1
|
Jin Y, Son Y, Song I, Chung YS, Choi YJ. Orphan nuclear receptor NR4A1 regulates both osteoblastogenesis and adipogenesis in human mesenchymal stem cells. Mol Med Rep 2025; 31:3. [PMID: 39422036 PMCID: PMC11544528 DOI: 10.3892/mmr.2024.13368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
The nuclear receptor subfamily 4 group A member 1 (NR4A1) gene plays a crucial role in both osteoporosis and adipogenesis. The present study investigated the mechanisms by which NR4A1 influences osteoblastogenesis and adipogenesis in human bone marrow‑derived mesenchymal stem cells (BMD‑MSCs). NR4A1 was overexpressed or knocked down in mouse MC3T3‑E1 osteoblast cells and 3T3‑L1 adipocyte cells, as well as in PCS‑500‑012, a BMD‑MSC line. The alkaline phosphatase (ALP) assay and Alizarin Red S staining were performed using MC3T3‑E1 and BMD‑MSCs to assess ALP activity and mineralization, while Oil Red O staining was used to assess the lipid content in 3T3‑L1 cells and BMD‑MSCs. Total RNA was isolated from control, NR4A1‑overexpressing and NR4A1 small interfering RNA (siRNA; siNR4A1)‑treated BMD‑MSCs. RNA sequencing (RNA‑seq) was performed to identify differentially expressed genes, followed by ingenuity pathway analysis (IPA) to determine the role of NR4A1 in osteoblastogenesis and adipogenesis. NR4A1 or Nr4a1 knockdown tended to increase ALP activity and significantly increased calcification in BMD‑MSCs (P<0.005) and MC3T3‑E1 cells (P<0.005), respectively. By contrast, NR4A1 or Nr4a1 overexpression significantly decreased ALP activity and calcification. NR4A1 or Nr4a1 knockdown and overexpression significantly decreased and increased adipogenesis, respectively, in BMD‑MSCs (P<0.005 and <0.05, respectively) and 3T3‑L1 cells (P<0.005 in both). Treatments of BMD‑MSCs with an NR4A1 antagonist, 1,1‑bis(3'‑indolyl)‑1‑(p‑hydroxyphenyl) methane and siNR4A1 showed similar results. RNA‑seq and IPA in control, NR4A1 knockdown and NR4A1 overexpressing cells indicated that Notch signaling mediated the effects of NR4A1 in osteoblastogenesis and adipogenesis. Expression of mastermind‑like transcriptional coactivator 3 was reduced in the Notch signaling pathway in cells treated with siNR4A1. In conclusion, NR4A1 suppressed osteoblastogenesis and promotes adipogenesis in human BMD‑MSCs. The present study also suggested that NR4A1 plays a role in the progression of osteoporosis and adipogenesis by modulating the Notch signaling cascade.
Collapse
Affiliation(s)
- Yilan Jin
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
- Ajou Institute on Aging, Ajou University Medical Center, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Youngho Son
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Insun Song
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
- Ajou Institute on Aging, Ajou University Medical Center, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Yoon-Sok Chung
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
- Ajou Institute on Aging, Ajou University Medical Center, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Yong Jun Choi
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
- Ajou Institute on Aging, Ajou University Medical Center, Suwon, Gyeonggi-do 16499, Republic of Korea
| |
Collapse
|
2
|
Bugueno IM, Alastra G, Balic A, Stadlinger B, Mitsiadis TA. Limited Adipogenic Differentiation Potential of Human Dental Pulp Stem Cells Compared to Human Bone Marrow Stem Cells. Int J Mol Sci 2024; 25:11105. [PMID: 39456888 PMCID: PMC11508566 DOI: 10.3390/ijms252011105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Bone marrow and teeth contain mesenchymal stem cells (MSCs) that could be used for cell-based regenerative therapies. MSCs from these two tissues represent heterogeneous cell populations with varying degrees of lineage commitment. Although human bone marrow stem cells (hBMSCs) and human dental pulp stem cells (hDPSCs) have been extensively studied, it is not yet fully defined if their adipogenic potential differs. Therefore, in this study, we compared the in vitro adipogenic differentiation potential of hDPSCs and hBMSCs. Both cell populations were cultured in adipogenic differentiation media, followed by specific lipid droplet staining to visualise cytodifferentiation. The in vitro differentiation assays were complemented with the expression of specific genes for adipogenesis and osteogenesis-dentinogenesis, as well as for genes involved in the Wnt and Notch signalling pathways. Our findings showed that hBMSCs formed adipocytes containing numerous and large lipid vesicles. In contrast to hBMSCs, hDPSCs did not acquire the typical adipocyte morphology and formed fewer lipid droplets of small size. Regarding the gene expression, cultured hBMSCs upregulated the expression of adipogenic-specific genes (e.g., PPARγ2, LPL, ADIPONECTIN). Furthermore, in these cells most Wnt pathway genes were downregulated, while the expression of NOTCH pathway genes (e.g., NOTCH1, NOTCH3, JAGGED1, HES5, HEY2) was upregulated. hDPSCs retained their osteogenic/dentinogenic molecular profile (e.g., RUNX2, ALP, COLIA1) and upregulated the WNT-specific genes but not the NOTCH pathway genes. Taken together, our in vitro findings demonstrate that hDPSCs are not entirely committed to the adipogenic fate, in contrast to the hBMSCs, which are more effective to fully differentiate into adipocytes.
Collapse
Affiliation(s)
- Isaac Maximiliano Bugueno
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, CH-8032 Zurich, Switzerland; (I.M.B.); (G.A.); (A.B.)
| | - Giuseppe Alastra
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, CH-8032 Zurich, Switzerland; (I.M.B.); (G.A.); (A.B.)
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Anamaria Balic
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, CH-8032 Zurich, Switzerland; (I.M.B.); (G.A.); (A.B.)
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, University of Zurich, CH-8032 Zurich, Switzerland;
| | - Thimios A. Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, CH-8032 Zurich, Switzerland; (I.M.B.); (G.A.); (A.B.)
| |
Collapse
|
3
|
Silva Barcelos EC, Naslavsky MS, Fernandes IS, Scliar MO, Yamamoto GL, Wang JYT, Bride L, de Sousa VP, Pimassoni LHS, Sportoletti P, de Paula F, von Zeidler SV, Duarte YAO, Passos-Bueno MR, Zatz M, Errera FIV. Genetic variation in NOTCH1 is associated with overweight and obesity in Brazilian elderly. Sci Rep 2024; 14:17096. [PMID: 39048597 PMCID: PMC11269636 DOI: 10.1038/s41598-024-65771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Excessive weight (overweight and obesity) is a common disorder involving genetic and environmental factors, associated with cardiovascular diseases, type-2 diabetes, and others. NOTCH1 is critical for the maintenance of stem cells and adult tissues, being reported as a key player in metabolism and adipogenesis in animals. Thus, we test the hypothesis that NOTCH1 Single Nucleotide Polymorphisms (SNPs) are associated with excessive weight. Participants from the census-based cohort SABE (Saúde, Bem Estar e Envelhecimento-Health, Well-Being, and Aging), carried out in the city of São Paulo-Brazil, were stratified into cases and controls according to BMI. We filter the SNPs located at the start and end positions of NOTCH1 and 50 Kb on both sides. We selected SNPs with minor allelic frequency (MAF) greater than or equal to 0.01 and Hardy-Weinberg equilibrium (p > 0.05) and r2 ≥ 0.8. We performed an association study with genotypes and haplotypes, as well as in silico functional analysis of the identified SNPs. We observed an association of the SNP rs9411207 with the risk of excessive weight, under log-additive model, and the genotype distribution showed an increased frequency of homozygous TT (OR 1.50, CI 1.20-1.88; p = 0.0002). The haplotype GAT constructed from this and other SNPs in high Linkage Disequilibrium was more frequent in excessive-weight individuals (p = 0.003). In silico analyses suggested that these SNPs are likely to affect the transcription of NOTCH1 and other genes involved in adipogenesis and metabolism. This is the first study reporting association between NOTCH1 SNPs and the risk of excessive weight. Considering the possibility of NOTCH1 modulation, additional population studies are important to replicate these data and confirm the usefulness of risk genotypes for management strategies of excessive weight.
Collapse
Affiliation(s)
- Estevão Carlos Silva Barcelos
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michel Satya Naslavsky
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Izadora Silveira Fernandes
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Marilia Oliveira Scliar
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Guilherme Lopes Yamamoto
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Laís Bride
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Valdemir Pereira de Sousa
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | - Paolo Sportoletti
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Flavia de Paula
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Department of Biological Sciences, Federal University of Espírito Santo, Avenida Fernando Ferrari, 514, Edifício Lídia Behar, Sala 105, Vitória, Espírito Santo, 29075-910, Brazil
| | - Sandra Ventorin von Zeidler
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Department of Pathology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Yeda Aparecida Oliveira Duarte
- School of Nursing, University of São Paulo, São Paulo, Brazil
- School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Flávia Imbroisi Valle Errera
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil.
- Department of Biological Sciences, Federal University of Espírito Santo, Avenida Fernando Ferrari, 514, Edifício Lídia Behar, Sala 105, Vitória, Espírito Santo, 29075-910, Brazil.
- Postgraduate Program in Biochemistry, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil.
| |
Collapse
|
4
|
Shi Z, Xiong S, Hu R, Wang Z, Park J, Qian Y, Wang J, Bhalla P, Velupally N, Song Q, Song Z, Jeon MS, Zhang KK, Xie L, Layden BT, Ong SG, Jiang Y. The Notch-PDGFRβ axis suppresses brown adipocyte progenitor differentiation in early post-natal mice. Dev Cell 2024; 59:1233-1251.e5. [PMID: 38569546 PMCID: PMC11874136 DOI: 10.1016/j.devcel.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/08/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
De novo brown adipogenesis holds potential in combating the epidemics of obesity and diabetes. However, the identity of brown adipocyte progenitor cells (APCs) and their regulation have not been extensively explored. Here, through in vivo lineage tracing and mouse modeling, we observed that platelet-derived growth factor receptor beta (PDGFRβ)+ pericytes give rise to developmental brown adipocytes but not to those in adult homeostasis. By contrast, T-box 18 (TBX18)+ pericytes contribute to brown adipogenesis throughout both developmental and adult stages, though in a depot-specific manner. Mechanistically, Notch inhibition in PDGFRβ+ pericytes promotes brown adipogenesis by downregulating PDGFRβ. Furthermore, inhibition of Notch signaling in PDGFRβ+ pericytes mitigates high-fat, high-sucrose (HFHS)-induced glucose and metabolic impairment in mice during their development and juvenile phases. Collectively, these findings show that the Notch/PDGFRβ axis negatively regulates developmental brown adipogenesis, and its repression promotes brown adipose tissue expansion and improves metabolic health.
Collapse
Affiliation(s)
- Zuoxiao Shi
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Shaolei Xiong
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Ruoci Hu
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zilai Wang
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Jooman Park
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Yanyu Qian
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Jaden Wang
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Pratibha Bhalla
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Nipun Velupally
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Qing Song
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Minsun Stacey Jeon
- Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX 77030, USA
| | - Ke Kurt Zhang
- Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX 77030, USA
| | - Linlin Xie
- Department of Nutrition, Texas A&M University, College Station, TX 77845, USA
| | - Brian T Layden
- Division of Endocrinology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; Jesse Brown Medical VA Medical Center, Chicago, IL 60612, USA
| | - Sang-Ging Ong
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; Division of Endocrinology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
5
|
Zhao X, Khan R, Hongfang G, Abbas Raza SH, Ayari-Akkari A, Othman G, Alshammari AM, Aloufi BH, Alabbosh KF, Alshammari WB, Linsen Z. Genetic variants of TORC1 gene promoter and their association with carcass quality and body measurement traits in Qinchuan beef cattle. Anim Biotechnol 2023; 34:2537-2545. [PMID: 35916659 DOI: 10.1080/10495398.2022.2105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In the present study, sequencing of TORC1 prompter region explored three SNPs at loci g.80G>T, g.93A>T, and g.1253G>A. The SNP1 produced GG, GT and TT, SNP2 AA, AT and TT, and SNP3 produced GG, GA and AA genotypes. Allelic and genotypic frequencies analysis exhibited that SNP1 is within Hardy-Weinberg equilibrium (HWE). All three SNPs were found highly polymorphic as PIC value (0.25 < PIC < 0.50). At loci g.80G>T the cattle with genotype GG showed significantly (P <0.01) larger body length (BL), Wither height (WH), Hip height (HH), Rump length (RL), Hip width (HW), Chest depth (CD), and Chest circumference (CC). The genotype AA at g.93A>T showed significantly (P< 0.01 and 0.05) Larger body length (BL), Wither height (WH), Hip height, Rump length (RL), Hip width (HW), Chest depth (CD), and Chest circumference (CC). Interestingly, the carcass quality parameters such as Ultrasound loin area (ULA) and Intramuscular fat percentage (IF%) was highest in genotype GG at loci g.1253G>A. These findings conclude that genotype GG at loci g.80 G>T and AA at loci g.93A>T could be used as genetic markers for body measurement and genotype GG at loci g.1253G>A for carcass quality traits of TORC1 gene in Qinchuan beef cattle.
