1
|
Fung D, Razi A, Pandos M, Velez B, Fermin Perez E, Adams L, Rawson S, Walsh RM, Hanna J. Evidence supporting a catalytic pentad mechanism for the proteasome and other N-terminal nucleophile enzymes. Nat Commun 2025; 16:2949. [PMID: 40140419 PMCID: PMC11947121 DOI: 10.1038/s41467-025-58077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Proteases are defined by their nucleophile but require additional residues to regulate their active sites, most often arranged as catalytic triads that control the generation and resolution of acyl-enzyme intermediates. Threonine N-terminal nucleophiles represent a diverse family of proteases and transferases that possess two active site nucleophiles, the side chain hydroxyl and the free amino-terminus, and require autocatalytic cleavage of their N-terminal propeptides. Here we provide evidence that the proteasome, which mediates intracellular protein degradation and contains three different threonine protease subunits, utilizes a unique catalytic pentad mechanism. In addition to the previously defined lysine/aspartate pair which regulates threonine's side chain, a second serine/aspartate pair appears to regulate threonine's amino-terminus. The pentad is required for substrate proteolysis and assembly-coupled autocatalytic cleavage, the latter triggered by alignment of the full pentad upon fusion of two half-proteasome precursors. A similar pentad mechanism was required by the ornithine acetyltransferase Arg7, suggesting that this may be a general property of threonine N-terminal nucleophiles. Finally, we show that two patient-derived proteasome mutations compromise function of the serine/aspartate unit in yeast, suggesting that defective pentad function may underlie some human proteasomopathies.
Collapse
Affiliation(s)
- Darlene Fung
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Aida Razi
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Michael Pandos
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Benjamin Velez
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Erignacio Fermin Perez
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Lea Adams
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Shaun Rawson
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Richard M Walsh
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - John Hanna
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Zeng G, Xu G, Gao L, Zheng X, Chi X, Shen Z, Cao Y, Xi J, Che J, Dong X, Shi Y, Ma J, Zhang C, Zeng L, Zhu H, Shao J, Zhou Y, Li J, Zhang J. Development of novel epoxyketone macrocyclic peptidyl proteasome inhibitors through OPA-mediated one-step cyclization of unprotected peptides. Bioorg Chem 2025; 156:108180. [PMID: 39855110 DOI: 10.1016/j.bioorg.2025.108180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Cyclization is a pivotal strategy for enhancing the drug-like characteristics of polypeptides. To develop potent and metabolically stable proteasome inhibitors, we generated a macrocyclic peptide skeleton using a straightforward and efficient cyclization strategy. Subsequent stability assessments confirmed the practicality of this approach. Leveraging this skeleton, we designed and synthesized a series of epoxyketone macrocyclic peptidyl proteasome inhibitors. Approximately half of these compounds showcased robust inhibitory potency, with IC50 values below 200 nM against chymotrypsin-like (ChT-L, β5) activity. Notably, compounds 6f, 6g, and 6m demonstrated pronounced anti-proliferative activities at low nanomolar concentrations against three hematoma cell lines (RPMI-8226, RS4;11, and MV-4-11) as well as the NCI-H1299 cell line. These findings highlight the potential of these cyclic peptides to bolster the stability of proteasome inhibitors, thereby providing valuable insights for the advancement of innovative proteasome inhibitor therapies.
Collapse
Affiliation(s)
- Gongruixue Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province School of Medicine Hangzhou City University China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang Province, China
| | - Gaoya Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lixin Gao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoli Zheng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province School of Medicine Hangzhou City University China
| | - Xinglong Chi
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zheyuan Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang Province, China
| | - Yu Cao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou 310023 Zhejiang Province, China
| | - Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou 310023 Zhejiang Province, China
| | - Jinxin Che
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang Province, China
| | - Xiaowu Dong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang Province, China
| | - Yaoli Shi
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province School of Medicine Hangzhou City University China
| | - Jiayi Ma
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province School of Medicine Hangzhou City University China
| | - Chong Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province School of Medicine Hangzhou City University China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang Province, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province School of Medicine Hangzhou City University China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang Province, China
| | - Huajian Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province School of Medicine Hangzhou City University China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang Province, China
| | - Jiaan Shao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province School of Medicine Hangzhou City University China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang Province, China
| | - Yubo Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jia Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Jiankang Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province School of Medicine Hangzhou City University China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang Province, China.
| |
Collapse
|
3
|
Arkinson C, Dong KC, Gee CL, Martin A. Mechanisms and regulation of substrate degradation by the 26S proteasome. Nat Rev Mol Cell Biol 2025; 26:104-122. [PMID: 39362999 PMCID: PMC11772106 DOI: 10.1038/s41580-024-00778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/05/2024]
Abstract
The 26S proteasome is involved in degrading and regulating the majority of proteins in eukaryotic cells, which requires a sophisticated balance of specificity and promiscuity. In this Review, we discuss the principles that underly substrate recognition and ATP-dependent degradation by the proteasome. We focus on recent insights into the mechanisms of conventional ubiquitin-dependent and ubiquitin-independent protein turnover, and discuss the plethora of modulators for proteasome function, including substrate-delivering cofactors, ubiquitin ligases and deubiquitinases that enable the targeting of a highly diverse substrate pool. Furthermore, we summarize recent progress in our understanding of substrate processing upstream of the 26S proteasome by the p97 protein unfoldase. The advances in our knowledge of proteasome structure, function and regulation also inform new strategies for specific inhibition or harnessing the degradation capabilities of the proteasome for the treatment of human diseases, for instance, by using proteolysis targeting chimera molecules or molecular glues.
Collapse
Affiliation(s)
- Connor Arkinson
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Ken C Dong
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Christine L Gee
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Andreas Martin
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
4
|
Meur S, Mukherjee S, Roy S, Karati D. Role of PIM Kinase Inhibitor in the Treatment of Alzheimer's Disease. Mol Neurobiol 2024; 61:10941-10955. [PMID: 38816674 DOI: 10.1007/s12035-024-04257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder, is the most prevalent form of senile dementia, causing progressive deterioration of cognition, behavior, and rational skills. Neuropathologically, AD is characterized by two hallmark proteinaceous aggregates: amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) formed of hyperphosphorylated tau. A significant study has been done to understand how Aβ and/or tau accumulation can alter signaling pathways that affect neuronal function. A conserved protein kinase known as the mammalian target of rapamycin (mTOR) is essential for maintaining the proper balance between protein synthesis and degradation. Overwhelming evidence shows mTOR signaling's primary role in age-dependent cognitive decline and the pathogenesis of AD. Postmortem human AD brains consistently show an upregulation of mTOR signaling. Confocal microscopy findings demonstrated a direct connection between mTOR and intraneuronal Aβ42 through molecular processes of PRAS40 phosphorylation. By attaching to the mTORC1 complex, PRAS40 inhibits the activity of mTOR. Furthermore, inhibiting PRAS40 phosphorylation can stop the Aβ-mediated increase in mTOR activity, indicating that the accumulation of Aβ may aid in PRAS40 phosphorylation. Physiologically, PRAS40 is phosphorylated by PIM1 which is a serine/threonine kinase of proto-oncogene PIM kinase family. Pharmacological inhibition of PIM1 activity prevents the Aβ-induced mTOR hyperactivity in vivo by blocking PRAS40 phosphorylation and restores cognitive impairments by enhancing proteasome function. Recently identified small-molecule PIM1 inhibitors have been developed as potential therapeutic to reduce AD-neuropathology. This comprehensive study aims to address the activity of PIM1 inhibitor that has been tested for the treatment of AD, in addition to the pharmacological and structural aspects of PIM1.
Collapse
Affiliation(s)
- Shreyasi Meur
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B.L Saha Road, Kolkata, 700053, West Bengal, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B.L Saha Road, Kolkata, 700053, West Bengal, India
| | - Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
5
|
Mark E, Ramos PC, Kayser F, Höckendorff J, Dohmen RJ, Wendler P. Structural roles of Ump1 and β-subunit propeptides in proteasome biogenesis. Life Sci Alliance 2024; 7:e202402865. [PMID: 39260885 PMCID: PMC11391049 DOI: 10.26508/lsa.202402865] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
The yeast pre1-1(β4-S142F) mutant accumulates late 20S proteasome core particle precursor complexes (late-PCs). We report a 2.1 Å cryo-EM structure of this intermediate with full-length Ump1 trapped inside, and Pba1-Pba2 attached to the α-ring surfaces. The structure discloses intimate interactions of Ump1 with β2- and β5-propeptides, which together fill most of the antechambers between the α- and β-rings. The β5-propeptide is unprocessed and separates Ump1 from β6 and β7. The β2-propeptide is disconnected from the subunit by autocatalytic processing and localizes between Ump1 and β3. A comparison of different proteasome maturation states reveals that maturation goes along with global conformational changes in the rings, initiated by structuring of the proteolytic sites and their autocatalytic activation. In the pre1-1 strain, β2 is activated first enabling processing of β1-, β6-, and β7-propeptides. Subsequent maturation of β5 and β1 precedes degradation of Ump1, tightening of the complex, and finally release of Pba1-Pba2.
Collapse
Affiliation(s)
- Eric Mark
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, Potsdam-Golm, Germany
| | - Paula C Ramos
- Institute for Genetics, Center of Molecular Biosciences, Department of Biology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Fleur Kayser
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, Potsdam-Golm, Germany
| | - Jörg Höckendorff
- Institute for Genetics, Center of Molecular Biosciences, Department of Biology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - R Jürgen Dohmen
- Institute for Genetics, Center of Molecular Biosciences, Department of Biology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Petra Wendler
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, Potsdam-Golm, Germany
| |
Collapse
|
6
|
Zhang H, Zhou C, Mohammad Z, Zhao J. Structural basis of human 20S proteasome biogenesis. Nat Commun 2024; 15:8184. [PMID: 39294158 PMCID: PMC11410832 DOI: 10.1038/s41467-024-52513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
New proteasomes are produced to accommodate increases in cellular catabolic demand and prevent the accumulation of cytotoxic proteins. Formation of the proteasomal 20S core complex relies on the function of the five chaperones PAC1-4 and POMP. Here, to understand how these chaperones facilitate proteasome assembly, we tagged the endogenous chaperones using CRISPR/Cas gene editing and examined the chaperone-bound complexes by cryo-EM. We observe an early α-ring intermediate subcomplex that is stabilized by PAC1-4, which transitions to β-ring assembly upon dissociation of PAC3/PAC4 and rearrangement of the PAC1 N-terminal tail. Completion of the β-ring and dimerization of half-proteasomes repositions critical lysine K33 to trigger cleavage of the β pro-peptides, leading to the concerted dissociation of POMP and PAC1/PAC2 to yield mature 20S proteasomes. This study reveals structural insights into critical points along the assembly pathway of the human proteasome and provides a molecular blueprint for 20S biogenesis.
