1
|
Chai L, Gao J, Li Z, Sun H, Liu J, Wang Y, Zhang L. Predicting CTCF cell type active binding sites in human genome. Sci Rep 2024; 14:31744. [PMID: 39738353 PMCID: PMC11686126 DOI: 10.1038/s41598-024-82238-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025] Open
Abstract
The CCCTC-binding factor (CTCF) is pivotal in orchestrating diverse biological functions across the human genome, yet the mechanisms driving its cell type-active DNA binding affinity remain underexplored. Here, we collected ChIP-seq data from 67 cell lines in ENCODE, constructed a unique dataset of cell type-active CTCF binding sites (CBS), and trained convolutional neural networks (CNN) to dissect the patterns of CTCF binding activity. Our analysis reveals that transcription factors RAD21/SMC3 and chromatin accessibility are more predictive compared to sequence motifs and histone modifications. Integrating them together achieved AUPRC values consistently above 0.868, highlighting their utility in deciphering CTCF transcription factor binding dynamics. This study provides a deeper understanding of the regulatory functions of CTCF via machine learning framework.
Collapse
Affiliation(s)
- Lu Chai
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Jie Gao
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Zihan Li
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Hao Sun
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Junjie Liu
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Yong Wang
- CEMS, NCMIS, HCMS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
| | - Lirong Zhang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, People's Republic of China.
| |
Collapse
|
2
|
Zhao S, Sun J, Chang Q, Pang S, Zhang N, Fan Y, Liu J. CTCF-activated FUCA1 functions as a tumor suppressor by promoting autophagy flux and serum α-L-fucosidase serves as a potential biomarker for prognosis in ccRCC. Cancer Cell Int 2024; 24:327. [PMID: 39342260 PMCID: PMC11439243 DOI: 10.1186/s12935-024-03502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
Notably, clear cell renal cell carcinoma (ccRCC) is characterized by a distinct metabolic tumor phenotype that involves the reprogramming of multiple metabolic pathways. Although there is increasing evidence linking FUCA1 to malignancies, its specific role and downstream signaling pathways in ccRCC remain poorly understood. Here we found that FUCA1 expression was significantly downregulated in ccRCC tissues, which also predicts poor prognosis of ccRCCpatients. Moreover, enhancing FUCA1 expression resulted in reduced invasion and migration of ccRCC cells, further indicating its protective role. CHIP-qPCR and luciferase assays showed that CTCF was an upstream transcription factor of FUCA1 and could reverse the effects caused by FUCA1 inactivation. The change in FUCA1 led to changes in the results of various autophagy-related proteins and the mRFP-GFP-LC3 dual fluorescence system, indicating that it may play a role in the fusion stage of autophagy. Protein-protein interaction analysis revealed that FUCA2 exhibited the closest interaction with FUCA1 and strongly predicted the prognosis of ccRCC patients. Additionally, serum AFU encoded by FUCA2 could serve as a valuable predictor for survival in ccRCC patients. FUCA1 suppresses invasion and migration of ccRCC cells, with its activity being modulated by CTCF. FUCA1 regulates the autophagy process in ccRCC cells by influencing the fusion between autophagosomes and lysosomes. FUCA2 shares similarities with FUCA1, and elevated serum AFU levels along with increased expression of FUCA2 are indicative of a favorable prognosis in ccRCC.
Collapse
Affiliation(s)
- Shuo Zhao
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road Jinan, Jinan, Shandong, 250012, China
| | - Jiajia Sun
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road Jinan, Jinan, Shandong, 250012, China
| | - Qinzheng Chang
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road Jinan, Jinan, Shandong, 250012, China
| | - Shuo Pang
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road Jinan, Jinan, Shandong, 250012, China
| | - Nianzhao Zhang
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road Jinan, Jinan, Shandong, 250012, China
| | - Yidong Fan
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road Jinan, Jinan, Shandong, 250012, China.
| | - Jikai Liu
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road Jinan, Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Wulfridge P, Sarma K. Intertwining roles of R-loops and G-quadruplexes in DNA repair, transcription and genome organization. Nat Cell Biol 2024; 26:1025-1036. [PMID: 38914786 DOI: 10.1038/s41556-024-01437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/10/2024] [Indexed: 06/26/2024]
Abstract
R-loops are three-stranded nucleic acid structures that are abundant and widespread across the genome and that have important physiological roles in many nuclear processes. Their accumulation is observed in cancers and neurodegenerative disorders. Recent studies have implicated a function for R-loops and G-quadruplex (G4) structures, which can form on the displaced single strand of R-loops, in three-dimensional genome organization in both physiological and pathological contexts. Here we discuss the interconnected functions of DNA:RNA hybrids and G4s within R-loops, their impact on DNA repair and gene regulatory networks, and their emerging roles in genome organization during development and disease.
Collapse
Affiliation(s)
- Phillip Wulfridge
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Kavitha Sarma
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA.
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Reho P, Saez-Atienzar S, Ruffo P, Solaiman S, Shah Z, Chia R, Kaivola K, Traynor BJ, Tilley BS, Gentleman SM, Hodges AK, Aarsland D, Monuki ES, Newell KL, Woltjer R, Albert MS, Dawson TM, Rosenthal LS, Troncoso JC, Pletnikova O, Serrano GE, Beach TG, Easwaran HP, Scholz SW. Differential methylation analysis in neuropathologically confirmed dementia with Lewy bodies. Commun Biol 2024; 7:35. [PMID: 38182665 PMCID: PMC10770032 DOI: 10.1038/s42003-023-05725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
Dementia with Lewy bodies (DLB) is a common form of dementia in the elderly population. We performed genome-wide DNA methylation mapping of cerebellar tissue from pathologically confirmed DLB cases and controls to study the epigenetic profile of this understudied disease. After quality control filtering, 728,197 CpG-sites in 278 cases and 172 controls were available for the analysis. We undertook an epigenome-wide association study, which found a differential methylation signature in DLB cases. Our analysis identified seven differentially methylated probes and three regions associated with DLB. The most significant CpGs were located in ARSB (cg16086807), LINC00173 (cg18800161), and MGRN1 (cg16250093). Functional enrichment evaluations found widespread epigenetic dysregulation in genes associated with neuron-to-neuron synapse, postsynaptic specialization, postsynaptic density, and CTCF-mediated synaptic plasticity. In conclusion, our study highlights the potential importance of epigenetic alterations in the pathogenesis of DLB and provides insights into the modified genes, regions and pathways that may guide therapeutic developments.
Collapse
Affiliation(s)
- Paolo Reho
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Laboratory of Precision Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sara Saez-Atienzar
- Neuromuscular Diseases Research Section, National Institute on Aging, Bethesda, MD, USA
| | - Paola Ruffo
- Neuromuscular Diseases Research Section, National Institute on Aging, Bethesda, MD, USA
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Sultana Solaiman
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Zalak Shah
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ruth Chia
- Neuromuscular Diseases Research Section, National Institute on Aging, Bethesda, MD, USA
| | - Karri Kaivola
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, National Institute on Aging, Bethesda, MD, USA
| | - Bension S Tilley
- Neuropathology Unit, Department of Brain Sciences, Imperial College London, London, UK
| | - Steve M Gentleman
- Neuropathology Unit, Department of Brain Sciences, Imperial College London, London, UK
| | - Angela K Hodges
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dag Aarsland
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Edwin S Monuki
- Department of Pathology & Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Randy Woltjer
- Department of Neurology, Oregon Health & Sciences University, Portland, OR, USA
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Ted M Dawson
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Neuroregeneration and Stem Cell Programs, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Juan C Troncoso
- Department of Pathology (Neuropathology), Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Olga Pletnikova
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Hariharan P Easwaran
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA.
| |
Collapse
|
5
|
Xu H, Yi X, Fan X, Wu C, Wang W, Chu X, Zhang S, Dong X, Wang Z, Wang J, Zhou Y, Zhao K, Yao H, Zheng N, Wang J, Chen Y, Plewczynski D, Sham PC, Chen K, Huang D, Li MJ. Inferring CTCF-binding patterns and anchored loops across human tissues and cell types. PATTERNS (NEW YORK, N.Y.) 2023; 4:100798. [PMID: 37602215 PMCID: PMC10436006 DOI: 10.1016/j.patter.2023.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/25/2023] [Accepted: 06/20/2023] [Indexed: 08/22/2023]
Abstract
CCCTC-binding factor (CTCF) is a transcription regulator with a complex role in gene regulation. The recognition and effects of CTCF on DNA sequences, chromosome barriers, and enhancer blocking are not well understood. Existing computational tools struggle to assess the regulatory potential of CTCF-binding sites and their impact on chromatin loop formation. Here we have developed a deep-learning model, DeepAnchor, to accurately characterize CTCF binding using high-resolution genomic/epigenomic features. This has revealed distinct chromatin and sequence patterns for CTCF-mediated insulation and looping. An optimized implementation of a previous loop model based on DeepAnchor score excels in predicting CTCF-anchored loops. We have established a compendium of CTCF-anchored loops across 52 human tissue/cell types, and this suggests that genomic disruption of these loops could be a general mechanism of disease pathogenesis. These computational models and resources can help investigate how CTCF-mediated cis-regulatory elements shape context-specific gene regulation in cell development and disease progression.