Collapse
Affiliation(s)
- Xianlin Zhao
- College of Pharmacy, Heze University, Heze, China
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetic, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Guo Hongfang
- Medical College, Xuchang University, Xuchang, China
| | | | - Amel Ayari-Akkari
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Laboratory of Diversity, Management and Conservation of Biological Systems, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Gehan Othman
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Bandar Hamad Aloufi
- Department of Biology, College of Science, University of Hail, Ha'il, Saudi Arabia
| | | | - Wasimah B Alshammari
- Department of Biology, College of Science, University of Hail, Ha'il, Saudi Arabia
| | - Zan Linsen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Shi Z, Xiong S, Hu R, Wang Z, Park J, Qian Y, Wang J, Bhalla P, Velupally N, Song Q, Song Z, Layden BT, Jiang Y. The Notch-Pdgfrβ axis suppresses brown adipocyte progenitor differentiation in early postnatal mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.541839. [PMID: 37293108 PMCID: PMC10245810 DOI: 10.1101/2023.05.24.541839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
De novo brown adipogenesis holds potential in combating the epidemics of obesity and diabetes. However, the identity of brown adipocyte progenitor cells (APCs) and their regulation have not been extensively studied. Here through in vivo lineage tracing, we observed that PDGFRβ+ pericytes give rise to developmental brown adipocytes, but not to those in adult homeostasis. In contrast, TBX18+ pericytes contribute to brown adipogenesis throughout both developmental and adult stages, though in a depot-specific manner. Mechanistically, Notch inhibition in PDGFRβ+ pericytes promotes brown adipogenesis through the downregulation of PDGFRβ. Furthermore, inhibition of Notch signaling in PDGFRβ+ pericytes mitigates HFHS (high-fat, high-sucrose) induced glucose and metabolic impairment in both developmental and adult stages. Collectively, these findings show that the Notch/PDGFRβ axis negatively regulates developmental brown adipogenesis, and its repression promotes brown adipose tissue expansion and improves metabolic health. Highlights PDGFRβ+ pericytes act as an essential developmental brown APC.TBX18+ pericytes contribute to brown adipogenesis in a depot-specific manner.Inhibiting Notch-Pdgfrβ axis promotes brown APC adipogenesis.Enhanced postnatal brown adipogenesis improves metabolic health in adult stage.
Collapse
|
7
|
Lee SG, Chae J, Woo SM, Seo SU, Kim HJ, Kim SY, Schlaepfer DD, Kim IS, Park HS, Kwon TK, Nam JO. TGFBI remodels adipose metabolism by regulating the Notch-1 signaling pathway. Exp Mol Med 2023; 55:520-531. [PMID: 36854775 PMCID: PMC10073093 DOI: 10.1038/s12276-023-00947-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/17/2022] [Accepted: 01/17/2023] [Indexed: 03/02/2023] Open
Abstract
Extracellular matrix proteins are associated with metabolically healthy adipose tissue and regulate inflammation, fibrosis, angiogenesis, and subsequent metabolic deterioration. In this study, we demonstrated that transforming growth factor-beta (TGFBI), an extracellular matrix (ECM) component, plays an important role in adipose metabolism and browning during high-fat diet-induced obesity. TGFBI KO mice were resistant to adipose tissue hypertrophy, liver steatosis, and insulin resistance. Furthermore, adipose tissue from TGFBI KO mice contained a large population of CD11b+ and CD206+ M2 macrophages, which possibly control adipokine secretion through paracrine mechanisms. Mechanistically, we showed that inhibiting TGFBI-stimulated release of adipsin by Notch-1-dependent signaling resulted in adipocyte browning. TGFBI was physiologically bound to Notch-1 and stimulated its activation in adipocytes. Our findings revealed a novel protective effect of TGFBI deficiency in obesity that is realized via the activation of the Notch-1 signaling pathway.
Collapse
Affiliation(s)
- Seul Gi Lee
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jongbeom Chae
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Ha-Jeong Kim
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Sang-Yeob Kim
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, 05505, Republic of Korea
| | - David D Schlaepfer
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Center for Theragnosis, Biomedical Research Institute, Korea Institute Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hee-Sae Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea.
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Ju-Ock Nam
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
8
|
Wang Y, Li J, Hao P, Li J, Han R, Lin J, Li X. Integrated Whole-Exome and Transcriptome Sequencing Indicated Dysregulation of Cholesterol Metabolism in Eyelid Sebaceous Gland Carcinoma. Transl Vis Sci Technol 2023; 12:4. [PMID: 36735267 PMCID: PMC9907373 DOI: 10.1167/tvst.12.2.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Purpose To identify the molecular background of eyelid sebaceous gland carcinomas (SCs), we conducted the integrated whole-exome sequencing and transcriptome sequencing for eyelid SCs in this study. Methods The genetic alterations were studied by whole-exome sequencing, and the messenger RNA expression was studied using Oxford Nanopore Technologies (ONT) in five paired fresh eyelid SC tissues and adjacent normal tissues. Integrated analysis of exome and transcriptomic information was conducted for filtering candidate driver genes. Protein-protein interaction (PPI) network of filtered candidate genes was analyzed by STRING. The protein expression was verified by immunohistochemistry in 29 eyelid SCs and 17 compared normal sebaceous gland tissues. Results The average numbers of pathogenic somatic single-nucleotide variants (SNVs) and indels in eyelid SCs were 75 and 28, respectively. Tumor protein p53 (TP53), zinc finger protein 750 (ZNF750), filaggrin 2 (FLG2), valosin-containing protein (VCP), and zinc finger protein 717 (ZNF717) were recurrent mutated genes. A mean of 844 differentially expressed genes (DEGs) were upregulated, and 1401 DEGs were downregulated in SC samples. The intersection of DEG-based pathways and mutation-based pathways was mainly involved in microbial infection and inflammation, immunodeficiency, cancer, lipid metabolism, and the other pathways. The intersection of DEGs and mutated genes consisted of 55 genes, of which 15 genes formed a PPI network with 4 clusters. The PPI cluster composed of scavenger receptor class B member 1 (SCARB1), peroxisome proliferator-activated receptor γ (PPARG), peroxisome proliferator-activated receptor γ coactivator 1α (PPARGC1A) was involved in cholesterol metabolism. The expression of SCARB1 protein was found to be increased, whereas that of PPARG protein was decreased in eyelid SCs compared to that in the normal sebaceous glands. Conclusions Increased SCARB1 and decreased PPARG indicated that dysregulation of cholesterol metabolism might be involved in carcinogenesis of eyelid SCs. Translational Relevance The malfunction in cholesterol metabolism might advance our knowledge of the carcinogenesis of eyelid SCs.
Collapse
Affiliation(s)
- Yuchuan Wang
- Tianjin Eye Hospital, Tianjin Key lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China,Nankai University Affiliated Eye Hospital, Tianjin, China,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jun Li
- Tianjin Eye Hospital, Tianjin Key lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China,Nankai University Affiliated Eye Hospital, Tianjin, China,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Peng Hao
- Tianjin Eye Hospital, Tianjin Key lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China,Nankai University Affiliated Eye Hospital, Tianjin, China,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jing Li
- Tianjin Eye Hospital, Tianjin Key lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China,Nankai University Affiliated Eye Hospital, Tianjin, China,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Ruifang Han
- Tianjin Eye Hospital, Tianjin Key lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China,Nankai University Affiliated Eye Hospital, Tianjin, China,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jinyong Lin
- Tianjin Eye Hospital, Tianjin Key lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China,Nankai University Affiliated Eye Hospital, Tianjin, China,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xuan Li
- Tianjin Eye Hospital, Tianjin Key lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China,Nankai University Affiliated Eye Hospital, Tianjin, China,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
9
|
Schumacher M, DelCurto-Wyffels H, Thomson J, Boles J. Fat Deposition and Fat Effects on Meat Quality—A Review. Animals (Basel) 2022; 12:ani12121550. [PMID: 35739885 PMCID: PMC9219498 DOI: 10.3390/ani12121550] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Animal fat deposition has a major impact on the meat yield from individual carcasses as well the perceived eating quality for consumers. Understanding the impact of livestock production practices on fat deposition and the molecular mechanisms activated will lead to a better understanding of finishing livestock. This enhanced understanding will also lead to the increased efficiency and improved sustainability of practices for livestock production. The impact of fat storage on physiological functions and health are also important. This review brings together both the production practices and the current understanding of molecular processes associated with fat deposition. Abstract Growth is frequently described as weight gain over time. Researchers have used this information in equations to predict carcass composition and estimate fat deposition. Diet, species, breed, and gender all influence fat deposition. Alterations in diets result in changes in fat deposition as well as the fatty acid profile of meat. Additionally, the amount and composition of the fat can affect lipid stability and flavor development upon cooking. Fat functions not only as a storage of energy and contributor of flavor compounds, but also participates in signaling that affects many aspects of the physiological functions of the animal. Transcription factors that are upregulated in response to excess energy to be stored are an important avenue of research to improve the understanding of fat deposition and thus, the efficiency of production. Additionally, further study of the inflammation associated with increased fat depots may lead to a better understanding of finishing animals, production efficiency, and overall health.
Collapse
|
10
|
Characterization of a Read-through Fusion Transcript, BCL2L2-PABPN1, Involved in Porcine Adipogenesis. Genes (Basel) 2022; 13:genes13030445. [PMID: 35327999 PMCID: PMC8955228 DOI: 10.3390/genes13030445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/29/2022] Open
Abstract
cis-Splicing of adjacent genes (cis-SAGe) has been involved in multiple physiological and pathological processes in humans. However, to the best of our knowledge, there is no report of cis-SAGe in adipogenic regulation. In this study, a cis-SAGe product, BCL2L2–PABPN1 (BP), was characterized in fat tissue of pigs with RT-PCR and RACE method. BP is an in-frame fusion product composed of 333 aa and all the functional domains of both parents. BP is highly conserved among species and rich in splicing variants. BP was found to promote proliferation and inhibit differentiation of primary porcine preadipocytes. A total of 3074/44 differentially expressed mRNAs (DEmRs)/known miRNAs (DEmiRs) were identified in porcine preadipocytes overexpressing BP through RNA-Seq analysis. Both DEmRs and target genes of DEmiRs were involved in various fat-related pathways with MAPK and PI3K-Akt being the top enriched. PPP2CB, EGFR, Wnt5A and EHHADH were hub genes among the fat-related pathways identified. Moreover, ssc-miR-339-3p was found to be critical for BP regulating adipogenesis through integrated analysis of mRNA and miRNA data. The results highlight the role of cis-SAGe in adipogenesis and contribute to further revealing the mechanisms underlying fat deposition, which will be conductive to human obesity control.
Collapse
|
11
|
Wan X, Zhu L, Zhao L, Peng L, Xiong J, Yang W, Yuan J, Liang F, Zhang K, Chen K. hPER3 promotes adipogenesis via hHSP90AA1-mediated inhibition of Notch1 pathway. Cell Death Dis 2021; 12:301. [PMID: 33741899 PMCID: PMC7979882 DOI: 10.1038/s41419-021-03584-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
The period circadian regulator 3 (PER3) has been reported to play a negative role in human immortalized bone marrow-derived Scp-1 cells (iBMSCs) and patient adipose-derived stromal cells (PASCs) or a negative/positive role in mice adipogenesis. However, human PER3 (hPER3) was identified as a positive regulator of human adipose tissue-derived stromal cells (hADSCs) adipogenesis in this study. Silencing or overexpression of hPER3 in hADSCs inhibited and promoted adipogenesis in vitro. In vivo, the overexpression of hPER3 increased high-fat diet-induced inguinal white adipose tissue (iWAT) and epididymal white adipose tissue (eWAT) forms, increasing systemic glucose intolerance and insulin resistance. Molecularly, hPER3 does not interact with hPPARγ, but represses Notch1 signaling pathway to enhance adipogenesis by interacting with hHSP90AA1, which is able to combine with the promoter of hNotch1 and inactivate its expression. Thus, our study revealed hPER3 as a critical positive regulator of hADSCs adipogenesis, which was different from the other types of cells, providing a critical role of it in treating obesity.