Collapse
Affiliation(s)
- Hanxiao Zhang
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, USA
| | - Chenyu Zhou
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, USA
| | - Zarith Mohammad
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, USA
| | - Jianhua Zhao
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, USA.
| |
Collapse
|
7
|
Besse A, Sedlarikova L, Buechler L, Kraus M, Yang CH, Strakova N, Soucek K, Navratil J, Svoboda M, Welm AL, Joerger M, Driessen C, Besse L. HIV-protease inhibitors potentiate the activity of carfilzomib in triple-negative breast cancer. Br J Cancer 2024; 131:918-930. [PMID: 38969867 PMCID: PMC11368961 DOI: 10.1038/s41416-024-02774-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 06/08/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Resistance to chemotherapy is a major problem in the treatment of patients with triple-negative breast cancer (TNBC). Preclinical data suggest that TNBC is dependent on proteasomes; however, clinical observations indicate that the efficacy of proteasome inhibitors in TNBC may be limited, suggesting the need for combination therapies. METHODS We compared bortezomib and carfilzomib and their combinations with nelfinavir and lopinavir in TNBC cell lines and primary cells with regard to their cytotoxic activity, functional proteasome inhibition, and induction of the unfolded protein response (UPR). Furthermore, we evaluated the involvement of sXBP1, ABCB1, and ABCG2 in the cytotoxic activity of drug combinations. RESULTS Carfilzomib, via proteasome β5 + β2 inhibition, is more cytotoxic in TNBC than bortezomib, which inhibits β5 + β1 proteasome subunits. The cytotoxicity of carfilzomib was significantly potentiated by nelfinavir or lopinavir. Carfilzomib with lopinavir induced endoplasmic reticulum stress and pro-apoptotic UPR through the accumulation of excess proteasomal substrate protein in TNBC in vitro. Moreover, lopinavir increased the intracellular availability of carfilzomib by inhibiting carfilzomib export from cells that express high levels and activity of ABCB1, but not ABCG2. CONCLUSION Proteasome inhibition by carfilzomib combined with nelfinavir/lopinavir represents a potential treatment option for TNBC, warranting further investigation.
Collapse
Affiliation(s)
- Andrej Besse
- Laboratory of Experimental Oncology, Department of Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, 9000, Switzerland
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
| | - Lenka Sedlarikova
- Babak Myeloma Group, Department of Pathological Physiology, Masaryk University, Brno, 62500, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
| | - Lorina Buechler
- Laboratory of Experimental Oncology, Department of Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, 9000, Switzerland
| | - Marianne Kraus
- Laboratory of Experimental Oncology, Department of Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, 9000, Switzerland
| | - Chieh-Hsiang Yang
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Nicol Strakova
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, 612 00, Czech Republic
- Veterinary Research Institute, Brno, 62500, Czech Republic
| | - Karel Soucek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, 612 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jiri Navratil
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, 62500, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
| | - Marek Svoboda
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, 62500, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
| | - Alana L Welm
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Markus Joerger
- Department of Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, 9000, Switzerland
| | - Christoph Driessen
- Laboratory of Experimental Oncology, Department of Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, 9000, Switzerland
- Department of Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, 9000, Switzerland
| | - Lenka Besse
- Laboratory of Experimental Oncology, Department of Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, 9000, Switzerland.
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic.
| |
Collapse
|
8
|
Loy CA, Trader DJ. Primed for Interactions: Investigating the Primed Substrate Channel of the Proteasome for Improved Molecular Engagement. Molecules 2024; 29:3356. [PMID: 39064934 PMCID: PMC11279888 DOI: 10.3390/molecules29143356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Protein homeostasis is a tightly conserved process that is regulated through the ubiquitin proteasome system (UPS) in a ubiquitin-independent or ubiquitin-dependent manner. Over the past two decades, the proteasome has become an excellent therapeutic target through inhibition of the catalytic core particle, inhibition of subunits responsible for recognizing and binding ubiquitinated proteins, and more recently, through targeted protein degradation using proteolysis targeting chimeras (PROTACs). The majority of the developed inhibitors of the proteasome's core particle rely on gaining selectivity through binding interactions within the unprimed substrate channel. Although this has allowed for selective inhibitors and chemical probes to be generated for the different proteasome isoforms, much remains unknown about the interactions that could be harnessed within the primed substrate channel to increase potency or selectivity. Herein, we discuss small molecules that interact with the primed substrate pocket and how their differences may give rise to altered activity. Taking advantage of additional interactions with the primed substrate pocket of the proteasome could allow for the generation of improved chemical tools for perturbing or monitoring proteasome activity.
Collapse
Affiliation(s)
| | - Darci J. Trader
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92617, USA;
| |
Collapse
|
9
|
Zhou X, Xu R, Wu Y, Zhou L, Xiang T. The role of proteasomes in tumorigenesis. Genes Dis 2024; 11:101070. [PMID: 38523673 PMCID: PMC10958230 DOI: 10.1016/j.gendis.2023.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/10/2023] [Accepted: 06/27/2023] [Indexed: 03/26/2024] Open
Abstract
Protein homeostasis is the basis of normal life activities, and the proteasome family plays an extremely important function in this process. The proteasome 20S is a concentric circle structure with two α rings and two β rings overlapped. The proteasome 20S can perform both ATP-dependent and non-ATP-dependent ubiquitination proteasome degradation by binding to various subunits (such as 19S, 11S, and 200 PA), which is performed by its active subunit β1, β2, and β5. The proteasome can degrade misfolded, excess proteins to maintain homeostasis. At the same time, it can be utilized by tumors to degrade over-proliferate and unwanted proteins to support their growth. Proteasomes can affect the development of tumors from several aspects including tumor signaling pathways such as NF-κB and p53, cell cycle, immune regulation, and drug resistance. Proteasome-encoding genes have been found to be overexpressed in a variety of tumors, providing a potential novel target for cancer therapy. In addition, proteasome inhibitors such as bortezomib, carfilzomib, and ixazomib have been put into clinical application as the first-line treatment of multiple myeloma. More and more studies have shown that it also has different therapeutic effects in other tumors such as hepatocellular carcinoma, non-small cell lung cancer, glioblastoma, and neuroblastoma. However, proteasome inhibitors are not much effective due to their tolerance and singleness in other tumors. Therefore, further studies on their mechanisms of action and drug interactions are needed to investigate their therapeutic potential.
Collapse
Affiliation(s)
- Xiangyi Zhou
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Ruqing Xu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Wu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Tingxiu Xiang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
10
|
Kim MY, Park ER, Cho EH, Park SH, Han CJ, Kim SB, Gu MB, Shin HJ, Lee KH. Depletion of proteasome subunit PSMD1 induces cancer cell death via protein ubiquitination and DNA damage, irrespective of p53 status. Sci Rep 2024; 14:7997. [PMID: 38580756 PMCID: PMC10997673 DOI: 10.1038/s41598-024-58215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/26/2024] [Indexed: 04/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by high incidence and fatality rates worldwide. In our exploration of prognostic factors in HCC, the 26s proteasome subunit, non-ATPase 1 (PSMD1) protein emerged as a significant contributor, demonstrating its potential as a therapeutic target in this aggressive cancer. PSMD1 is a subunit of the 19S regulatory particle in the 26S proteasome complex; the 19S particle controls the deubiquitination of ubiquitinated proteins, which are then degraded by the proteolytic activity of the complex. Proteasome-targeting in cancer therapy has received significant attention because of its practical application as an established anticancer agent. We investigated whether PSMD1 plays a critical role in cancer owing to its prognostic significance. PSMD1 depletion induced cell cycle arrest in G2/M phase, DNA damage and apoptosis of cancer cells, irrespective of the p53 status. PSMD1 depletion-mediated cell death was accompanied by an increase in overall protein ubiquitination. These phenotypes occurred exclusively in cancer cells, with no effects observed in normal cells. These findings indicate that PSMD1 depletion-mediated ubiquitination of cellular proteins induces cell cycle arrest and eventual death in cancer cells, emphasizing PSMD1 as a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Mi-Yeun Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Korea University, 75, Nowon-Ro, Nowon-Gu, Seoul, 01812, South Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Eun-Ran Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Korea University, 75, Nowon-Ro, Nowon-Gu, Seoul, 01812, South Korea
| | - Eung-Ho Cho
- Department of Surgery, Division of Radiological and Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sun-Hoo Park
- Department of Pathology, Division of Radiological and Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Chul Ju Han
- Department of Internal Medicine, Division of Radiological and Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sang-Bum Kim
- Department of Surgery, Division of Radiological and Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Man Bock Gu
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Hyun-Jin Shin
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Korea University, 75, Nowon-Ro, Nowon-Gu, Seoul, 01812, South Korea.
| | - Kee-Ho Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Korea University, 75, Nowon-Ro, Nowon-Gu, Seoul, 01812, South Korea.
| |
Collapse
|
11
|
Kandel R, Jung J, Neal S. Proteotoxic stress and the ubiquitin proteasome system. Semin Cell Dev Biol 2024; 156:107-120. [PMID: 37734998 PMCID: PMC10807858 DOI: 10.1016/j.semcdb.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/01/2023] [Accepted: 08/20/2023] [Indexed: 09/23/2023]
Abstract
The ubiquitin proteasome system maintains protein homeostasis by regulating the breakdown of misfolded proteins, thereby preventing misfolded protein aggregates. The efficient elimination is vital for preventing damage to the cell by misfolded proteins, known as proteotoxic stress. Proteotoxic stress can lead to the collapse of protein homeostasis and can alter the function of the ubiquitin proteasome system. Conversely, impairment of the ubiquitin proteasome system can also cause proteotoxic stress and disrupt protein homeostasis. This review examines two impacts of proteotoxic stress, 1) disruptions to ubiquitin homeostasis (ubiquitin stress) and 2) disruptions to proteasome homeostasis (proteasome stress). Here, we provide a mechanistic description of the relationship between proteotoxic stress and the ubiquitin proteasome system. This relationship is illustrated by findings from several protein misfolding diseases, mainly neurodegenerative diseases, as well as from basic biology discoveries from yeast to mammals. In addition, we explore the importance of the ubiquitin proteasome system in endoplasmic reticulum quality control, and how proteotoxic stress at this organelle is alleviated. Finally, we highlight how cells utilize the ubiquitin proteasome system to adapt to proteotoxic stress and how the ubiquitin proteasome system can be genetically and pharmacologically manipulated to maintain protein homeostasis.
