 2S2, Canada
| | | |
Collapse
|
36
|
de Chaves EP, Bussiere M, MacInnis B, Vance DE, Campenot RB, Vance JE. Ceramide inhibits axonal growth and nerve growth factor uptake without compromising the viability of sympathetic neurons. J Biol Chem 2001; 276:36207-14. [PMID: 11454862 DOI: 10.1074/jbc.m104282200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ceramide inhibits axonal growth of cultured rat sympathetic neurons when the ceramide content of distal axons, but not cell bodies, is increased (Posse de Chaves, E. I., Bussiere, M. Vance, D. E., Campenot, R. B., and Vance, J.E. (1997) J. Biol. Chem. 272, 3028-3035). We now report that inhibition of growth does not result from cell death since although ceramide is a known apoptotic agent, C(6)-ceramide given to the neurons for 24 h did not cause cell death but instead protected the neurons from death induced by deprivation of nerve growth factor (NGF). We also find that a pool of ceramide generated from sphingomyelin in distal axons, but not cell bodies, inhibits axonal growth. Analysis of endogenous sphingomyelinase activities demonstrated that distal axons are rich in neutral sphingomyelinase activity but contain almost no acidic sphingomyelinase, which is concentrated in cell bodies/proximal axons. Together, these observations are consistent with the idea that generation of ceramide from sphingomyelin by a neutral sphingomyelinase in axons inhibits axonal growth. Furthermore, we demonstrate that treatment of distal axons with ceramide inhibits the uptake of NGF and low density lipoproteins by distal axons by approximately 70 and 40%, respectively, suggesting that the inhibition of axonal growth by ceramide might be due, at least in part, to impaired endocytosis of NGF. However, inhibition of endocytosis of NGF by ceramide could not be ascribed to decreased phosphorylation of TrkA.
Collapse
Affiliation(s)
- E P de Chaves
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Nerve growth factor (NGF) was discovered 50 years ago as a molecule that promoted the survival and differentiation of sensory and sympathetic neurons. Its roles in neural development have been characterized extensively, but recent findings point to an unexpected diversity of NGF actions and indicate that developmental effects are only one aspect of the biology of NGF. This article considers expanded roles for NGF that are associated with the dynamically regulated production of NGF and its receptors that begins in development, extends throughout adult life and aging, and involves a surprising variety of neurons, glia, and nonneural cells. Particular attention is given to a growing body of evidence that suggests that among other roles, endogenous NGF signaling subserves neuroprotective and repair functions. The analysis points to many interesting unanswered questions and to the potential for continuing research on NGF to substantially enhance our understanding of the mechanisms and treatment of neurological disorders.
Collapse
Affiliation(s)
- M V Sofroniew
- Department of Neurobiology and Brain Research Institute, University of California Los Angeles, Los Angeles, California 90095-1763, USA.
| | | | | |
Collapse
|
38
|
Zaccaro MC, Ivanisevic L, Perez P, Meakin SO, Saragovi HU. p75 Co-receptors regulate ligand-dependent and ligand-independent Trk receptor activation, in part by altering Trk docking subdomains. J Biol Chem 2001; 276:31023-9. [PMID: 11425862 DOI: 10.1074/jbc.m104630200] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurotrophins signal via Trk tyrosine kinase receptors and a common receptor called p75. Nerve growth factor is the cognate ligand for TrkA, brain-derived neurotrophic factor for TrkB, and neurotrophin-3 (NT-3) for TrkC. NT-3 also binds TrkA and TrkB as a heterologous ligand. All neurotrophins bind p75, which regulates ligand affinity and Trk signals. Trk extracellular domain has five subdomains: a leucine-rich motif, two cysteine-rich clusters, and immunoglobulin-like subdomains IgG-C1 and IgG-C2. The IgG-C1 subdomain is surface exposed in the tertiary structure and regulates ligand-independent activation. The IgG-C2 subdomain is less exposed but regulates cognate ligand binding and Trk activation. NT-3 as a heterologous ligand of TrkA and TrkB optimally requires the IgG-C2 but also binds other subdomains of these receptors. When p75 is co-expressed, major changes are observed; NGF-TrkA activation can occur also via the cysteine 1 subdomain, and brain-derived neurotrophic factor-TrkB activation requires the TrkB leucine-rich motif and cysteine 2 subdomains. We propose a two-site model of Trk binding and activation, regulated conformationally by the IgG-C1 subdomain. Moreover, p75 affects Trk subdomain utilization in ligand-dependent activation, possibly by conformational or allosteric control.