Collapse
Affiliation(s)
- Xinxing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Liyong Zhu
- Department of Bariatric and Metabolic Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Liling Zhao
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Lin Peng
- Department of Nephrology, The First Hospital of Changsha, Changsha, Hunan, 410005, China
| | - Jing Xiong
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Wenjun Yang
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jingjing Yuan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Fang Liang
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Keke Zhang
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Ke Chen
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
12
|
Liu MC, Logan H, Newman JJ. Distinct roles for Notch1 and Notch3 in human adipose-derived stem/stromal cell adipogenesis. Mol Biol Rep 2020; 47:8439-8450. [PMID: 33021719 DOI: 10.1007/s11033-020-05884-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
The role of the Notch signaling pathway in adipogenesis has long been controversial as the action of individual Notch receptors appears to vary with experimental conditions. In this study, we offer some explanation for the observed contradictions by comparing the role of both Notch1 and Notch3 in regulating the expression of key adipogenic regulator, PPARγ, in human adipose-derived stem/stromal cells (hADSCs) during in vitro adipogenesis. Utilizing qRT-PCR, western blot, and immunofluorescence staining, we demonstrated that Notch3 was expressed prior to the formation of lipid vesicles, while Notch1 only appeared after vesicle formation. In addition, following the induction of adipogenesis, the levels of Notch1 intracellular domain in the nucleus were significantly reduced, while the siRNA-mediated loss of Notch1 reduced transcript but not protein levels of PPARγ. The knockdown of Notch3 led to increased expression of PPARγ during early adipogenesis that was not paralleled by a decreased expression of Hes1 and Hey1, but was accompanied by a marked decrease in the protein level of β-catenin, the key functional component of the canonical Wnt/β-catenin signaling pathway. This study deepens the understanding of the Notch pathway by clarifying the distinct roles of Notch1 and Notch3 during adipogenesis. We showed that Notch3 is involved in early adipogenic differentiation, while Notch1 functions later in the process. In addition, we begin to uncover the interaction between the Notch and Wnt signaling pathways that may offer novel therapeutic targets aimed at obesity and diabetes.
Collapse
Affiliation(s)
- Meng-Cheng Liu
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Hannah Logan
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Jamie J Newman
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, 71272, USA.
| |
Collapse
|
13
|
Huang D, Qiu J, Kuang S, Deng M. In Vitro Evaluation of Clinical Candidates of γ-Secretase Inhibitors: Effects on Notch Inhibition and Promoting Beige Adipogenesis and Mitochondrial Biogenesis. Pharm Res 2020; 37:185. [PMID: 32888109 PMCID: PMC8011272 DOI: 10.1007/s11095-020-02916-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Inhibition of Notch signaling has been recently demonstrated to promote beige adipocyte biogenesis. However, most γ-secretase inhibitors (GSIs) used to achieve pharmacological inhibition of Notch signaling are at the basic research or preclinical stage, limiting the translation of fundamental findings into clinical practice. This present study aimed to evaluate the potential of several clinical candidates of GSIs as browning agents for the treatment of obesity. METHODS Seven GSIs that are clinical candidates for the treatment of Alzheimer's disease or cancer were selected and their impacts on Notch inhibition as well as promoting beige biogenesis were compared using in vitro culture of 3T3-L1 preadipocytes. RESULTS Four compounds (i.e.RO4929097, PF-03084014, LY3039478, and BMS-906024) that efficiently inhibited the expression of Notch target genes in 3T3-L1 preadipocytes were identified. Moreover, these compounds were optimized for dose-dependent effects at three gradient concentrations (0.5, 1, and 10 μM) to promote beige adipogenesis and mitochondrial biogenesis in 3T3-L1 preadipocytes without causing severe cytotoxicity. CONCLUSIONS Our findings not only highlight the potential of cross-therapeutic application of these GSIs for obesity treatment via inhibition of γ-secretase-mediated processing of Notch signaling, but also provide important experimental evidence to support further design and development of clinically translatable Notch-inhibiting drug delivery systems.
Collapse
Affiliation(s)
- Di Huang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Jiamin Qiu
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| | - Meng Deng
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA.
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
14
|
Rodríguez-Cano MM, González-Gómez MJ, Sánchez-Solana B, Monsalve EM, Díaz-Guerra MJM, Laborda J, Nueda ML, Baladrón V. NOTCH Receptors and DLK Proteins Enhance Brown Adipogenesis in Mesenchymal C3H10T1/2 Cells. Cells 2020; 9:cells9092032. [PMID: 32899774 PMCID: PMC7565505 DOI: 10.3390/cells9092032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022] Open
Abstract
The NOTCH family of receptors and ligands is involved in numerous cell differentiation processes, including adipogenesis. We recently showed that overexpression of each of the four NOTCH receptors in 3T3-L1 preadipocytes enhances adipogenesis and modulates the acquisition of the mature adipocyte phenotype. We also revealed that DLK proteins modulate the adipogenesis of 3T3-L1 preadipocytes and mesenchymal C3H10T1/2 cells in an opposite way, despite their function as non-canonical inhibitory ligands of NOTCH receptors. In this work, we used multipotent C3H10T1/2 cells as an adipogenic model. We used standard adipogenic procedures and analyzed different parameters by using quantitative-polymerase chain reaction (qPCR), quantitative reverse transcription-polymerase chain reaction (qRT-PCR), luciferase, Western blot, and metabolic assays. We revealed that C3H10T1/2 multipotent cells show higher levels of NOTCH receptors expression and activity and lower Dlk gene expression levels than 3T3-L1 preadipocytes. We found that the overexpression of NOTCH receptors enhanced C3H10T1/2 adipogenesis levels, and the overexpression of NOTCH receptors and DLK (DELTA-like homolog) proteins modulated the conversion of cells towards a brown-like adipocyte phenotype. These and our prior results with 3T3-L1 preadipocytes strengthen the idea that, depending on the cellular context, a precise and highly regulated level of global NOTCH signaling is necessary to allow adipogenesis and determine the mature adipocyte phenotype.
Collapse
Affiliation(s)
- María-Milagros Rodríguez-Cano
- Departamento de Química Inorgánica, Laboratorio de Bioquímica y Biología Molecular, Facultad de Farmacia/CRIB/Unidad de Biomedicina, Orgánica y Bioquímica, Universidad de Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain; (M.-M.R.-C.); (M.-J.G.-G.)
| | - María-Julia González-Gómez
- Departamento de Química Inorgánica, Laboratorio de Bioquímica y Biología Molecular, Facultad de Farmacia/CRIB/Unidad de Biomedicina, Orgánica y Bioquímica, Universidad de Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain; (M.-M.R.-C.); (M.-J.G.-G.)
| | - Beatriz Sánchez-Solana
- National Institutes of Health, Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA;
| | - Eva-María Monsalve
- Departamento de Química Inorgánica, Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina de Albacete/CRIB/Unidad de Biomedicina, Orgánica y Bioquímica, Universidad de Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain; (E.-M.M.); (M.-J.M.D.-G.)
| | - María-José M. Díaz-Guerra
- Departamento de Química Inorgánica, Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina de Albacete/CRIB/Unidad de Biomedicina, Orgánica y Bioquímica, Universidad de Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain; (E.-M.M.); (M.-J.M.D.-G.)
| | - Jorge Laborda
- Departamento de Química Inorgánica, Laboratorio de Bioquímica y Biología Molecular, Facultad de Farmacia/CRIB/Unidad de Biomedicina, Orgánica y Bioquímica, Universidad de Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain; (M.-M.R.-C.); (M.-J.G.-G.)
- Correspondence: (J.L.); (M.-L.N.); (V.B.); Tel.: +34-967-599-200 (ext. 2926) (V.B.); Fax: +34-967-599-327 (V.B.)
| | - María-Luisa Nueda
- Departamento de Química Inorgánica, Laboratorio de Bioquímica y Biología Molecular, Facultad de Farmacia/CRIB/Unidad de Biomedicina, Orgánica y Bioquímica, Universidad de Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain; (M.-M.R.-C.); (M.-J.G.-G.)
- Correspondence: (J.L.); (M.-L.N.); (V.B.); Tel.: +34-967-599-200 (ext. 2926) (V.B.); Fax: +34-967-599-327 (V.B.)
| | - Victoriano Baladrón
- Departamento de Química Inorgánica, Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina de Albacete/CRIB/Unidad de Biomedicina, Orgánica y Bioquímica, Universidad de Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain; (E.-M.M.); (M.-J.M.D.-G.)
- Correspondence: (J.L.); (M.-L.N.); (V.B.); Tel.: +34-967-599-200 (ext. 2926) (V.B.); Fax: +34-967-599-327 (V.B.)
| |
Collapse
|
15
|
Nolte MJ, Jing P, Dewey CN, Payseur BA. Giant Island Mice Exhibit Widespread Gene Expression Changes in Key Metabolic Organs. Genome Biol Evol 2020; 12:1277-1301. [PMID: 32531054 PMCID: PMC7487164 DOI: 10.1093/gbe/evaa118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2020] [Indexed: 12/02/2022] Open
Abstract
Island populations repeatedly evolve extreme body sizes, but the genomic basis of this pattern remains largely unknown. To understand how organisms on islands evolve gigantism, we compared genome-wide patterns of gene expression in Gough Island mice, the largest wild house mice in the world, and mainland mice from the WSB/EiJ wild-derived inbred strain. We used RNA-seq to quantify differential gene expression in three key metabolic organs: gonadal adipose depot, hypothalamus, and liver. Between 4,000 and 8,800 genes were significantly differentially expressed across the evaluated organs, representing between 20% and 50% of detected transcripts, with 20% or more of differentially expressed transcripts in each organ exhibiting expression fold changes of at least 2×. A minimum of 73 candidate genes for extreme size evolution, including Irs1 and Lrp1, were identified by considering differential expression jointly with other data sets: 1) genomic positions of published quantitative trait loci for body weight and growth rate, 2) whole-genome sequencing of 16 wild-caught Gough Island mice that revealed fixed single-nucleotide differences between the strains, and 3) publicly available tissue-specific regulatory elements. Additionally, patterns of differential expression across three time points in the liver revealed that Arid5b potentially regulates hundreds of genes. Functional enrichment analyses pointed to cell cycling, mitochondrial function, signaling pathways, inflammatory response, and nutrient metabolism as potential causes of weight accumulation in Gough Island mice. Collectively, our results indicate that extensive gene regulatory evolution in metabolic organs accompanied the rapid evolution of gigantism during the short time house mice have inhabited Gough Island.
Collapse
Affiliation(s)
- Mark J Nolte
- Laboratory of Genetics, University of Wisconsin - Madison
| | - Peicheng Jing
- Laboratory of Genetics, University of Wisconsin - Madison
| | - Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin - Madison
| |
Collapse
|
16
|
The Role of Pref-1 during Adipogenic Differentiation: An Overview of Suggested Mechanisms. Int J Mol Sci 2020; 21:ijms21114104. [PMID: 32526833 PMCID: PMC7312882 DOI: 10.3390/ijms21114104] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 12/15/2022] Open
Abstract
Obesity contributes significantly to the global health burden. A better understanding of adipogenesis, the process of fat formation, may lead to the discovery of novel treatment strategies. However, it is of concern that the regulation of adipocyte differentiation has predominantly been studied using the murine 3T3-L1 preadipocyte cell line and murine experimental animal models. Translation of these findings to the human setting requires confirmation using experimental models of human origin. The ability of mesenchymal stromal/stem cells (MSCs) to differentiate into adipocytes is an attractive model to study adipogenesis in vitro. Differences in the ability of MSCs isolated from different sources to undergo adipogenic differentiation, may be useful in investigating elements responsible for regulating adipogenic differentiation potential. Genes involved may be divided into three broad categories: early, intermediate and late-stage regulators. Preadipocyte factor-1 (Pref-1) is an early negative regulator of adipogenic differentiation. In this review, we briefly discuss the adipogenic differentiation potential of MSCs derived from two different sources, namely adipose-derived stromal/stem cells (ASCs) and Wharton’s Jelly derived stromal/stem cells (WJSCs). We then discuss the function and suggested mechanisms of action of Pref-1 in regulating adipogenesis, as well as current findings regarding Pref-1’s role in human adipogenesis.
Collapse
|
17
|
Zohora FT, Aldebs AI, Nosoudi N, Singh SP, Ramirez-Vick JE. Gene Expression Profiling of Human Adipose Tissue Stem Cells during 2D versus 3D Adipogenesis. Cells Tissues Organs 2020; 208:113-133. [PMID: 32464628 DOI: 10.1159/000507187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/10/2020] [Indexed: 11/19/2022] Open
Abstract
Much of the current understanding on molecular and cellular events of adipose developmental biology comes from monolayer cell culture models using preadipocyte cell lines, although in vivo adipose tissue consists of a much more complex three-dimensional microenvironment of diverse cell types, extracellular network, and tissue-specific morphological and functional features. Added to this fact, the preadipocytes, on which the adipogenesis mechanisms are mostly explored, possess some serious limitations (e.g., time of initial subculture and adipogenic differentiation time), which, perhaps, can efficiently be replaced with progenitor cells such as adipose tissue-derived stem cells (ASCs). With the objective of developing a better in vitro model for adipose developmental biology, this project involves gene expression profiling of human ASCs (hASCs) during their differentiation to adipocytes in a 2D versus 3D culture model. This transcriptional-level analysis revealed that gene expression patterns of adipogenesis-induced hASCs in a 3D self-assembled polypeptide hydrogel are relatively different from the 2D monolayered cells on plastic hard substrate. Moreover, analysis of adipogenic lineage progression 9 days after adipogenic induction shows earlier differentiation of hASCs in 2D over their 3D counterparts. However, differentiation in 2D shows some unexpected behavior in terms of gene expression, which does not seem to be related to adipogenic lineage specification. Since hASCs are already being used in clinical trials due to their therapeutic potential, it is important to have a clear understanding of the molecular mechanisms in an in vivo model microenvironment like the one presented here.