Collapse
Affiliation(s)
- Rachel Kandel
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States
| | - Jasmine Jung
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States
| | - Sonya Neal
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
12
|
Zafeiropoulou K, Kalampounias G, Alexis S, Androutsopoulou T, Katsoris P, Symeonidis A. Lower-Risk Myelodysplastic Syndrome (MDS) Patients Exhibit Diminished Proteasome Proteolytic Activity and High Intracellular Reactive Oxygen Species (ROS) Levels. Cureus 2023; 15:e49843. [PMID: 38169896 PMCID: PMC10758539 DOI: 10.7759/cureus.49843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Myelodysplastic syndromes (MDS) constitute a heterogeneous group of clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis and an elevated risk of transformation to acute myeloid leukemia (AML). Available disease-modifying treatment approaches are limited. The ineffectiveness of proteasome inhibitors (PIs) in MDS patients is currently investigated, although it is unclear whether they rapidly develop resistance to PIs or whether proteasome proteolytic activity (PPA) is constitutively lower in the hematopoietic cells of these patients, thus limiting treatment effectiveness. We investigated 20 patients with MDS, categorized according to the International Prognostic Scoring System (IPSS) into a lower- or a higher-risk group. Peripheral blood mononuclear cells, bone marrow mononuclear cells, and cluster of differentiation 34-positive (CD34+) cells were isolated and assessed for the chymotrypsin-like activity of the proteasome and β5 subunit accumulation. Additionally, intracellular reactive oxygen species (ROS) generation was screened. The lower-risk patient group (n=10) exhibited significantly lower proteasome activity (p<0.001) compared to both the higher-risk group (n=10) and healthy subjects (n=10). Furthermore, the lower-risk group had elevated oxidative stress levels (p<0.0001) and reduced β5 subunit expression (p=0.0286). Both parameters were shown to be associated with transfusion dependency, since transfusion-dependent patients (n=5 in each subgroup) had decreased proteasome activity and simultaneously exhibited higher ROS levels. Our results indicate that reduced β5 expression might potentially explain PIs' ineffectiveness in lower-risk MDS, elucidating the importance of the risk group in the selection of the proper treatment algorithm.
Collapse
Affiliation(s)
| | | | | | | | | | - Argiris Symeonidis
- School of Medicine, University of Patras, Patras, GRC
- Hematology Division, Department of Internal Medicine, University General Hospital of Patras, Patras, GRC
| |
Collapse
|
13
|
Antoniuk-Majchrzak J, Enkhbaatar T, Długajczyk A, Kaminska J, Skoneczny M, Klionsky DJ, Skoneczna A. Stability of Rad51 recombinase and persistence of Rad51 DNA repair foci depends on post-translational modifiers, ubiquitin and SUMO. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119526. [PMID: 37364618 DOI: 10.1016/j.bbamcr.2023.119526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
The DNA double-strand breaks are particularly deleterious, especially when an error-free repair pathway is unavailable, enforcing the error-prone recombination pathways to repair the lesion. Cells can resume the cell cycle but at the expense of decreased viability due to genome rearrangements. One of the major players involved in recombinational repair of DNA damage is Rad51 recombinase, a protein responsible for presynaptic complex formation. We previously showed that an increased level of this protein promotes the usage of illegitimate recombination. Here we show that the level of Rad51 is regulated via the ubiquitin-dependent proteolytic pathway. The ubiquitination of Rad51 depends on multiple E3 enzymes, including SUMO-targeted ubiquitin ligases. We also demonstrate that Rad51 can be modified by both ubiquitin and SUMO. Moreover, its modification with ubiquitin may lead to opposite effects: degradation dependent on Rad6, Rad18, Slx8, Dia2, and the anaphase-promoting complex, or stabilization dependent on Rsp5. We also show that post-translational modifications with SUMO and ubiquitin affect Rad51's ability to form and disassemble DNA repair foci, respectively, influencing cell cycle progression and cell viability in genotoxic stress conditions. Our data suggest the existence of a complex E3 ligases network that regulates Rad51 recombinase's turnover, its molecular activity, and access to DNA, limiting it to the proportions optimal for the actual cell cycle stage and growth conditions, e.g., stress. Dysregulation of this network would result in a drop in cell viability due to uncontrolled genome rearrangement in the yeast cells. In mammals would promote the development of genetic diseases and cancer.
Collapse
Affiliation(s)
| | - Tuguldur Enkhbaatar
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Anna Długajczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Marek Skoneczny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Daniel J Klionsky
- Life Sciences Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland.
| |
Collapse
|
14
|
Monittola F, Bianchi M, Nasoni MG, Luchetti F, Magnani M, Crinelli R. Gastric cancer cell types display distinct proteasome/immunoproteasome patterns associated with migration and resistance to proteasome inhibitors. J Cancer Res Clin Oncol 2023; 149:10085-10097. [PMID: 37261527 PMCID: PMC10423134 DOI: 10.1007/s00432-023-04948-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
PURPOSE Gastric cancers (GC) display histological and molecular differences. This heterogeneity has limited the development of new therapeutic strategies which requires the identification of the molecular players involved in GC pathogenesis and the investigation of their responsiveness to drugs. Several proteasome subunits have been identified as prognostic markers in GC and their role studied by gene knockdown. However, proteasomes are multi-subunit protein complexes co-existing in multiple forms with distinct activity/specificity and ability to change in response to inhibitors. Information on the role of different proteasome particles in cancer and their relevance as therapeutic targets is limited. METHODS Based on this evidence, subunit assembly into proteasome complexes and activity were investigated by native PAGE followed by immunoblotting, and by using fluorogenic substrates, respectively. RESULTS Here we show that GC cell lines with epithelial and/or diffuse Lauren's histotype express different levels of immunoproteasome subunits and equal amounts of constitutive counterparts. Immunoproteasome subunits were highly expressed and preferentially assembled into 19S capped complexes in diffuse-type cells, where most of the activity was catalyzed by the 26S and 30S particles. In epithelial cells, activity appeared equally distributed between 19S- and 11S-capped proteolytic particles. This proteasome pattern was associated with higher resistance of diffuse-type cells to proteasome inhibition. Immunoproteasome inhibition by ONX 0914 did not influence cell viability but affected metastatic cell migration. CONCLUSIONS These results suggest that pharmacological inhibition of the immunoproteasome may be useful in treating metastatic gastric cancers.
Collapse
Affiliation(s)
- Francesca Monittola
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, PU, Italy
| | - Marzia Bianchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, PU, Italy
| | - Maria Gemma Nasoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, PU, Italy
| | - Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, PU, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, PU, Italy
| | - Rita Crinelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, PU, Italy.
| |
Collapse
|
15
|
Cerruti F, Borrelli A, Degiovanni A, Mengozzi G, Borella F, Cascio P. Detection and biochemical characterization of circulating proteasomes in dog plasma. Res Vet Sci 2023; 162:104950. [PMID: 37453228 DOI: 10.1016/j.rvsc.2023.104950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
A growing body of evidence convincingly indicates that proteasomes are not located exclusively within cells but also in different extracellular compartments. In humans, in fact, this large multimeric protease has been identified in many body fluids and secretions such as blood, urine, tears, sweat, saliva, milk, and cerebrospinal and pericardial fluid. Intriguingly, the exact origins of these extracellular proteasomes as well as the specific biological functions they perform are largely unknown. As no data on this important subject is yet available in domestic animals, the present study was undertaken to investigate the presence of extracellular proteasomes in canine blood. As a result, for the first time, circulating proteasomes could be clearly detected in the plasma of a cohort of 20 healthy dogs. Furthermore, all three main proteasomal peptidase activities were measured and characterized using fluorogenic peptides and highly specific inhibitors. Finally, the effect of ATP and PA28 family activators on this circulating proteasome was investigated. Collectively, our data indicate that at least a part of the proteasome present in dog plasma consists of a particle that in vitro displays the enzymatic properties of the 20S proteasome.
Collapse
Affiliation(s)
- F Cerruti
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini, 2, 10095, Grugliasco, Turin, Italy
| | - A Borrelli
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini, 2, 10095, Grugliasco, Turin, Italy
| | - A Degiovanni
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini, 2, 10095, Grugliasco, Turin, Italy
| | - G Mengozzi
- Department of Public Health and Pediatric Sciences, University of Turin, C.so Bramante, 88/90, 10100 Turin, Italy
| | - F Borella
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini, 2, 10095, Grugliasco, Turin, Italy
| | - P Cascio
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini, 2, 10095, Grugliasco, Turin, Italy.
| |
Collapse
|
16
|
Stephan-Falkenau S, Streubel A, Mairinger T, Blum TG, Kollmeier J, Mairinger FD, Bauer T, Pfannschmidt J, Hollmann M, Wessolly M. Integrated Clinical, Molecular and Immunological Characterization of Pulmonary Sarcomatoid Carcinomas Reveals an Immune Escape Mechanism That May Influence Therapeutic Strategies. Int J Mol Sci 2023; 24:10558. [PMID: 37445733 DOI: 10.3390/ijms241310558] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Pulmonary sarcomatoid carcinoma (PSC) has highly aggressive biological behaviour and poor clinical outcomes, raising expectations for new therapeutic strategies. We characterized 179 PSC by immunohistochemistry, next-generation sequencing and in silico analysis using a deep learning algorithm with respect to clinical, immunological and molecular features. PSC was more common in men, older ages and smokers. Surgery was an independent factor (p < 0.01) of overall survival (OS). PD-L1 expression was detected in 82.1% of all patients. PSC patients displaying altered epitopes due to processing mutations showed another PD-L1-independent immune escape mechanism, which also significantly influenced OS (p < 0.02). The effect was also maintained when only advanced tumour stages were considered (p < 0.01). These patients also showed improved survival with a significant correlation for immunotherapy (p < 0.05) when few or no processing mutations were detected, although this should be interpreted with caution due to the small number of patients studied. Genomic alterations for which there are already approved drugs were present in 35.4% of patients. Met exon 14 skipping was found more frequently (13.7%) and EGFR mutations less frequently (1.7%) than in other NSCLC. In summary, in addition to the divergent genomic landscape of PSC, the specific immunological features of this prognostically poor subtype should be considered in therapy stratification.
