1
|
Abstract
Regulated transport through the secretory pathway is essential for embryonic development and homeostasis. Disruptions in this process impact cell fate, differentiation and survival, often resulting in abnormalities in morphogenesis and in disease. Several congenital malformations are caused by mutations in genes coding for proteins that regulate cargo protein transport in the secretory pathway. The severity of mutant phenotypes and the unclear aetiology of transport protein-associated pathologies have motivated research on the regulation and mechanisms through which these proteins contribute to morphogenesis. This review focuses on the role of the p24/transmembrane emp24 domain (TMED) family of cargo receptors in development and disease.
Collapse
|
2
|
Kikegawa T, Yamaguchi T, Nambu R, Etchuya K, Ikeda M, Mukai Y. Signal-anchor sequences are an essential factor for the Golgi-plasma membrane localization of type II membrane proteins. Biosci Biotechnol Biochem 2018; 82:1708-1714. [PMID: 29912671 DOI: 10.1080/09168451.2018.1484272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Despite studies of the mechanism underlying the intracellular localization of membrane proteins, the specific mechanisms by which each membrane protein localizes to the endoplasmic reticulum, Golgi apparatus, and plasma membrane in the secretory pathway are unclear. In this study, a discriminant analysis of endoplasmic reticulum, Golgi apparatus and plasma membrane-localized type II membrane proteins was performed using a position-specific scoring matrix derived from the amino acid propensity of the sequences around signal-anchors. The possibility that the sequence around the signal-anchor is a factor for identifying each localization group was evaluated. The discrimination accuracy between the Golgi apparatus and plasma membrane-localized type II membrane proteins was as high as 90%, indicating that, in addition to other factors, the sequence around signal-anchor is an essential component of the selection mechanism for the Golgi and plasma membrane localization. These results may improve the use of membrane proteins for drug delivery and therapeutic applications.
Collapse
Affiliation(s)
- Tatsuki Kikegawa
- a Department of Electronics, Graduate School of Science and Technology , Meiji University , Kanagawa , Japan
| | - Takuya Yamaguchi
- a Department of Electronics, Graduate School of Science and Technology , Meiji University , Kanagawa , Japan
| | - Ryohei Nambu
- a Department of Electronics, Graduate School of Science and Technology , Meiji University , Kanagawa , Japan
| | - Kenji Etchuya
- b Molecular Neurobiology Research Group , Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Ibaraki , Japan.,c Department of Electronics and Bioinformatics, School of Science and Technology , Meiji University , Kanagawa , Japan
| | - Masami Ikeda
- d Artificial Intelligence Research Center (AIRC) , National Institute of Advanced Industrial Science and Technology (AIST) , Tokyo , Japan
| | - Yuri Mukai
- a Department of Electronics, Graduate School of Science and Technology , Meiji University , Kanagawa , Japan.,c Department of Electronics and Bioinformatics, School of Science and Technology , Meiji University , Kanagawa , Japan
| |
Collapse
|
3
|
Chakraborti S, Sarkar J, Chowdhury A, Chakraborti T. Role of ADP ribosylation factor6- Cytohesin1-PhospholipaseD signaling axis in U46619 induced activation of NADPH oxidase in pulmonary artery smooth muscle cell membrane. Arch Biochem Biophys 2017; 633:1-14. [PMID: 28822840 DOI: 10.1016/j.abb.2017.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/12/2017] [Accepted: 08/15/2017] [Indexed: 01/07/2023]
Abstract
Treatment of human pulmonary artery smooth muscle cells (HPASMCs) with the thromboxane A2 receptor antagonist, SQ29548 inhibited U46619 stimulation of phospholipase D (PLD) and NADPH oxidase activities in the cell membrane. Pretreatment with apocynin inhibited U46619 induced increase in NADPH oxidase activity. The cell membrane contains predominantly PLD2 along with PLD1 isoforms of PLD. Pretreatment with pharmacological and genetic inhibitors of PLD2, but not PLD1, attenuated U46619 stimulation of NADPH oxidase activity. U46619 stimulation of PLD and NADPH oxidase activities were insensitive to BFA and Clostridium botulinum C3 toxin; however, pretreatment with secinH3 inhibited U46619 induced increase in PLD and NADPH oxidase activities suggesting a major role of cytohesin in U46619-induced increase in PLD and NADPH oxidase activities. Arf-1, Arf-6, cytohesin-1 and cytohesin-2 were observed in the cytosolic fraction, but only Arf-6 and cytohesin-1 were translocated to the cell membrane upon treatment with U46619. Coimmunoprecipitation study showed association of Arf-6 with cytohesin-1 in the cell membrane fraction. In vitro binding of GTPγS with Arf-6 required the presence of cytohesin-1 and that occurs in BFA insensitive manner. Overall, BFA insensitive Arf6-cytohesin1 signaling axis plays a pivotal role in U46619-mediated activation of PLD leading to stimulation of NADPH oxidase activity in HPASMCs.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| | - Jaganmay Sarkar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| | - Animesh Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
4
|
Liaunardy-Jopeace A, Bryant CE, Gay NJ. The COP II adaptor protein TMED7 is required to initiate and mediate the delivery of TLR4 to the plasma membrane. Sci Signal 2014; 7:ra70. [PMID: 25074978 PMCID: PMC4685749 DOI: 10.1126/scisignal.2005275] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Toll-like receptor 4 (TLR4), the receptor for the bacterial product endotoxin, is subject to multiple points of regulation at the levels of signaling, biogenesis, and trafficking. Dysregulation of TLR4 signaling can cause serious inflammatory diseases, such as sepsis. We found that the p24 family protein TMED7 (transmembrane emp24 protein transport domain containing 7) is required for the trafficking of TLR4 from the endoplasmic reticulum to the cell surface through the Golgi. TMED7 formed a stable complex with the ectodomain of TLR4, an interaction that required the coiled-coil and Golgi dynamics (GOLD) domains, but not the cytosolic, coat protein complex II (COP II) sorting motif, of TMED7. Depletion of TMED7 reduced TLR4 signaling mediated by the adaptor protein MyD88 (myeloid differentiation marker 88), but not that mediated by the adaptor proteins TRIF [Toll-interleukin-1 receptor (TIR) domain-containing adaptor protein inducing interferon-β] and TRAM (TRIF-related adaptor molecule). Truncated forms of TMED7 lacking the COP II sorting motif or the transmembrane domain were mislocalized and resulted in ligand-independent signaling that probably arises from receptors accumulated intracellularly. Together, these results support the hypothesis that p24 proteins perform a quality control step by recognizing correctly folded anterograde cargo, such as TLR4, in early secretory compartments and facilitating the translocation of this cargo to the cell surface.
Collapse
Affiliation(s)
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Nicholas J Gay
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
5
|
Anchors aweigh: protein localization and transport mediated by transmembrane domains. Trends Cell Biol 2013; 23:511-7. [PMID: 23806646 PMCID: PMC3783643 DOI: 10.1016/j.tcb.2013.05.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 11/23/2022]
Abstract
TMDs control the intracellular transport of many membrane proteins. The length and hydrophobicity of TMDs determine their sorting. Some membrane receptors for sorting TMDs have been identified. Lipid partitioning may also participate in the sorting of TMDs.