Collapse
Affiliation(s)
- Fatema Tuj Zohora
- Department of Biomedical, Industrial, and Human Factors Engineering, Wright State University, Dayton, Ohio, USA
| | - Alyaa Isam Aldebs
- Department of Biomedical, Industrial, and Human Factors Engineering, Wright State University, Dayton, Ohio, USA
| | - Nasim Nosoudi
- Biomedical Engineering Program,Marshall University, Huntington, West Virginia, USA
| | - Surinder Pal Singh
- CSIR-National Physical Laboratory, Dr. K.S. Krishanan Marg, New Delhi, India
| | - Jaime Eduardo Ramirez-Vick
- Department of Biomedical, Industrial, and Human Factors Engineering, Wright State University, Dayton, Ohio, USA,
| |
Collapse
|
18
|
Sangphech N, Keawvilai P, Palaga T. Notch signaling increases PPARγ protein stability and enhances lipid uptake through AKT in IL-4-stimulated THP-1 and primary human macrophages. FEBS Open Bio 2020; 10:1082-1095. [PMID: 32274896 PMCID: PMC7262939 DOI: 10.1002/2211-5463.12858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 03/09/2020] [Accepted: 04/02/2020] [Indexed: 01/09/2023] Open
Abstract
Notch signaling and nuclear receptor PPARγ are involved in macrophage polarization, but cross talk between them has not been reported in macrophages. In this study, the effect of Notch signaling on PPARγ in IL‐4‐stimulated human macrophages (M(IL‐4)) was investigated using THP‐1‐derived macrophages and human monocyte‐derived macrophages as models. Human M(IL‐4) increased the expression of JAGGED1 and activated Notch signaling. Overexpression of Notch1 intracellular domain (NIC1) increased PPARγ expression, while inhibiting Notch signaling decreased PPARγ levels in M(IL‐4). NIC1 overexpression in THP‐1‐derived macrophages increased PPARγ protein stability by delaying its proteasome‐mediated degradation, but did not affect its mRNA. Phosphorylation of AKT was enhanced in NIC1‐overexpressing cells, and a specific AKT inhibitor reduced the level of PPARγ. NIC1‐overexpressing THP‐1 cells exhibited increased CD36 levels via activation of PPARγ, resulting in enhanced intracellular lipid accumulation. In summary, this study provides evidence linking Notch signaling and PPARγ via AKT in M(IL‐4).
Collapse
Affiliation(s)
- Naunpun Sangphech
- Inter-disciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Pornlapat Keawvilai
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, Thailand.,Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
19
|
Zhou S, Chen S, Jiang Q, Pei M. Determinants of stem cell lineage differentiation toward chondrogenesis versus adipogenesis. Cell Mol Life Sci 2019; 76:1653-1680. [PMID: 30689010 PMCID: PMC6456412 DOI: 10.1007/s00018-019-03017-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/10/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022]
Abstract
Adult stem cells, also termed as somatic stem cells, are undifferentiated cells, detected among differentiated cells in a tissue or an organ. Adult stem cells can differentiate toward lineage specific cell types of the tissue or organ in which they reside. They also have the ability to differentiate into mature cells of mesenchymal tissues, such as cartilage, fat and bone. Despite the fact that the balance has been comprehensively scrutinized between adipogenesis and osteogenesis and between chondrogenesis and osteogenesis, few reviews discuss the relationship between chondrogenesis and adipogenesis. In this review, the developmental and transcriptional crosstalk of chondrogenic and adipogenic lineages are briefly explored, followed by elucidation of signaling pathways and external factors guiding lineage determination between chondrogenic and adipogenic differentiation. An in-depth understanding of overlap and discrepancy between these two mesenchymal tissues in lineage differentiation would benefit regeneration of high-quality cartilage tissues and adipose tissues for clinical applications.
Collapse
Affiliation(s)
- Sheng Zhou
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
- Department of Sports Medicine and Adult Reconstructive Surgery, School of Medicine, Drum Tower Hospital, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Song Chen
- Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, 610083, Sichuan, People's Republic of China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, School of Medicine, Drum Tower Hospital, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA.
- Robert C. Byrd Health Sciences Center, WVU Cancer Institute, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
20
|
Nueda ML, González-Gómez MJ, Rodríguez-Cano MM, Monsalve EM, Díaz-Guerra MJM, Sánchez-Solana B, Laborda J, Baladrón V. DLK proteins modulate NOTCH signaling to influence a brown or white 3T3-L1 adipocyte fate. Sci Rep 2018; 8:16923. [PMID: 30446682 PMCID: PMC6240076 DOI: 10.1038/s41598-018-35252-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 11/01/2018] [Indexed: 02/05/2023] Open
Abstract
The role of NOTCH signaling in adipogenesis is highly controversial, with data indicating null, positive or negative effects on this differentiation process. We hypothesize that these contradictory results could be due to the different global NOTCH signaling levels obtained in different experimental settings, because of a specific modulation of NOTCH receptors’ activity by their ligands. We have previously demonstrated that DLK1 and DLK2, two non-canonical NOTCH1 ligands that inhibit NOTCH1 signaling in a dose-dependent manner, modulate the adipogenesis process of 3T3-L1 preadipocytes. In this work, we show that over-expression of any of the four NOTCH receptors enhanced adipogenesis of 3T3-L1 preadipocytes. We also determine that DLK proteins inhibit not only the activity of NOTCH1, but also the activity of NOTCH2, 3 and 4 receptors to different degrees. Interestingly, we have observed, by different approaches, that NOTCH1 over-expression seems to stimulate the differentiation of 3T3-L1 cells towards a brown-like adipocyte phenotype, whereas cells over-expressing NOTCH2, 3 or 4 receptors or DLK proteins would rather differentiate towards a white-like adipocyte phenotype. Finally, our data also demonstrate a complex feed-back mechanism involving Notch and Dlk genes in the regulation of their expression, which suggest that a precise level of global NOTCH expression and NOTCH-dependent transcriptional activity of specific targets could be necessary to determine the final phenotype of 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- María-Luisa Nueda
- Área de Bioquímica y Biología Molecular, Dpto. Química Inorgánica y Bioquímica, Facultad de Farmacia/CRIB/Unidad de Biomedicina, Universidad de Castilla-La Mancha/CSIC. C/Almansa 14, 02008, Albacete, Spain
| | - María-Julia González-Gómez
- Área de Bioquímica y Biología Molecular, Dpto. Química Inorgánica y Bioquímica, Facultad de Farmacia/CRIB/Unidad de Biomedicina, Universidad de Castilla-La Mancha/CSIC. C/Almansa 14, 02008, Albacete, Spain
| | - María-Milagros Rodríguez-Cano
- Área de Bioquímica y Biología Molecular, Dpto. Química Inorgánica y Bioquímica, Facultad de Farmacia/CRIB/Unidad de Biomedicina, Universidad de Castilla-La Mancha/CSIC. C/Almansa 14, 02008, Albacete, Spain
| | - Eva-María Monsalve
- Área de Bioquímica y Biología Molecular, Dpto. Química Inorgánica, Orgánica y Bioquímica, Facultad de Medicina de Albacete/CRIB/Unidad de Biomedicina, Universidad de Castilla-La Mancha/CSIC, C/Almansa 14, 02008, Albacete, Spain
| | - María José M Díaz-Guerra
- Área de Bioquímica y Biología Molecular, Dpto. Química Inorgánica, Orgánica y Bioquímica, Facultad de Medicina de Albacete/CRIB/Unidad de Biomedicina, Universidad de Castilla-La Mancha/CSIC, C/Almansa 14, 02008, Albacete, Spain
| | - Beatriz Sánchez-Solana
- Laboratory of Cellular Oncology, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jorge Laborda
- Área de Bioquímica y Biología Molecular, Dpto. Química Inorgánica y Bioquímica, Facultad de Farmacia/CRIB/Unidad de Biomedicina, Universidad de Castilla-La Mancha/CSIC. C/Almansa 14, 02008, Albacete, Spain
| | - Victoriano Baladrón
- Área de Bioquímica y Biología Molecular, Dpto. Química Inorgánica, Orgánica y Bioquímica, Facultad de Medicina de Albacete/CRIB/Unidad de Biomedicina, Universidad de Castilla-La Mancha/CSIC, C/Almansa 14, 02008, Albacete, Spain.
| |
Collapse
|
21
|
Abstract
During the last decades, research on adipose tissues has spread in parallel with the extension of obesity. Several observations converged on the idea that adipose tissues are organized in a large organ with endocrine and plastic properties. Two parenchymal components: white (WATs) and brown adipose tissues (BATs) are contained in subcutaneous and visceral compartments. Although both have endocrine properties, their function differs: WAT store lipids to allow intervals between meals, BAT burns lipids for thermogenesis. In spite of these opposite functions, they share the ability for reciprocal reversible transdifferentiation to tackle special physiologic needs. Thus, chronic need for thermogenesis induces browning and chronic positive energy balance induce whitening. Lineage tracing and data from explant studies strongly suggest other remodeling properties of this organ. During pregnancy and lactation breast WAT transdifferentiates into milk-secreting glands, composed by cells with abundant cytoplasmic lipids (pink adipocytes) and in the postlactation period pink adipocytes transdifferentiate back into WAT and BAT. The plastic properties of mature adipocytes are supported also by a liposecretion process in vitro where adult cell in culture transdifferentiate to differentiated fibroblast-like elements able to give rise to different phenotypes (rainbow adipocytes). In addition, the inflammasome system is activated in stressed adipocytes from obese adipose tissue. These adipocytes die and debris are reabsorbed by macrophages inducing a chronic low-grade inflammation, potentially contributing to insulin resistance and T2 diabetes. Thus, the plastic properties of this organ could open new therapeutic perspectives in the obesity-related metabolic disease and in breast pathologies. © 2018 American Physiological Society. Compr Physiol 8:1357-1431, 2018.
Collapse
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
22
|
Appari M, Channon KM, McNeill E. Metabolic Regulation of Adipose Tissue Macrophage Function in Obesity and Diabetes. Antioxid Redox Signal 2018; 29:297-312. [PMID: 28661198 PMCID: PMC6012981 DOI: 10.1089/ars.2017.7060] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Obesity and diabetes are associated with chronic activation of inflammatory pathways that are important mechanistic links between insulin resistance (IR), type 2 diabetes (T2D), and cardiovascular disease pathogenesis. The development of these metabolic diseases is associated with changes in both the number and phenotype of adipose tissue macrophages (ATMs). Emerging lines of evidence have shown that ATMs release proinflammatory cytokines similar to classically activated M1 macrophages, which directly contribute to IR or T2D. In contrast, adipose tissue (AT) from lean healthy individuals contains macrophages with a less inflammatory M2 phenotype. Recent Advances: Recent research has shown that macrophage phenotype is linked to profound changes in macrophage cellular metabolism. CRITICAL ISSUES This review focuses on the role of macrophages in AT inflammation and obesity, and the metabolic changes in macrophage function that occur with activation that underpin their role in the pathogenesis of IR and T2D. We highlight current targets for altering macrophage metabolism from both within the field of metabolic disease and AT biology and more widely within inflammatory biology. FUTURE DIRECTIONS As our knowledge of macrophage metabolic programming in AT builds, there will be increasing scope for targeting this aspect of macrophage biology as a therapeutic strategy in metabolic diseases. Antioxid. Redox Signal. 29, 297-312.
Collapse
Affiliation(s)
- Mahesh Appari
- 1 Division of Cardiovascular Medicine, British Heart Foundation Centre for Research Excellence, John Radcliffe Hospital, University of Oxford , Oxford, United Kingdom .,2 Wellcome Trust Centre for Human Genetics, University of Oxford , Oxford, United Kingdom
| | - Keith M Channon
- 1 Division of Cardiovascular Medicine, British Heart Foundation Centre for Research Excellence, John Radcliffe Hospital, University of Oxford , Oxford, United Kingdom .,2 Wellcome Trust Centre for Human Genetics, University of Oxford , Oxford, United Kingdom
| | - Eileen McNeill
- 1 Division of Cardiovascular Medicine, British Heart Foundation Centre for Research Excellence, John Radcliffe Hospital, University of Oxford , Oxford, United Kingdom .,2 Wellcome Trust Centre for Human Genetics, University of Oxford , Oxford, United Kingdom
| |
Collapse
|
23
|
Wang Q, Qi R, Liu H, Wang J, Huang W, Yang F, Huang J. Effects of Conjugated Linoleic Acid Supplementation on the Expression Profile of miRNAs in Porcine Adipose Tissue. Genes (Basel) 2017; 8:genes8100271. [PMID: 29027986 PMCID: PMC5664121 DOI: 10.3390/genes8100271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022] Open
Abstract
Conjugated linoleic acids (CLAs) play a major role in adipocyte differentiation and lipid metabolism in animals. MicroRNAs (miRNAs) appear to be involved in many biological processes in adipose tissue. However, the specific influence on miRNAs by CLA supplementation in porcine adipose tissue remains unclear. Thus, we continuously added 1.5% CLA to the pig diet from the embryo stage to the finishing period and conducted a high-throughput sequencing approach to analyse the changes in adipose tissue miRNAs. We identified 283 known porcine miRNAs, and 14 miRNAs were differentially expressed in response to CLA treatment. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the targets of the 14 differentially expressed miRNAs were involved in the Wnt signalling pathway. The CLA treatment downregulated the gene expression of PPARγ, C/EBPα, FAS, and FATP1 in both subcutaneous and abdominal fat tissues; the analysis showed that ssc-miR-21 expression was significantly correlated with PPARγ expression (p < 0.05), and speculated that ssc-miR-21 might influence adipogenesis through PPARγ. In conclusion, our study analysed the miRNA profiles in porcine adipose tissues by CLA treatment, and demonstrated that miRNAs are important regulators of fat lipogenesis. This study provides valuable information for the molecular regulatory mechanism of CLA on adipose tissue.