Collapse
Affiliation(s)
- Susann Stephan-Falkenau
- Institute for Tissue Diagnostics, MVZ at Helios Klinikum Emil von Behring, 14165 Berlin, Germany
| | - Anna Streubel
- Institute for Tissue Diagnostics, MVZ at Helios Klinikum Emil von Behring, 14165 Berlin, Germany
| | - Thomas Mairinger
- Institute for Tissue Diagnostics, MVZ at Helios Klinikum Emil von Behring, 14165 Berlin, Germany
| | - Torsten-Gerriet Blum
- Department of Pneumology, Heckeshorn Lung Clinic, Helios Klinikum Emil von Behring, 14165 Berlin, Germany
| | - Jens Kollmeier
- Department of Pneumology, Heckeshorn Lung Clinic, Helios Klinikum Emil von Behring, 14165 Berlin, Germany
| | - Fabian D Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Torsten Bauer
- Department of Pneumology, Heckeshorn Lung Clinic, Helios Klinikum Emil von Behring, 14165 Berlin, Germany
| | - Joachim Pfannschmidt
- Department of Thoracic Surgery, Heckeshorn Lung Clinic, Helios Klinikum Emil von Behring, 14165 Berlin, Germany
| | - Manuel Hollmann
- Institute for Tissue Diagnostics, MVZ at Helios Klinikum Emil von Behring, 14165 Berlin, Germany
| | - Michael Wessolly
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
17
|
Allardyce D, Adu Mantey P, Szalecka M, Nkwo R, Loizidou EZ. Identification of a new class of proteasome inhibitors based on a naphthyl-azotricyclic-urea-phenyl scaffold. RSC Med Chem 2023; 14:573-582. [PMID: 36970145 PMCID: PMC10034219 DOI: 10.1039/d2md00404f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/06/2023] [Indexed: 02/09/2023] Open
Abstract
Proteasomes play an important role in protein degradation and regulation of many cellular pathways by maintaining protein balance. Inhibitors of proteasomes disrupt this balance affecting proteins that are key in malignancies and as such have found applications in the treatment of multiple myeloma and mantle cell lymphoma. However, resistance mechanisms have been reported for these proteasome inhibitors including mutations at the β5 site which necessitates the constant development of new inhibitors. In this work, we report the identification of a new class of proteasome inhibitors, polycyclic molecules bearing a naphthyl-azotricyclic-urea-phenyl scaffold, from screening of the ZINC library of natural products. The most potent of these compounds showed evidence of dose dependency through proteasome assays with IC50 values in the low micromolar range, and kinetic analysis revealed competitive binding at the β5c site with an estimated inhibition constant, K i, of 1.15 μM. Inhibition was also shown for the β5i site of the immunoproteasome at levels similar to those of the constitutive proteasome. Structure-activity relationship studies identified the naphthyl substituent to be crucial for activity and this was attributed to enhanced hydrophobic interactions within β5c. Further to this, halogen substitution within the naphthyl ring enhanced the activity and allowed for π-π interactions with Y169 in β5c and Y130 and F124 in β5i. The combined data highlight the importance of hydrophobic and halogen interactions in β5 binding and assist in the design of next generation inhibitors of proteasomes.
Collapse
Affiliation(s)
- Duncan Allardyce
- Faculty of Science and Technology, Department of Natural Sciences, Middlesex University The Burroughs London NW4 4BT UK
| | - Priscilla Adu Mantey
- Faculty of Science and Technology, Department of Natural Sciences, Middlesex University The Burroughs London NW4 4BT UK
| | - Monika Szalecka
- Faculty of Science and Technology, Department of Natural Sciences, Middlesex University The Burroughs London NW4 4BT UK
| | - Robert Nkwo
- Faculty of Science and Technology, Department of Natural Sciences, Middlesex University The Burroughs London NW4 4BT UK
| | - Eriketi Z Loizidou
- Faculty of Science and Technology, Department of Natural Sciences, Middlesex University The Burroughs London NW4 4BT UK
| |
Collapse
|
18
|
Krawczyk M, Halas A, Sledziewska-Gojska E. A novel role for Mms2 in the control of spontaneous mutagenesis and Pol3 abundance. DNA Repair (Amst) 2023; 125:103484. [PMID: 36934633 DOI: 10.1016/j.dnarep.2023.103484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Mms2 is a ubiquitin E2-variant protein with a very well-documented function in the tolerance pathway that protects both human and yeast cells from the lethal and mutagenic effects of DNA damage. Interestingly, a high expression level of human MMS2 is associated with poor survival prognosis in different cancer diseases. Here we have analyzed the physiological effects of Mms2 overproduction in yeast cells. We show that an increased level of this protein causes a spontaneous mutator effect independent of Ubc13, a cognate partner of Mms2 in the PCNA-polyubiquitinating complex responsible for the template switch. Instead, this new promutagenic role of Mms2 requires Ubc4 (E2) and two ubiquitin ligases of HECT and RING families, Rsp5 and Not4, respectively. We have established that the promutagenic activity of Mms2 is dependent on the activities of error-prone DNA polymerase ζ and Rev1. Additionally, it requires the ubiquitination of K164 in PCNA which facilitates recruitment of these translesion polymerases to the replication complex. Importantly, we have established also that the cellular abundance of Mms2 influences the cellular level of Pol3, the catalytic subunit of replicative DNA polymerase δ. Lack of Mms2 increases the Pol3 abundance, whereas in response to Mms2 overproduction the Pol3 level decreases. We hypothesize that increased levels of spontaneous mutagenesis may result from the Mms2-induced reduction in Pol3 accumulation leading to increased participation of error-prone polymerase ζ in the replication complex.
Collapse
Affiliation(s)
- Michal Krawczyk
- Laboratory of Mutagenesis and DNA Damage Tolerance, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Agnieszka Halas
- Laboratory of Mutagenesis and DNA Damage Tolerance, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Ewa Sledziewska-Gojska
- Laboratory of Mutagenesis and DNA Damage Tolerance, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
19
|
Zeng G, Yu Q, Zhuang R, Zhu H, Shao J, Xi J, Zhang J. Recent Advances and Future Perspectives of Noncompetitive Proteasome Inhibitors. Bioorg Chem 2023; 135:106507. [PMID: 37030106 DOI: 10.1016/j.bioorg.2023.106507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The proteasome regulates intracellular processes, maintains biological homeostasis, and has shown great significance in the study of various diseases, such as neurodegenerative diseases, immune-related diseases, and cancer, especially in hematologic malignancies such as multiple myeloma (MM) and mantle cell lymphoma (MCL). All clinically used proteasome inhibitors bind to the active site of the proteasome and thus exhibit a competitive mechanism. The development of resistance and intolerance during treatment drives the search for inhibitors with different mechanisms of action. In this review, we provide an overview of noncompetitive proteasome inhibitors, including their mechanisms of action, function, possible applications, and their advantages and disadvantages compared with competitive inhibitors.
Collapse
|
20
|
Ivanov AV, Alecsa MS, Popescu R, Starcea MI, Mocanu AM, Rusu C, Miron IC. Pediatric Acute Lymphoblastic Leukemia Emerging Therapies-From Pathway to Target. Int J Mol Sci 2023; 24:ijms24054661. [PMID: 36902091 PMCID: PMC10003692 DOI: 10.3390/ijms24054661] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Over the past 40 years, the 5-years-overall survival rate of pediatric cancer reached 75-80%, and for acute lymphoblastic leukemia (ALL), exceeded 90%. Leukemia continues to be a major cause of mortality and morbidity for specific patient populations, including infants, adolescents, and patients with high-risk genetic abnormalities. The future of leukemia treatment needs to count better on molecular therapies as well as immune and cellular therapy. Advances in the scientific interface have led naturally to advances in the treatment of childhood cancer. These discoveries have involved the recognition of the importance of chromosomal abnormalities, the amplification of the oncogenes, the aberration of tumor suppressor genes, as well as the dysregulation of cellular signaling and cell cycle control. Lately, novel therapies that have already proven efficient on relapsed/refractory ALL in adults are being evaluated in clinical trials for young patients. Tirosine kinase inhibitors are, by now, part of the standardized treatment of Ph+ALL pediatric patients, and Blinatumomab, with promising results in clinical trials, received both FDA and EMA approval for use in children. Moreover, other targeted therapies such as aurora-kinase inhibitors, MEK-inhibitors, and proteasome-inhibitors are involved in clinical trials that include pediatric patients. This is an overview of the novel leukemia therapies that have been developed starting from the molecular discoveries and those that have been applied in pediatric populations.
Collapse
Affiliation(s)
- Anca Viorica Ivanov
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Mirabela Smaranda Alecsa
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Correspondence: (M.S.A.); (R.P.)
| | - Roxana Popescu
- Medical Genetics Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Correspondence: (M.S.A.); (R.P.)
| | - Magdalena Iuliana Starcea
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Adriana Maria Mocanu
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Cristina Rusu
- Medical Genetics Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Ingrith Crenguta Miron
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
21
|
Yu P, Hua Z. To Kill or to Be Killed: How Does the Battle between the UPS and Autophagy Maintain the Intracellular Homeostasis in Eukaryotes? Int J Mol Sci 2023; 24:ijms24032221. [PMID: 36768543 PMCID: PMC9917186 DOI: 10.3390/ijms24032221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The ubiquitin-26S proteasome system and autophagy are two major protein degradation machineries encoded in all eukaryotic organisms. While the UPS is responsible for the turnover of short-lived and/or soluble misfolded proteins under normal growth conditions, the autophagy-lysosomal/vacuolar protein degradation machinery is activated under stress conditions to remove long-lived proteins in the forms of aggregates, either soluble or insoluble, in the cytoplasm and damaged organelles. Recent discoveries suggested an integrative function of these two seemly independent systems for maintaining the proteome homeostasis. One such integration is represented by their reciprocal degradation, in which the small 76-amino acid peptide, ubiquitin, plays an important role as the central signaling hub. In this review, we summarized the current knowledge about the activity control of proteasome and autophagosome at their structural organization, biophysical states, and turnover levels from yeast and mammals to plants. Through comprehensive literature studies, we presented puzzling questions that are awaiting to be solved and proposed exciting new research directions that may shed light on the molecular mechanisms underlying the biological function of protein degradation.
Collapse
Affiliation(s)
- Peifeng Yu
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
22
|
Sahu I, Sahoo MP, Kleifeld O, Glickman MH. Isolation of Proteasome-Trapped Peptides (PTPs) for Degradome Analysis. Methods Mol Biol 2023; 2602:229-241. [PMID: 36446979 DOI: 10.1007/978-1-0716-2859-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Analyzing intracellular peptides generated by proteasomes is highly informative to understand the spatiotemporal regulation of protein homeostasis. A large portion of eukaryotic proteins is proteolyzed within the 20S core particle of the 26S holoenzyme, where proteins are cleaved into peptides of varying lengths. A small percentage of these peptides are presented to the immune system as a representation of the proteome content of the cell. Therefore, understanding the rules that govern proteolytic specificity and product diversity is of relevance not only to biochemistry and proteostasis but also to physiology and immunology. One of the greatest challenges is to separate such proteasome-generated peptides from the total intracellular peptidome due to the susceptibility of short unstructured peptides to myriad proteases and peptidases that are activated upon cell lysis. Here, we describe a simple and rapid method to isolate peptides that are closely associated with proteasomes or trapped inside the core particle of proteasomes in eukaryotic cells. This approach termed PTPs, for proteasome-trapped peptides, requires a limited number of cells as starting materials compared to other published methods yet still provides sufficient yields for mass spectrometry-based proteomic analysis. A single sample obtained from cultured mammalian cells allowed the identification of 1000-2000 different PTPs following LC-MS analysis with high-resolution mass spectrometer.