The transmembrane domains (TMDs) of integral membrane proteins have emerged as major determinants of intracellular localization and transport in the secretory and endocytic pathways. Unlike sorting signals in cytosolic domains, TMD sorting determinants are not conserved amino acid sequences but physical properties such as the length and hydrophilicity of the transmembrane span. The underlying sorting machinery is still poorly characterized, but several mechanisms have been proposed, including TMD recognition by transmembrane sorting receptors and partitioning into membrane lipid domains. Here we review the nature of TMD sorting determinants and how they may dictate transmembrane protein localization and transport.
Collapse
|
6
|
Grose JH, Sundwall E, Rutter J. Regulation and function of yeast PAS kinase: a role in the maintenance of cellular integrity. Cell Cycle 2009; 8:1824-32. [PMID: 19440050 DOI: 10.4161/cc.8.12.8799] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The inability to coordinate cellular metabolic processes with the cellular and organismal nutrient environment leads to a variety of disorders, including diabetes and obesity. Nutrient-sensing protein kinases, such as AMPK and mTOR, play a pivotal role in metabolic regulation and are promising therapeutic targets for the treatment of disease. In this Extra View, we describe another member of the nutrient-sensing protein kinase group, PAS kinase, which plays a role in the regulation of glucose utilization in both mammals and yeast. PAS kinase deficient mice are resistant to high fat diet-induced weight gain, insulin resistance and hepatic triglyceride hyperaccumulation, suggesting a role for PAS kinase in the regulation of glucose and lipid metabolism in mammals. Likewise, PAS kinase deficient yeast display altered glucose partitioning, favoring glycogen biosynthesis at the expense of cell wall biosynthesis. As a result, PAS kinase deficient yeast are sensitive to cell wall perturbing agents. This partitioning of glucose in response to PAS kinase activation is due to phosphorylation of Ugp1, the enzyme primarily responsible for UDP-glucose production. The two yeast PAS kinase homologs, Psk1 and Psk2, are activated by two stimuli, cell integrity stress and nonfermentative carbon sources. We review what is known about yeast PAS kinase and describe a genetic screen that may help elucidate pathways involved in PAS kinase activation and function.
Collapse
Affiliation(s)
- Julianne H Grose
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA.
| | | | | |
Collapse
|
7
|
Strating JR, van Bakel NH, Leunissen JA, Martens GJ. A Comprehensive Overview of the Vertebrate p24 Family: Identification of a Novel Tissue-Specifically Expressed Member. Mol Biol Evol 2009; 26:1707-14. [DOI: 10.1093/molbev/msp099] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
8
|
Dunkel M, Latz A, Schumacher K, Müller T, Becker D, Hedrich R. Targeting of vacuolar membrane localized members of the TPK channel family. MOLECULAR PLANT 2008; 1:938-49. [PMID: 19825594 DOI: 10.1093/mp/ssn064] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Four members of the tandem-pore potassium channel family of Arabidopsis thaliana (TPK1, 2, 3, and 5) reside in the vacuolar membrane, whereas TPK4 is a plasma membrane K(+)-channel. By constructing chimeras between TPK1 and TPK4, we attempted to identify channel domains involved in the trafficking process and found that the TPK1 cytoplasmic C-terminal domain (CT) is critical for the ER- as well as Golgi-sorting steps. Following site-directed mutagenesis, we identified a diacidic motif (DLE) required for ER-export of TPK1. However, this diacidic motif in the C-terminus is not conserved among other members of the TPK family, and TPK3 sorting is independent of its CT. Moreover, the 14-3-3 binding site of TPK1, essential for channel activation, is not involved in channel sorting.
Collapse
Affiliation(s)
- Marcel Dunkel
- University of Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Blum R, Lepier A. The Luminal Domain of p23 (Tmp21) Plays a Critical Role in p23 Cell Surface Trafficking. Traffic 2008; 9:1530-50. [DOI: 10.1111/j.1600-0854.2008.00784.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Ronchi P, Colombo S, Francolini M, Borgese N. Transmembrane domain-dependent partitioning of membrane proteins within the endoplasmic reticulum. ACTA ACUST UNITED AC 2008; 181:105-18. [PMID: 18391072 PMCID: PMC2287291 DOI: 10.1083/jcb.200710093] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The length and hydrophobicity of the transmembrane domain (TMD) play an important role in the sorting of membrane proteins within the secretory pathway; however, the relative contributions of protein-protein and protein-lipid interactions to this phenomenon are currently not understood. To investigate the mechanism of TMD-dependent sorting, we used the following two C tail-anchored fluorescent proteins (FPs), which differ only in TMD length: FP-17, which is anchored to the endoplasmic reticulum (ER) membrane by 17 uncharged residues, and FP-22, which is driven to the plasma membrane by its 22-residue-long TMD. Before export of FP-22, the two constructs, although freely diffusible, were seen to distribute differently between ER tubules and sheets. Analyses in temperature-blocked cells revealed that FP-17 is excluded from ER exit sites, whereas FP-22 is recruited to them, although it remains freely exchangeable with the surrounding reticulum. Thus, physicochemical features of the TMD influence sorting of membrane proteins both within the ER and at the ER-Golgi boundary by simple receptor-independent mechanisms based on partitioning.
Collapse
Affiliation(s)
- Paolo Ronchi
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, Cellular and Molecular Pharmacology, University of Milan, 20129 Milan, Italy
| | | | | | | |
Collapse
|
11
|
Cauvi DM, Tian X, von Loehneysen K, Robertson MW. Transport of the IgE receptor alpha-chain is controlled by a multicomponent intracellular retention signal. J Biol Chem 2006; 281:10448-60. [PMID: 16459334 DOI: 10.1074/jbc.m510751200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human high affinity IgE receptor (FcepsilonRI) is a central component of the allergic response and is expressed as either a trimeric alphagamma2 or tetrameric alphabetagamma2 complex. It has been previously described that the cytoplasmic domain (CD) of the alpha-chain carries a dilysine motif at positions -3/-7 from the C terminus that functions in intracellular retention prior to assembly with other FcepsilonRI subunits. In this report we have further explored the role of the -3/-7 dilysine signal in controlling steady-state alpha-chain transport by mutational analysis and found little surface expression of a -3/-7 dialanine alpha-chain mutant but significant Golgi localization. We compared the transport properties of a series of alpha-chain cytoplasmic domain truncation mutants and observed that truncation mutants lacking 23 or more C-terminal residues showed a dramatic increase in steady-state transport suggesting a role for the membrane-proximal CD sequence in alpha-chain retention. By performing alanine-scanning mutagenesis we identified a dilysine sequence (Lys(212)-Lys(216)) proximal to the transmembrane domain (TMD) that is important for both alpha-chain cell-surface expression and intracellular stability. Furthermore, co-mutation of the Lys(212)-Lys(216) residues with the -3/-7 dilysine signal produced a dramatic increase in alpha-chain surface expression that was further increased by co-mutation of the lone charged residue (Asp(192)) in the TMD thereby defining three regions that function to regulate alpha-chain transport and in a highly synergistic manner.