Collapse
Affiliation(s)
- M C Zaccaro
- Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|
39
|
Roux PP, Bhakar AL, Kennedy TE, Barker PA. The p75 neurotrophin receptor activates Akt (protein kinase B) through a phosphatidylinositol 3-kinase-dependent pathway. J Biol Chem 2001; 276:23097-104. [PMID: 11312266 DOI: 10.1074/jbc.m011520200] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Akt kinase plays a crucial role in supporting Trk-dependent cell survival, whereas the p75 neurotrophin receptor (p75NTR) facilitates cellular apoptosis. The precise mechanism that p75NTR uses to promote cell death is not certain, but one possibility is that p75NTR-dependent ceramide accumulation inhibits phosphatidylinositol 3-kinase-mediated Akt activation. To test this hypothesis, we developed a system for examining p75NTR-dependent apoptosis and determined the effect of p75NTR on Akt activation. Surprisingly, p75NTR increased, rather than decreased, Akt phosphorylation in a variety of cell types, including human Niemann-Pick fibroblasts, which lack acidic sphingomyelinase activity. The p75NTR expression level required to elicit Akt phosphorylation was much lower than that required to activate the JNK pathway or to mediate apoptosis. We show that p75NTR-dependent Akt phosphorylation was independent of TrkA signaling, required active phosphatidylinositol 3-kinase, and was associated with increased tyrosine phosphorylation of p85 and Shc and with reduced cytosolic tyrosine phosphatase activity. Finally, we show that p75NTR expression increased survival in cells exposed to staurosporine or subjected to serum withdrawal. These findings indicate that p75NTR facilitates cell survival through novel signaling cascades that result in Akt activation.
Collapse
Affiliation(s)
- P P Roux
- Centre for Neuronal Survival, Montreal Neurological Institute, and the Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | | | | | | |
Collapse
|
40
|
Abstract
The four mammalian neurotrophins - NGF, BDNF, NT-3 and NT-4 - each bind and activate one or more of the Trk family of receptor tyrosine kinases. Through these receptors, neurotrophins activate many intracellular signaling pathways, including those controlled by Ras, the Cdc42/Rac/RhoG protein family, MAPK, PI3K and PLC-gamma, thereby affecting both development and function of the nervous system. During the past two years, several novel signaling pathways controlled by Trk receptors have been characterized, and it has become clear that membrane transport and sorting controls Trk-receptor-mediated signaling because key intermediates are localized to different membrane compartments. Three-dimensional structures of the Trk receptors, in one instance in association with a neurotrophin, have revealed the structural bases underlying specificity in neurotrophin signaling.
Collapse
Affiliation(s)
- A Patapoutian
- Department of Cell Biology, The Scripps Research Institute and Genomics Institute, Novartis Research Foundation, La Jolla, CA 92037, USA.
| | | |
Collapse
|
41
|
Mischel PS, Smith SG, Vining ER, Valletta JS, Mobley WC, Reichardt LF. The extracellular domain of p75NTR is necessary to inhibit neurotrophin-3 signaling through TrkA. J Biol Chem 2001; 276:11294-301. [PMID: 11150291 PMCID: PMC2693057 DOI: 10.1074/jbc.m005132200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The TrkA receptor is activated primarily by nerve growth factor (NGF), but it can also be activated by high concentrations of neurotrophin 3 (NT-3). The pan-neurotrophin receptor p75(NTR) strongly inhibits activation of TrkA by NT-3 but not by NGF. To examine the role of p75(NTR) in regulating the specificity of TrkA signaling, we expressed both receptors in Xenopus oocytes. Application of NGF or NT-3 to oocytes expressing TrkA alone resulted in efflux of (45)Ca(2+) by a phospholipase C-gamma-dependent pathway. Coexpression of p75(NTR) with TrkA inhibited (45)Ca(2+) efflux in response to NT-3 but not NGF. The inhibitory effect on NT-3 activation of TrkA increased with increasing expression of p75(NTR). Coexpression of a truncated p75(NTR) receptor lacking all but the first 9 amino acids of the cytoplasmic domain inhibited NT-3 stimulation of (45)Ca(2+) efflux, whereas coexpression of an epidermal growth factor receptor/p75(NTR) chimera (extracellular domain of epidermal growth factor receptor with transmembrane and cytoplasmic domains of p75(NTR)) did not inhibit NT-3 signaling through TrkA. These studies demonstrated that the extracellular domain of p75(NTR) was necessary to inhibit NT-3 signaling through TrkA. Remarkably, p75(NTR) binding to NT-3 was not required to prevent signaling through TrkA, since occupying p75(NTR) with brain-derived neurotrophic factor or anti-p75 antibody (REX) did not rescue the ability of NT-3 to activate (45)Ca(2+) efflux. These data suggested a physical association between TrkA and p75(NTR). Documenting this physical interaction, we showed that p75(NTR) and TrkA could be coimmunoprecipitated from Xenopus oocytes. Our results suggest that the interaction of these two receptors on the cell surface mediated the inhibition of NT-3-activated signaling through TrkA.