Collapse
Affiliation(s)
- Indrajit Sahu
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
- Cancer Biology, Dana-Farber Cancer Institute, Massachusetts, Boston, US.
| | | | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Michael H Glickman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
23
|
Targeting immunoproteasome in neurodegeneration: A glance to the future. Pharmacol Ther 2023; 241:108329. [PMID: 36526014 DOI: 10.1016/j.pharmthera.2022.108329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
The immunoproteasome is a specialized form of proteasome equipped with modified catalytic subunits that was initially discovered to play a pivotal role in MHC class I antigen processing and immune system modulation. However, over the last years, this proteolytic complex has been uncovered to serve additional functions unrelated to antigen presentation. Accordingly, it has been proposed that immunoproteasome synergizes with canonical proteasome in different cell types of the nervous system, regulating neurotransmission, metabolic pathways and adaptation of the cells to redox or inflammatory insults. Hence, studying the alterations of immunoproteasome expression and activity is gaining research interest to define the dynamics of neuroinflammation as well as the early and late molecular events that are likely involved in the pathogenesis of a variety of neurological disorders. Furthermore, these novel functions foster the perspective of immunoproteasome as a potential therapeutic target for neurodegeneration. In this review, we provide a brain and retina-wide overview, trying to correlate present knowledge on structure-function relationships of immunoproteasome with the variety of observed neuro-modulatory functions.
Collapse
|
24
|
Xia X, Tang CM, Chen GZ, Han JJ. Proteasome Dysfunction Leads to Suppression of the Hypoxic Response Pathway in Arabidopsis. Int J Mol Sci 2022; 23:ijms232416148. [PMID: 36555789 PMCID: PMC9785350 DOI: 10.3390/ijms232416148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Proteasome is a large proteolytic complex that consists of a 20S core particle (20SP) and 19S regulatory particle (19SP) in eukaryotes. The proteasome degrades most cellular proteins, thereby controlling many key processes, including gene expression and protein quality control. Proteasome dysfunction in plants leads to abnormal development and reduced adaptability to environmental stresses. Previous studies have shown that proteasome dysfunction upregulates the gene expression of proteasome subunits, which is known as the proteasome bounce-back response. However, the proteasome bounce-back response cannot explain the damaging effect of proteasome dysfunction on plant growth and stress adaptation. To address this question, we focused on downregulated genes caused by proteasome dysfunction. We first confirmed that the 20SP subunit PBE is an essential proteasome subunit in Arabidopsis and that PBE1 mutation impaired the function of the proteasome. Transcriptome analyses showed that hypoxia-responsive genes were greatly enriched in the downregulated genes in pbe1 mutants. Furthermore, we found that the pbe1 mutant is hypersensitive to waterlogging stress, a typical hypoxic condition, and hypoxia-related developments are impaired in the pbe1 mutant. Meanwhile, the 19SP subunit rpn1a mutant seedlings are also hypersensitive to waterlogging stress. In summary, our results suggested that proteasome dysfunction downregulated the hypoxia-responsive pathway and impaired plant growth and adaptability to hypoxia stress.
Collapse
Affiliation(s)
- Xue Xia
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Chun-Meng Tang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Gu-Zi Chen
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Jia-Jia Han
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
- Correspondence:
| |
Collapse
|
25
|
Marisa I, Asnicar D, Matozzo V, Parolini M, Brianese N, Fedorova M, Hoffman R, Sheehan D, Marin MG. Zinc oxide, titanium dioxide and C 60 fullerene nanoparticles, alone and in mixture, differently affect biomarker responses and proteome in the clam Ruditapes philippinarum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155873. [PMID: 35595145 DOI: 10.1016/j.scitotenv.2022.155873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Continuous release of nanoparticles (NPs) into marine coastal environments results in an increased risk of exposure to complex NP mixtures for marine organisms. However, to date, the information on the effects at molecular and biochemical levels induced by the exposure to NPs, singly and as a mixture, is still scant. The present work aimed at exploring the independent and combined effects and the mechanism(s) of action induced by 7-days exposure to 1 μg/L nZnO, 1 μg/L nTiO2 and 1 μg/L FC60 fullerene in the Manila clam Ruditapes philippinarum, using a battery of immunological and oxidative stress biomarkers in haemolymph, gills and digestive gland. In addition, proteomics analyses were performed in gills and the digestive gland, where NP bioaccumulation was also assessed. Increased bioaccumulation of single NPs and the mixture was linked with increased oxidative stress and higher damage to proteins, lipids and DNA in all tissues analysed. The proteomics approach highlighted protein modulation in terms of abundance and damage (higher redox-thiol and carbonylated groups content). In particular, the modulated proteins (16 in gills and 18 in digestive gland) were mostly related to cytoskeleton and energetic metabolism. The digestive gland was the tissue more affected. For all biomarkers measured, increased detrimental effects were observed in the mixture compared to single NP exposures.
Collapse
Affiliation(s)
- Ilaria Marisa
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Davide Asnicar
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Nicola Brianese
- Institute for Energetics and Interphases (IENI), CNR, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Ralf Hoffman
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - David Sheehan
- Proteomics Research Group, School of Biochemistry and Cell Biology and Environmental Research Institute, University College Cork, Western Rd., Cork, Ireland; Department of Chemistry and Biomedical Research Center, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Maria Gabriella Marin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| |
Collapse
|
26
|
Yu P, Hua Z. The ubiquitin-26S proteasome system and autophagy relay proteome homeostasis regulation during silique development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1324-1339. [PMID: 35780489 PMCID: PMC9545597 DOI: 10.1111/tpj.15891] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 05/26/2023]
Abstract
Functional studies of the ubiquitin-26S proteasome system (UPS) have demonstrated that virtually all aspects of the plant's life involve UPS-mediated turnover of abnormal or short-lived proteins. However, the role of the UPS during development, including in seeds and fruits, remains to be determined in detail, although mutants of several of its core elements are known to be embryonically lethal. Unfortunately, early termination of embryogenesis limits the possibility to characterize the activities of the UPS in reproductive organs. Given both the economic and the societal impact of reproductive production, such studies are indispensable. Here, we systematically compared expression of multiple 26S proteasome subunits along with the dynamics of proteasome activity and total protein ubiquitylation in seedlings, developing siliques, and embryos of Arabidopsis thaliana. Since autophagy plays the second largest role in maintaining proteome stability, we parallelly studied three rate-limiting enzymes that are involved in autophagy flux. Our experiments unexpectedly discovered that, in contrast to the activities in seedlings, both protein and transcript levels of six selected 26S proteasome subunits gradually decline in immature siliques or embryos toward maturation while the autophagy flux rises despite the nutrient-rich condition. We also discovered a reciprocal turnover pathway between the proteasome and autophagy. While the autophagy flux is suppressed in seedlings by UPS-mediated degradation of its three key enzymes, transcriptional reprogramming dampens this process in siliques, which in turn stimulates a bulk autophagic degradation of proteasomes. Collectively, our study of the developmental changes of the UPS and autophagy activities suggests that they relay the proteome homeostasis regulation in early silique and/or seed development, highlighting their interactions during development.
Collapse
Affiliation(s)
- Peifeng Yu
- Department of Environmental and Plant BiologyOhio UniversityAthensOhio45701USA
- Interdisciplinary Program in Molecular and Cellular BiologyOhio UniversityAthensOhio45701USA
| | - Zhihua Hua
- Department of Environmental and Plant BiologyOhio UniversityAthensOhio45701USA
- Interdisciplinary Program in Molecular and Cellular BiologyOhio UniversityAthensOhio45701USA
| |
Collapse
|
27
|
Atomic resolution Cryo-EM structure of human proteasome activator PA28γ. Int J Biol Macromol 2022; 219:500-507. [PMID: 35932807 DOI: 10.1016/j.ijbiomac.2022.07.246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/18/2022] [Accepted: 07/31/2022] [Indexed: 11/21/2022]
Abstract
The PA28 family proteasome activators play important roles in regulating proteasome activities. Though the three paralogs (PA28α, PA28β, and PA28γ) are similar in terms of primary sequence, they show significant difference in expression pattern, cellular localization and most importantly, biological functions. While PA28αβ is responsible for promoting peptidase activity of proteasome to facilitate MHC-I antigen processing, but unable to promote protein degradation, PA28γ is well-known to not only promote peptidase activity, but also proteolytic activity of proteasome. However, why this paralog has the unique function remains elusive. Previous structural studies have mainly focused on mammalian PA28α, PA28β and PA28αβ heptamers, while structural studies on mammalian PA28γ of atomic resolution are still absent to date. In the present work, we determined the Cryo-EM structure of the human PA28γ heptamer at atomic resolution, revealing interesting unique structural features that may hint our understanding the functional mechanisms of this proteasome activator.
Collapse
|
28
|
Chocron ES, Munkácsy E, Kim HS, Karpowicz P, Jiang N, Van Skike CE, DeRosa N, Banh AQ, Palavicini JP, Wityk P, Kalinowski L, Galvan V, Osmulski PA, Jankowska E, Gaczynska M, Pickering AM. Genetic and pharmacologic proteasome augmentation ameliorates Alzheimer's-like pathology in mouse and fly APP overexpression models. SCIENCE ADVANCES 2022; 8:eabk2252. [PMID: 35675410 PMCID: PMC9177073 DOI: 10.1126/sciadv.abk2252] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/21/2022] [Indexed: 05/27/2023]
Abstract
The proteasome has key roles in neuronal proteostasis, including the removal of misfolded and oxidized proteins, presynaptic protein turnover, and synaptic efficacy and plasticity. Proteasome dysfunction is a prominent feature of Alzheimer's disease (AD). We show that prevention of proteasome dysfunction by genetic manipulation delays mortality, cell death, and cognitive deficits in fly and cell culture AD models. We developed a transgenic mouse with neuronal-specific proteasome overexpression that, when crossed with an AD mouse model, showed reduced mortality and cognitive deficits. To establish translational relevance, we developed a set of TAT-based proteasome-activating peptidomimetics that stably penetrated the blood-brain barrier and enhanced 20S/26S proteasome activity. These agonists protected against cell death, cognitive decline, and mortality in cell culture, fly, and mouse AD models. The protective effects of proteasome overexpression appear to be driven, at least in part, by the proteasome's increased turnover of the amyloid precursor protein along with the prevention of overall proteostatic dysfunction.