Collapse
Affiliation(s)
- David M Cauvi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
12
|
Minogue PJ, Liu X, Ebihara L, Beyer EC, Berthoud VM. An aberrant sequence in a connexin46 mutant underlies congenital cataracts. J Biol Chem 2005; 280:40788-95. [PMID: 16204255 PMCID: PMC2720622 DOI: 10.1074/jbc.m504765200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An increasing number of diseases have been mapped to genes coding for ion channel proteins, including the gap junction proteins, connexins. Here, we report on the identification of an amino acid sequence underlying the behavior of a non-functional mutant connexin46 (CX46) associated with congenital cataracts. The mutant protein, CX46fs380, is 31 amino acids longer than CX46 and contains 87 aberrant amino acids in its C terminus. When expressed in mammalian cells, the mutant CX46 was not found at gap junctional plaques, but it showed extensive co-localization with markers for ERGIC and Golgi. The severe reductions in function and formation of gap junctional plaques were transferred to other connexins by creating chimeras containing the last third (or more) of the aberrant C terminus of the CX46 mutant. This sequence also impaired trafficking of a CD8 chimera. Site-directed mutagenesis of a diphenylalanine restored appositional membrane localization and function. These results suggest a novel mechanism in which a mutation causes disease by generating a motif that leads to retention within the synthetic/secretory pathway.
Collapse
Affiliation(s)
- Peter J. Minogue
- Department of Pediatrics, University of Chicago, Chicago, Illinois 60637
| | - Xiaoqin Liu
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Lisa Ebihara
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Eric C. Beyer
- Department of Pediatrics, University of Chicago, Chicago, Illinois 60637
| | | |
Collapse
|
13
|
Hanton SL, Renna L, Bortolotti LE, Chatre L, Stefano G, Brandizzi F. Diacidic motifs influence the export of transmembrane proteins from the endoplasmic reticulum in plant cells. THE PLANT CELL 2005; 17:3081-93. [PMID: 16214902 PMCID: PMC1276031 DOI: 10.1105/tpc.105.034900] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 07/26/2005] [Accepted: 09/13/2005] [Indexed: 05/04/2023]
Abstract
In yeast and mammals, amino acid motifs in the cytosolic tails of transmembrane domains play a role in protein trafficking by facilitating export from the endoplasmic reticulum (ER). However, little is known about ER export signals of membrane proteins in plants. Therefore, we investigated the role of diacidic motifs in the ER export of Golgi-localized membrane proteins. We show that diacidic motifs perform a significant function in the export of transmembrane proteins to the Golgi apparatus, as mutations of these signals impede the efficient anterograde transport of multispanning, type II, and type I proteins. Furthermore, we demonstrate that diacidic motifs instigate the export of proteins that reside in the ER due to the lengths of their transmembrane domains. However, not all of the diacidic motifs in the cytosolic tails of the proteins studied were equally important in ER export. Transport of Golgi proteins was disrupted only by mutagenesis of specific diacidic signals, suggesting that the protein environment of these signals affects their function. Our findings indicate that diacidic ER export motifs are present and functional in plant membrane proteins and that they are dominant over transmembrane domain length in determining the export of proteins from the ER in plant cells.
Collapse
Affiliation(s)
- Sally L Hanton
- Department of Biology, University of Saskatchewan, Saskatoon SK S7N 5E2, Saskatchewan, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Emery G, Parton RG, Rojo M, Gruenberg J. The trans-membrane protein p25 forms highly specialized domains that regulate membrane composition and dynamics. J Cell Sci 2003; 116:4821-32. [PMID: 14600267 DOI: 10.1242/jcs.00802] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Trans-membrane proteins of the p24 family are abundant, oligomeric proteins predominantly found in cis-Golgi membranes. They are not easily studied in vivo and their functions are controversial. We found that p25 can be targeted to the plasma membrane after inactivation of its canonical KKXX motif (KK to SS, p25SS), and that p25SS causes the co-transport of other p24 proteins beyond the Golgi complex, indicating that wild-type p25 plays a crucial role in retaining p24 proteins in cis-Golgi membranes. We then made use of these observations to study the intrinsic properties of these proteins, when present in a different membrane context. At the cell surface, the p25SS mutant segregates away from both the transferrin receptor and markers of lipid rafts, which are enriched in cholesterol and glycosphingolipids. This suggests that p25SS localizes to, or contributes to form, specialized membrane domains, presumably corresponding to oligomers of p25SS and other p24 proteins. Once at the cell surface, p25SS is endocytosed, together with other p24 proteins, and eventually accumulates in late endosomes, where it remains confined to well-defined membrane regions visible by electron microscopy. We find that this p25SS accumulation causes a concomitant accumulation of cholesterol in late endosomes, and an inhibition of their motility – two processes that are functionally linked. Yet, the p25SS-rich regions themselves seem to exclude not only Lamp1 but also accumulated cholesterol. One may envision that p25SS accumulation, by excluding cholesterol from oligomers, eventually overloads neighboring late endosomal membranes with cholesterol beyond their capacity (see Discussion). In any case, our data show that p25 and presumably other p24 proteins are endowed with the intrinsic capacity to form highly specialized domains that control membrane composition and dynamics. We propose that p25 and other p24 proteins control the fidelity of membrane transport by maintaining cholesterol-poor membranes in the Golgi complex.
Collapse
Affiliation(s)
- Gregory Emery
- Department of Biochemistry, University of Geneva, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
15
|
Nufer O, Kappeler F, Guldbrandsen S, Hauri HP. ER export of ERGIC-53 is controlled by cooperation of targeting determinants in all three of its domains. J Cell Sci 2003; 116:4429-40. [PMID: 13130098 DOI: 10.1242/jcs.00759] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Selective export of proteins from the endoplasmic reticulum (ER) requires transport signals that have not been fully characterized. Here, we provide the first complete map of ER export determinants of a type I membrane protein, ERGIC-53, that cycles in the early secretory pathway. ER export requires a phenylalanine motif at the C-terminus, known to mediate coat protein II (COPII) interaction, that is assisted by a glutamine in the cytoplasmic domain. Disulfide bond-stabilized oligomerization is also required. Efficient hexamerization depends on the presence of a polar and two aromatic residues in the transmembrane domain (TMD). Oligomerization becomes independent on disulfide bonds when TMD hydrophobicity is increased. ER export is also influenced by TMD length, 21 amino acids being most efficient. When transferred to a signal-less construct, the established targeting motifs reconstitute full transport activity. The results suggest an ER-export mechanism in which transmembrane and luminal determinants mediate oligomerization required for efficient recruitment of ERGIC-53 into budding vesicles via the C-terminal COPII-binding phenylalanine motif.