Collapse
Affiliation(s)
- P S Mischel
- Departments of Pathology and Laboratory Medicine, UCLA, Los Angeles, California 90095-1732, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Neurotrophins regulate development, maintenance, and function of vertebrate nervous systems. Neurotrophins activate two different classes of receptors, the Trk family of receptor tyrosine kinases and p75NTR, a member of the TNF receptor superfamily. Through these, neurotrophins activate many signaling pathways, including those mediated by ras and members of the cdc-42/ras/rho G protein families, and the MAP kinase, PI-3 kinase, and Jun kinase cascades. During development, limiting amounts of neurotrophins function as survival factors to ensure a match between the number of surviving neurons and the requirement for appropriate target innervation. They also regulate cell fate decisions, axon growth, dendrite pruning, the patterning of innervation and the expression of proteins crucial for normal neuronal function, such as neurotransmitters and ion channels. These proteins also regulate many aspects of neural function. In the mature nervous system, they control synaptic function and synaptic plasticity, while continuing to modulate neuronal survival.
Collapse
Affiliation(s)
- Eric J Huang
- Department of Pathology, University of California, San Francisco, California 94143; e-mail:
| | - Louis F Reichardt
- Department of Physiology, University of California, San Francisco, California 94143, and Howard Hughes Medical Institute, San Francisco, California 94143; e-mail:
| |
Collapse
|
43
|
Jung SY, Suh JH, Park HJ, Jung KM, Kim MY, Na DS, Kim DK. Identification of multiple forms of membrane-associated neutral sphingomyelinase in bovine brain. J Neurochem 2000; 75:1004-14. [PMID: 10936181 DOI: 10.1046/j.1471-4159.2000.0751004.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many different stimuli such as bioactive agents and environmental stresses are known to cause the activation of sphingomyelinase (SMase), which hydrolyzes sphingomyelin to generate ceramide as a second messenger playing a key role in differentiation and apoptosis in various cell types. Here we identified multiple forms of the membrane-associated neutral SMase (N-mSMase) activity in bovine brain. They could be classified into two groups according to extracting agents: group T-mSMase, extracted with 0.2% Triton X-100, and group S-mSMase, extracted with 0.5 M (NH(4))(2)SO(4). Group T-mSMase: alpha, beta, gamma, and delta, which were extensively purified from 40,000-g pellets of bovine brain homogenates by 3,150-, 5,275-, 1,665-, and 2,556-fold over the membrane extracts, respectively, by sequential use of several column chromatographies. On the other hand, S-mSMase was eluted as two active peaks of S-mSMase epsilon and zeta in a phenyl-5PW hydrophobic HPLC column and further purified by 1,119- and 976-fold over 40,000-g pellets of the homogenates, respectively. These highly purified N-mSMase enzyme preparations migrated as several bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and showed many different features in biochemical properties such as pH dependence, Mg(2+) requirements, and effects of detergents. Taken together, our data strongly suggest that mammalian brain N-mSMase may exist as multiple forms different in both its chromatographic profiles and biochemical properties.