Collapse
Affiliation(s)
- Hang Xu
- Department of Epidemiology and Biostatistics, Key Laboratory of Prevention and Control of Human Major Diseases (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Xianfu Yi
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xutong Fan
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Chengyue Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wei Wang
- Department of Epidemiology and Biostatistics, Key Laboratory of Prevention and Control of Human Major Diseases (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Xinlei Chu
- Department of Epidemiology and Biostatistics, Key Laboratory of Prevention and Control of Human Major Diseases (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Shijie Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaobao Dong
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhao Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jianhua Wang
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yao Zhou
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ke Zhao
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hongcheng Yao
- Centre for PanorOmic Sciences-Genomics and Bioinformatics Cores, The University of Hong Kong, Hong Kong 999077, China
| | - Nan Zheng
- Department of Network Security and Informatization, Tianjin Medical University, Tianjin 300070, China
| | - Junwen Wang
- Department of Health Sciences Research and Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Dariusz Plewczynski
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Pak Chung Sham
- Centre for PanorOmic Sciences-Genomics and Bioinformatics Cores, The University of Hong Kong, Hong Kong 999077, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Prevention and Control of Human Major Diseases (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Dandan Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Mulin Jun Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Prevention and Control of Human Major Diseases (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
6
|
Patel PJ, Ren Y, Yan Z. Epigenomic analysis of Alzheimer's disease brains reveals diminished CTCF binding on genes involved in synaptic organization. Neurobiol Dis 2023; 184:106192. [PMID: 37302762 PMCID: PMC10519202 DOI: 10.1016/j.nbd.2023.106192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023] Open
Abstract
Epigenetic aberrations are suggested to play an important role in transcriptional alterations in Alzheimer's disease (AD). One of the key mechanisms of epigenetic regulation of gene expression is through the dynamic organization of chromatin structure via the master genome architecture protein, CCCTC-binding factor (CTCF). By forming chromatin loops, CTCF can influence gene transcription in a complex manner. To find out whether genome-wide DNA binding sites for CTCF are altered in AD, we compared CTCF chromatin immunoprecipitation sequencing (ChIP-Seq) data from frontal cortex of human AD patients and normal controls (n = 9 pairs, all females). We have revealed that CTCF-binding affinity on many genes is significantly reduced in AD patients, and these genes are enriched in synaptic organization, cell adhesion, and actin cytoskeleton, including synaptic scaffolding molecules and receptors, such as SHANK2, HOMER1, NRXN1, CNTNAP2 and GRIN2A, and protocadherin (PCDH) and cadherin (CDH) family members. By comparing transcriptomic data from AD patients, we have discovered that many of the synaptic and adhesion genes with reduced CTCF binding in AD are significantly reduced in their mRNA expression. Moreover, a significant overlap of genes with the diminished CTCF binding and the reduced H3K27ac is identified in AD, with the common genes enriched in synaptic organization. These data suggest that the CTCF-controlled 3D chromatin organization is perturbed in AD, which may be linked to the diminished expression of target genes, probably through changes in histone modification.
Collapse
Affiliation(s)
- Prachetas J Patel
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Yong Ren
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA.
| |
Collapse
|
7
|
Smits WK, Vermeulen C, Hagelaar R, Kimura S, Vroegindeweij EM, Buijs-Gladdines JGCAM, van de Geer E, Verstegen MJAM, Splinter E, van Reijmersdal SV, Buijs A, Galjart N, van Eyndhoven W, van Min M, Kuiper R, Kemmeren P, Mullighan CG, de Laat W, Meijerink JPP. Elevated enhancer-oncogene contacts and higher oncogene expression levels by recurrent CTCF inactivating mutations in acute T cell leukemia. Cell Rep 2023; 42:112373. [PMID: 37060567 PMCID: PMC10750298 DOI: 10.1016/j.celrep.2023.112373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
Monoallelic inactivation of CCCTC-binding factor (CTCF) in human cancer drives altered methylated genomic states, altered CTCF occupancy at promoter and enhancer regions, and deregulated global gene expression. In patients with T cell acute lymphoblastic leukemia (T-ALL), we find that acquired monoallelic CTCF-inactivating events drive subtle and local genomic effects in nearly half of t(5; 14) (q35; q32.2) rearranged patients, especially when CTCF-binding sites are preserved in between the BCL11B enhancer and the TLX3 oncogene. These solitary intervening sites insulate TLX3 from the enhancer by inducing competitive looping to multiple binding sites near the TLX3 promoter. Reduced CTCF levels or deletion of the intervening CTCF site abrogates enhancer insulation by weakening competitive looping while favoring TLX3 promoter to BCL11B enhancer looping, which elevates oncogene expression levels and leukemia burden.
Collapse
Affiliation(s)
- Willem K Smits
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Carlo Vermeulen
- Oncode Institute, Utrecht, the Netherlands; Hubrecht Institute-KNAW, Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rico Hagelaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Shunsuke Kimura
- Laboratory of Pathology, St. Jude's Children's Research Hospital, Memphis TN, USA
| | | | | | - Ellen van de Geer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marjon J A M Verstegen
- Oncode Institute, Utrecht, the Netherlands; Hubrecht Institute-KNAW, Utrecht, the Netherlands
| | | | | | - Arjan Buijs
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Niels Galjart
- Department of Cell Biology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | | | - Roland Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Patrick Kemmeren
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Charles G Mullighan
- Laboratory of Pathology, St. Jude's Children's Research Hospital, Memphis TN, USA
| | - Wouter de Laat
- Oncode Institute, Utrecht, the Netherlands; Hubrecht Institute-KNAW, Utrecht, the Netherlands
| | | |
Collapse
|
8
|
Hyle J, Djekidel MN, Williams J, Wright S, Shao Y, Xu B, Li C. Auxin-inducible degron 2 system deciphers functions of CTCF domains in transcriptional regulation. Genome Biol 2023; 24:14. [PMID: 36698211 PMCID: PMC9878928 DOI: 10.1186/s13059-022-02843-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/29/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND CTCF is a well-established chromatin architectural protein that also plays various roles in transcriptional regulation. While CTCF biology has been extensively studied, how the domains of CTCF function to regulate transcription remains unknown. Additionally, the original auxin-inducible degron 1 (AID1) system has limitations in investigating the function of CTCF. RESULTS We employ an improved auxin-inducible degron technology, AID2, to facilitate the study of acute depletion of CTCF while overcoming the limitations of the previous AID system. As previously observed through the AID1 system and steady-state RNA analysis, the new AID2 system combined with SLAM-seq confirms that CTCF depletion leads to modest nascent and steady-state transcript changes. A CTCF domain sgRNA library screening identifies the zinc finger (ZF) domain as the region within CTCF with the most functional relevance, including ZFs 1 and 10. Removal of ZFs 1 and 10 reveals genomic regions that independently require these ZFs for DNA binding and transcriptional regulation. Notably, loci regulated by either ZF1 or ZF10 exhibit unique CTCF binding motifs specific to each ZF. CONCLUSIONS By extensively comparing the AID1 and AID2 systems for CTCF degradation in SEM cells, we confirm that AID2 degradation is superior for achieving miniAID-tagged protein degradation without the limitations of the AID1 system. The model we create that combines AID2 depletion of CTCF with exogenous overexpression of CTCF mutants allows us to demonstrate how peripheral ZFs intricately orchestrate transcriptional regulation in a cellular context for the first time.
Collapse
Affiliation(s)
- Judith Hyle
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Mohamed Nadhir Djekidel
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Justin Williams
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Shaela Wright
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Ying Shao
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
9
|
Segueni J, Noordermeer D. CTCF: a misguided jack-of-all-trades in cancer cells. Comput Struct Biotechnol J 2022; 20:2685-2698. [PMID: 35685367 PMCID: PMC9166472 DOI: 10.1016/j.csbj.2022.05.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/13/2022] Open
Abstract
The emergence and progression of cancers is accompanied by a dysregulation of transcriptional programs. The three-dimensional (3D) organization of the human genome has emerged as an important multi-level mediator of gene transcription and regulation. In cancer cells, this organization can be restructured, providing a framework for the deregulation of gene activity. The CTCF protein, initially identified as the product from a tumor suppressor gene, is a jack-of-all-trades for the formation of 3D genome organization in normal cells. Here, we summarize how CTCF is involved in the multi-level organization of the human genome and we discuss emerging insights into how perturbed CTCF function and DNA binding causes the activation of oncogenes in cancer cells, mostly through a process of enhancer hijacking. Moreover, we highlight non-canonical functions of CTCF that can be relevant for the emergence of cancers as well. Finally, we provide guidelines for the computational identification of perturbed CTCF binding and reorganized 3D genome structure in cancer cells.
Collapse
|
10
|
Xu H, Fang M, Li C, Zuo B, Ren J, Zhang Y. BORIS-mediated generation of circular RNAs induces inflammation. Transl Oncol 2022; 18:101363. [PMID: 35182955 PMCID: PMC8857574 DOI: 10.1016/j.tranon.2022.101363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/04/2022] Open
Abstract
Cancer circRNAs can serve as a vaccine for cancer prevention. Cancer circRNAs activate TLR3 to stimulate NF-κB p65 and provoke inflammation. BORIS interactes with motifs adjacent to circRNA splicing sites. BORIS regulates the expression of circRNAs.