Collapse
Affiliation(s)
- E. Sandra Chocron
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Erin Munkácsy
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Harper S. Kim
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
- Center for Neurodegeneration and Experimental Therapeutics (CNET), Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Przemyslaw Karpowicz
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Nisi Jiang
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Candice E. Van Skike
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Cellular and Integrative Physiology, UT Health San Antonio, San Antonio, TX, USA
| | - Nicholas DeRosa
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Cellular and Integrative Physiology, UT Health San Antonio, San Antonio, TX, USA
| | - Andy Q. Banh
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Cellular and Integrative Physiology, UT Health San Antonio, San Antonio, TX, USA
| | - Juan P. Palavicini
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Paweł Wityk
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
- Department of Medical Laboratory Diagnostics–Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Gdańsk, Poland
- BioTechMed Centre/Department of Mechanics of Materials and Structures, Gdańsk University of Technology, Gdańsk, Poland
| | - Leszek Kalinowski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
- Department of Medical Laboratory Diagnostics–Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Gdańsk, Poland
- BioTechMed Centre/Department of Mechanics of Materials and Structures, Gdańsk University of Technology, Gdańsk, Poland
| | - Veronica Galvan
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- College of Medicine, Oklahoma Health Science Center, Oklahoma City, OK, USA
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- South Texas VA Health Care System, San Antonio, TX, USA
- Oklahoma City VA Health Care System, Oklahoma City, OK, USA
| | - Pawel A. Osmulski
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Elzbieta Jankowska
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Maria Gaczynska
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Andrew M. Pickering
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
- Center for Neurodegeneration and Experimental Therapeutics (CNET), Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
29
|
Zavadskiy S, Sologova S, Moldogazieva N. Oxidative distress in aging and age-related diseases: Spatiotemporal dysregulation of protein oxidation and degradation. Biochimie 2022; 195:114-134. [PMID: 34890732 DOI: 10.1016/j.biochi.2021.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/31/2022]
Abstract
The concept of oxidative distress had arisen from the assessment of cellular response to high concentrations of reactive species that result from an imbalance between oxidants and antioxidants and cause biomolecular damage. The intracellular distribution and flux of reactive species dramatically change in time and space contributing to the remodeling of the redox landscape and sensitivity of protein residues to oxidants. Here, we hypothesize that compromised spatiotemporal control of generation, conversions, and removal of reactive species underlies protein damage and dysfunction of protein degradation machineries. This leads to the accumulation of oxidatively damaged proteins resulted in an age-dependent decline in the organismal adaptability to oxidative stress. We highlight recent data obtained with the use of various cell cultures, animal models, and patients on irreversible and non-repairable oxidation of key redox-sensitive residues. Multiple reaction products include peptidyl hydroperoxides, alcohols, carbonyls, and carbamoyl moieties as well as Tyr-Tyr, Trp-Tyr, Trp-Trp, Tyr-Cys, His-Lys, His-Arg, and Tyr-Lys cross-links. These lead to protein fragmentation, misfolding, covalent cross-linking, oligomerization, aggregation, and ultimately, causing impaired protein function and turnover. 20S proteasome and autophagy-lysosome pathways are two major types of machinery for the degradation and elimination of oxidatively damaged proteins. Spatiotemporal dysregulation of these pathways under oxidative distress conditions is implicated in aging and age-related disorders such as neurodegenerative and cardiovascular diseases and diabetes. Future investigations in this field allow the discovery of new drugs to target components of dysregulated cell signaling and protein degradation machinery to combat aging and age-related chronic diseases.
Collapse
Affiliation(s)
- Sergey Zavadskiy
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Sechenov University, 119991, Moscow, Russia
| | - Susanna Sologova
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Sechenov University, 119991, Moscow, Russia
| | - Nurbubu Moldogazieva
- Laboratory of Bioinformatics, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Sechenov University, 119991, Moscow, Russia.
| |
Collapse
|
30
|
Marshall RS, Vierstra RD. A trio of ubiquitin ligases sequentially drives ubiquitylation and autophagic degradation of dysfunctional yeast proteasomes. Cell Rep 2022; 38:110535. [PMID: 35294869 DOI: 10.1016/j.celrep.2022.110535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/08/2021] [Accepted: 02/25/2022] [Indexed: 12/22/2022] Open
Abstract
As central effectors of ubiquitin (Ub)-mediated proteolysis, proteasomes are regulated at multiple levels, including degradation of unwanted or dysfunctional particles via autophagy (termed proteaphagy). In yeast, inactive proteasomes are exported from the nucleus, sequestered into cytoplasmic aggresomes via the Hsp42 chaperone, extensively ubiquitylated, and then tethered to the expanding phagophore by the autophagy receptor Cue5. Here, we demonstrate the need for ubiquitylation driven by the trio of Ub ligases (E3s), San1, Rsp5, and Hul5, which together with their corresponding E2s work sequentially to promote nuclear export and Cue5 recognition. Whereas San1 functions prior to nuclear export, Rsp5 and Hul5 likely decorate aggresome-localized proteasomes in concert. Ultimately, topologically complex Ub chain(s) containing both K48 and K63 Ub-Ub linkages are assembled, mainly on the regulatory particle, to generate autophagy-competent substrates. Because San1, Rsp5, Hul5, Hsp42, and Cue5 also participate in general proteostasis, proteaphagy likely engages a fundamental mechanism for eliminating inactive/misfolded proteins.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, USA.
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, USA.
| |
Collapse
|
31
|
Schulz L, Sendker FL, Hochberg GKA. Non-adaptive complexity and biochemical function. Curr Opin Struct Biol 2022; 73:102339. [PMID: 35247750 DOI: 10.1016/j.sbi.2022.102339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022]
Abstract
Intricate biochemical structures are usually thought to be useful, because natural selection preserves them from degradation by a constant hail of destructive mutations. Biochemists therefore often deliberately disrupt them to understand how complexity improves protein function or fitness. However, evolutionary theory suggests that even useless complexity that never improved fitness can become completely essential if a simple set of evolutionary conditions is fulfilled. We review evidence that stable protein complexes, protein-chaperone interactions, and complexes consisting of several paralogs all fulfill these conditions. This makes reverse genetics or destructive mutagenesis unsuitable for assigning functions to these kinds of complexity. Instead, we advocate that incorporating evolutionary approaches into biochemistry overcomes this difficulty and allows us to distinguish useless from useful biochemical complexity.
Collapse
Affiliation(s)
- Luca Schulz
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany. https://twitter.com/schulluc
| | - Franziska L Sendker
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany. https://twitter.com/SendkerFL
| | - Georg K A Hochberg
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany; Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Hans-Meerwein-Straße 6, 35032 Marburg, Germany.
| |
Collapse
|
32
|
Immunoproteasome Activity in Chronic Lymphocytic Leukemia as a Target of the Immunoproteasome-Selective Inhibitors. Cells 2022; 11:cells11050838. [PMID: 35269460 PMCID: PMC8909520 DOI: 10.3390/cells11050838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
Targeting proteasome with proteasome inhibitors (PIs) is an approved treatment strategy in multiple myeloma that has also been explored pre-clinically and clinically in other hematological malignancies. The approved PIs target both the constitutive and the immunoproteasome, the latter being present predominantly in cells of lymphoid origin. Therapeutic targeting of the immunoproteasome in cells with sole immunoproteasome activity may be selectively cytotoxic in malignant cells, while sparing the non-lymphoid tissues from the on-target PIs toxicity. Using activity-based probes to assess the proteasome activity profile and correlating it with the cytotoxicity assays, we identified B-cell chronic lymphocytic leukemia (B-CLL) to express predominantly immunoproteasome activity, which is associated with high sensitivity to approved proteasome inhibitors and, more importantly, to the immunoproteasome selective inhibitors LU005i and LU035i, targeting all immunoproteasome active subunits or only the immunoproteasome β5i, respectively. At the same time, LU102, a proteasome β2 inhibitor, sensitized B-CLL or immunoproteasome inhibitor-inherently resistant primary cells of acute myeloid leukemia, B-cell acute lymphoblastic leukemia, multiple myeloma and plasma cell leukemia to low doses of LU035i. The immunoproteasome thus represents a novel therapeutic target, which warrants further testing with clinical stage immunoproteasome inhibitors in monotherapy or in combinations.
Collapse
|
33
|
Functional Differences between Proteasome Subtypes. Cells 2022; 11:cells11030421. [PMID: 35159231 PMCID: PMC8834425 DOI: 10.3390/cells11030421] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/30/2022] Open
Abstract
Four proteasome subtypes are commonly present in mammalian tissues: standard proteasomes, which contain the standard catalytic subunits β1, β2 and β5; immunoproteasomes containing the immuno-subunits β1i, β2i and β5i; and two intermediate proteasomes, containing a mix of standard and immuno-subunits. Recent studies revealed the expression of two tissue-specific proteasome subtypes in cortical thymic epithelial cells and in testes: thymoproteasomes and spermatoproteasomes. In this review, we describe the mechanisms that enable the ATP- and ubiquitin-dependent as well as the ATP- and ubiquitin-independent degradation of proteins by the proteasome. We focus on understanding the role of the different proteasome subtypes in maintaining protein homeostasis in normal physiological conditions through the ATP- and ubiquitin-dependent degradation of proteins. Additionally, we discuss the role of each proteasome subtype in the ATP- and ubiquitin-independent degradation of disordered proteins. We also discuss the role of the proteasome in the generation of peptides presented by MHC class I molecules and the implication of having different proteasome subtypes for the peptide repertoire presented at the cell surface. Finally, we discuss the role of the immunoproteasome in immune cells and its modulation as a potential therapy for autoimmune diseases.
Collapse
|
34
|
Kisselev AF. Site-Specific Proteasome Inhibitors. Biomolecules 2021; 12:54. [PMID: 35053202 PMCID: PMC8773591 DOI: 10.3390/biom12010054] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Proteasome is a multi-subunit protein degradation machine, which plays a key role in the maintenance of protein homeostasis and, through degradation of regulatory proteins, in the regulation of numerous cell functions. Proteasome inhibitors are essential tools for biomedical research. Three proteasome inhibitors, bortezomib, carfilzomib, and ixazomib are approved by the FDA for the treatment of multiple myeloma; another inhibitor, marizomib, is undergoing clinical trials. The proteolytic core of the proteasome has three pairs of active sites, β5, β2, and β1. All clinical inhibitors and inhibitors that are widely used as research tools (e.g., epoxomicin, MG-132) inhibit multiple active sites and have been extensively reviewed in the past. In the past decade, highly specific inhibitors of individual active sites and the distinct active sites of the lymphoid tissue-specific immunoproteasome have been developed. Here, we provide a comprehensive review of these site-specific inhibitors of mammalian proteasomes and describe their utilization in the studies of the biology of the active sites and their roles as drug targets for the treatment of different diseases.