Collapse
Affiliation(s)
- S Y Jung
- Department of Environmental and Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
44
|
Vesa J, Kruttgen A, Shooter EM. p75 reduces TrkB tyrosine autophosphorylation in response to brain-derived neurotrophic factor and neurotrophin 4/5. J Biol Chem 2000; 275:24414-20. [PMID: 10825163 DOI: 10.1074/jbc.m001641200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Neurotrophins mediate their signals through two different receptors: the family of receptor tyrosine kinases, Trks, and the low affinity pan-neurotrophin receptor p75. Trk receptors show more restricted ligand specificity, whereas all neurotrophins are able to bind to p75. One important function of p75 is the enhancement of nerve growth factor signaling via TrkA by increasing TrkA tyrosine autophosphorylation. Here, we have examined the importance of p75 on TrkB- and TrkC-mediated neurotrophin signaling in an MG87 fibroblast cell line stably transfected with either p75 and TrkB or p75 and TrkC, as well as in PC12 cells stably transfected with TrkB. In contrast to TrkA signaling, p75 had a negative effect on TrkB tyrosine autophosphorylation in response to its cognate neurotrophins, brain-derived neurotrophic factor and neurotrophin 4/5. On the other hand, p75 had no effect on TrkB or TrkC activation in neurotrophin 3 treatment. p75 did not effect extracellular signal-regulated kinase 2 tyrosine phosphorylation in response to brain-derived neurotrophic factor, neurotrophin 3, or neurotrophin 4/5. These results suggest that the observed reduction in TrkB tyrosine autophosphorylation caused by p75 does not influence Ras/mitogen-activated protein kinase signaling pathway in neurotrophin treatments.
Collapse
Affiliation(s)
- J Vesa
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305-5125, USA
| | | | | |
Collapse
|
45
|
Salehi AH, Roux PP, Kubu CJ, Zeindler C, Bhakar A, Tannis LL, Verdi JM, Barker PA. NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis. Neuron 2000; 27:279-88. [PMID: 10985348 DOI: 10.1016/s0896-6273(00)00036-2] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The mechanisms employed by the p75 neurotrophin receptor (p75NTR) to mediate neurotrophin-dependent apoptosis are poorly defined. Two-hybrid analyses were used to identify proteins involved in p75NTR apoptotic signaling, and a p75NTR binding partner termed NRAGE (for neurotrophin receptor-interacting MAGE homolog) was identified. NRAGE binds p75NTR in vitro and in vivo, and NRAGE associates with the plasma membrane when NGF is bound to p75NTR. NRAGE blocks the physical association of p75NTR with TrkA, and, conversely, TrkA overexpression eliminates NRAGE-mediated NGF-dependent death, indicating that interactions of NRAGE or TrkA with p75NTR are functionally and physically exclusive. NRAGE overexpression facilitates cell cycle arrest and permits NGF-dependent apoptosis within sympathetic neuron precursors cells. Our results show that NRAGE contributes to p75NTR-dependent cell death and suggest novel functions for MAGE family proteins.
Collapse
Affiliation(s)
- A H Salehi
- Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Maliartchouk S, Debeir T, Beglova N, Cuello AC, Gehring K, Saragovi HU. Genuine monovalent ligands of TrkA nerve growth factor receptors reveal a novel pharmacological mechanism of action. J Biol Chem 2000; 275:9946-56. [PMID: 10744669 DOI: 10.1074/jbc.275.14.9946] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Developing small molecule agonistic ligands for tyrosine kinase receptors has been difficult, and it is generally thought that such ligands require bivalency. Moreover, multisubunit receptors are difficult to target, because each subunit contributes to ligand affinity, and each subunit may have distinct and sometimes opposing functions. Here, the nerve growth factor receptor subunits p75 and the tyrosine kinase TrkA were studied using artificial ligands that bind specifically to their extracellular domain. Bivalent TrkA ligands afford robust signals. However, genuine monomeric and monovalent TrkA ligands afford partial agonism, activate the tyrosine kinase activity, cause receptor internalization, and induce survival and differentiation in cell lines and primary neurons. Monomeric and monovalent TrkA ligands can synergize with ligands that bind the p75 subunit. However, the p75 ligands used in this study must be bivalent, and monovalent p75 ligands have no effect. These findings will be useful in designing and developing screens of small molecules selective for tyrosine kinase receptors and indicate that strategies for designing agonists of multisubunit receptors require consideration of the role of each subunit. Last, the strategy of using anti-receptor mAbs and small molecule hormone mimics as receptor ligands could be applied to the study of many other heteromeric cell surface receptors.