Circular RNAs (circRNAs), which are more stable than linear mRNAs and long non-coding RNAs (LncRNAs), are detected in body fluids such as plasma, serum, and exosomes. Disease-associated circRNAs have significant clinical roles due to their diagnostic and prognostic values. Brother of regulator of imprinting site (BORIS) promotes cancer progression and is specifically highly expressed in the majority of carcinoma. However, the mechanism underlying the regulation of circRNAs by the oncoprotein BORIS and their role in regulating inflammation and immunity remain to be further explored. Vaccines prepared from circRNAs extracted from cancer cells showed that circRNAs induced inflammation and prevented cancer progression. Serum from animals injected with cancer cell-derived circRNAs vigorously reacted with cells that expressed cancer-specific antigen BORIS or cancer extracted circRNAs. It has been implicated that cancer-related circRNAs could be used as antigens to activate immune responses to prevent cancers and stimulate NF-κB signaling pathway by up-regulating and inducing TLR3. In the study we also found that BORIS regulated the expression of circRNAs and interacted with RNA motifs and the CCCTC binding factor (CTCF) motif adjacent to circRNA splicing sites to enhance the formation of circRNAs. Thus, our study delineated the novel mechanism by which cancer-specific antigen BORIS regulated circRNAs and identified that circRNAs could serve as a vaccine for cancer prevention.
Collapse
Affiliation(s)
- Hao Xu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou 310013, China
| | - Mengdie Fang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou 310013, China
| | - Chao Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou 310013, China
| | - Bowen Zuo
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou 310013, China
| | - Juan Ren
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou 310013, China
| | - Yanmei Zhang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou 310013, China.
| |
Collapse
|
11
|
Gong LJ, Wang XY, Yao XD, Wu X, Gu WY. CircESRP1 inhibits clear cell renal cell carcinoma progression through the CTCF-mediated positive feedback loop. Cell Death Dis 2021; 12:1081. [PMID: 34775467 PMCID: PMC8590696 DOI: 10.1038/s41419-021-04366-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023]
Abstract
Circular RNA (circRNA), a closed continuous loop formed by back-splicing, has been confirmed to be implicated in a variety of human diseases including cancers. However, the underlying molecular mechanism of circRNA regulating the progression of renal cell carcinoma (RCC) remains largely unclear. In the present study, we identified a novel circular RNA, circESRP1, that derived from the ESRP1 gene locus at 8q22.1 exons. Lower expression of circESRP1 was found in clear cell RCC (ccRCC) tissues and cell lines. Besides, circESRP1 expression level showed inversely correlated with the advanced tumor size, TNM stage and distant metastasis of ccRCC. The expression level of circESRP1 exhibited a positive correlation with CTCF protein but negatively correlated with miR-3942 in 79 ccRCC tissues. In vivo experiments, we found that overexpression of circESRP1 effectively repressed xenograft tumor growth and inhibited c-Myc-mediated EMT progression. CircESRP1 acted as a sponge to competitively bind with miR-3942 as confirmed through RNA pull-down, RIP and dual-luciferase reporter assays. Moreover, CTCF, a downstream target of miR-3942, was validated to specifically promote the circESRP1 transcript expression and regulated by circESRP1/miR-3942 pathway to form a positive feedback loop. We also revealed that the circESRP1/miR-3942/CTCF feedback loop regulated the ccRCC cell functions via c-Myc mediated EMT process. This study provides a novel regulatory model of circRNA via forming a positive-feedback loop that perpetuates the circESRP1/miR-3942/CTCF axis, suggesting that this signaling may serve as a novel target for the treatment of ccRCC.
Collapse
Affiliation(s)
- Lin-Jing Gong
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No 37 Guoxue Alley, 610041, Chengdu, Sichuan, China.,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Feng Lin Rd, Shanghai, 200032, China
| | - Xin-Yuan Wang
- Department of Orthopaedics, West China Hospital, Sichuan University, No 37 Guoxue Alley, 610041, Chengdu, Sichuan, China
| | - Xu-Dong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Rd., Shanghai, 200072, China
| | - Xu Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Feng Lin Rd, Shanghai, 200032, China.
| | - Wen-Yu Gu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Rd., Shanghai, 200072, China.
| |
Collapse
|
12
|
Peng S, Petersen JL, Bellone RR, Kalbfleisch T, Kingsley NB, Barber AM, Cappelletti E, Giulotto E, Finno CJ. Decoding the Equine Genome: Lessons from ENCODE. Genes (Basel) 2021; 12:genes12111707. [PMID: 34828313 PMCID: PMC8625040 DOI: 10.3390/genes12111707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
The horse reference genome assemblies, EquCab2.0 and EquCab3.0, have enabled great advancements in the equine genomics field, from tools to novel discoveries. However, significant gaps of knowledge regarding genome function remain, hindering the study of complex traits in horses. In an effort to address these gaps and with inspiration from the Encyclopedia of DNA Elements (ENCODE) project, the equine Functional Annotation of Animal Genome (FAANG) initiative was proposed to bridge the gap between genome and gene expression, providing further insights into functional regulation within the horse genome. Three years after launching the initiative, the equine FAANG group has generated data from more than 400 experiments using over 50 tissues, targeting a variety of regulatory features of the equine genome. In this review, we examine how valuable lessons learned from the ENCODE project informed our decisions in the equine FAANG project. We report the current state of the equine FAANG project and discuss how FAANG can serve as a template for future expansion of functional annotation in the equine genome and be used as a reference for studies of complex traits in horse. A well-annotated reference functional atlas will also help advance equine genetics in the pan-genome and precision medicine era.
Collapse
Affiliation(s)
- Sichong Peng
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA; (S.P.); (R.R.B.); (N.B.K.)
| | - Jessica L. Petersen
- Department of Animal Science, University of Nebraska, Lincoln, NE 68583-0908, USA; (J.L.P.); (A.M.B.)
| | - Rebecca R. Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA; (S.P.); (R.R.B.); (N.B.K.)
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Ted Kalbfleisch
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40503, USA;
| | - N. B. Kingsley
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA; (S.P.); (R.R.B.); (N.B.K.)
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Alexa M. Barber
- Department of Animal Science, University of Nebraska, Lincoln, NE 68583-0908, USA; (J.L.P.); (A.M.B.)
| | - Eleonora Cappelletti
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.); (E.G.)
| | - Elena Giulotto
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.); (E.G.)
| | - Carrie J. Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA; (S.P.); (R.R.B.); (N.B.K.)
- Correspondence:
| |
Collapse
|
13
|
Ray-Jones H, Spivakov M. Transcriptional enhancers and their communication with gene promoters. Cell Mol Life Sci 2021; 78:6453-6485. [PMID: 34414474 PMCID: PMC8558291 DOI: 10.1007/s00018-021-03903-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Transcriptional enhancers play a key role in the initiation and maintenance of gene expression programmes, particularly in metazoa. How these elements control their target genes in the right place and time is one of the most pertinent questions in functional genomics, with wide implications for most areas of biology. Here, we synthesise classic and recent evidence on the regulatory logic of enhancers, including the principles of enhancer organisation, factors that facilitate and delimit enhancer-promoter communication, and the joint effects of multiple enhancers. We show how modern approaches building on classic insights have begun to unravel the complexity of enhancer-promoter relationships, paving the way towards a quantitative understanding of gene control.
Collapse
Affiliation(s)
- Helen Ray-Jones
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK
| | - Mikhail Spivakov
- MRC London Institute of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK.
| |
Collapse
|
14
|
Huang H, Zhu Q, Jussila A, Han Y, Bintu B, Kern C, Conte M, Zhang Y, Bianco S, Chiariello AM, Yu M, Hu R, Tastemel M, Juric I, Hu M, Nicodemi M, Zhuang X, Ren B. CTCF mediates dosage- and sequence-context-dependent transcriptional insulation by forming local chromatin domains. Nat Genet 2021; 53:1064-1074. [PMID: 34002095 PMCID: PMC8853952 DOI: 10.1038/s41588-021-00863-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 04/02/2021] [Indexed: 02/03/2023]
Abstract
Insulators play a critical role in spatiotemporal gene regulation in animals. The evolutionarily conserved CCCTC-binding factor (CTCF) is required for insulator function in mammals, but not all of its binding sites act as insulators. Here we explore the sequence requirements of CTCF-mediated transcriptional insulation using a sensitive insulator reporter in mouse embryonic stem cells. We find that insulation potency depends on the number of CTCF-binding sites in tandem. Furthermore, CTCF-mediated insulation is dependent on upstream flanking sequences at its binding sites. CTCF-binding sites at topologically associating domain boundaries are more likely to function as insulators than those outside topologically associating domain boundaries, independently of binding strength. We demonstrate that insulators form local chromatin domain boundaries and weaken enhancer-promoter contacts. Taken together, our results provide genetic, molecular and structural evidence connecting chromatin topology to the action of insulators in the mammalian genome.
Collapse
Affiliation(s)
- Hui Huang
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA, University of California, San Diego, Biomedical Sciences Graduate Program, La Jolla, California 92093, USA
| | - Quan Zhu
- University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, Center for Epigenomics, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA
| | - Adam Jussila
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA, Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Yuanyuan Han
- University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, Center for Epigenomics, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA
| | - Bogdan Bintu
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Colin Kern
- University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, Center for Epigenomics, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA
| | - Mattia Conte
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant’Angelo, Naples, Italy
| | - Yanxiao Zhang
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant’Angelo, Naples, Italy
| | - Andrea M. Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant’Angelo, Naples, Italy
| | - Miao Yu
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
| | - Rong Hu
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
| | - Melodi Tastemel
- University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA
| | - Ivan Juric
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant’Angelo, Naples, Italy, Berlin Institute for Medical Systems Biology, Max Delbrück Centre (MDC) for Molecular Medicine, Berlin, Germany., Berlin Institute of Health (BIH), Berlin, Germany
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA, University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, Center for Epigenomics, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA, University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA, University of California, San Diego School of Medicine, Institute of Genomic Medicine, and Moores Cancer Center, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA,Correspondence:
| |
Collapse
|
15
|
陈 兰, 赫 纹, 刘 玲. [Autosomal dominant intellectual disability type 21 in a neonate]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:306-309. [PMID: 33691927 PMCID: PMC7969196 DOI: 10.7499/j.issn.1008-8830.2010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
This is a case report on a 1-day-old male neonate admitted due to a weak cry for 1 day and recurrent circumoral cyanosis for 2 hours. He had unusual facial features at birth, with a single transverse palmar crease on both hands, flat feet, weak cry, feeding difficulties, congenital heart disease, and abnormality on cerebral MRI. Whole exome sequencing showed a de novo mutation, c.778_781delAAAG(p.Lys260ValfsTer2), in exon 3 of the CTCF gene, which was considered a pathogenic mutation by protein function prediction and might damage the function of CTCF protein. He was diagnosed with autosomal dominant intellectual disability type 21 based on the clinical manifestations and genetic analysis results. This case suggests that genetic analysis should be performed as early as possible for neonates with feeding difficulties which cannot be explained by infection or hypoxia, so as to help with early diagnosis and genetic counselling.