Collapse
Affiliation(s)
- Alexei F Kisselev
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
35
|
High Immunoproteasome Activity and sXBP1 in Pediatric Precursor B-ALL Predicts Sensitivity towards Proteasome Inhibitors. Cells 2021; 10:cells10112853. [PMID: 34831075 PMCID: PMC8616377 DOI: 10.3390/cells10112853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Proteasome inhibitors (PIs) are approved backbone treatments in multiple myeloma. More recently, inhibition of proteasome activity with the PI bortezomib has been clinically evaluated as a novel treatment strategy in pediatric acute lymphoblastic leukemia (ALL). However, we lack a marker that could identify ALL patients responding to PI-based therapy. By using a set of activity-based proteasome probes in conjunction with cytotoxicity assays, we show that B-cell precursor ALL (BCP-ALL), in contrast to T-ALL, demonstrates an increased activity of immunoproteasome over constitutive proteasome, which correlates with high ex vivo sensitivity to the PIs bortezomib and ixazomib. The novel selective PI LU015i-targeting immunoproteasome β5i induces cytotoxicity in BCP-ALL containing high β5i activity, confirming immunoproteasome activity as a novel therapeutic target in BCP-ALL. At the same time, cotreatment with β2-selective proteasome inhibitors can sensitize T-ALL to currently available PIs, as well as to β5i selective PI. In addition, levels of total and spliced forms of XBP1 differ between BCP-ALL and T-ALL, and only in BCP-ALL does high-spliced XBP1 correlate with sensitivity to bortezomib. Thus, in BCP-ALL, high immunoproteasome activity may serve as a predictive marker for PI-based treatment options, potentially combined with XBP1 analyses.
Collapse
|
36
|
Female Mice Reaching Exceptionally High Old Age Have Preserved 20S Proteasome Activities. Antioxidants (Basel) 2021; 10:antiox10091397. [PMID: 34573029 PMCID: PMC8472714 DOI: 10.3390/antiox10091397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 08/28/2021] [Indexed: 01/09/2023] Open
Abstract
Oxidized, damaged and misfolded proteins accumulate during aging and contribute to impaired cell function and tissue homeodynamics. Damaged proteins are degraded by cellular clearance mechanisms like the 20S proteasome. Aging relates to low 20S proteasome function, whereas long-lived species show high levels. However, contradictory results exist depending on the tissue or cell type and it is unknown how the 20S proteasome functions in exceptionally old mice. The aim of this study was to investigate two proteasome activities (caspase-like and chymotrypsin-like) in several tissues (lung, heart, axillary lymph nodes, liver, kidney) and cells (peritoneal leukocytes) from adult (28 ± 4 weeks, n = 12), old (76 ± 4 weeks, n = 9) and exceptionally old (128 ± 4 weeks, n = 9) BALB/c female mice. The results show different age-related changes depending on the tissue and the activity considered, so there is no universal decline in proteasome function with age in female mice. Interestingly, exceptionally old mice displayed better maintained proteasome activities, suggesting that preserved 20S proteasome is associated with successful aging.
Collapse
|
37
|
Pseudopeptides with aldehyde or vinylsulfone warheads: Synthesis and antiproteasomal activity. Bioorg Chem 2021; 115:105228. [PMID: 34371374 DOI: 10.1016/j.bioorg.2021.105228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022]
Abstract
The comparative study of new proteasome inhibitors based on salicylic acid-modified pseudo-tripeptides terminated with aldehyde or vinylsulfone is presented. We described the synthesis of 11 pairs of pseudopeptides and their properties related to the proteasome inhibition were determined. The effects of integrated amino acids (combinations of leucine, phenylalanine, tryptophan, proline, cyclohexylalanine or norleucine residues) on the activity of the proteasome were investigated. Compounds preferentially inhibited the chymotrypsin β5-subunit of the proteasome in cell-based assays compared with the β1- and β2-subunits, with IC50 values in mid-nanomolar ranges being obtained for the most active members. Our comparative study demonstrated that aldehydes were able to inhibit the proteasome in cells more effectively than vinylsulfones. These results were corroborated by the accumulation of polyubiquitinated proteins in treated cells, GFP accumulation in a reporter cell line and the ability of new compounds to induce apoptotic cell death.
Collapse
|
38
|
A Nut for Every Bolt: Subunit-Selective Inhibitors of the Immunoproteasome and Their Therapeutic Potential. Cells 2021; 10:cells10081929. [PMID: 34440698 PMCID: PMC8394499 DOI: 10.3390/cells10081929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
At the heart of the ubiquitin-proteasome system, the 20S proteasome core particle (CP) breaks down the majority of intracellular proteins tagged for destruction. Thereby, the CP controls many cellular processes including cell cycle progression and cell signalling. Inhibitors of the CP can suppress these essential biological pathways, resulting in cytotoxicity, an effect that is beneficial for the treatment of certain blood cancer patients. During the last decade, several preclinical studies demonstrated that selective inhibition of the immunoproteasome (iCP), one of several CP variants in mammals, suppresses autoimmune diseases without inducing toxic side effects. These promising findings led to the identification of natural and synthetic iCP inhibitors with distinct chemical structures, varying potency and subunit selectivity. This review presents the most prominent iCP inhibitors with respect to possible scientific and medicinal applications, and discloses recent trends towards pan-immunoproteasome reactive inhibitors that cumulated in phase II clinical trials of the lead compound KZR-616 for chronic inflammations.
Collapse
|
39
|
Affiliation(s)
- Edward P Morris
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
- Division of Structural Biology, The Institute of Cancer Research, London, UK
| | - Paula C A da Fonseca
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK.
| |
Collapse
|
40
|
Reuven N, Adler J, Myers N, Shaul Y. CRISPR Co-Editing Strategy for Scarless Homology-Directed Genome Editing. Int J Mol Sci 2021; 22:3741. [PMID: 33916763 PMCID: PMC8038335 DOI: 10.3390/ijms22073741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/23/2021] [Accepted: 03/26/2021] [Indexed: 12/27/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 has revolutionized genome editing by providing a simple and robust means to cleave specific genomic sequences. However, introducing templated changes at the targeted site usually requires homology-directed repair (HDR), active in only a small subset of cells in culture. To enrich for HDR-dependent edited cells, we employed a co-editing strategy, editing a gene of interest (GOI) concomitantly with rescuing an endogenous pre-made temperature-sensitive (ts) mutation. By using the repair of the ts mutation as a selectable marker, the selection is "scarless" since editing restores the wild-type (wt) sequence. As proof of principle, we used HEK293 and HeLa cells with a ts mutation in the essential TAF1 gene. CRISPR co-editing of TAF1ts and a GOI resulted in up to 90% of the temperature-resistant cells bearing the desired mutation in the GOI. We used this system to insert large cassettes encoded by plasmid donors and smaller changes encoded by single-stranded oligonucleotide donors (ssODN). Of note, among the genes we edited was the introduction of a T35A mutation in the proteasome subunit PSMB6, which eliminates its caspase-like activity. The edited cells showed a specific reduction in this activity, demonstrating this system's utility in generating cell lines with biologically relevant mutations in endogenous genes. This approach offers a rapid, efficient, and scarless method for selecting genome-edited cells requiring HDR.
Collapse
Affiliation(s)
- Nina Reuven
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel; (J.A.); (N.M.)
| | | | | | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel; (J.A.); (N.M.)
| |
Collapse
|
41
|
Proteasome in action: substrate degradation by the 26S proteasome. Biochem Soc Trans 2021; 49:629-644. [PMID: 33729481 PMCID: PMC8106498 DOI: 10.1042/bst20200382] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Ubiquitination is the major criteria for the recognition of a substrate-protein by the 26S proteasome. Additionally, a disordered segment on the substrate — either intrinsic or induced — is critical for proteasome engagement. The proteasome is geared to interact with both of these substrate features and prepare it for degradation. To facilitate substrate accessibility, resting proteasomes are characterised by a peripheral distribution of ubiquitin receptors on the 19S regulatory particle (RP) and a wide-open lateral surface on the ATPase ring. In this substrate accepting state, the internal channel through the ATPase ring is discontinuous, thereby obstructing translocation of potential substrates. The binding of the conjugated ubiquitin to the ubiquitin receptors leads to contraction of the 19S RP. Next, the ATPases engage the substrate at a disordered segment, energetically unravel the polypeptide and translocate it towards the 20S catalytic core (CP). In this substrate engaged state, Rpn11 is repositioned at the pore of the ATPase channel to remove remaining ubiquitin modifications and accelerate translocation. C-termini of five of the six ATPases insert into corresponding lysine-pockets on the 20S α-ring to complete 20S CP gate opening. In the resulting substrate processing state, the ATPase channel is fully contiguous with the translocation channel into the 20S CP, where the substrate is proteolyzed. Complete degradation of a typical ubiquitin-conjugate takes place over a few tens of seconds while hydrolysing tens of ATP molecules in the process (50 kDa/∼50 s/∼80ATP). This article reviews recent insight into biochemical and structural features that underlie substrate recognition and processing by the 26S proteasome.
Collapse
|
42
|
Funikov SY, Spasskaya DS, Burov AV, Teterina EV, Ustyugov AA, Karpov VL, Morozov AV. Structures of the Mouse Central Nervous System Contain Different Quantities of Proteasome Gene Transcripts. Mol Biol 2021. [DOI: 10.1134/s0026893320060047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
44
|
Cryo-EM of mammalian PA28αβ-iCP immunoproteasome reveals a distinct mechanism of proteasome activation by PA28αβ. Nat Commun 2021; 12:739. [PMID: 33531497 PMCID: PMC7854634 DOI: 10.1038/s41467-021-21028-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
The proteasome activator PA28αβ affects MHC class I antigen presentation by associating with immunoproteasome core particles (iCPs). However, due to the lack of a mammalian PA28αβ-iCP structure, how PA28αβ regulates proteasome remains elusive. Here we present the complete architectures of the mammalian PA28αβ-iCP immunoproteasome and free iCP at near atomic-resolution by cryo-EM, and determine the spatial arrangement between PA28αβ and iCP through XL-MS. Our structures reveal a slight leaning of PA28αβ towards the α3-α4 side of iCP, disturbing the allosteric network of the gatekeeper α2/3/4 subunits, resulting in a partial open iCP gate. We find that the binding and activation mechanism of iCP by PA28αβ is distinct from those of constitutive CP by the homoheptameric TbPA26 or PfPA28. Our study sheds lights on the mechanism of enzymatic activity stimulation of immunoproteasome and suggests that PA28αβ-iCP has experienced profound remodeling during evolution to achieve its current level of function in immune response. The proteasome activator PA28αβ affects MHC class I antigen presentation by associating with immunoproteasome core particles (iCPs). Cryo-EM structures of the mammalian PA28αβ -iCP immunoproteasome and free iCP, combined with cross-linking data, reveal the complex architecture and suggest a distinct immunoproteasome activation mechanism.