Collapse
Affiliation(s)
- Oliver Nufer
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland.
| | | | | | | |
Collapse
|
16
|
Sandmann T, Herrmann JM, Dengjel J, Schwarz H, Spang A. Suppression of coatomer mutants by a new protein family with COPI and COPII binding motifs in Saccharomyces cerevisiae. Mol Biol Cell 2003; 14:3097-113. [PMID: 12925749 PMCID: PMC181553 DOI: 10.1091/mbc.e02-11-0736] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Protein trafficking is achieved by a bidirectional vesicle flow between the various compartments of the eukaryotic cell. COPII coated vesicles mediate anterograde protein transport from the endoplasmic reticulum to the Golgi apparatus, whereas retrograde Golgi-to-endoplasmic reticulum vesicles use the COPI coat. Inactivation of COPI vesicle formation in conditional sec21 (gamma-COP) mutants rapidly blocks transport of certain proteins along the early secretory pathway. We have identified the integral membrane protein Mst27p as a strong suppressor of sec21-3 and ret1-1 mutants. A C-terminal KKXX motif of Mst27p that allows direct binding to the COPI complex is crucial for its suppression ability. Mst27p and its homolog Yar033w (Mst28p) are part of the same complex. Both proteins contain cytoplasmic exposed C termini that have the ability to interact directly with COPI and COPII coat complexes. Site-specific mutations of the COPI binding domain abolished suppression of the sec21 mutants. Our results indicate that overexpression of MST27 provides an increased number of coat binding sites on membranes of the early secretory pathway and thereby promotes vesicle formation. As a consequence, the amount of cargo that can bind COPI might be important for the regulation of the vesicle flow in the early secretory pathway.
Collapse
Affiliation(s)
- Thomas Sandmann
- Friedrich Miescher Laboratorium der Max Planck Gesellschaft, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
17
|
Chen A, Hu T, Mikoryak C, Draper RK. Retrograde transport of protein toxins under conditions of COPI dysfunction. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1589:124-39. [PMID: 12007788 DOI: 10.1016/s0167-4889(02)00163-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Retrograde transport dependent on coat protein I (COPI) was impaired using two different approaches and the effects on the retrograde transport of protein toxins were investigated. One approach was to study ldlF cells that express a temperature-sensitive defect in the epsilon-COP subunit of COPI. The second approach was to treat cells with 1,3-cyclohexanebis(methylamine) (CBM), a drug that interferes with the binding of COPI to Golgi membranes. With both approaches, cells remained sensitive to a variety of protein toxins regardless of whether the toxins contained a KDEL motif. Moreover, cholera toxin, which contains a KDEL sequence, was observed by immunofluorescence microscopy to enter the endoplasmic reticulum of Vero cells in the presence of CBM. These data support published evidence indicating the presence in cells of a COPI- and KDEL receptor-independent pathway of retrograde transport from the Golgi complex to the endoplasmic reticulum. In addition, the results suggest that certain toxins containing a KDEL motif may use either the COPI-dependent or COPI-independent pathway of retrograde transport.
Collapse
Affiliation(s)
- Alice Chen
- Molecular and Cell Biology Department, FO31, University of Texas at Dallas, Box 830688, Richardson, TX 75083-0688, USA
| | | | | | | |
Collapse
|
18
|
Roth J. Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. Chem Rev 2002; 102:285-303. [PMID: 11841244 DOI: 10.1021/cr000423j] [Citation(s) in RCA: 334] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jürgen Roth
- Division of Cell and Molecular Pathology, Department of Pathology, University of Zurich, CH-8091 Zurich, Switzerland.
| |
Collapse
|
19
|
Dahm T, White J, Grill S, Füllekrug J, Stelzer EH. Quantitative ER <--> Golgi transport kinetics and protein separation upon Golgi exit revealed by vesicular integral membrane protein 36 dynamics in live cells. Mol Biol Cell 2001; 12:1481-98. [PMID: 11359937 PMCID: PMC34599 DOI: 10.1091/mbc.12.5.1481] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To quantitatively investigate the trafficking of the transmembrane lectin VIP36 and its relation to cargo-containing transport carriers (TCs), we analyzed a C-terminal fluorescent-protein (FP) fusion, VIP36-SP-FP. When expressed at moderate levels, VIP36-SP-FP localized to the endoplasmic reticulum, Golgi apparatus, and intermediate transport structures, and colocalized with epitope-tagged VIP36. Temperature shift and pharmacological experiments indicated VIP36-SP-FP recycled in the early secretory pathway, exhibiting trafficking representative of a class of transmembrane cargo receptors, including the closely related lectin ERGIC53. VIP36-SP-FP trafficking structures comprised tubules and globular elements, which translocated in a saltatory manner. Simultaneous visualization of anterograde secretory cargo and VIP36-SP-FP indicated that the globular structures were pre-Golgi carriers, and that VIP36-SP-FP segregated from cargo within the Golgi and was not included in post-Golgi TCs. Organelle-specific bleach experiments directly measured the exchange of VIP36-SP-FP between the Golgi and endoplasmic reticulum (ER). Fitting a two-compartment model to the recovery data predicted first order rate constants of 1.22 +/- 0.44%/min for ER --> Golgi, and 7.68 +/- 1.94%/min for Golgi --> ER transport, revealing a half-time of 113 +/- 70 min for leaving the ER and 1.67 +/- 0.45 min for leaving the Golgi, and accounting for the measured steady-state distribution of VIP36-SP-FP (13% Golgi/87% ER). Perturbing transport with AlF(4)(-) treatment altered VIP36-SP-GFP distribution and changed the rate constants. The parameters of the model suggest that relatively small differences in the first order rate constants, perhaps manifested in subtle differences in the tendency to enter distinct TCs, result in large differences in the steady-state localization of secretory components.
Collapse
Affiliation(s)
- T Dahm
- Light Microscopy Group, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
20
|
Majoul I, Straub M, Hell SW, Duden R, Söling HD. KDEL-cargo regulates interactions between proteins involved in COPI vesicle traffic: measurements in living cells using FRET. Dev Cell 2001; 1:139-53. [PMID: 11703931 DOI: 10.1016/s1534-5807(01)00004-1] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
How the occupied KDEL receptor ERD2 is sorted into COPI vesicles for Golgi-to-ER transport is largely unknown. Here, interactions between proteins of the COPI transport machinery occurring during a "wave" of transport of a KDEL ligand were studied in living cells. FRET between CFP and YFP fusion proteins was measured by multifocal multiphoton microscopy and bulk-cell spectrofluorimetry. Ligand binding induces oligomerization of ERD2 and recruitment of ARFGAP to the Golgi, where the (ERD2)n/ARFGAP complex interacts with membrane-bound ARF1. During KDEL ligand transport, interactions of ERD2 with beta-COP and p23 decrease and the proteins segregate. Both p24a and p23 interact with ARF1, but only p24 interacts with ARFGAP. These findings suggest a model for how cargo-induced oligomerization of ERD2 regulates its sorting into COPI-coated buds.
Collapse
Affiliation(s)
- I Majoul
- Department of Neurobiology, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | |
Collapse
|
21
|
Bermak JC, Li M, Bullock C, Zhou QY. Regulation of transport of the dopamine D1 receptor by a new membrane-associated ER protein. Nat Cell Biol 2001; 3:492-8. [PMID: 11331877 DOI: 10.1038/35074561] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Many structural determinants for G protein-coupled receptor (GPCR) functions have been defined, but little is known concerning the regulation of their transport from the endoplasmic reticulum (ER) to the cell surface. Here we show that a carboxy-terminal hydrophobic motif, FxxxFxxxF, which is highly conserved among GPCRs, functions independently as an ER-export signal for the dopamine D1 receptor. A newly identified ER-membrane-associated protein, DRiP78, binds to this motif. Overexpression or sequestration of DRiP78 leads to retention of D1 receptors in the ER, reduced ligand binding, and a slowdown in the kinetics of receptor glycosylation. Our results indicate that DRiP78 may regulate the transport of a GPCR by binding to a specific ER-export signal.