Collapse
Affiliation(s)
- 兰 陈
- />贵阳市妇幼保健院新生儿科, 贵州贵阳 550003Guiyang Maternity and Child Health Care Hospital, Guiyang 550003, China
| | - 纹 赫
- />贵阳市妇幼保健院新生儿科, 贵州贵阳 550003Guiyang Maternity and Child Health Care Hospital, Guiyang 550003, China
| | - 玲 刘
- />贵阳市妇幼保健院新生儿科, 贵州贵阳 550003Guiyang Maternity and Child Health Care Hospital, Guiyang 550003, China
| |
Collapse
|
16
|
Kang MA, Lee JS. A Newly Assigned Role of CTCF in Cellular Response to Broken DNAs. Biomolecules 2021; 11:363. [PMID: 33673494 PMCID: PMC7997455 DOI: 10.3390/biom11030363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Best known as a transcriptional factor, CCCTC-binding factor (CTCF) is a highly conserved multifunctional DNA-binding protein with 11 zinc fingers. It functions in diverse genomic processes, including transcriptional activation/repression, insulation, genome imprinting and three-dimensional genome organization. A big surprise has recently emerged with the identification of CTCF engaging in the repair of DNA double-strand breaks (DSBs) and in the maintenance of genome fidelity. This discovery now adds a new dimension to the multifaceted attributes of this protein. CTCF facilitates the most accurate DSB repair via homologous recombination (HR) that occurs through an elaborate pathway, which entails a chain of timely assembly/disassembly of various HR-repair complexes and chromatin modifications and coordinates multistep HR processes to faithfully restore the original DNA sequences of broken DNA sites. Understanding the functional crosstalks between CTCF and other HR factors will illuminate the molecular basis of various human diseases that range from developmental disorders to cancer and arise from impaired repair. Such knowledge will also help understand the molecular mechanisms underlying the diverse functions of CTCF in genome biology. In this review, we discuss the recent advances regarding this newly assigned versatile role of CTCF and the mechanism whereby CTCF functions in DSB repair.
Collapse
Affiliation(s)
| | - Jong-Soo Lee
- Department of Life Sciences, Ajou University, Suwon 16499, Korea;
| |
Collapse
|
17
|
Chen L, Gu X, Huang X, Liu R, Li J, Hu Y, Li G, Zeng T, Tian Y, Hu X, Lu L, Li N. Two cis-regulatory SNPs upstream of ABCG2 synergistically cause the blue eggshell phenotype in the duck. PLoS Genet 2020; 16:e1009119. [PMID: 33186356 PMCID: PMC7688135 DOI: 10.1371/journal.pgen.1009119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 11/25/2020] [Accepted: 09/15/2020] [Indexed: 01/21/2023] Open
Abstract
Avian eggshell color is an interesting genetic trait. Here, we report that the blue eggshell color of the domestic duck is caused by two cis-regulatory G to A transitions upstream of ABCG2, which encodes an efflux transporter. The juxtaposed blue eggshell allele A-A exhibited higher promoter activity and stronger nuclear protein binding capacity than the white eggshell allele G-G. Transcription factor analysis suggested differential binding capability of CTCF between blue eggshell and white eggshell alleles. Knockdown of CTCF expression significantly decreased the promoter activity of the blue eggshell but not the white eggshell allele. DNA methylation analysis revealed similar high methylation of the region upstream of the CTCF binding sites in both blue-eggshelled and white-eggshelled ducks. However, DNA methylation levels downstream of the binding sites were decreased and 35% lower in blue-eggshelled ducks than in white-eggshelled ducks. Consistent with the in vitro regulatory pattern of causative sites, ABCG2 exhibited higher expression in uteruses of blue-eggshelled ducks and also showed polarized distribution in their endometrial epithelial cells, distributing at the apical surface of endometrial epithelial cells and with orientation toward the uterine cavity, where the eggshell is pigmented. In conclusion, our results suggest that two cis-regulatory SNPs upstream of ABCG2 are the causative mutations for blue eggshells in ducks. The blue eggshell variant up-regulated ABCG2 expression through recruiting CTCF binding, which may function as a barrier element to shield the downstream region from high methylation levels present upstream. ABCG2 was identified as the only candidate causative gene for blue eggshells; it may function as an efflux transporter of biliverdin to the uterine cavity. Avian eggshell color is an interesting genetic trait that has been related to numerous interesting biological functions, such as crypsis, mimicry, and protection from ultraviolet radiation. In ducks, blue eggshells are a dominant Mendelian trait. The color is preferred by customers and has become one of the main breeding targets in laying ducks in China. In this study, we identified that duck blue eggshells are likely caused by two cis-regulatory variations that synergistically up-regulate ABCG2 expression in the uterus. ABCG2 was identified as the only candidate causative gene for blue eggshell; it may function as an efflux transporter of biliverdin to the uterine cavity, where the eggshell is pigmented. Our study provides useful molecular markers for breeding of blue-eggshelled ducks.
Collapse
Affiliation(s)
- Li Chen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaorong Gu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Xuetao Huang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rui Liu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Jinxiu Li
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yiqing Hu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Guoqin Li
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tao Zeng
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yong Tian
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoxiang Hu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
- * E-mail: (XH); (LL); (NL)
| | - Lizhi Lu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- * E-mail: (XH); (LL); (NL)
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
- * E-mail: (XH); (LL); (NL)
| |
Collapse
|
18
|
Sensitivity of transcription factors to DNA methylation. Essays Biochem 2020; 63:727-741. [PMID: 31755929 PMCID: PMC6923324 DOI: 10.1042/ebc20190033] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022]
Abstract
Dynamic binding of transcription factors (TFs) to regulatory elements controls transcriptional states throughout organism development. Epigenetics modifications, such as DNA methylation mostly within cytosine-guanine dinucleotides (CpGs), have the potential to modulate TF binding to DNA. Although DNA methylation has long been thought to repress TF binding, a more recent model proposes that TF binding can also inhibit DNA methylation. Here, we review the possible scenarios by which DNA methylation and TF binding affect each other. Further in vivo experiments will be required to generalize these models.
Collapse
|
19
|
Wu J, Zhang L, Song Q, Yu L, Wang S, Zhang B, Wang W, Xia P, Chen X, Xiao Y, Xu C. Systematical identification of cell-specificity of CTCF-gene binding based on epigenetic modifications. Brief Bioinform 2020; 22:589-600. [PMID: 32022856 DOI: 10.1093/bib/bbaa004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
The CCCTC-binding factor (CTCF) mediates transcriptional regulation and implicates epigenetic modifications in cancers. However, the systematically unveiling inverse regulatory relationship between CTCF and epigenetic modifications still remains unclear, especially the mechanism by which histone modification mediates CTCF binding. Here, we developed a systematic approach to investigate how epigenetic changes affect CTCF binding. Through integration analysis of CTCF binding in 30 cell lines, we concluded that CTCF generally binds with higher intensity in normal cell lines than that in cancers, and higher intensity in genome regions closed to transcription start sites. To facilitate the better understanding of their associations, we constructed linear mixed-effect models to analyze the effects of the epigenetic modifications on CTCF binding in four cancer cell lines and six normal cell lines, and identified seven epigenetic modifications as potential epigenetic patterns that influence CTCF binding intensity in promoter regions and six epigenetic modifications in enhancer regions. Further analysis of the effects in different locations revealed that the epigenetic regulation of CTCF binding was location-specific and cancer cell line-specific. Moreover, H3K4me2 and H3K9ac showed the potential association with immune regulation of disease. Taken together, our method can contribute to improve the understanding of the epigenetic regulation of CTCF binding and provide potential therapeutic targets for treating tumors associated with CTCF.