Collapse
Affiliation(s)
- Qi Wang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China.
| | - Renli Qi
- Chongqing Academy of Animal Sciences, Chongqing 402460, China.
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China.
| | - Hong Liu
- Chongqing Academy of Animal Sciences, Chongqing 402460, China.
| | - Jing Wang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China.
| | - Wenming Huang
- The Department of Animal Husbandry, Rongchang Campus, Southwest University, Rongchang, Chongqing 402460, China.
| | - Feiyun Yang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China.
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China.
| | - Jinxiu Huang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China.
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China.
| |
Collapse
|
24
|
Liu H, Xiong Y, Zhu X, Gao H, Yin S, Wang J, Chen G, Wang C, Xiang L, Wang P, Fang J, Zhang R, Yang L. Icariin improves osteoporosis, inhibits the expression of PPARγ, C/EBPα, FABP4 mRNA, N1ICD and jagged1 proteins, and increases Notch2 mRNA in ovariectomized rats. Exp Ther Med 2017; 13:1360-1368. [PMID: 28413478 PMCID: PMC5377361 DOI: 10.3892/etm.2017.4128] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/06/2016] [Indexed: 12/23/2022] Open
Abstract
Icariin (ICA) is a pharmacologically active flavonoid glycoside that shows promise in the treatment and prevention of osteoporosis (OP). However, the mechanisms underlying the anti-osteoporotic effects of ICA remain largely unclear. The present study used quantitative polymerase chain reaction, western blot and immunohistochemical analysis to examine the effects of ICA on several key targets in the Notch signaling pathway in bone tissue in ovariectomized rats. It was observed that ICA has a pronounced beneficial effect on OP rats and inhibits the expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα) and fatty acid-binding protein 4 (FABP4) mRNA. In addition, it was identified that ICA downregulates the expression of notch1 intracellular domain (N1ICD) and Jagged1 proteins in bone tissue, and suppresses the effect of N1ICD on Notch2 mRNA expression. It is proposed that ICA inhibits the differentiation of mesenchymal stem cells into adipocytes by inhibiting the expression of PPARγ, C/EBPα and FABP4 mRNA via the Notch signaling pathway. In addition, it is proposed that ICA inhibits the expression of Notch2 mRNA by suppressing the effect of N1ICD. In conclusion, the results provide further mechanistic evidence for the clinical efficacy of ICA in the treatment of OP.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Traditional Chinese Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yingquan Xiong
- Department of Traditional Chinese Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xiaofeng Zhu
- Department of Traditional Chinese Medicine, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Han Gao
- Department of Traditional Chinese Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Sujuan Yin
- Department of Traditional Chinese Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jiefang Wang
- Department of Traditional Chinese Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Guangming Chen
- Department of Traditional Chinese Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Chaopeng Wang
- Department of Traditional Chinese Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Lu Xiang
- Department of Traditional Chinese Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Panpan Wang
- Department of Traditional Chinese Medicine, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Ji Fang
- Department of Traditional Chinese Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Ronghua Zhang
- Department of Traditional Chinese Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Li Yang
- Department of Traditional Chinese Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
25
|
Shan T, Liu J, Wu W, Xu Z, Wang Y. Roles of Notch Signaling in Adipocyte Progenitor Cells and Mature Adipocytes. J Cell Physiol 2017; 232:1258-1261. [PMID: 27869309 DOI: 10.1002/jcp.25697] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 01/05/2023]
Abstract
Adipose tissues, composed with mature adipocytes and preadipocytic stromal/stem cells, play crucial roles in whole body energy metabolism and regenerative medicine. Mature adipocytes are derived and differentiated from mesenchymal stem cells (MSCs) or preadipocytes. This differentiation process, also called adipogenesis, is regulated by several signaling pathways and transcription factors. Notch1 signaling is a highly conserved pathway that is indispensable for stem cell hemostasis and tissue development. In adipocyte progenitor cells, Notch1 signaling regulates the adipogenesis process including proliferation and differentiation of the adipocyte progenitor cells in vitro. Notably, the roles of Notch1 signaling in beige adipocytes formation, adipose development, and function, and the whole body energy metabolism have been recently reported. Here, we mainly review and discuss the roles of Notch1 signaling in adipogenesis in vitro as well as in beige adipocytes formation, adipocytes dedifferentiation, and function in vivo. J. Cell. Physiol. 232: 1258-1261, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tizhong Shan
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Jiaqi Liu
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Weiche Wu
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Ziye Xu
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Yizhen Wang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
26
|
Wang YG, Qu XH, Yang Y, Han XG, Wang L, Qiao H, Fan QM, Tang TT, Dai KR. AMPK promotes osteogenesis and inhibits adipogenesis through AMPK-Gfi1-OPN axis. Cell Signal 2016; 28:1270-1282. [PMID: 27283242 DOI: 10.1016/j.cellsig.2016.06.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/27/2016] [Accepted: 06/05/2016] [Indexed: 12/16/2022]
Abstract
Several metabolic, genetic and oncogenic bone diseases share the common pathological phenotype of defective bone marrow stromal cell (BMSC) differentiation. Many reports in bone science in the past several years have suggested that the skeleton also has an endocrine role. The role of AMP-activated protein kinase (AMPK) as an energy metabolism sensor and how it regulates BMSC differentiation is largely unknown. In the current study, we used AMPK agonists to activate AMPK in MC3T3-E1 cells to investigate the functional roles of AMPK in osteogenesis. However, metformin and AICAR failed to activate AMPK consistently. Therefore, we established MC3T3-E1 and 3T3-L1 cell models of AMPK α subunit overexpression through lentivirus vector, in which AMPK was overactivated. AMPK hyperactivation stimulated MC3T3-E1 cell osteogenesis and inhibited 3T3-L1 cell adipogenesis. Osteopontin (OPN) mediated AMPK regulation of osteogenesis and adipogenesis. Furthermore, we provided evidence that the transcriptional repressor growth factor independence-1 (Gfi1) was downregulated and disassociated from the OPN promoter in response to AMPK activation, resulting in the upregulation of OPN. Overexpression of wild-type and dominant-negative Gfi1 modulated MC3T3-E1 osteogenesis and 3T3-L1 adipogenesis. Further evidence suggested that AMPK enhanced ectopic bone formation of MC3T3-E1 cells through the AMPK-Gfi1-OPN axis. In conclusion, AMPK was sufficient to stimulate osteogenesis of MC3T3-E1 cells and inhibit adipogenesis of 3T3-L1 cells through the AMPK-Gfi1-OPN axis. These findings helped elucidate the molecular mechanisms underlying AMPK regulation of osteogenesis and adipogenesis.
Collapse
Affiliation(s)
- Yu-Gang Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Xin-Hua Qu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Ying Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Xiu-Guo Han
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Lei Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Han Qiao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Qi-Ming Fan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China.
| | - Ting-Ting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China.
| | - Ke-Rong Dai
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China; The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China.
| |
Collapse
|
27
|
Abstract
Notch 1 to 4 receptors are important determinants of cell fate and function, and Notch signaling plays an important role in skeletal development and bone remodeling. After direct interactions with ligands of the Jagged and Delta-like families, a series of cleavages release the Notch intracellular domain (NICD), which translocates to the nucleus where it induces transcription of Notch target genes. Classic gene targets of Notch are hairy and enhancer of split (Hes) and Hes-related with YRPW motif (Hey). In cells of the osteoblastic lineage, Notch activation inhibits cell differentiation and causes cancellous bone osteopenia because of impaired bone formation. In osteocytes, Notch1 has distinct effects that result in an inhibition of bone resorption secondary to an induction of osteoprotegerin and suppression of sclerostin with a consequent enhancement of Wnt signaling. Notch1 inhibits, whereas Notch2 enhances, osteoclastogenesis and bone resorption. Congenital disorders of loss- and gain-of-Notch function present with severe clinical manifestations, often affecting the skeleton. Enhanced Notch signaling is associated with osteosarcoma, and Notch can influence the invasive potential of carcinoma of the breast and prostate. Notch signaling can be controlled by the use of inhibitors of Notch activation, small peptides that interfere with the formation of a transcriptional complex, or antibodies to the extracellular domain of specific Notch receptors or to Notch ligands. In conclusion, Notch plays a critical role in skeletal development and homeostasis, and serious skeletal disorders can be attributed to alterations in Notch signaling.
Collapse
Affiliation(s)
- Stefano Zanotti
- Departments of Orthopaedic Surgery and Medicine and the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| | - Ernesto Canalis
- Departments of Orthopaedic Surgery and Medicine and the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| |
Collapse
|
28
|
Mi L, Chen Y, Zheng X, Li Y, Zhang Q, Mo D, Yang G. MicroRNA-139-5p Suppresses 3T3-L1 Preadipocyte Differentiation Through Notch and IRS1/PI3K/Akt Insulin Signaling Pathways. J Cell Biochem 2016; 116:1195-204. [PMID: 25536154 DOI: 10.1002/jcb.25065] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 12/18/2014] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) participate in the regulation of adipogenesis. Identification of the full repertoire of miRNAs expressed in adipose tissue is likely to significantly improve our understanding of adipose tissue growth and development. Here, miR-139-5p was identified as an inhibitor of 3T3-L1 adipocyte differentiation with significantly down-regulating the expression levels of adipogenic marker genes PPAR γ (P < 0.01), aP2 (P < 0.01) and FAS (P < 0.01). Importantly, flow cytometry and EdU incorporation assay indicated that this inhibition was partly due to the dysfunction of clonal expansion. Furthermore, we firstly demonstrated that miR-139-5p blocked adipogenesis via directly targeted the 3' untranslated regions (UTRs) of Notch1 and IRS1 mRNAs, a key member of Notch signaling and IRS1/PI3K/Akt insulin signaling, respectively. In addition, the overexpression of Notch1 or IRS1 partially restored the suppressive effects miR-139-5p on differentiation of 3T3-L1 cells. To our knowledge, this was the first report that miR-139-5p functioned negatively by targeting Notch1 and IRS1 during 3T3-L1 adipogenesis, regulating the transition from clonal expansion to terminal differentiation.
Collapse
Affiliation(s)
- Lin Mi
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yaosheng Chen
- College of Life Science, Sun Yat-Sen University, Guangzhou, China
| | - Xueli Zheng
- College of forestry, Northwest A&F University, Yangling, China
| | - Youlei Li
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qiangling Zhang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Delin Mo
- College of Life Science, Sun Yat-Sen University, Guangzhou, China
| | | |
Collapse
|
29
|
Notch1 deficiency decreases hepatic lipid accumulation by induction of fatty acid oxidation. Sci Rep 2016; 6:19377. [PMID: 26786165 PMCID: PMC4726366 DOI: 10.1038/srep19377] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/07/2015] [Indexed: 12/15/2022] Open
Abstract
Notch signaling pathways modulate various cellular processes, including cell proliferation, differentiation, adhesion, and communication. Recent studies have demonstrated that Notch1 signaling also regulates hepatic glucose production and lipid synthesis. However, the effect of Notch1 signaling on hepatic lipid oxidation has not yet been directly investigated. To define the function of Notch1 signaling in hepatic lipid metabolism, wild type mice and Notch1 deficient antisense transgenic (NAS) mice were fed a high-fat diet. High-fat diet -fed NAS mice exhibited a marked reduction in hepatic triacylglycerol accumulation compared with wild type obese mice. The improved fatty liver was associated with an increased expression of hepatic genes involved in fatty acid oxidation. However, lipogenic genes were not differentially expressed in the NAS liver, suggesting lipolytic-specific regulatory effects by Notch1 signaling. Expression of fatty acid oxidative genes and the rate of fatty acid oxidation were also increased by inhibition of Notch1 signaling in HepG2 cells. In addition, similar regulatory effects on lipid accumulation were observed in adipocytes. Taken together, these data show that inhibition of Notch1 signaling can regulate the expression of fatty acid oxidation genes and may provide therapeutic strategies in obesity-induced hepatic steatosis.