Collapse
Affiliation(s)
- J C Bermak
- Department of Pharmacology, University of California, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
22
|
Hoppe HC, Joiner KA. Cytoplasmic tail motifs mediate endoplasmic reticulum localization and export of transmembrane reporters in the protozoan parasite Toxoplasma gondii. Cell Microbiol 2000; 2:569-78. [PMID: 11207609 DOI: 10.1046/j.1462-5822.2000.00081.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mammalian cells and yeasts, amino acid motifs in the cytoplasmic tails of transmembrane proteins play a prominent role in protein targeting in the early secretory pathway by mediating localization to or rapid export from the endoplasmic reticulum (ER). However, early sorting events are poorly characterized in protozoan parasites. Here, we show that a C-terminal QKTT sequence mediates the ER localization of chimeric reporter constructs consisting of bacterial alkaline phosphatase (BAP) fused to the transmembrane domain (TMD) and truncated cytoplasmic tail of the human low-density lipoprotein receptor (LDL) receptor or of murine lysosome-associated membrane protein (lamp-1) in Toxoplasma gondii. The cytoplasmic tail of human TGN46 also determines ER localization of BAP chimeras in the parasite, but this can be overcome by the addition at the C-terminus of the tail of an acidic patch, which functions as an ER export signal in conjunction with an upstream tyrosine motif. These results suggest that COPI-dependent ER retrieval and COPII-dependent export mechanisms mediated by KKXX and DXE motifs of mammalian cells are generally conserved in T. gondii. In contrast, the failure of the QKTT motif and TGN46 cytoplasmic tail to induce steady-state ER localization of vesicular stomatitis virus glycoprotein (VSVG) chimeras in HeLa and NRK cells indicates that significant differences in early secretory trafficking also exist.
Collapse
Affiliation(s)
- H C Hoppe
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8022, USA
| | | |
Collapse
|
23
|
Hörer J, Blum R, Feick P, Nastainczyk W, Schulz I. A comparative study of rat and human Tmp21 (p23) reveals the pseudogene-like features of human Tmp21-II. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2000; 10:121-6. [PMID: 10376215 DOI: 10.3109/10425179909008429] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tmp21 (p23) is involved in biosynthetic transport from the endoplasmic reticulum to the Golgi complex. We have recently characterized two cDNA-variants of human Tmp21, the Tmp21-isoforms-I and -II. Because of the lack of cDNA sequence data and protein expression data, it was not clear if Tmp21-II encodes a functional Tmp21-protein. Here we describe the cloning of the full length human Tmp21-II transcript. The putative open reading frame of Tmp21-II contains a reading frame jump and a nonsense mutation in comparison to all other Tmp21-I (p23) members. Our data indicate that hum-Tmp21-II is transcribed, but not translated. We conclude that Tmp21-II cDNA derives from a neutral pseudogene, which originates from a duplication event of the human Tmp21-isoform-I.
Collapse
Affiliation(s)
- J Hörer
- Institute of Physiology II, University of the Saarland, Saar, Germany
| | | | | | | | | |
Collapse
|
24
|
BAKER LINDAA, GOMEZ RARIEL. Tmp21-I, A VESICULAR TRAFFICKING PROTEIN, IS DIFFERENTIALLY EXPRESSED DURING INDUCTION OF THE URETER AND METANEPHROS. J Urol 2000. [DOI: 10.1016/s0022-5347(05)67423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- LINDA A. BAKER
- From the Division of Pediatric Urology, James Buchanan Brady Urological Institute, Baltimore, Maryland, and the Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - R. ARIEL GOMEZ
- From the Division of Pediatric Urology, James Buchanan Brady Urological Institute, Baltimore, Maryland, and the Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
25
|
Tmp21-I, A VESICULAR TRAFFICKING PROTEIN, IS DIFFERENTIALLY EXPRESSED DURING INDUCTION OF THE URETER AND METANEPHROS. J Urol 2000. [DOI: 10.1097/00005392-200008000-00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Abstract
Recent studies show that small trans-membrane proteins of approximately 22–24 kDa (the p24 family), which are grouped into 4 sub-families by sequence homology (p23, p24, p25 and p26), are involved in the early secretory pathway. In this study, we have investigated the mutual requirements of ectopically expressed members of the p24 family for targeting to their proper cellular destination. We find that coexpression of p23 and p24 is both necessary and sufficient for each protein to be transported to the cis-Golgi network/Golgi complex. Proteins from other subfamilies did not substitute for either p23 or p24, even after multiple coexpression. However, trafficking of the p23/p24 couple was facilitated by coexpression of proteins from other sub-families. In addition, we find that the sequence resembling an endoplasmic reticulum retrieval signal present in the cytoplasmic domain of p23 (but not p24) is dispensable. In contrast, the conserved coiled-coil region in the lumenal domain is absolutely required in both p23 and p24 for proper targeting of the p23/p24 couple. These data demonstrate that p23 and p24 must interact with each other to reach their destination, but that this strict requirement is combined with a mutual dependence amongst p24 proteins. We speculate that p24 proteins can form different oligomeric complexes, which contribute to confer specialized sorting/trafficking properties to membranes of the early secretory pathway, perhaps serving as membrane organizers.
Collapse
Affiliation(s)
- G Emery
- Department of Biochemistry, University of Geneva, 1211 Geneva 4, Switzerland.
| | | | | |
Collapse
|
27
|
Ward BM, Moss B. Golgi network targeting and plasma membrane internalization signals in vaccinia virus B5R envelope protein. J Virol 2000; 74:3771-80. [PMID: 10729152 PMCID: PMC111886 DOI: 10.1128/jvi.74.8.3771-3780.2000] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vaccinia virus B5R type I integral membrane protein accumulates in the Golgi network, from where it becomes incorporated into the envelope of extracellular virions. Our objective was to determine the domains of B5R responsible for Golgi membrane targeting in the absence of other viral components. Fusion of an enhanced green fluorescent protein to the C terminus of B5R allowed imaging of the chimeric protein without altering intracellular trafficking and Golgi network localization in transfected cells. Deletion or swapping of B5R domains with corresponding regions of the vesicular stomatitis virus G protein, which is targeted to the plasma membrane, indicated that (i) the N-terminal extracellular domain of B5R had no specific role in Golgi apparatus localization, (ii) the transmembrane domain of B5R was sufficient for exiting the endoplasmic reticulum, and (iii) removal of the cytoplasmic tail impaired Golgi network localization and increased the accumulation of B5R in the plasma membrane. Further experiments demonstrated that the cytoplasmic tail mediated internalization of B5R from the plasma membrane, suggesting a retrieval mechanism. Mutagenesis revealed residues required for Golgi membrane localization and efficient plasma membrane retrieval of the B5R protein: a tyrosine at residue 310 and two adjacent leucines at residues 315 and 316.