Collapse
Affiliation(s)
- Jie Wu
- Bioinformatics at Harbin Medical University, China
| | - Li Zhang
- Bioinformatics at Harbin Medical University, China
| | - Qian Song
- Bioinformatics at Harbin Medical University, China
| | - Lei Yu
- Bioinformatics at Harbin Medical University, China
| | - Shuyuan Wang
- Bioinformatics at Harbin Medical University, China
| | - Bo Zhang
- Bioinformatics at Harbin Medical University, China
| | - Weida Wang
- Bioinformatics at Harbin Medical University, China
| | - Peng Xia
- Bioinformatics at Harbin Medical University, China
| | - Xiaowen Chen
- Bioinformatics at Harbin Medical University, China
| | - Yun Xiao
- Bioinformatics at Harbin Medical University, China
| | - Chaohan Xu
- Bioinformatics at Harbin Medical University, China
| |
Collapse
|
20
|
Pugacheva EM, Kubo N, Loukinov D, Tajmul M, Kang S, Kovalchuk AL, Strunnikov AV, Zentner GE, Ren B, Lobanenkov VV. CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention. Proc Natl Acad Sci U S A 2020; 117:2020-2031. [PMID: 31937660 PMCID: PMC6995019 DOI: 10.1073/pnas.1911708117] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The DNA-binding protein CCCTC-binding factor (CTCF) and the cohesin complex function together to shape chromatin architecture in mammalian cells, but the molecular details of this process remain unclear. Here, we demonstrate that a 79-aa region within the CTCF N terminus is essential for cohesin positioning at CTCF binding sites and chromatin loop formation. However, the N terminus of CTCF fused to artificial zinc fingers was not sufficient to redirect cohesin to non-CTCF binding sites, indicating a lack of an autonomously functioning domain in CTCF responsible for cohesin positioning. BORIS (CTCFL), a germline-specific paralog of CTCF, was unable to anchor cohesin to CTCF DNA binding sites. Furthermore, CTCF-BORIS chimeric constructs provided evidence that, besides the N terminus of CTCF, the first two CTCF zinc fingers, and likely the 3D geometry of CTCF-DNA complexes, are also involved in cohesin retention. Based on this knowledge, we were able to convert BORIS into CTCF with respect to cohesin positioning, thus providing additional molecular details of the ability of CTCF to retain cohesin. Taken together, our data provide insight into the process by which DNA-bound CTCF constrains cohesin movement to shape spatiotemporal genome organization.
Collapse
Affiliation(s)
- Elena M Pugacheva
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| | - Naoki Kubo
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093
| | - Dmitri Loukinov
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Md Tajmul
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sungyun Kang
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Alexander L Kovalchuk
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Alexander V Strunnikov
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Science Park, 510530 Guangzhou, China
| | - Gabriel E Zentner
- Department of Biology, Indiana University, Bloomington, IN 47405
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University-Purdue University, Indianapolis, IN 46202
| | - Bing Ren
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA 92093-0653
- Moores Cancer Center and Institute of Genomic Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093-0653
| | - Victor V Lobanenkov
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
21
|
Abstract
In eukaryotes, DNA is highly compacted within the nucleus into a structure known as chromatin. Modulation of chromatin structure allows for precise regulation of gene expression, and thereby controls cell fate decisions. Specific chromatin organization is established and preserved by numerous factors to generate desired cellular outcomes. In embryonic stem (ES) cells, chromatin is precisely regulated to preserve their two defining characteristics: self-renewal and pluripotent state. This action is accomplished by a litany of nucleosome remodelers, histone variants, epigenetic marks, and other chromatin regulatory factors. These highly dynamic regulatory factors come together to precisely define a chromatin state that is conducive to ES cell maintenance and development, where dysregulation threatens the survival and fitness of the developing organism.
Collapse
Affiliation(s)
- David C Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
22
|
Wang AJ, Han Y, Jia N, Chen P, Minden MD. NPM1c impedes CTCF functions through cytoplasmic mislocalization in acute myeloid leukemia. Leukemia 2019; 34:1278-1290. [PMID: 31831844 DOI: 10.1038/s41375-019-0681-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 11/10/2019] [Accepted: 12/05/2019] [Indexed: 11/09/2022]
Abstract
Normal cytogenetic acute myeloid leukemia (AML) frequently harbor a TCTG insertion in exon 12 of Nucleophosmin 1 (NPM1); the resulting frameshift creates a nuclear export signal (NES) and cytoplasmic localization of NPM1c. However, how NPM1c causes AML is not completely understood. NPM1 participates in multiple protein-protein interactions one of which involves the CCCTC-binding factor (CTCF). Through binding of CTCF binding sites (CBS), CTCF mediates nuclear functions including DNA looping, regulation of gene expression, and RNA splicing. We hypothesized that mislocalization of CTCF into the cytoplasm by NPM1c reduces the functional level of nuclear CTCF and so alters gene expression. We verified the interaction of CTCF with NPM1 and showed that CTCF interacts with NPM1c, with redistribution of CTCF into the cytoplasm. The interaction of CTCF and NPM1c involves the amino terminus of CTCF and the last 50 amino acids of NPM1. By interfering with the interaction of CTCF and NPM1c, CTCF becomes relocalized into the nucleus.
Collapse
Affiliation(s)
- Atom J Wang
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, Toronto, Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Youqi Han
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Nanyang Jia
- Department of Computer Science, Faculty of Arts and Science, University of Toronto, Toronto, Canada
| | - Peikun Chen
- Department of Computer Science, Faculty of Arts and Science, University of Toronto, Toronto, Canada
| | - Mark D Minden
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, Toronto, Canada. .,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
23
|
Abstract
Cellular heterogeneity, which was initially defined for tumor cells, is a fundamental property of all cellular systems, ranging from genetic diversity to cell-to-cell variation driven by stochastic molecular interactions involved all cellular processes. Different cells display substantial variation in gene expression and in response to environmental signaling even in an apparently homogeneous population of cells. Recent studies started to reveal the underlying mechanisms for cellular heterogeneity, particularly related to the states of chromatin. Accumulating evidence suggests that CTCF, an important factor regulating chromatin organization, plays a key role in the control of gene expression variation by stabilizing enhancer–promoter interaction.
Collapse
Affiliation(s)
- Gang Ren
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
24
|
Keenan AB, Torre D, Lachmann A, Leong AK, Wojciechowicz ML, Utti V, Jagodnik KM, Kropiwnicki E, Wang Z, Ma’ayan A. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res 2019; 47:W212-W224. [PMID: 31114921 PMCID: PMC6602523 DOI: 10.1093/nar/gkz446] [Citation(s) in RCA: 590] [Impact Index Per Article: 98.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/12/2023] Open
Abstract
Identifying the transcription factors (TFs) responsible for observed changes in gene expression is an important step in understanding gene regulatory networks. ChIP-X Enrichment Analysis 3 (ChEA3) is a transcription factor enrichment analysis tool that ranks TFs associated with user-submitted gene sets. The ChEA3 background database contains a collection of gene set libraries generated from multiple sources including TF-gene co-expression from RNA-seq studies, TF-target associations from ChIP-seq experiments, and TF-gene co-occurrence computed from crowd-submitted gene lists. Enrichment results from these distinct sources are integrated to generate a composite rank that improves the prediction of the correct upstream TF compared to ranks produced by individual libraries. We compare ChEA3 with existing TF prediction tools and show that ChEA3 performs better. By integrating the ChEA3 libraries, we illuminate general transcription factor properties such as whether the TF behaves as an activator or a repressor. The ChEA3 web-server is available from https://amp.pharm.mssm.edu/ChEA3.
Collapse
Affiliation(s)
- Alexandra B Keenan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Denis Torre
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Alexander Lachmann
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Ariel K Leong
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Megan L Wojciechowicz
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Vivian Utti
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Kathleen M Jagodnik
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Eryk Kropiwnicki
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Zichen Wang
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Avi Ma’ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| |
Collapse
|
25
|
Marino MM, Rega C, Russo R, Valletta M, Gentile MT, Esposito S, Baglivo I, De Feis I, Angelini C, Xiao T, Felsenfeld G, Chambery A, Pedone PV. Interactome mapping defines BRG1, a component of the SWI/SNF chromatin remodeling complex, as a new partner of the transcriptional regulator CTCF. J Biol Chem 2018; 294:861-873. [PMID: 30459231 DOI: 10.1074/jbc.ra118.004882] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/19/2018] [Indexed: 01/22/2023] Open
Abstract
The highly conserved zinc finger CCCTC-binding factor (CTCF) regulates genomic imprinting and gene expression by acting as a transcriptional activator or repressor of promoters and insulator of enhancers. The multiple functions of CTCF are accomplished by co-association with other protein partners and are dependent on genomic context and tissue specificity. Despite the critical role of CTCF in the organization of genome structure, to date, only a subset of CTCF interaction partners have been identified. Here we present a large-scale identification of CTCF-binding partners using affinity purification and high-resolution LC-MS/MS analysis. In addition to functional enrichment of specific protein families such as the ribosomal proteins and the DEAD box helicases, we identified novel high-confidence CTCF interactors that provide a still unexplored biochemical context for CTCF's multiple functions. One of the newly validated CTCF interactors is BRG1, the major ATPase subunit of the chromatin remodeling complex SWI/SNF, establishing a relationship between two master regulators of genome organization. This work significantly expands the current knowledge of the human CTCF interactome and represents an important resource to direct future studies aimed at uncovering molecular mechanisms modulating CTCF pleiotropic functions throughout the genome.