Collapse
|
30
|
Scroyen I, Bauters D, Vranckx C, Lijnen HR. The Anti-Adipogenic Potential of COUP-TFII Is Mediated by Downregulation of the Notch Target Gene Hey1. PLoS One 2015; 10:e0145608. [PMID: 26719988 PMCID: PMC4697848 DOI: 10.1371/journal.pone.0145608] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) belongs to the steroid/thyroid hormone receptor superfamily and may contribute to the pathogenesis of obesity. It has not conclusively been established, however, whether its role is pro- or anti-adipogenic. METHODS AND RESULTS Gene silencing of Coup-tfII in 3T3-F442A preadipocytes resulted in enhanced differentiation into mature adipocytes. This was associated with upregulation of the Notch signaling target gene Hey1. A functional role of Hey1 was confirmed by gene silencing in 3T3-F442A preadipocytes, resulting in impaired differentiation. In vivo, de novo fat pad formation in NUDE mice was significantly stimulated following injection of preadipocytes with Coup-tfII gene silencing, but impaired with Hey1 gene silencing. Moreover, expression of Coup-tfII was lower and that of Hey1 higher in isolated adipocytes of obese as compared to lean adipose tissue. CONCLUSIONS These in vitro and in vivo data support an anti-adipogenic role of COUP-TFII via downregulating the Notch signaling target gene Hey1.
Collapse
Affiliation(s)
- Ilse Scroyen
- KU Leuven, University of Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, B-3000, Leuven, Belgium
| | - Dries Bauters
- KU Leuven, University of Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, B-3000, Leuven, Belgium
| | - Christine Vranckx
- KU Leuven, University of Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, B-3000, Leuven, Belgium
| | - H. Roger Lijnen
- KU Leuven, University of Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, B-3000, Leuven, Belgium
- * E-mail:
| |
Collapse
|
31
|
Kristensen L, Kristensen T, Abildgaard N, Royo C, Frederiksen M, Mourits-Andersen T, Campo E, Møller MB. LPL gene expression is associated with poor prognosis in CLL and closely related to NOTCH1 mutations. Eur J Haematol 2015; 97:175-82. [PMID: 26558352 DOI: 10.1111/ejh.12700] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2015] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Chronic lymphocytic leukemia is a heterogeneous yet incurable disease. Whole-genome and whole-exome sequencing studies have revealed recurrently occurring somatic mutations in some genes. Several other prognostic markers have previously been tested for their prognostic value in CLL. LPL is among these markers. AIM To evaluate LPL gene expression together with the well-established prognostic markers of CLL and investigate correlations with more recently identified prognostic markers, NOTCH1 and TP53 mutations. METHODS On 149 patients, LPL gene expression was analyzed by real-time RT-PCR. Exon 34 of NOTCH1 was PCR-amplified and directly sequenced. RESULTS LPL gene expression could be measured as a categorical variable (LPL+/LPL-) and was associated with time to treatment (P < 0.001) and overall survival (P = 0.007). In patients otherwise classified as having a good prognosis according to established and new prognostic markers, 3 of 4 patients, who received treatment within 24 months after diagnosis, were LPL+ (P = 0.03). There was a strong correlation between NOTCH1 mutation and LPL+ (P = 0.005). The unfavorable prognosis of LPL+ was maintained in CLL with wild-type NOTCH1. CONCLUSIONS NOTCH1 mutations are tightly associated with LPL gene expression. LPL expression is independently associated with poor outcome in CLL and can be measured as a categorical variable.
Collapse
Affiliation(s)
- Louise Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Thomas Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Niels Abildgaard
- Department of Hematology, Odense University Hospital, Odense, Denmark
| | - Cristina Royo
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Mikael Frederiksen
- Department of Hematology, Hospital of Southern Jutland, Aabenraa, Denmark
| | | | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
32
|
Sparling DP, Yu J, Kim K, Zhu C, Brachs S, Birkenfeld AL, Pajvani UB. Adipocyte-specific blockade of gamma-secretase, but not inhibition of Notch activity, reduces adipose insulin sensitivity. Mol Metab 2015; 5:113-121. [PMID: 26909319 PMCID: PMC4735659 DOI: 10.1016/j.molmet.2015.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 11/18/2015] [Accepted: 11/25/2015] [Indexed: 01/12/2023] Open
Abstract
Objective As the obesity pandemic continues to expand, novel molecular targets to reduce obesity-related insulin resistance and Type 2 Diabetes (T2D) continue to be needed. We have recently shown that obesity is associated with reactivated liver Notch signaling, which, in turn, increases hepatic insulin resistance, opening up therapeutic avenues for Notch inhibitors to be repurposed for T2D. Herein, we tested the systemic effects of γ-secretase inhibitors (GSIs), which prevent endogenous Notch activation, and confirmed these effects through creation and characterization of two different adipocyte-specific Notch loss-of-function mouse models through genetic ablation of the Notch transcriptional effector Rbp-Jk (A-Rbpj) and the obligate γ-secretase component Nicastrin (A-Nicastrin). Methods Glucose homeostasis and both local adipose and systemic insulin sensitivity were examined in GSI-treated, A-Rbpj and A-Nicastrin mice, as well as vehicle-treated or control littermates, with complementary in vitro studies in primary hepatocytes and 3T3-L1 adipocytes. Results GSI-treatment increases hepatic insulin sensitivity in obese mice but leads to reciprocal lowering of adipose glucose disposal. While A-Rbpj mice show normal body weight, adipose development and mass and unchanged adipose insulin sensitivity as control littermates, A-Nicastrin mice are relatively insulin-resistant, mirroring the GSI effect on adipose insulin action. Conclusions Notch signaling is dispensable for normal adipocyte function, but adipocyte-specific γ-secretase blockade reduces adipose insulin sensitivity, suggesting that specific Notch inhibitors would be preferable to GSIs for application in T2D. γ-secretase inhibitors (GSIs) are non-specific inhibitors of Notch signaling. GSI-treatment of obese mice increases hepatic, but lowers adipose insulin sensitivity. Adipocyte-specific Notch inhibition does not affect adipose mass or glucose homeostasis. Adipocyte-specific γ-secretase blockade reduces adipose insulin sensitivity. Specific Notch inhibitors may be preferable to GSIs for treatment of Type 2 Diabetes.
Collapse
Affiliation(s)
- David P Sparling
- Departments of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Junjie Yu
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - KyeongJin Kim
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Changyu Zhu
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Sebastian Brachs
- Department of Endocrinology, Diabetes and Nutrition, Center for Cardiovascular Research, Charité - University School of Medicine, Berlin, Germany
| | - Andreas L Birkenfeld
- Section of Metabolic Vascular Medicine, Medical Clinic III and Paul Langerhans Institute Dresden (PLID), a member of the German Center for Diabetes Research (DZD), Technische Universität Dresden, Germany; Section of Diabetes and Nutritional Sciences, Rayne Institute, Denmark Hill Campus, King's College London, UK
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
33
|
Ferrer-Lorente R, Bejar MT, Badimon L. Notch signaling pathway activation in normal and hyperglycemic rats differs in the stem cells of visceral and subcutaneous adipose tissue. Stem Cells Dev 2015; 23:3034-48. [PMID: 25035907 DOI: 10.1089/scd.2014.0070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The precise mechanisms underlying the differential function and cardiometabolic risk of white adipose tissue (WAT) remain unclear. Visceral adipose tissue (VWAT) and subcutaneous adipose tissue (SCWAT) have different metabolic functions that seem to be ascribed to their different intrinsic expansion capacities. Here we have hypothesized that the WAT characteristics are determined by the resident adipose-derived stem cells (ASCs) found in the different WAT depots. Therefore, our objective has been to investigate adipogenesis in anatomically distinct fat depots. ASCs from five different WAT depots were characterized in both healthy lean and diabetic obese rats, showing significant differences in expression of some of genes governing the stemness and the earlier adipogenic differentiation steps. Notch-target genes [Hes (hairy and enhancer of split) and Hey (hairy/enhancer of split related with YRPW motif) families] were upregulated in ASCs derived from visceral depots. Upon adipogenic differentiation, adipocyte cell markers were downregulated in ASCs from VWAT in comparison to ASCs from SCWAT, revealing a lower adipogenic capacity in ASCs of visceral origin than in those of SCWAT in accordance with the differential activation of Notch signaling. Notch upregulation by its activator phenethyl isothiocyanate attenuated the adipogenic differentiation of ASCs from SCWAT whereas Notch inhibition by N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT) increased the adipogenic differentiation of ASCs from visceral origin. In conclusion, the differential activation of Notch in ASCs is the origin of the different intrinsic WAT expansion capacities that contribute to the regional variations in WAT homeostasis and to its associated cardiometabolic risk.
Collapse
Affiliation(s)
- Raquel Ferrer-Lorente
- 1 Cardiovascular Research Center, CSIC-ICCC , Hospital de la Santa Creu i Sant Pau (UAB), Barcelona, Spain
| | | | | |
Collapse
|
34
|
Prenatal notch1 receptor blockade by protein delta homolog 1 (DLK1) modulates adipocyte size in vivo. Int J Obes (Lond) 2015; 40:698-705. [PMID: 26499442 DOI: 10.1038/ijo.2015.227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/12/2015] [Accepted: 10/01/2015] [Indexed: 12/21/2022]
Abstract
INTRODUCTION/OBJECTIVES The protein delta homolog 1 (DLK1) has been reported to have an important role as inhibitor of adipogenesis. Understanding its mode of action can be a promising approach to cope with the formation of obesity. However, data on DLK1 signaling are not consistent, and especially its role as negative regulator of Notch receptors is discussed controversially. METHODS DLK1 effects have been investigated in differentiated 3T3-L1 cells by Adipokine Profiler Array, enzyme-linked immunosorbent assay and quantitative real-time PCR (qRT-PCR). In vivo effects of DLK1 on adipogenesis have been studied by the DLK1 treatment of pregnant C57BL/6NTac mice and the phenotypical characterization of the offspring fed on chow or high-fat diet (HFD). Furthermore, gene expression of key adipogenesis genes in adipose tissue (AT) samples was observed by qRT-PCR. RESULTS In 3T3-L1 cells, DLK1 was found to be an inhibitor of Notch1 signaling. Gene expression of Notch1 and Hes1 was lowered by 53% and 65%, respectively, and the expression of protein target PAI-1 was decreased by 51%. The offspring of DLK1-treated pregnant mice were fed chow or HFD starting from week 4. At week 18, a larger proportion of visceral AT was determined on HFD after DLK1 treatment (P=0.011), whereas adipocyte size was reduced (P=0.007 for maximal size). This was affiliated to an upregulation of adipocyte differentiation. The underlying mechanism was found in an increased expression of the Notch1 receptor gene and protein in AT of the offsprings independently of the diet. However, feeding a chow diet resulted in a decreased expression of Notch1 target genes Hes1 and RBP-Jκ, whereas under HFD these genes were upregulated. CONCLUSIONS Treatment of mice with recombinant human DLK1 during pregnancy has significant effects on AT of the offspring. This can be associated with counter-regulatory changes in the Notch1 signaling cascade.
Collapse
|
35
|
Notch intracellular domain overexpression in adipocytes confers lipodystrophy in mice. Mol Metab 2015; 4:543-50. [PMID: 26137442 PMCID: PMC4481462 DOI: 10.1016/j.molmet.2015.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 02/06/2023] Open
Abstract
Objective The Notch family of intermembrane receptors is highly conserved across species and is involved in cell fate and lineage control. Previous in vitro studies have shown that Notch may inhibit adipogenesis. Here we describe the role of Notch in adipose tissue by employing an in vivo murine model which overexpresses Notch in adipose tissue. Methods Albino C57BL/6J RosaNICD/NICD::Adipoq-Cre (Ad-NICD) male mice were generated to overexpress the Notch intracellular domain (NICD) specifically in adipocytes. Male RosaNICD/NICD mice were used as controls. Mice were evaluated metabolically at the ages of 1 and 3 months by assessing body weights, serum metabolites, body composition (EchoMRI), glucose tolerance and insulin tolerance. Histological sections of adipose tissue depots as well as of liver were examined. The mRNA expression profile of genes involved in adipogenesis was analyzed by quantitative real-time PCR. Results The Ad-NICD mice were heavier with significantly lower body fat mass compared to the controls. Small amounts of white adipose tissue could be seen in the 1-month old Ad-NICD mice, but was almost absent in the 3-months old mice. The Ad-NICD mice also had higher serum levels of glucose, insulin, triglyceride and non-esterified fatty acids. These differences were more prominent in the older (3-months) than in the younger (1-month) mice. The Ad-NICD mice also showed severe insulin resistance along with a steatotic liver. Gene expression analysis in the adipose tissue depots showed a significant repression of lipogenic (Fasn, Acacb) and adipogenic pathways (C/ebpα, C/ebpβ, Pparγ2, Srebf1). Conclusions Increased Notch signaling in adipocytes in mice results in blocked expansion of white adipose tissue which leads to ectopic accumulation of lipids and insulin resistance, thus to a lipodystrophic phenotype. These results suggest that further investigation of the role of Notch signaling in adipocytes could lead to the manipulation of this pathway for therapeutic interventions in metabolic disease. Adipocyte-specific NICD (Ad-NICD) overexpression results in lipodystrophy in mice. Ad-NICD mice have increased body weight but diminished white adipose tissue. Transcriptional downregulation of adipogenesis and lipogenesis in adipose tissue of Ad-NICD mice.