Collapse
Affiliation(s)
- B M Ward
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0445, USA
| | | |
Collapse
|
28
|
Gruhler A, Peterson PA, Früh K. Human cytomegalovirus immediate early glycoprotein US3 retains MHC class I molecules by transient association. Traffic 2000; 1:318-25. [PMID: 11208117 DOI: 10.1034/j.1600-0854.2000.010405.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Human cytomegalovirus (HCMV) interferes with major histocompatibility complex (MHC) class I antigen presentation by a sequential multistep process to escape T cell surveillance. During the immediate early phase of infection, the glycoprotein US3 prevents intracellular transport of MHC class I molecules. Interestingly, US3 displays a significantly shorter half-life than US3-retained MHC class I molecules. Here we show that US3 associates only transiently with MHC class I molecules, exits the ER, and is inefficiently retrieved from the Golgi. US3 was degraded in a post-Golgi compartment, most likely lysosomes, because: i) Brefeldin A treatment prolonged the half-life of US3; and ii) US3 co-localized with the lysosomal marker protein LAMP in chloroquine-treated cells. In contrast, MHC class I molecules remained stable in the ER. Upon inhibition of protein synthesis MHC class I molecules were released suggesting that a continuous supply of newly synthesized US3 molecules is required for inhibition of transport. Thus, US3 does not seem to retain MHC class I molecules by a retrieval mechanism. Instead, our observations are consistent with US3 preventing MHC class I trafficking by blocking forward transport.
Collapse
Affiliation(s)
- A Gruhler
- R.W. Johnson Pharmaceutical Research Institute, 3210 Merryfield Row, San Diego, CA 92121, USA
| | | | | |
Collapse
|
29
|
Rojo M, Emery G, Marjomäki V, McDowall AW, Parton RG, Gruenberg J. The transmembrane protein p23 contributes to the organization of the Golgi apparatus. J Cell Sci 2000; 113 ( Pt 6):1043-57. [PMID: 10683152 DOI: 10.1242/jcs.113.6.1043] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In previous studies we have shown that p23, a member of the p24-family of small transmembrane proteins, is highly abundant in membranes of the cis-Golgi network (CGN), and is involved in sorting/trafficking in the early secretory pathway. In the present study, we have further investigated the role of p23 after ectopic expression. We found that ectopically expressed p23 folded and oligomerized properly, even after overexpression. However, in contrast to endogenous p23, exogenous p23 molecules did not localize to the CGN, but induced a significant expansion of characteristic smooth ER membranes, where they accumulated in high amounts. This ER-derived, p23-rich subdomain displayed a highly regular morphology, consisting of tubules and/or cisternae of constant diameter, which were reminiscent of the CGN membranes containing p23 in control cells. The expression of exogenous p23 also led to the specific relocalization of endogenous p23, but not of other proteins, to these specialized ER-derived membranes. Relocalization of p23 modified the ultrastructure of the CGN and Golgi membranes, but did not affect anterograde and retrograde transport reactions to any significant extent. We conclude (i) that p23 has a morphogenic activity that contributes to the morphology of CGN-membranes; and (ii) that the presence of p23 in the CGN is necessary for the proper organization of the Golgi apparatus.
Collapse
Affiliation(s)
- M Rojo
- Department of Biochemistry, University of Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
30
|
Pepperkok R, Whitney JA, Gomez M, Kreis TE. COPI vesicles accumulating in the presence of a GTP restricted arf1 mutant are depleted of anterograde and retrograde cargo. J Cell Sci 2000; 113 ( Pt 1):135-44. [PMID: 10591632 DOI: 10.1242/jcs.113.1.135] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microinjection of the slowly hydrolyzable GTP analogue GTP(gamma)S or the ectopic expression of a GTP restricted mutant of the small GTPase arf1 (arf1[Q71L]) leads to the rapid accumulation of COPI coated vesicles and buds in living cells. This effect is blocked at 15 degrees C and by microinjection of antibodies against (beta)-COP. Anterograde and retrograde membrane protein transport markers, which have been previously shown to be incorporated into COPI vesicles between the endoplasmic reticulum and Golgi complex, are depleted from the GTP(gamma)S or arf1[Q71L] induced COPI coated vesicles and buds. In contrast, in control cells 30 to 60% of the COPI carriers co-localize with these markers. These in vivo data corroborate recent in vitro work, suggesting that GTP(gamma)S and arf1[Q71L] interfere with the sorting of membrane proteins into Golgi derived COPI vesicles, and provide the first in vivo evidence for a role of GTP hydrolysis by arf1 in the sorting of cargo into COPI coated vesicles and buds.
Collapse
Affiliation(s)
- R Pepperkok
- Cell Biophysics and Cell Biology Program, EMBL Heidelberg, Meyerhofstr.1, Germany.
| | | | | | | |
Collapse
|
31
|
Kuiper RP, Waterham HR, Rötter J, Bouw G, Martens GJ. Differential induction of two p24delta putative cargo receptors upon activation of a prohormone-producing cell. Mol Biol Cell 2000; 11:131-40. [PMID: 10637296 PMCID: PMC14762 DOI: 10.1091/mbc.11.1.131] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The p24 family consists of type I transmembrane proteins that are present abundantly in transport vesicles, may play a role in endoplasmic reticulum-to-Golgi cargo transport, and have been classified into subfamilies named p24alpha, -beta, -gamma, and -delta. We previously identified a member of the p24delta subfamily that is coordinately expressed with the prohormone proopiomelanocortin (POMC) in the melanotrope cells of the intermediate pituitary during black background adaptation of the amphibian Xenopus laevis ( approximately 30-fold increase in POMC mRNA). In this study, we report on the characterization of this p24delta member (Xp24delta(2)) and on the identification and characterization of a second member (Xp24delta(1)) that is also expressed in the melanotrope cells and that has 66% amino acid sequence identity to Xp24delta(2). The two p24delta members are ubiquitously expressed, but Xp24delta(2) is neuroendocrine enriched. During black background adaptation, the amount of the Xp24delta(2) protein in the intermediate pituitary was increased approximately 25 times, whereas Xp24delta(1) protein expression was increased only 2.5 times. Furthermore, the level of Xp24delta(2) mRNA was approximately 5-fold higher in the melanotrope cells of black-adapted animals than in those of white-adapted animals, whereas Xp24delta(1) mRNA expression was not induced. Therefore, the expression of Xp24delta(2) specifically correlates with the expression of POMC. Together, our findings suggest that p24delta proteins have a role in selective protein transport in the secretory pathway.
Collapse
Affiliation(s)
- R P Kuiper
- Department of Animal Physiology, University of Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
32
|
Kawabe Y, Enomoto T, Morio T, Urushihara H, Tanaka Y. LbrA, a protein predicted to have a role in vesicle trafficking, is necessary for normal morphogenesis in Polysphondylium pallidum. Gene 1999; 239:75-9. [PMID: 10571036 DOI: 10.1016/s0378-1119(99)00379-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The fruiting body of Polysphondylium pallidum is composed of whorls of branches along the axis of a central stalk. In the course of fruiting body formation, the interval between neighboring whorls, and the number and the spacing of branches in a whorl are highly regulated. In this study, using the REMI (restriction-enzyme-mediated integration) insertional mutagenesis method, we obtained a mutant (strain M2323) with longer branches than those of the wild-type strain PN500. The sequence analyses revealed the presence of an ORF of 206 aa residues (23 kDa) near the vector insertion site. Disruption of the gene, lbrA (long branch A), by homologous recombination causes the same phenotype as that of M2323. A lbrA transcript is expressed maximally at the early aggregation stage in the parental strain, but is not detectable in the REMI mutant. A homology search showed that LbrA is a member of the p24 family proteins, which have been proposed to function as receptors for cargo proteins that are transported by COP I- (coat protein I) and/or COP II-coated vesicles between the endoplasmic reticulum and the Golgi complex. As far as we know, this is the first paper to show that a p24 family member is implicated in morphogenesis.