Collapse
Affiliation(s)
- S Maliartchouk
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Ceramide is a novel lipid mediator involved in regulating cell growth, cell differentiation and cell death. Many studies have focused on characterizing the stimulus-induced production of ceramide and identifying putative downstream molecular targets. However, little remains known about the localization of the regulated production of ceramide through sphingomyelin metabolism in the plasma membrane. Additionally, it is unclear whether a localized increase in ceramide concentration is necessary to facilitate downstream signalling events initiated by this lipid. Recent studies have suggested that detergent-insoluble plasma membrane domains may be highly localized sites for initiating signal transduction cascades by both tyrosine kinase and sphingolipid signalling pathways. These domains are typically enriched in both sphingolipids and cholesterol and have been proposed to form highly ordered lipid rafts floating in a sea of glycerophospholipids. Alternatively, upon integration of the cholesterol binding protein caveolin, these domains may also form small cave-like structures called caveolae. Emerging evidence suggests that the enhanced sphingomyelin content of these lipid domains make them potential substrate pools for sphingomyelinases to produce a high local concentration of ceramide. The subsequent formation of ceramide microdomains in the plasma membrane may be a critical factor in regulating downstream signalling through this lipid messenger.
Collapse
Affiliation(s)
- R T Dobrowsky
- Department of Pharmacology and Toxicology, University of Kansas, 5064 Malott Hall, Lawrence, KS 66045, USA.
| |
Collapse
|
48
|
Susen K, Heumann R, Blöchl A. Nerve growth factor stimulates MAPK via the low affinity receptor p75(LNTR). FEBS Lett 1999; 463:231-4. [PMID: 10606727 DOI: 10.1016/s0014-5793(99)01628-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Apart from its high affinity receptor TrkA, nerve growth factor (NGF) can also stimulate the low affinity receptor p75(LNTR) and induce a Trk-independent signaling cascade. We examined the possible involvement of mitogen-activated protein kinase (MAPK) in this signaling pathway in neuronal cultures of the cerebellum of P2-aged rats and PCNA cells; both cell types express p75(LNTR) but not TrkA. We found a fast and transient phosphorylation of p42- and p44-MAPK after stimulation with NGF or C(2)-ceramide which proved to be sensitive to inhibition of MAPK kinase and protein kinase A (PKA). As stimulation with NGF also activated p21Ras it can be concluded that at least part of the observed MAPK activation was effected via p21Ras and via PKA.
Collapse
Affiliation(s)
- K Susen
- Molekulare Neurobiochemie, Fakultät Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | | | | |
Collapse
|
49
|
Karchewski LA, Kim FA, Johnston J, McKnight RM, Verge VM. Anatomical evidence supporting the potential for modulation by multiple neurotrophins in the majority of adult lumbar sensory neurons. J Comp Neurol 1999; 413:327-41. [PMID: 10524342 DOI: 10.1002/(sici)1096-9861(19991018)413:2<327::aid-cne11>3.0.co;2-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neurotrophins exert effects on sensory neurons through receptor tyrosine kinases (trks) and a common neurotrophin receptor (p75). Quantitative in situ hybridization studies were performed on serial sections to identify neurons expressing single or multiple neurotrophin trk receptor mRNA(s) in adult lumbar dorsal root ganglion (DRG) in order to examine the possibility of multi-neurotrophin modulation of phenotype via different trk receptors or various trk isoforms. Expression of mRNA encoding trkA, trkB, trkC, or p75 is restricted to select subpopulations representing approximately 41%, 33%, 43%, and 79% of DRG neurons, respectively. Colocalization studies reveal that approximately 10% of DRG neurons coexpress trkA and trkB mRNA; 19% coexpress trkA and trkC mRNA; and 18% coexpress trkB and trkC mRNA. Trilocalization of all three trk mRNAs is rare, with approximately 3-4% of neurons in this category. Overall incidence of expression of more than one full length trk mRNA occurs in approximately 40% of DRG neurons, whereas expression of individual trk mRNA is found in approximately 34%. Full length trk receptor mRNA is rarely detected without p75, implicating the latter in neuronal response to neurotrophins. Examination of two full-length isoforms of trkA reveal that they are coexpressed with relative levels of expression positively correlated. TrkC mRNAs corresponding to 14- or 39-amino acid insert isoforms colocalize with the non-insert trkC isoform, but the converse is not necessarily true. The data suggest that substantial subpopulations of adult sensory neurons may be modulated through interactions with multiple neurotrophins, the consequences of which are largely unknown.