Collapse
|
36
|
Bi P, Shan T, Liu W, Yue F, Yang X, Liang XR, Wang J, Li J, Carlesso N, Liu X, Kuang S. Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity. Nat Med 2014; 20:911-8. [PMID: 25038826 PMCID: PMC4181850 DOI: 10.1038/nm.3615] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/28/2014] [Indexed: 12/14/2022]
Abstract
Beige adipocytes in white adipose tissue (WAT) are similar to classical brown adipocytes in that they can burn lipids to produce heat. Thus, an increase in beige adipocyte content in WAT browning would raise energy expenditure and reduce adiposity. Here we report that adipose-specific inactivation of Notch1 or its signaling mediator Rbpj in mice results in browning of WAT and elevated expression of uncoupling protein 1 (Ucp1), a key regulator of thermogenesis. Consequently, as compared to wild-type mice, Notch mutants exhibit elevated energy expenditure, better glucose tolerance and improved insulin sensitivity and are more resistant to high fat diet-induced obesity. By contrast, adipose-specific activation of Notch1 leads to the opposite phenotypes. At the molecular level, constitutive activation of Notch signaling inhibits, whereas Notch inhibition induces, Ppargc1a and Prdm16 transcription in white adipocytes. Notably, pharmacological inhibition of Notch signaling in obese mice ameliorates obesity, reduces blood glucose and increases Ucp1 expression in white fat. Therefore, Notch signaling may be therapeutically targeted to treat obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Pengpeng Bi
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Tizhong Shan
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Weiyi Liu
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Xin Yang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Xin-Rong Liang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jinghua Wang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jie Li
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Nadia Carlesso
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiaoqi Liu
- 1] Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA. [2] Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Shihuan Kuang
- 1] Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA. [2] Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
37
|
Peng T, Zhou Y, Li J, Li J, Wan W, Jia Y. Detection of Delta-like 1 ligand for the diagnosis of tuberculous meningitis: An effective and rapid diagnostic method. J Int Med Res 2014; 42:728-36. [PMID: 24651996 DOI: 10.1177/0300060513498669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/16/2013] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To investigate the diagnostic value of Delta-like 1 ligand (DLL1) in cerebrospinal fluid (CSF) and serum, in tuberculous meningitis (TBM). METHODS Patients with a definite diagnosis of central nervous system infection (TBM, viral meningitis/encephalitis or bacterial meningitis) were prospectively enrolled alongside patients with intracranial metastatic tumour and patients with no diagnosis (who served as controls). DLL1 content in CSF and serum was measured quantitatively by enzyme-linked immunosorbent assay; analyses were blinded. RESULTS A total of 173 patients were enrolled: 62 with TBM; 38 with viral meningitis/encephalitis; 26 with bacterial meningitis; 17 with intracranial metastatic tumour; 30 with no diagnosis. CSF DLL1 content was highest for TBM; there were no differences in CSF DLL1 between the other groups. Serum DLL1 content was highest for the TBM and intracranial metastatic tumour groups, with significant differences between the TBM group and the viral meningitis/encephalitis, bacterial meningitis and nondiagnosed groups. There were no differences in serum DLL1 between the viral meningitis/encephalitis, bacterial meningitis and nondiagnosed groups, or between the TBM group and the tumour group. CONCLUSION As a new biomarker, DLL1 may be of great clinical importance in the diagnosis of TBM.
Collapse
Affiliation(s)
- Tao Peng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinyi Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinghong Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wencui Wan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanjie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
Ferrer-Lorente R, Bejar MT, Tous M, Vilahur G, Badimon L. Systems biology approach to identify alterations in the stem cell reservoir of subcutaneous adipose tissue in a rat model of diabetes: effects on differentiation potential and function. Diabetologia 2014; 57:246-56. [PMID: 24132782 DOI: 10.1007/s00125-013-3081-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 09/24/2013] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS Autologous progenitor cells represent a promising option for regenerative cell-based therapies. Nevertheless, it has been shown that ageing and cardiovascular risk factors such as diabetes affect circulating endothelial and bone marrow-derived progenitor cells, limiting their therapeutic potential. However, their impact on other stem cell populations remains unclear. We therefore investigated the effects of diabetes on adipose-derived stem cells (ASCs) and whether these effects might limit the therapeutic potential of autologous ASCs. METHODS A systems biology approach was used to analyse the expression of genes related to stem cell identification in subcutaneous adipose tissue (SAT), the stromal vascular fraction and isolated ASCs from Zucker diabetic fatty rats and their non-diabetic controls. An additional model of type 2 diabetes without obesity was also investigated. Bioinformatic approaches were used to investigate the biological significance of these changes. In addition, functional studies on cell viability and differentiation potential were performed. RESULTS Widespread downregulation of mesenchymal stem cell markers was observed in SAT of diabetic rats. Gene expression and in silico analysis revealed a significant effect on molecules involved in the maintenance of pluripotency and self-renewal, and on the alteration of main signalling pathways important for stem cell maintenance. The viability and differentiation potential of ASCs from diabetic rats was impaired in in vitro models and in in vivo angiogenesis. CONCLUSIONS/INTERPRETATION The impact of type 2 diabetes on ASCs might compromise the efficiency of spontaneous self-repair and direct autologous stem cell therapy.
Collapse
Affiliation(s)
- Raquel Ferrer-Lorente
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau (UAB), C/Sant Antoni Maria Claret 167, 08025, Barcelona, Spain
| | | | | | | | | |
Collapse
|
39
|
Takebe N, Nguyen D, Yang SX. Targeting notch signaling pathway in cancer: clinical development advances and challenges. Pharmacol Ther 2013; 141:140-9. [PMID: 24076266 DOI: 10.1016/j.pharmthera.2013.09.005] [Citation(s) in RCA: 321] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 12/15/2022]
Abstract
Notch signaling plays an important role in development and cell fate determination, and it is deregulated in human hematologic malignancies and solid tumors. This review includes a brief introduction of the relevant pathophysiology of Notch signaling pathway and primarily focuses on the clinical development of promising agents that either obstruct Notch receptor cleavages such as γ-secretase inhibitors (GSIs) or interfere with the Notch ligand-receptor interaction by monoclonal antibodies (mAbs). Antitumor activity by GSIs and mAbs administered as single agent in early phases of clinical trials has been observed in advanced or metastatic thyroid cancer, non-small cell lung cancer, intracranial tumors, sarcoma or desmoid tumors, colorectal cancer with neuroendocrine features, melanoma and ovarian cancer. A number of mechanism-based adverse events particularly gastrointestinal toxicities emerged and mitigation strategies are developed after testing multiple GSIs and Notch targeting mAbs. We also discuss pharmacodynamic biomarkers in conjunction with methods of assessment of the molecular target inhibition validation. Biomarkers of efficacy or benefit may be of importance for a successful development of this class of drugs.
Collapse
Affiliation(s)
- Naoko Takebe
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, United States.
| | - Dat Nguyen
- National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Sherry X Yang
- National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, United States.
| |
Collapse
|
40
|
The effects of 30 days resveratrol supplementation on adipose tissue morphology and gene expression patterns in obese men. Int J Obes (Lond) 2013; 38:470-3. [PMID: 23958793 DOI: 10.1038/ijo.2013.155] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 07/07/2013] [Accepted: 08/08/2013] [Indexed: 01/04/2023]
Abstract
Polyphenolic compounds, such as resveratrol, have recently received widespread interest because of their ability to mimic effects of calorie restriction. The objective of the present study was to gain more insight into the effects of 30 days resveratrol supplementation on adipose tissue morphology and underlying processes. Eleven healthy obese men were supplemented with placebo and resveratrol for 30 days (150 mg per day), separated by a 4-week washout period in a double-blind randomized crossover design. A postprandial abdominal subcutaneous adipose tissue biopsy was collected to assess adipose tissue morphology and gene expression using microarray analysis. Resveratrol significantly decreased adipocyte size, with a shift toward a reduction in the proportion of large and very-large adipocytes and an increase in small adipocytes. Microarray analysis revealed downregulation of Wnt and Notch signaling pathways and upregulation of pathways involved in cell cycle regulation after resveratrol supplementation, suggesting enhanced adipogenesis. Furthermore, lysosomal/phagosomal pathway and transcription factor EB were upregulated reflecting an alternative pathway of lipid breakdown by autophagy. Further research is necessary to investigate whether resveratrol improves adipose tissue function.
Collapse
|
41
|
Lei T, Bi Y, Gao MJ, Gao SM, Zhou LL, Zheng HL, Chen XD. HES1 inhibits adipogenesis of porcine mesenchymal stem cells via transcriptional repression of FAD24. Domest Anim Endocrinol 2013; 45:28-32. [PMID: 23611667 DOI: 10.1016/j.domaniend.2013.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/16/2013] [Accepted: 03/18/2013] [Indexed: 11/15/2022]
Abstract
Adipogenesis, the development from preadipocytes or mesenchymal stem cells (MSCs) to mature adipocytes, is regulated by a network of signaling pathways and transcription factors. The involvement of Notch signaling and its effector HES1 in adipogenesis has been investigated in several studies with conflicting results. The underlying mechanisms remain unclear because of the lack of information about HES1 target genes during adipocyte differentiation. As a novel gene transiently up-regulated in early adipogenesis, FAD24 functions as a positive regulator of adipocyte differentiation in both preadipocytes and MSCs. In the present study, we report that the expression level of FAD24 is inversely associated with that of HES1 in porcine MSCs after adipogenic induction. Enforced overexpression of HES1 in MSCs during the early stage of adipogenesis significantly repressed the transcription of FAD24 (P < 0.01) and the other pro-adipogenic genes (P < 0.05), resulting in reduced intracellular lipid accumulation. Sequence analysis showed that porcine FAD24 harbors an evolutionarily conserved HES1 binding site in its proximal promoter region. Functional HES1, but not its dominant-negative mutant, markedly reduced the promoter activity of FAD24 (P < 0.01). Site-directed mutation and chromatin immunoprecipitation further confirmed that HES1 inhibits FAD24 transcription by direct binding to the promoter. Taken together, we identified FAD24 as a novel downstream target of HES1 during adipogenesis. Our data suggest that HES1-mediated repression of FAD24 transcription at the early stage of adipocyte differentiation may contribute to the impaired adipogenesis induced by the Notch-HES1 signaling pathway.
Collapse
Affiliation(s)
- T Lei
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | | | | | | | | | | | | |
Collapse
|
42
|
Collison KS, Makhoul NJ, Zaidi MZ, Inglis A, Andres BL, Ubungen R, Saleh S, Al-Mohanna FA. Prediabetic changes in gene expression induced by aspartame and monosodium glutamate in Trans fat-fed C57Bl/6 J mice. Nutr Metab (Lond) 2013; 10:44. [PMID: 23783067 PMCID: PMC3727955 DOI: 10.1186/1743-7075-10-44] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 06/03/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The human diet has altered markedly during the past four decades, with the introduction of Trans hydrogenated fat, which extended the shelf-life of dietary oils and promoted a dramatic increase in elaidic acid (Trans-18.1) consumption. Food additives such as monosodium glutamate (MSG) and aspartame (ASP) were introduced to increase food palatability and reduce caloric intake. Nutrigenomics studies in small-animal models are an established platform for analyzing the interactions between various macro- and micronutrients. We therefore investigated the effects of changes in hepatic and adipose tissue gene expression induced by the food additives ASP, MSG or a combination of both additives in C57Bl/6 J mice fed a Trans fat-enriched diet. METHODS Hepatic and adipose tissue gene expression profiles, together with body characteristics, glucose parameters, serum hormone and lipid profiles were examined in C57Bl/6 J mice consuming one of the following four dietary regimens, commencing in utero via the mother's diet: [A] Trans fat (TFA) diet; [B] MSG + TFA diet; [C] ASP + TFA diet; [D] ASP + MSG + TFA diet. RESULTS Whilst dietary MSG significantly increased hepatic triglyceride and serum leptin levels in TFA-fed mice, the combination of ASP + MSG promoted the highest increase in visceral adipose tissue deposition, serum free fatty acids, fasting blood glucose, HOMA-IR, total cholesterol and TNFα levels. Microarray analysis of significant differentially expressed genes (DEGs) showed a reduction in hepatic and adipose tissue PPARGC1a expression concomitant with changes in PPARGC1a-related functional networks including PPARα, δ and γ. We identified 73 DEGs common to both adipose and liver which were upregulated by ASP + MSG in Trans fat-fed mice; and an additional 51 common DEGs which were downregulated. CONCLUSION The combination of ASP and MSG may significantly alter adiposity, glucose homeostasis, hepatic and adipose tissue gene expression in TFA-fed C57Bl/6 J mice.