Collapse
Affiliation(s)
- Maria Michela Marino
- From the Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli," 81100 Caserta, Italy
| | - Camilla Rega
- From the Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli," 81100 Caserta, Italy
| | - Rosita Russo
- From the Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli," 81100 Caserta, Italy
| | - Mariangela Valletta
- From the Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli," 81100 Caserta, Italy
| | - Maria Teresa Gentile
- From the Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli," 81100 Caserta, Italy
| | - Sabrina Esposito
- From the Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli," 81100 Caserta, Italy
| | - Ilaria Baglivo
- From the Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli," 81100 Caserta, Italy
| | - Italia De Feis
- the Institute for Applied Mathematics "Mauro Picone" (IAC), National Research Council, 80131 Naples, Italy, and
| | - Claudia Angelini
- the Institute for Applied Mathematics "Mauro Picone" (IAC), National Research Council, 80131 Naples, Italy, and
| | - Tioajiang Xiao
- the Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Gary Felsenfeld
- the Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Angela Chambery
- From the Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli," 81100 Caserta, Italy,
| | - Paolo Vincenzo Pedone
- From the Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli," 81100 Caserta, Italy,
| |
Collapse
|
26
|
Roles of CTCF in conformation and functions of chromosome. Semin Cell Dev Biol 2018; 90:168-173. [PMID: 30031212 DOI: 10.1016/j.semcdb.2018.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/17/2018] [Indexed: 02/08/2023]
Abstract
CCCTC-binding factor (CTCF) plays indispensable roles in transcriptional inhibition/activation, insulation, gene imprinting, and regulation of 3Dchromatin structure. CTCF contributes to formation of genome multi-dimensions, regulation of dimensional changes, or control of central signals to transcriptional networks. A large number of factors affect CTCF binding, methylation/demethylation, base mutation, or poly(adp-ribosyl)ation. CTCF is one of the most important elements in the regulation of chromatin folding by combining with CBSs in TADs in a positive-reverse or reverse-positive orders. CTCF acts as a versatile nuclear factor, a transcriptional activator or repressor, an insulator binding factor, or a regulator of genomic imprinting as required for various biological procedures. Although molecular regulatory mechanisms of CTCF in cell differentiation and disease development remains unclear, roles of CTCF in carcinogenesis have been intensively explored. There is little understanding about regulatory roles of CTCF in inflammation-associated transcriptional signaling, cell injury, organ dysfunction, and systemic responses. It is also highly expected that further in-depth studies of CTCF control mechanisms can provide better understanding of disease development and potential disease-specific biomarkers and therapeutic targets.
Collapse
|
27
|
DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. Epigenetics Chromatin 2018; 11:41. [PMID: 30045751 PMCID: PMC6058387 DOI: 10.1186/s13072-018-0211-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/17/2018] [Indexed: 12/30/2022] Open
Abstract
Background Epigenome-wide association studies (EWAS) based on human brain samples allow a deep and direct understanding of epigenetic dysregulation in Alzheimer’s disease (AD). However, strong variation of cell-type proportions across brain tissue samples represents a significant source of data noise. Here, we report the first EWAS based on sorted neuronal and non-neuronal (mostly glia) nuclei from postmortem human brain tissues. Results We show that cell sorting strongly enhances the robust detection of disease-related DNA methylation changes even in a relatively small cohort. We identify numerous genes with cell-type-specific methylation signatures and document differential methylation dynamics associated with aging specifically in neurons such as CLU, SYNJ2 and NCOR2 or in glia RAI1,CXXC5 and INPP5A. Further, we found neuron or glia-specific associations with AD Braak stage progression at genes such as MCF2L, ANK1, MAP2, LRRC8B, STK32C and S100B. A comparison of our study with previous tissue-based EWAS validates multiple AD-associated DNA methylation signals and additionally specifies their origin to neuron, e.g., HOXA3 or glia (ANK1). In a meta-analysis, we reveal two novel previously unrecognized methylation changes at the key AD risk genes APP and ADAM17. Conclusions Our data highlight the complex interplay between disease, age and cell-type-specific methylation changes in AD risk genes thus offering new perspectives for the validation and interpretation of large EWAS results. Electronic supplementary material The online version of this article (10.1186/s13072-018-0211-3) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Han D, Chen Q, Shi J, Zhang F, Yu X. CTCF participates in DNA damage response via poly(ADP-ribosyl)ation. Sci Rep 2017; 7:43530. [PMID: 28262757 PMCID: PMC5337984 DOI: 10.1038/srep43530] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/27/2017] [Indexed: 01/15/2023] Open
Abstract
CCCTC-binding factor (CTCF) plays an essential role in regulating the structure of chromatin by binding DNA strands for defining the boundary between active and heterochromatic DNA. However, the role of CTCF in DNA damage response remains elusive. Here, we show that CTCF is quickly recruited to the sites of DNA damage. The fast recruitment is mediated by the zinc finger domain and poly (ADP-ribose) (PAR). Further analyses show that only three zinc finger motifs are essential for PAR recognition. Moreover, CTCF-deficient cells are hypersensitive to genotoxic stress such as ionizing radiation (IR). Taken together, these results suggest that CTCF participate in DNA damage response via poly(ADP-ribosylation).
Collapse
Affiliation(s)
- Deqiang Han
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd, Duarte, California, 91010, USA.,Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Qian Chen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd, Duarte, California, 91010, USA
| | - Jiazhong Shi
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd, Duarte, California, 91010, USA.,Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Feng Zhang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd, Duarte, California, 91010, USA
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd, Duarte, California, 91010, USA
| |
Collapse
|
29
|
Sekiya T, Murano K, Kato K, Kawaguchi A, Nagata K. Mitotic phosphorylation of CCCTC-binding factor (CTCF) reduces its DNA binding activity. FEBS Open Bio 2017; 7:397-404. [PMID: 28286735 PMCID: PMC5337899 DOI: 10.1002/2211-5463.12189] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/30/2016] [Accepted: 12/22/2016] [Indexed: 11/16/2022] Open
Abstract
During mitosis, higher order chromatin structures are disrupted and chromosomes are condensed to achieve accurate chromosome segregation. CCCTC‐binding factor (CTCF) is a highly conserved and ubiquitously expressed C2H2‐type zinc finger protein which is considered to be involved in epigenetic memory through regulation of higher order chromatin architecture. However, the regulatory mechanism of CTCF in mitosis is still unclear. Here we found that the DNA‐binding activity of CTCF is regulated in a phosphorylation‐dependent manner during mitosis. The linker domains of the CTCF zinc finger domain were found to be phosphorylated during mitosis. The phosphorylation of linker domains impaired the DNA‐binding activity in vitro. Mutation analyses showed that amino acid residues (Thr289, Thr317, Thr346, Thr374, Ser402, Ser461, and Thr518) located in the linker domains were phosphorylated during mitosis. Based on these results, we propose that the mitotic phosphorylation of the linker domains of CTCF is important for the dissociation of CTCF from mitotic chromatin.
Collapse
Affiliation(s)
- Takeshi Sekiya
- Department of Infection Biology Faculty of Medicine and Graduate School of Comprehensive Human Science University of Tsukuba Japan
| | - Kensaku Murano
- Department of Molecular Biology Keio University School of Medicine Tokyo Japan
| | - Kohsuke Kato
- Department of Infection BiologyFaculty of Medicine and Graduate School of Comprehensive Human ScienceUniversity of TsukubaJapan; Faculty of MedicineUniversity of TsukubaJapan
| | - Atsushi Kawaguchi
- Department of Infection BiologyFaculty of Medicine and Graduate School of Comprehensive Human ScienceUniversity of TsukubaJapan; Faculty of MedicineUniversity of TsukubaJapan
| | | |
Collapse
|
30
|
Abstract
Retroviral vector gene therapy is a promising approach to treating HIV-1. However, integrated vectors are mutagens with the potential to dysregulate nearby genes and cause severe adverse side effects. Leukemia has already been a documented severe adverse event in gene therapy clinical trials for the treatment of primary immunodeficiencies. These side effects will need to be reduced or avoided if retroviral vectors are to be used clinically for HIV-1 treatment. The addition of chromatin insulators to retroviral vectors is a potential strategy for reducing adverse side effects. Insulators have already been effectively used in retroviral vectors to reduce genotoxicity in pre-clinical studies. Here, we will review how insulators function, genotoxicity in gene therapy clinical trials, the design of insulated retroviral vectors, promising results from insulated retroviral vector studies, and considerations for the development of insulated retroviral treatment vectors for HIV-1 gene therapy.
Collapse
Affiliation(s)
- Diana L. Browning
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA;
| | - Grant D. Trobridge
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA;
- Pharmaceutical Sciences, College of Pharmacy, Washington State University Spokane, Spokane, WA 99202, USA
- Correspondence: ; Tel.: +1-509-368-6535
| |
Collapse
|
31
|
Haag T, Richter AM, Schneider MB, Jiménez AP, Dammann RH. The dual specificity phosphatase 2 gene is hypermethylated in human cancer and regulated by epigenetic mechanisms. BMC Cancer 2016; 16:49. [PMID: 26833217 PMCID: PMC4736155 DOI: 10.1186/s12885-016-2087-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/27/2016] [Indexed: 12/31/2022] Open
Abstract
Background Dual specificity phosphatases are a class of tumor-associated proteins involved in the negative regulation of the MAP kinase pathway. Downregulation of the dual specificity phosphatase 2 (DUSP2) has been reported in cancer. Epigenetic silencing of tumor suppressor genes by abnormal promoter methylation is a frequent mechanism in oncogenesis. It has been shown that the epigenetic factor CTCF is involved in the regulation of tumor suppressor genes. Methods We analyzed the promoter hypermethylation of DUSP2 in human cancer, including primary Merkel cell carcinoma by bisulfite restriction analysis and pyrosequencing. Moreover we analyzed the impact of a DNA methyltransferase inhibitor (5-Aza-dC) and CTCF on the epigenetic regulation of DUSP2 by qRT-PCR, promoter assay, chromatin immuno-precipitation and methylation analysis. Results Here we report a significant tumor-specific hypermethylation of DUSP2 in primary Merkel cell carcinoma (p = 0.05). An increase in methylation of DUSP2 was also found in 17 out of 24 (71 %) cancer cell lines, including skin and lung cancer. Treatment of cancer cells with 5-Aza-dC induced DUSP2 expression by its promoter demethylation, Additionally we observed that CTCF induces DUSP2 expression in cell lines that exhibit silencing of DUSP2. This reactivation was accompanied by increased CTCF binding and demethylation of the DUSP2 promoter. Conclusions Our data show that aberrant epigenetic inactivation of DUSP2 occurs in carcinogenesis and that CTCF is involved in the epigenetic regulation of DUSP2 expression. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2087-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tanja Haag
- Institute for Genetics, Justus-Liebig-University, Heinrich-Buff-Ring 58-62, D-35392, Giessen, Germany.