Collapse
MESH Headings
- Animals
- Base Sequence
- Ganglia, Spinal/cytology
- Gene Expression
- In Situ Hybridization
- Lumbosacral Region/anatomy & histology
- Male
- Molecular Sequence Data
- Nerve Tissue Proteins/analysis
- Nerve Tissue Proteins/genetics
- Neurons, Afferent/physiology
- Phenotype
- Protein Isoforms/analysis
- Protein Isoforms/genetics
- RNA, Messenger/analysis
- Rats
- Rats, Wistar
- Receptor, Nerve Growth Factor/analysis
- Receptor, Nerve Growth Factor/genetics
- Receptor, trkA/analysis
- Receptor, trkA/genetics
- Receptor, trkB/analysis
- Receptor, trkB/genetics
- Receptor, trkC/analysis
- Receptor, trkC/genetics
- Receptors, Nerve Growth Factor/analysis
- Receptors, Nerve Growth Factor/genetics
- Superior Cervical Ganglion/cytology
Collapse
Affiliation(s)
- L A Karchewski
- Department of Anatomy & Cell Biology, University of Saskatchewan, Canada
| | | | | | | | | |
Collapse
|
50
|
Kimpinski K, Jelinski S, Mearow K. The anti-p75 antibody, MC192, and brain-derived neurotrophic factor inhibit nerve growth factor-dependent neurite growth from adult sensory neurons. Neuroscience 1999; 93:253-63. [PMID: 10430489 DOI: 10.1016/s0306-4522(99)00156-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have investigated nerve growth factor-dependent neurite growth from adult sensory neurons using the compartmented culture system. The requirement of both TrkA and the p75 neurotrophin receptors in neurite growth was examined using several experimental interventions. Inhibition of TrkA activation using K252a resulted in a total block of distal neurite extension into nerve growth factor-containing compartments. Brain-derived neurotrophic factor and the anti-p75 monoclonal antibody MC192 have been shown to interfere with the binding of nerve growth factor to p75. Brain-derived neurotrophic factor, which binds p75 but not TrkA, competes with nerve growth factorforp75, while the anti-p75 antibody MC192 has been shown to decrease the interaction of nerve growth factor with TrkA. The addition of brain-derived neurotophic factor to nerve growth factor-containing distal compartments inhibited, but did not totally block, distal neurite extension. MC192, on the other hand, totally inhibited nerve growth factor-dependent neurite growth. To test whether MC192 and brain-derived neurotrophic factor might be influencing Trk activation, TrkA phosphorylation was examined biochemically. Both compounds were found to attenuate nerve growth factor-induced Trk phosphorylation, although neither inhibited the activation completely. The possibility that MC192 or brain-derived neurotrophic factor might activate p75 signaling directly (and potentially antagonize TrkA signaling) was also investigated. This was assessed by quantitating the activation and nuclear translocation of the transcription factor NFkB using immunocytochemistry. Only treatment with the anti-p75 antibody MC192 resulted in prolonged and significant increase in the number of neurons displaying nuclear staining for NFkB. Our results demonstrate that both TrkA and p75 play a role in neurite growth response to nerve growth factor, and further suggest that any alteration in optimal TrkA-p75 interactions, or direct activation of p75 at the expense of TrkA, results in an inhibition of nerve growth factor-dependent neurite growth in adult sensory neurons.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/immunology
- Blotting, Western
- Brain-Derived Neurotrophic Factor/pharmacology
- Cell Nucleus/metabolism
- Cells, Cultured
- Ganglia, Spinal/cytology
- Ganglia, Spinal/physiology
- Immunohistochemistry
- Nerve Growth Factors/antagonists & inhibitors
- Nerve Growth Factors/pharmacology
- Neurites/drug effects
- Neurites/ultrastructure
- Neurons, Afferent/drug effects
- Neurons, Afferent/ultrastructure
- Precipitin Tests
- Rats
- Rats, Sprague-Dawley
- Receptor, Nerve Growth Factor
- Receptor, trkA/physiology
- Receptors, Nerve Growth Factor/antagonists & inhibitors
- Receptors, Nerve Growth Factor/immunology
Collapse
Affiliation(s)
- K Kimpinski
- Division of Basic Sciences, Memorial University of Newfoundland, St John's, Canada
| | | | | |
Collapse
|