Collapse
Affiliation(s)
- Kate S Collison
- Diabetes Research Unit, Department Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh 11211, Saudi Arabia
| | - Nadine J Makhoul
- Diabetes Research Unit, Department Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh 11211, Saudi Arabia
| | - Marya Z Zaidi
- Diabetes Research Unit, Department Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh 11211, Saudi Arabia
| | - Angela Inglis
- Diabetes Research Unit, Department Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh 11211, Saudi Arabia
| | - Bernard L Andres
- Diabetes Research Unit, Department Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh 11211, Saudi Arabia
| | - Rosario Ubungen
- Diabetes Research Unit, Department Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh 11211, Saudi Arabia
| | - Soad Saleh
- Diabetes Research Unit, Department Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh 11211, Saudi Arabia
| | - Futwan A Al-Mohanna
- Diabetes Research Unit, Department Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh 11211, Saudi Arabia
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| |
Collapse
|
43
|
Corvera S, Gealekman O. Adipose tissue angiogenesis: impact on obesity and type-2 diabetes. Biochim Biophys Acta Mol Basis Dis 2013; 1842:463-72. [PMID: 23770388 DOI: 10.1016/j.bbadis.2013.06.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/24/2013] [Accepted: 06/01/2013] [Indexed: 12/17/2022]
Abstract
The growth and function of tissues are critically dependent on their vascularization. Adipose tissue is capable of expanding many-fold during adulthood, therefore requiring the formation of new vasculature to supply growing and proliferating adipocytes. The expansion of the vasculature in adipose tissue occurs through angiogenesis, where new blood vessels develop from those pre-existing within the tissue. Inappropriate angiogenesis may underlie adipose tissue dysfunction in obesity, which in turn increases type-2 diabetes risk. In addition, genetic and developmental factors involved in vascular patterning may define the size and expandability of diverse adipose tissue depots, which are also associated with type-2 diabetes risk. Moreover, the adipose tissue vasculature appears to be the niche for pre-adipocyte precursors, and factors that affect angiogenesis may directly impact the generation of new adipocytes. Here we review recent advances on the basic mechanisms of angiogenesis, and on the role of angiogenesis in adipose tissue development and obesity. A substantial amount of data points to a deficit in adipose tissue angiogenesis as a contributing factor to insulin resistance and metabolic disease in obesity. These emerging findings support the concept of the adipose tissue vasculature as a source of new targets for metabolic disease therapies. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
Affiliation(s)
- Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Olga Gealekman
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
44
|
Köllmer M, Buhrman JS, Zhang Y, Gemeinhart RA. Markers Are Shared Between Adipogenic and Osteogenic Differentiated Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2013; 5:18-25. [PMID: 24013643 DOI: 10.5897/jdbte2013.0065] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The stem cell differentiation paradigm is based on the progression of cells through generations of daughter cells that eventually become restricted and committed to one lineage resulting in fully differentiated cells. Herein, we report on the differentiation of adult human mesenchymal stem cells (hMSCs) towards adipogenic and osteogenic lineages using established protocols. Lineage specific geneswere evaluated by quantitative real-time PCR relative to two reference genes. The expression of osteoblast-associated genes (alkaline phosphatase, osteopontin, and osteocalcin)was detected in hMSCs that underwent adipogenesis. When normalized, the expression of adipocyte marker genes (adiponectin, fatty acid binding protein P4, and leptin) increasedin a time-dependent manner during adipogenic induction. Adiponectin and leptin were also detected in osteoblast-induced cells. Lipid vacuoles that represent the adipocyte phenotype were only present in the adipogenic induction group. Conforming to the heterogeneous nature of hMSCs and the known plasticity between osteogenic and adipogenic lineages, these data indicatea marker overlap between MSC-derived adipocytes and osteoblasts. Weproposea careful consideration of experimental conditions such as investigated timepoints, selected housekeeping genesand the evidence indicating lack of differentiation into other lineageswhen evaluating hMSC differentiation.
Collapse
Affiliation(s)
- Melanie Köllmer
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, IL 60612-7231, USA
| | | | | | | |
Collapse
|
45
|
Chartoumpekis DV, Kensler TW. New player on an old field; the keap1/Nrf2 pathway as a target for treatment of type 2 diabetes and metabolic syndrome. Curr Diabetes Rev 2013; 9:137-45. [PMID: 23363332 PMCID: PMC3601410 DOI: 10.2174/1573399811309020005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/29/2012] [Accepted: 12/02/2012] [Indexed: 01/13/2023]
Abstract
Nuclear erythroid factor 2 like 2 (Nrf2) has been described as a transcription factor that serves as a master regulator of the adaptive response to exogenous and endogenous oxidative and electrophilic stresses. Evidence of Nrf2 crosstalk with other molecular pathways is increasing; recent publications have proposed a role of Nrf2 in the development of obesity and in the highly regulated process of adipocyte differentiation through its interaction with other transcription factors and receptors implicated in metabolic regulation. In the present review, we discuss the available data on the possible role of Nrf2 in obesity and metabolic syndrome and the feasibility of using Nrf2 as a therapeutic target in the clinical setting.
Collapse
Affiliation(s)
- Dionysios V Chartoumpekis
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, PA 15261, USA
| | | |
Collapse
|
46
|
Lai PY, Tsai CB, Tseng MJ. Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes. Biochem Biophys Res Commun 2012; 430:1132-9. [PMID: 23237809 DOI: 10.1016/j.bbrc.2012.12.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/06/2012] [Indexed: 11/25/2022]
Abstract
Adipose tissue is composed of adipocytes, which differentiate from precursor cells in a process called adipogenesis. Many signal molecules are involved in the transcriptional control of adipogenesis, including the Notch pathway. Previous adipogenic studies of Notch have focused on Notch1 and HES1; however, the role of other Notch receptors in adipogenesis remains unclear. Q-RT-PCR analyses showed that the augmentation of Notch4 expression during the differentiation of 3T3-L1 preadipocytes was comparable to that of Notch1. To elucidate the role of Notch4 in adipogenesis, the human active form Notch4 (N4IC) was transiently transfected into 3T3-L1 cells. The expression of HES1, Hey1, C/EBPδ and PPARγ was up-regulated, and the expression of Pref-1, an adipogenic inhibitor, was down-regulated. To further characterize the effect of N4IC in adipogenesis, stable cells expressing human N4IC were established. The expression of N4IC promoted proliferation and enhanced differentiation of 3T3-L1 cells compared with those of control cells. These data suggest that N4IC promoted proliferation through modulating the ERK pathway and the cell cycle during the early stage of 3T3-L1 adipogenesis and facilitated differentiation through up-regulating adipogenic genes such as C/EBPα, PPARγ, aP2, LPL and HSL during the middle and late stages of 3T3-L1 adipogenesis.
Collapse
Affiliation(s)
- Peng-Yeh Lai
- Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chiayi 621, Taiwan, ROC
| | | | | |
Collapse
|
47
|
Ba K, Yang X, Wu L, Wei X, Fu N, Fu Y, Cai X, Yao Y, Ge Y, Lin Y. Jagged-1-mediated activation of notch signalling induces adipogenesis of adipose-derived stem cells. Cell Prolif 2012; 45:538-44. [PMID: 23046039 DOI: 10.1111/j.1365-2184.2012.00850.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/19/2012] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES Notch signalling plays an important role in many cell activities, involving proliferation, migration, differentiation and cell death. The aim of this study was to investigate effects of such signalling on adipogenesis of mouse adipose-derived stem cells (mASCs). MATERIALS AND METHODS Jagged1 (50 and 100 ng/ml) was added to mASCs to activate Notch signalling, 2 days before adipogenic induction. At 5 and 7 days after induction, oil red-O staining was performed to evaluate lipid accumulation. Then real-time PCR was performed to examine expression of Notch downstream genes (Notch-1, -2, Hes-1 and Hey-1) and adipogenic transcription factor (PPAR-γ). Expressions of Hes-1 and PPAR-γ at protein level were confirmed by immunofluorescence staining. RESULTS Our data indicated that Jagged1 promoted adipogenic differentiation of mASCs. Moreover, Jagged1 also increased expression of Notch downstream genes and PPAR-γ. Expressions of Hes-1 and PPAR-γ were found to be enhanced in Jagged1 pre-treated mASCs when compared to controls. DISCUSSION The results led to the conclusion that activation of Notch signalling had stimulated adipogenesis of mASCs in the presence of adipogenic medium by promoting expression of PPAR-γ.
Collapse
Affiliation(s)
- K Ba
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bannai Y, Aminova LR, Faulkner MJ, Ho M, Wilson BA. Rho/ROCK-dependent inhibition of 3T3-L1 adipogenesis by G-protein-deamidating dermonecrotic toxins: differential regulation of Notch1, Pref1/Dlk1, and β-catenin signaling. Front Cell Infect Microbiol 2012; 2:80. [PMID: 22919671 PMCID: PMC3417509 DOI: 10.3389/fcimb.2012.00080] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/22/2012] [Indexed: 01/11/2023] Open
Abstract
The dermonecrotic toxins from Pasteurella multocida (PMT), Bordetella (DNT), Escherichia coli (CNF1-3), and Yersinia (CNFY) modulate their G-protein targets through deamidation and/or transglutamination of an active site Gln residue, which results in activation of the G protein and its cognate downstream signaling pathways. Whereas DNT and the CNFs act on small Rho GTPases, PMT acts on the α subunit of heterotrimeric Gq, Gi, and G12/13 proteins. We previously demonstrated that PMT potently blocks adipogenesis and adipocyte differentiation in a calcineurin-independent manner through downregulation of Notch1 and stabilization of β-catenin and Pref1/Dlk1, key proteins in signaling pathways strongly linked to cell fate decisions, including fat and bone development. Here, we report that similar to PMT, DNT, and CNF1 completely block adipogenesis and adipocyte differentiation by preventing upregulation of adipocyte markers, PPARγ and C/EBPα, while stabilizing the expression of Pref1/Dlk1 and β-catenin. We show that the Rho/ROCK inhibitor Y-27632 prevented or reversed these toxin-mediated effects, strongly supporting a role for Rho/ROCK signaling in dermonecrotic toxin-mediated inhibition of adipogenesis and adipocyte differentiation. Toxin treatment was also accompanied by downregulation of Notch1 expression, although this inhibition was independent of Rho/ROCK signaling. We further show that PMT-mediated downregulation of Notch1 expression occurs primarily through G12/13 signaling. Our results reveal new details of the pathways involved in dermonecrotic toxin action on adipocyte differentiation, and the role of Rho/ROCK signaling in mediating toxin effects on Wnt/β-catenin and Notch1 signaling, and in particular the role of Gq and G12/13 in mediating PMT effects on Rho/ROCK and Notch1 signaling.
Collapse
Affiliation(s)
- Yuka Bannai
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana IL, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
Long-term corticosteroid treatment is the most common secondary cause of bone loss. Patients treated with long-term corticosteroid therapy may develop osteopenia or osteoporosis, and many have fractures. It is difficult to predict which corticosteroid-treated patients will develop significant skeletal complications because of variability in the underlying diseases treated with corticosteroids, and because of variation in corticosteroid dose over time. Corticosteroid therapy causes an alteration in the ratio between osteoprotegerin (OPG) and receptor activator of nuclear factor κ B (RANK) ligand (RANKL), which leads to early increased bone resorption for the first 3-6 months, with long-term treatment leading primarily to suppression of bone formation. Recently published recommendations advise the use of bisphosphonates or teriparatide in high-risk patients, depending on fracture risk assessed by bone mineral density testing. This article gives an update of current knowledge regarding the pathophysiology, clinical presentation and evaluation, and prevention and treatment of patients with corticosteroid-induced osteoporosis.
Collapse
|
50
|
Jung SR, Song NJ, Hwang HS, An JJ, Cho YJ, Kweon HY, Kang SW, Lee KG, Yoon K, Kim BJ, Nho CW, Choi SY, Park KW. Silk peptides inhibit adipocyte differentiation through modulation of the Notch pathway in C3H10T1/2 cells. Nutr Res 2012; 31:723-30. [PMID: 22024497 DOI: 10.1016/j.nutres.2011.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 08/22/2011] [Accepted: 08/24/2011] [Indexed: 01/17/2023]
Abstract
Silk protein is a biocompatible material that has been used in many biotechnological applications and exhibits body fat-lowering effects. Recent studies have shown that silk peptides increase expression of osteogenic markers in osteoblast-like cells. Because osteogenic and adipogenic differentiation from common mesenchymal progenitor cells are inverse processes and often regulated reciprocally, we hypothesized that silk peptides might suppress adipocyte differentiation. We therefore endeavored to evaluate the effects of silk peptides on adipocyte differentiation in C3H10T1/2 cells. We find that silk peptides inhibit lipid accumulation and morphological differentiation in these cells. Molecular studies show that silk peptides block expression of adipocyte-specific genes such as peroxisome proliferator-activated receptor γ and its targets, including aP2, Cd36, CCAAT enhancer binding proteinα. Silk peptides appear to inhibit adipogenesis by suppression of the Notch pathway, repressing the Notch target genes Hes-1 and Hey-1. In addition, these peptides inhibit endogenous Notch activation, as shown by a reduction in generation of Notch intracellular domain. N-[N-(3.5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butylester, compound E, and WPE-III-31C, which are all known Notch signaling inhibitors, block adipocyte differentiation to an extent similar to silk peptides. Together, our data demonstrate that silk peptides can modulate adipocyte differentiation through inhibition of the Notch signaling and further suggest potential future strategies for treating obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- So-Ra Jung
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|