| | - Antje M Richter
- Institute for Genetics, Justus-Liebig-University, Heinrich-Buff-Ring 58-62, D-35392, Giessen, Germany.
| | - Martin B Schneider
- Institute for Genetics, Justus-Liebig-University, Heinrich-Buff-Ring 58-62, D-35392, Giessen, Germany.
| | - Adriana P Jiménez
- Institute for Genetics, Justus-Liebig-University, Heinrich-Buff-Ring 58-62, D-35392, Giessen, Germany.
| | - Reinhard H Dammann
- Institute for Genetics, Justus-Liebig-University, Heinrich-Buff-Ring 58-62, D-35392, Giessen, Germany. .,Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany.
| |
Collapse
|
32
|
Amiri Roudbar M, Dehghani H, Tahmoorespur M, Zahmatkesh A, Adeldust H, Ansari Majd S, Daliri Joupari M. Quantitative analysis of RNA abondance for CTCF during reprogramming of bovine embryo from oocyte to blastocyst. Arch Anim Breed 2015. [DOI: 10.5194/aab-58-171-2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. CTCF is a highly conserved protein among eukaryotes and it is involved in many of regulatory functions including, transcriptional repression and activation, chromatin insulation, imprinting, X chromosome inactivation, higher-order chromatin organization, and alternative splicing. Studies performed on mouse embryos indicate that CTCF can be a maternal-effect gene, and is essential for normal development of embryos. CTCF can be used as a molecular effector for the proper epigenetic establishment of embryonic development. The aim of this study was to determine changes in transcript levels of the CTCF gene in bovine preimplantation embryos. RNA was extracted from immature and mature oocytes and embryos at various developmental stages (two-cell, four-cell, eight-cell, and blastocysts). Results showed that the amounts of CTCF transcripts decreased in mature oocyte in comparison with immature oocytes, but this change was not significant. In addition, the amount of CTCF transcript in embryos at two-cell, four-cell, eight-cell, and blastocyst stages significantly increased in comparison with immature oocytes. These data show that CTCF expression in bovine embryo begins at minor embryonic genome activation.
Collapse
|
33
|
Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 2014; 159:1665-80. [PMID: 25497547 PMCID: PMC5635824 DOI: 10.1016/j.cell.2014.11.021] [Citation(s) in RCA: 5537] [Impact Index Per Article: 503.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 11/05/2014] [Accepted: 11/13/2014] [Indexed: 12/13/2022]
Abstract
We use in situ Hi-C to probe the 3D architecture of genomes, constructing haploid and diploid maps of nine cell types. The densest, in human lymphoblastoid cells, contains 4.9 billion contacts, achieving 1 kb resolution. We find that genomes are partitioned into contact domains (median length, 185 kb), which are associated with distinct patterns of histone marks and segregate into six subcompartments. We identify ∼10,000 loops. These loops frequently link promoters and enhancers, correlate with gene activation, and show conservation across cell types and species. Loop anchors typically occur at domain boundaries and bind CTCF. CTCF sites at loop anchors occur predominantly (>90%) in a convergent orientation, with the asymmetric motifs "facing" one another. The inactive X chromosome splits into two massive domains and contains large loops anchored at CTCF-binding repeats.
Collapse
Affiliation(s)
- Suhas S P Rao
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Miriam H Huntley
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Neva C Durand
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Elena K Stamenova
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Ivan D Bochkov
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005, USA
| | - James T Robinson
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Adrian L Sanborn
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Ido Machol
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005, USA
| | - Arina D Omer
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
34
|
Schoborg T, Labrador M. Expanding the roles of chromatin insulators in nuclear architecture, chromatin organization and genome function. Cell Mol Life Sci 2014; 71:4089-113. [PMID: 25012699 PMCID: PMC11113341 DOI: 10.1007/s00018-014-1672-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/31/2014] [Accepted: 06/23/2014] [Indexed: 01/08/2023]
Abstract
Of the numerous classes of elements involved in modulating eukaryotic chromosome structure and function, chromatin insulators arguably remain the most poorly understood in their contribution to these processes in vivo. Indeed, our view of chromatin insulators has evolved dramatically since their chromatin boundary and enhancer blocking properties were elucidated roughly a quarter of a century ago as a result of recent genome-wide, high-throughput methods better suited to probing the role of these elements in their native genomic contexts. The overall theme that has emerged from these studies is that chromatin insulators function as general facilitators of higher-order chromatin loop structures that exert both physical and functional constraints on the genome. In this review, we summarize the result of recent work that supports this idea as well as a number of other studies linking these elements to a diverse array of nuclear processes, suggesting that chromatin insulators exert master control over genome organization and behavior.
Collapse
Affiliation(s)
- Todd Schoborg
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN 37996 USA
- Present Address: Laboratory of Molecular Machines and Tissue Architecture, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Dr Rm 2122, Bethesda, MD 20892 USA
| | - Mariano Labrador
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN 37996 USA
| |
Collapse
|
35
|
Epigenetic dysregulation by nickel through repressive chromatin domain disruption. Proc Natl Acad Sci U S A 2014; 111:14631-6. [PMID: 25246589 DOI: 10.1073/pnas.1406923111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Investigations into the genomic landscape of histone modifications in heterochromatic regions have revealed histone H3 lysine 9 dimethylation (H3K9me2) to be important for differentiation and maintaining cell identity. H3K9me2 is associated with gene silencing and is organized into large repressive domains that exist in close proximity to active genes, indicating the importance of maintenance of proper domain structure. Here we show that nickel, a nonmutagenic environmental carcinogen, disrupted H3K9me2 domains, resulting in the spreading of H3K9me2 into active regions, which was associated with gene silencing. We found weak CCCTC-binding factor (CTCF)-binding sites and reduced CTCF binding at the Ni-disrupted H3K9me2 domain boundaries, suggesting a loss of CTCF-mediated insulation function as a potential reason for domain disruption and spreading. We furthermore show that euchromatin islands, local regions of active chromatin within large H3K9me2 domains, can protect genes from H3K9me2-spreading-associated gene silencing. These results have major implications in understanding H3K9me2 dynamics and the consequences of chromatin domain disruption during pathogenesis.
Collapse
|
36
|
Jairam S, Edenberg HJ. An enhancer-blocking element regulates the cell-specific expression of alcohol dehydrogenase 7. Gene 2014; 547:239-44. [PMID: 24971505 DOI: 10.1016/j.gene.2014.06.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 05/02/2014] [Accepted: 06/23/2014] [Indexed: 12/14/2022]
Abstract
The class IV alcohol dehydrogenase gene ADH7 encodes an enzyme that is involved in ethanol and retinol metabolism. ADH7 is expressed mainly in the upper gastrointestinal tract and not in the liver, the major site of expression of the other closely related ADHs. We identified an intergenic sequence (iA1C), located between ADH7 and ADH1C, that has enhancer-blocking activity in liver-derived HepG2 cells that do not express their endogenous ADH7. This enhancer blocking function was cell- and position-dependent, with no activity seen in CP-A esophageal cells that express ADH7 endogenously. iA1C function was not specific to the ADH enhancers; it had a similar cell-specific effect on the SV40 enhancer. The CCCTC-binding factor (CTCF), an insulator binding protein, bound iA1C in HepG2 cells but not in CP-A cells. Our results suggest that in liver-derived cells, iA1C blocks the effects of ADH enhancers and thereby contributes to the cell specificity of ADH7 expression.
Collapse
Affiliation(s)
- Sowmya Jairam
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS4063, Indianapolis, IN 46202-5122, United States
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS4063, Indianapolis, IN 46202-5122, United States; Department of Medical and Molecular Genetics, Indiana University School of Medicine, 635 Barnhill Drive, MS4063, Indianapolis, IN 46202-5122, United States.
| |
Collapse
|
37
|
Wang D, Li C, Zhang X. The promoter methylation status and mRNA expression levels of CTCF and SIRT6 in sporadic breast cancer. DNA Cell Biol 2014; 33:581-90. [PMID: 24842653 DOI: 10.1089/dna.2013.2257] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Promoter hypermethylation causes gene silencing and is thought to be an early event in carcinogenesis. This study was to detect promoter methylation status and mRNA expression levels of CCCTC-binding factor (CTCF) and sirtuin 6 (SIRT6), and to explore the relationship between methylation and mRNA expression in breast cancer patient samples. Promoter methylation analysis and expression profile analysis of two genes were performed by methylation-specific PCR, bisulfite sequencing PCR, and quantitative real-time PCR in cancer lesions and matched normal tissues. The promoter region of CTCF has not been hypermethylated in all patient samples. In contrast, methylation of SIRT6 gene was present in invasive cancers (93.5%) and matched normal tissues (96.8%) from 62 patients. Promoter hypermethylation of SIRT6 was also observed in ductal carcinoma in situ (three of three) and matched normal tissues (two of three). mRNA expression of CTCF and SIRT6 in invasive tumors showed a lower level than that in paired normal tissues (p=0.008 and p=0.030, respectively). The fold change values of CTCF expression were significantly lower in invasive ductal cancer lesions with Ki-67-positive status (p=0.042). In conclusion, our data showed that the methylation status of CTCF and SIRT6 promoter regions was not statistically different in cancer lesions compared with matched normal tissues. No significant association between promoter methylation status and expression profiles of CTCF and SIRT6 was found in invasive breast cancers.