Collapse
Affiliation(s)
- Y Kawabe
- Institute of Biological Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
33
|
Aridor M, Balch WE. Integration of endoplasmic reticulum signaling in health and disease. Nat Med 1999; 5:745-51. [PMID: 10395318 DOI: 10.1038/10466] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- M Aridor
- Department of Cell and Molecular biology, La Jolla, California 92037, USA
| | | |
Collapse
|
34
|
Wen C, Greenwald I. p24 proteins and quality control of LIN-12 and GLP-1 trafficking in Caenorhabditis elegans. J Biophys Biochem Cytol 1999; 145:1165-75. [PMID: 10366590 PMCID: PMC2133156 DOI: 10.1083/jcb.145.6.1165] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mutations in the Caenorhabditis elegans sel-9 gene elevate the activity of lin-12 and glp-1, which encode members of the LIN-12/NOTCH family of receptors. Sequence analysis indicates SEL-9 is one of several C. elegans p24 proteins. Allele-specific genetic interactions suggest that reducing sel-9 activity increases the activity of mutations altering the extracellular domains of LIN-12 or GLP-1. Reducing sel-9 activity restores the trafficking to the plasma membrane of a mutant GLP-1 protein that would otherwise accumulate within the cell. Our results suggest a role for SEL-9 and other p24 proteins in the negative regulation of transport of LIN-12 and GLP-1 to the cell surface, and favor a role for p24 proteins in a quality control mechanism for endoplasmic reticulum-Golgi transport.
Collapse
Affiliation(s)
- C Wen
- Department of Biochemistry and Molecular Biophysics, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
35
|
Marzioch M, Henthorn DC, Herrmann JM, Wilson R, Thomas DY, Bergeron JJ, Solari RC, Rowley A. Erp1p and Erp2p, partners for Emp24p and Erv25p in a yeast p24 complex. Mol Biol Cell 1999; 10:1923-38. [PMID: 10359606 PMCID: PMC25390 DOI: 10.1091/mbc.10.6.1923] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Six new members of the yeast p24 family have been identified and characterized. These six genes, named ERP1-ERP6 (for Emp24p- and Erv25p-related proteins) are not essential, but deletion of ERP1 or ERP2 causes defects in the transport of Gas1p, in the retention of BiP, and deletion of ERP1 results in the suppression of a temperature-sensitive mutation in SEC13 encoding a COPII vesicle coat protein. These phenotypes are similar to those caused by deletion of EMP24 or ERV25, two previously identified genes that encode related p24 proteins. Genetic and biochemical studies demonstrate that Erp1p and Erp2p function in a heteromeric complex with Emp24p and Erv25p.
Collapse
Affiliation(s)
- M Marzioch
- Cell Biology Unit, Glaxo-Wellcome Research and Development, Stevenage, Hertfordshire, SG1 2NY, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hu T, Kao CY, Hudson RT, Chen A, Draper RK. Inhibition of secretion by 1,3-Cyclohexanebis(methylamine), a dibasic compound that interferes with coatomer function. Mol Biol Cell 1999; 10:921-33. [PMID: 10198047 PMCID: PMC25215 DOI: 10.1091/mbc.10.4.921] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We noted previously that certain aminoglycoside antibiotics inhibit the binding of coatomer to Golgi membranes in vitro. The inhibition is mediated in part by two primary amino groups present at the 1 and 3 positions of the 2-deoxystreptamine moiety of the antibiotics. These two amines appear to mimic the epsilon-amino groups present in the two lysine residues of the KKXX motif that is known to bind coatomer. Here we report the effects of 1, 3-cyclohexanebis(methylamine) (CBM) on secretion in vivo, a compound chosen for study because it contains primary amino groups that resemble those in 2-deoxystreptamine and it should penetrate lipid bilayers more readily than antibiotics. CBM inhibited coatomer binding to Golgi membranes in vitro and in vivo and inhibited secretion by intact cells. Despite depressed binding of coatomer in vivo, the Golgi complex retained its characteristic perinuclear location in the presence of CBM and did not fuse with the endoplasmic reticulum (ER). Transport from the ER to the Golgi was also not blocked by CBM. These data suggest that a full complement of coat protein I (COPI) on membranes is not critical for maintenance of Golgi integrity or for traffic from the ER to the Golgi but is necessary for transport through the Golgi to the plasma membrane.
Collapse
Affiliation(s)
- T Hu
- The Molecular and Cell Biology Department, The University of Texas at Dallas, Richardson, Texas 75083-0688, USA
| | | | | | | | | |
Collapse
|
37
|
Pagano A, Letourneur F, Garcia-Estefania D, Carpentier JL, Orci L, Paccaud JP. Sec24 proteins and sorting at the endoplasmic reticulum. J Biol Chem 1999; 274:7833-40. [PMID: 10075675 DOI: 10.1074/jbc.274.12.7833] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
COPII proteins are necessary to generate secretory vesicles at the endoplasmic reticulum. In yeast, the Sec24p protein is the only COPII component in which two close orthologues have been identified. By using gene knock-out in yeast, we found that the absence of one of these Sec24 orthologues resulted in a selective secretion defect for a subset of proteins released into the medium. Data base searches revealed the existence of an entire family of Sec24-related proteins in humans, worms, flies, and plants. We identified and cloned two new human cDNAs encoding proteins homologous to yeast Sec24p, in addition to two human cDNAs already present within the data bases. The entire Sec24 family identified to date is characterized by clusters of highly conserved residues within the 2/3 carboxyl-terminal domain of all the proteins and a divergent amino terminus domain. Human (h) Sec24 orthologues co-immunoprecipitate with hSec23Ap and migrate as a complex by size exclusion chromatography. Immunofluorescence microscopy confirmed that these proteins co-localize with hSec23p and hSec13p. Together, our data suggest that in addition to its role in the shaping up of the vesicle, the Sec23-24p complex may be implicated in cargo selection and concentration.