Collapse
|
45
|
Goh Q, Nikolaou S, Shay‐Winkler K, Emmert ME, Cornwall R. Timing of proteasome inhibition as a pharmacologic strategy for prevention of muscle contractures in neonatal brachial plexus injury. FASEB J 2021; 35:e21214. [PMID: 33236396 PMCID: PMC7821701 DOI: 10.1096/fj.202002194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022]
Abstract
Neonatal brachial plexus injury (NBPI) causes disabling and incurable contractures, or limb stiffness, which result from proteasome-mediated protein degradation impairing the longitudinal growth of neonatally denervated muscles. We recently showed in a mouse model that the 20S proteasome inhibitor, bortezomib, prevents contractures after NBPI. Given that contractures uniquely follow neonatal denervation, the current study tests the hypothesis that proteasome inhibition during a finite window of neonatal development can prevent long-term contracture development. Following neonatal forelimb denervation in P5 mice, we first outlined the minimum period for proteasome inhibition to prevent contractures 4 weeks post-NBPI by treating mice with saline or bortezomib for varying durations between P8 and P32. We then compared the ability of varying durations of longer-term proteasome inhibition to prevent contractures at 8 and 12 weeks post-NBPI. Our findings revealed that proteasome inhibition can be delayed 3-4 days after denervation but is required throughout skeletal growth to prevent contractures long term. Furthermore, proteasome inhibition becomes less effective in preventing contractures beyond the neonatal period. These therapeutic effects are primarily associated with bortezomib-induced attenuation of 20S proteasome β1 subunit activity. Our collective results, therefore, demonstrate that temporary neonatal proteasome inhibition is not a viable strategy for preventing contractures long term. Instead, neonatal denervation causes a permanent longitudinal growth deficiency that must be continuously ameliorated during skeletal growth. Additional mechanisms must be explored to minimize the necessary period of proteasome inhibition and reduce the risk of toxicity from long-term treatment.
Collapse
Affiliation(s)
- Qingnian Goh
- Division of Orthopaedic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Sia Nikolaou
- Division of Orthopaedic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Kritton Shay‐Winkler
- Division of Orthopaedic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Marianne E. Emmert
- Department of Biomedical SciencesUniversity of Cincinnati College of MedicineCincinnatiOHUSA
| | - Roger Cornwall
- Division of Orthopaedic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOHUSA
- Division of Developmental BiologyCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
- Department of Orthopaedic SurgeryUniversity of Cincinnati College of MedicineCincinnatiOHUSA
| |
Collapse
|
46
|
Structural Insights into Substrate Recognition and Processing by the 20S Proteasome. Biomolecules 2021; 11:biom11020148. [PMID: 33498876 PMCID: PMC7910952 DOI: 10.3390/biom11020148] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Four decades of proteasome research have yielded extensive information on ubiquitin-dependent proteolysis. The archetype of proteasomes is a 20S barrel-shaped complex that does not rely on ubiquitin as a degradation signal but can degrade substrates with a considerable unstructured stretch. Since roughly half of all proteasomes in most eukaryotic cells are free 20S complexes, ubiquitin-independent protein degradation may coexist with ubiquitin-dependent degradation by the highly regulated 26S proteasome. This article reviews recent advances in our understanding of the biochemical and structural features that underlie the proteolytic mechanism of 20S proteasomes. The two outer α-rings of 20S proteasomes provide a number of potential docking sites for loosely folded polypeptides. The binding of a substrate can induce asymmetric conformational changes, trigger gate opening, and initiate its own degradation through a protease-driven translocation mechanism. Consequently, the substrate translocates through two additional narrow apertures augmented by the β-catalytic active sites. The overall pulling force through the two annuli results in a protease-like unfolding of the substrate and subsequent proteolysis in the catalytic chamber. Although both proteasomes contain identical β-catalytic active sites, the differential translocation mechanisms yield distinct peptide products. Nonoverlapping substrate repertoires and product outcomes rationalize cohabitation of both proteasome complexes in cells.
Collapse
|
47
|
Molecular and cellular dynamics of the 26S proteasome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140583. [PMID: 33321258 DOI: 10.1016/j.bbapap.2020.140583] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 01/16/2023]
Abstract
In eukaryotic cells, the ubiquitin-proteasome system serves to remove proteins that are either dysfunctional or no longer needed. The 26S proteasome is a 2.5 MDa multisubunit complex comprising the 20S core particle, where degradation is executed, and one or two regulatory particles which prepare substrates for degradation. Whereas the 20S core particles of several species had been studied extensively by X-ray crystallography, the 26S holocomplex structure had remained elusive for a long time. Recent advances in single-particle cryo-electron microscopy have changed the situation and provided atomic resolution models of this intriguing molecular machine and its dynamics. Besides, cryo-electron tomography enables structural studies in situ, providing molecular resolution images of macromolecules inside pristinely preserved cellular environments. This has greatly contributed to our understanding of proteasome dynamics in the context of cells.
Collapse
|
48
|
Marshall RS, Gemperline DC, McLoughlin F, Book AJ, Hofmann K, Vierstra RD. An evolutionarily distinct chaperone promotes 20S proteasome α-ring assembly in plants. J Cell Sci 2020; 133:jcs249862. [PMID: 33033180 PMCID: PMC7657472 DOI: 10.1242/jcs.249862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/21/2020] [Indexed: 11/20/2022] Open
Abstract
The core protease (CP) subcomplex of the 26S proteasome houses the proteolytic active sites and assumes a barrel shape comprised of four co-axially stacked heptameric rings formed by structurally related α- and β-subunits. CP biogenesis typically begins with the assembly of the α-ring, which then provides a template for β-subunit integration. In eukaryotes, α-ring assembly is partially mediated by two hetero-dimeric chaperones, termed Pba1-Pba2 (Add66) and Pba3-Pba4 (also known as Irc25-Poc4) in yeast. Pba1-Pba2 initially promotes orderly recruitment of the α-subunits through interactions between their C-terminal HbYX or HbF motifs and pockets at the α5-α6 and α6-α7 interfaces. Here, we identified PBAC5 as a fifth α-ring assembly chaperone in Arabidopsis that directly binds the Pba1 homolog PBAC1 to form a trimeric PBAC5-PBAC1-PBAC2 complex. PBAC5 harbors a HbYX motif that docks with a pocket between the α4 and α5 subunits during α-ring construction. Arabidopsis lacking PBAC5, PBAC1 and/or PBAC2 are hypersensitive to proteotoxic, salt and osmotic stresses, and display proteasome assembly defects. Remarkably, whereas PBAC5 is evolutionarily conserved among plants, sequence relatives are also dispersed within other kingdoms, including a scattered array of fungal, metazoan and oomycete species.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
- Department of Genetics, University of Wisconsin, 425 Henry Mall, Madison, WI 53706, USA
| | - David C Gemperline
- Department of Genetics, University of Wisconsin, 425 Henry Mall, Madison, WI 53706, USA
| | - Fionn McLoughlin
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Adam J Book
- Department of Genetics, University of Wisconsin, 425 Henry Mall, Madison, WI 53706, USA
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
- Department of Genetics, University of Wisconsin, 425 Henry Mall, Madison, WI 53706, USA
| |
Collapse
|
49
|
Ghannam K, Martinez Gamboa L, Kedor C, Spengler L, Kuckelkorn U, Häupl T, Burmester G, Feist E. Response to abatacept is associated with the inhibition of proteasome β1i expression in T cells of patients with rheumatoid arthritis. RMD Open 2020; 6:rmdopen-2020-001248. [PMID: 32998980 PMCID: PMC7547540 DOI: 10.1136/rmdopen-2020-001248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022] Open
Abstract
Objective Abatacept is a biological disease-modifying antirheumatic drug (DMARD) used for the treatment of rheumatoid arthritis (RA) and modulates the costimulatory signal by cluster of differentiation (CD)28:CD80/CD86 interaction required for T cell activation. Since CD28-mediated signalling regulates many T cell functions including cytokine production of, for example, interferons (IFNs), it is of interest to clarify, whether response to abatacept has an effect on the IFN inducible immunoproteasome, as a central regulator of the immune response. Methods Effects of abatacept on the proteasome were investigated in 39 patients with RA over a period of 24 weeks. Using real-time PCR, transcript levels of constitutive and corresponding immunoproteasome catalytic subunits were investigated at baseline (T0), week 16 (T16) and week 24 (T24) in sorted blood cells. Proteasomal activity and induction of apoptosis after proteasome inhibition were also evaluated. Results Abatacept achieved remission or low disease activity in 55% of patients at T16 and in 70% of patients at T24. By two-way analysis of variance (ANOVA), a significant reduction of proteasome immunosubunit β1i was shown only in CD4+ and CD8+ T cells of sustained responders at both T16 and T24. One-way ANOVA analysis for each response group confirmed the results and showed a significant reduction at T24 in CD4+ and CD8+ T cells of the same group. Abatacept did not influence chymotrypsin-like activity of proteasome and had no effect on induction of apoptosis under exposure to a proteasome inhibitor in vitro. Conclusion The reduction of proteasome immunosubunit β1i in T cells of patients with RA with sustained response to abatacept suggests association of the immunoproteasome of T cells with RA disease activity.
Collapse
Affiliation(s)
- Khetam Ghannam
- Department of Rheumatology and Clinical Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Lorena Martinez Gamboa
- Department of Rheumatology and Clinical Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Claudia Kedor
- Department of Rheumatology and Clinical Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Lydia Spengler
- Department of Rheumatology and Clinical Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Ulrike Kuckelkorn
- Institute of Biochemistry, Charite University Hospital Berlin, Berlin, Germany
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Gerd Burmester
- Department of Rheumatology and Clinical Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Eugen Feist
- Helios Fachklinik Vogelsang-Gommern GmbH, Vogelsang-Gommern, Germany.,Department of Rheumatology and Clinical Immunology, Charite University Hospital Berlin, Berlin, Germany
| |
Collapse
|
50
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|