Collapse
Affiliation(s)
- A Pagano
- Department of Morphology, University Medical Center, Geneva University, Geneva CH-1211, Switzerland
| | | | | | | | | | | |
Collapse
|
38
|
Nakamura N, Yamazaki S, Sato K, Nakano A, Sakaguchi M, Mihara K. Identification of potential regulatory elements for the transport of Emp24p. Mol Biol Cell 1998; 9:3493-503. [PMID: 9843583 PMCID: PMC25661 DOI: 10.1091/mbc.9.12.3493] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To examine the possibility of active recycling of Emp24p between the endoplasmic reticulum (ER) and the Golgi, we sought to identify transport signal(s) in the carboxyl-terminal region of Emp24p. Reporter molecules were constructed by replacing parts of a control invertase-Wbp1p chimera with those of Emp24p, and their transport rates were assessed. The transport of the reporter was found to be accelerated by the presence of the cytoplasmic domain of Emp24p. Mutational analyses revealed that the two carboxyl-terminal residues, leucine and valine (LV), were necessary and sufficient to accelerate the transport. The acceleration was sequence specific, and the terminal valine appeared to be more important. The LV residues accelerated not only the overall transport to the vacuole but also the ER to cis-Golgi transport, suggesting its function in the ER export. Hence the LV residues are a novel anterograde transport signal. The double-phenylalanine residues did not affect the transport by itself but attenuated the effect of the anterograde transport signal. On the other hand, the transmembrane domain significantly slowed down the ER to cis-Golgi transport and effectively counteracted the anterograde transport signal at this step. It may also take part in the retrieval of the protein, because the overall transport to the vacuole was more evidently slowed down. Consistently, the mutation of a conserved glutamine residue in the transmembrane domain further slowed down the transport in a step after arriving at the cis-Golgi. Taken together, the existence of the anterograde transport signal and the elements that regulate its function support the active recycling of Emp24p.
Collapse
Affiliation(s)
- N Nakamura
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Matsuoka K, Morimitsu Y, Uchida K, Schekman R. Coat assembly directs v-SNARE concentration into synthetic COPII vesicles. Mol Cell 1998; 2:703-8. [PMID: 9844642 DOI: 10.1016/s1097-2765(00)80168-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
COPII proteins are required to create transport vesicles and to select cargo molecules for transit from the ER. A reconstituted liposome budding reaction was used to detect the capture and concentration of membrane-associated v-SNARE molecules into synthetic COPII vesicles. A novel glutathione-phosphatidyl-ethanolamine conjugate (Glut-PE) was synthesized and incorporated into chemically defined liposomes to provide binding sites for GST hybrid proteins. Large liposomes containing bound cytoplasmic domains of the v-SNAREs, Sec22p or Bos1p, or of the ER resident proteins, Sec12p and Ufe1p, were exposed to COPII proteins and GMP-PNP. v-SNAREs but not resident proteins were concentrated in synthetic COPII vesicles generated from donor liposomes. We conclude that COPII proteins are necessary and sufficient for cargo selection and vesicle morphogenesis.
Collapse
Affiliation(s)
- K Matsuoka
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley 94720, USA
| | | | | | | |
Collapse
|
40
|
Senkevich TG, Moss B. Domain structure, intracellular trafficking, and beta2-microglobulin binding of a major histocompatibility complex class I homolog encoded by molluscum contagiosum virus. Virology 1998; 250:397-407. [PMID: 9792850 DOI: 10.1006/viro.1998.9390] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The MC80R gene of molluscum contagiosum virus (MCV) type 1 encodes a major histocompatibility complex (MHC) class I homolog that lacks several amino-acid residues critical for peptide binding by MHC molecules, contains an unusually long N-terminal hydrophobic domain possibly derived by triplication of a signal peptide, and has a C-terminal transmembrane domain with two glutamate residues. All of these features were present in the orthologous gene of MCV type 2. The MC80R gene was expressed as two glycosylated polypeptides of Mr 47,000 and 42,000. Pulse-chase experiments indicated that the larger polypeptide was a precursor of the shorter one and that the entire N-terminal domain was slowly removed, consistent with its function as a long signal peptide. The protein was largely sequestered in the endoplasmic reticulum and Golgi membranes, remained endoglycosidase-H sensitive, and was not detected on the cell surface. In addition, a genetically modified form of the MC80R protein lacking the transmembrane and cytoplasmic domains was not secreted. The roles of the MC80R protein domains were investigated by constructing chimera between the viral protein and the MHC class I protein HLA-A2. Expression studies confirmed that the N- and C-terminal hydrophobic regions of the MC80R protein served as signal and transmembrane domains, respectively. The central portion of the MC80R protein, corresponding to the alpha1-alpha3 extracellular domains of HLA-A2, was largely responsible for sequestering the protein in the endoplasmic reticulum or Golgi compartments. The MC80R protein, as well as HLA-A2 chimera with the central region of MC80R, formed stable intracellular complexes with beta2-microglobulin. Complex formation, however, was detected only by overexpression of the MC80R protein or beta2-microglobulin.
Collapse
Affiliation(s)
- T G Senkevich
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892-0445, USA
| | | |
Collapse
|
41
|
Abstract
As the first step of protein transport along the biosynthetic (secretory/exocytotic) pathway, transport from the endoplasmic reticulum (ER) to the Golgi apparatus has received much attention over the past several decades. The general structural organization underlying this transport process is becoming more defined. The major protein components participating in the budding, pre-docking, and docking/fusion events have been identified and their mechanistic aspects investigated. Conceptually, it is now clear that protein export from the ER is a selective process. Although much remains to be defined or refined, the general picture of this transport step has now emerged.
Collapse
Affiliation(s)
- W Hong
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Singapore 117609, Singapore.
| |
Collapse
|
42
|
Abstract
The past year has seen considerable progress in understanding the mechanism of COPI (coatomer protein I) vesicle docking and SNARE (soluble NSF attachment protein receptor) mediated fusion, the mechanism of cisternal growth and stacking and the regulation of Golgi architecture. The route taken by cargo proteins through the Golgi apparatus is still a matter of some dispute.
Collapse
Affiliation(s)
- G Warren
- Imperial Cancer Research Fund, London, UK.
| | | |
Collapse
|
43
|
Aridor M, Weissman J, Bannykh S, Nuoffer C, Balch WE. Cargo selection by the COPII budding machinery during export from the ER. J Cell Biol 1998; 141:61-70. [PMID: 9531548 PMCID: PMC2132735 DOI: 10.1083/jcb.141.1.61] [Citation(s) in RCA: 240] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/1997] [Revised: 12/21/1997] [Indexed: 02/07/2023] Open
Abstract
Cargo is selectively exported from the ER in COPII vesicles. To analyze the role of COPII in selective transport from the ER, we have purified components of the mammalian COPII complex from rat liver cytosol and then analyzed their role in cargo selection and ER export. The purified mammalian Sec23-24 complex is composed of an 85-kD (Sec23) protein and a 120-kD (Sec24) protein. Although the Sec23-24 complex or the monomeric Sec23 subunit were found to be the minimal cytosolic components recruited to membranes after the activation of Sar1, the addition of the mammalian Sec13-31 complex is required to complete budding. To define possible protein interactions between cargo and coat components, we recruited either glutathione-S-transferase (GST)-tagged Sar1 or GST- Sec23 to ER microsomes. Subsequently, we solubilized and reisolated the tagged subunits using glutathione-Sepharose beads to probe for interactions with cargo. We find that activated Sar1 in combination with either Sec23 or the Sec23-24 complex is necessary and sufficient to recover with high efficiency the type 1 transmembrane cargo protein vesicular stomatitis virus glycoprotein in a detergent-soluble prebudding protein complex that excludes ER resident proteins. Supplementing these minimal cargo recruitment conditions with the mammalian Sec13-31 complex leads to export of the selected cargo into COPII vesicles. The ability of cargo to interact with a partial COPII coat demonstrates that these proteins initiate cargo sorting on the ER membrane before budding and establishes the role of GTPase-dependent coat recruitment in cargo selection.
Collapse
Affiliation(s)
- M Aridor
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|