Collapse
Affiliation(s)
- Da Wang
- Department of Biochemistry and Molecular Biology, School of Preclinical and Forensic Medicine, Sichuan University , Chengdu, China
| | | | | |
Collapse
|
38
|
Shen WY, Liu QY, Wei L, Yu XQ, Li R, Yang WL, Xie XY, Liu WQ, Huang Y, Qin Y. CTCF-mediated reduction of vigilin binding affects the binding of HP1α to the satellite 2 locus. FEBS Lett 2014; 588:1549-55. [DOI: 10.1016/j.febslet.2014.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 11/28/2022]
|
39
|
Zhang H, Zhu L, He H, Zhu S, Zhang W, Liu X, Zhao X, Gao C, Mei M, Bao S, Zheng H. NF-kappa B mediated up-regulation of CCCTC-binding factor in pediatric acute lymphoblastic leukemia. Mol Cancer 2014; 13:5. [PMID: 24393203 PMCID: PMC3928924 DOI: 10.1186/1476-4598-13-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/03/2014] [Indexed: 11/25/2022] Open
Abstract
Background Acute lymphoblastic leukemia (ALL) is the most frequently occurring malignant neoplasm in children. Despite advances in treatment and outcomes for ALL patients, the pathogenesis of the disease remains unclear. Microarray analysis of samples from 100 Chinese children with ALL revealed the up-regulation of CTCF (CCCTC binding factor). CTCF is a highly conserved 11-zinc finger protein that is involved in many human cancers; however, the biological function of CTCF in pediatric ALL is unknown. Methods The expression patterns of CTCF were evaluated in matched newly diagnosed (ND), complete remission (CR), and relapsed (RE) bone marrow samples from 28 patients. The potential oncogenic mechanism of CTCF and related pathways in leukemogenesis were investigated in leukemia cell lines. Results We identified significant up-regulation of CTCF in the ND samples. Importantly, the expression of CTCF returned to normal levels after CR but rebounded in the RE samples. In the pre-B ALL cell line Nalm-6, siRNA-mediated silencing of CTCF expression promoted cell apoptosis and reduced cell proliferation; accordingly, over-expression of a cDNA encoding full-length CTCF protected cells from apoptosis and enhanced cell proliferation. Furthermore, inhibition or activation of the nuclear factor-kappa B (NF-κB) pathway resulted in marked variations in the levels of CTCF mRNA and protein in leukemic cells, indicating that CTCF may be involved downstream of the NF-κB pathway. Moreover, inhibition of the NF-κB pathway increased cell apoptosis, which was partially rescued by ectopic over-expression of CTCF, suggesting that CTCF may play a significant role in the anti-apoptotic pathway mediated by NF-κB. Conclusions Our results indicate that CTCF serves as both an anti-apoptotic factor and a proliferative factor in leukemic cells. It potentially contributes to leukemogenesis through the NF-κB pathway in pediatric ALL patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shilai Bao
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics, Ministry of Education; Key Laboratory of Major Diseases in Children, Ministry of Education; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045, China.
| | | |
Collapse
|
40
|
Schwalie PC, Ward MC, Cain CE, Faure AJ, Gilad Y, Odom DT, Flicek P. Co-binding by YY1 identifies the transcriptionally active, highly conserved set of CTCF-bound regions in primate genomes. Genome Biol 2013; 14:R148. [PMID: 24380390 PMCID: PMC4056453 DOI: 10.1186/gb-2013-14-12-r148] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/31/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genomic binding of CTCF is highly conserved across mammals, but the mechanisms that underlie its stability are poorly understood. One transcription factor known to functionally interact with CTCF in the context of X-chromosome inactivation is the ubiquitously expressed YY1. Because combinatorial transcription factor binding can contribute to the evolutionary stabilization of regulatory regions, we tested whether YY1 and CTCF co-binding could in part account for conservation of CTCF binding. RESULTS Combined analysis of CTCF and YY1 binding in lymphoblastoid cell lines from seven primates, as well as in mouse and human livers, reveals extensive genome-wide co-localization specifically at evolutionarily stable CTCF-bound regions. CTCF-YY1 co-bound regions resemble regions bound by YY1 alone, as they enrich for active histone marks, RNA polymerase II and transcription factor binding. Although these highly conserved, transcriptionally active CTCF-YY1 co-bound regions are often promoter-proximal, gene-distal regions show similar molecular features. CONCLUSIONS Our results reveal that these two ubiquitously expressed, multi-functional zinc-finger proteins collaborate in functionally active regions to stabilize one another's genome-wide binding across primate evolution.
Collapse
Affiliation(s)
- Petra C Schwalie
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- Current address: Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Michelle C Ward
- University of Cambridge, Cancer Research UK-Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
- Current address: Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Carolyn E Cain
- Current address: Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Andre J Faure
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Yoav Gilad
- Current address: Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Duncan T Odom
- University of Cambridge, Cancer Research UK-Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| |
Collapse
|
41
|
Chen XF, Zhang YW, Xu H, Bu G. Transcriptional regulation and its misregulation in Alzheimer's disease. Mol Brain 2013; 6:44. [PMID: 24144318 PMCID: PMC3854070 DOI: 10.1186/1756-6606-6-44] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 10/15/2013] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder characterized by loss of memory and cognitive function. A key neuropathological event in AD is the accumulation of amyloid-β (Aβ) peptide. The production and clearance of Aβ in the brain are regulated by a large group of genes. The expression levels of these genes must be fine-tuned in the brain to keep Aβ at a balanced amount under physiological condition. Misregulation of AD genes has been found to either increase AD risk or accelerate the disease progression. In recent years, important progress has been made in uncovering the regulatory elements and transcriptional factors that guide the expression of these genes. In this review, we describe the mechanisms of transcriptional regulation for the known AD genes and the misregualtion that leads to AD susceptibility.
Collapse
Affiliation(s)
- Xiao-Fen Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, 361102 Xiamen, Fujian, People's Republic of China.
| | | | | | | |
Collapse
|
42
|
Romero Z, Urbinati F, Geiger S, Cooper AR, Wherley J, Kaufman ML, Hollis RP, Ruiz de Assin R, Senadheera S, Sahagian A, Jin X, Gellis A, Wang X, Gjertson D, DeOliveira S, Kempert P, Shupien S, Abdel-Azim H, Walters MC, Meiselman HJ, Wenby RB, Gruber T, Marder V, Coates TD, Kohn DB. β-globin gene transfer to human bone marrow for sickle cell disease. J Clin Invest 2013; 123:67930. [PMID: 23863630 PMCID: PMC4011030 DOI: 10.1172/jci67930] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 05/02/2013] [Indexed: 12/20/2022] Open
Abstract
Autologous hematopoietic stem cell gene therapy is an approach to treating sickle cell disease (SCD) patients that may result in lower morbidity than allogeneic transplantation. We examined the potential of a lentiviral vector (LV) (CCL-βAS3-FB) encoding a human hemoglobin (HBB) gene engineered to impede sickle hemoglobin polymerization (HBBAS3) to transduce human BM CD34+ cells from SCD donors and prevent sickling of red blood cells produced by in vitro differentiation. The CCL-βAS3-FB LV transduced BM CD34+ cells from either healthy or SCD donors at similar levels, based on quantitative PCR and colony-forming unit progenitor analysis. Consistent expression of HBBAS3 mRNA and HbAS3 protein compromised a fourth of the total β-globin-like transcripts and hemoglobin (Hb) tetramers. Upon deoxygenation, a lower percentage of HBBAS3-transduced red blood cells exhibited sickling compared with mock-transduced cells from sickle donors. Transduced BM CD34+ cells were transplanted into immunodeficient mice, and the human cells recovered after 2-3 months were cultured for erythroid differentiation, which showed levels of HBBAS3 mRNA similar to those seen in the CD34+ cells that were directly differentiated in vitro. These results demonstrate that the CCL-βAS3-FB LV is capable of efficient transfer and consistent expression of an effective anti-sickling β-globin gene in human SCD BM CD34+ progenitor cells, improving physiologic parameters of the resulting red blood cells.
Collapse
Affiliation(s)
- Zulema Romero
- Department of Microbiology, Immunology and Molecular Genetics,
Molecular Biology Interdepartmental Ph.D. Program,
Department of Medicine Statistics Core,
Department of Biostatistics, School of Public Health, and
Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCLA, Los Angeles, California, USA.
Division of Research Immunology/Bone Marrow Transplantation, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Children’s Hospital and Research Center, Oakland, California, USA.
Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Division of Hematology and Medical Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.
Division of Hematology/Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Fabrizia Urbinati
- Department of Microbiology, Immunology and Molecular Genetics,
Molecular Biology Interdepartmental Ph.D. Program,
Department of Medicine Statistics Core,
Department of Biostatistics, School of Public Health, and
Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCLA, Los Angeles, California, USA.
Division of Research Immunology/Bone Marrow Transplantation, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Children’s Hospital and Research Center, Oakland, California, USA.
Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Division of Hematology and Medical Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.
Division of Hematology/Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Sabine Geiger
- Department of Microbiology, Immunology and Molecular Genetics,
Molecular Biology Interdepartmental Ph.D. Program,
Department of Medicine Statistics Core,
Department of Biostatistics, School of Public Health, and
Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCLA, Los Angeles, California, USA.
Division of Research Immunology/Bone Marrow Transplantation, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Children’s Hospital and Research Center, Oakland, California, USA.
Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Division of Hematology and Medical Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.
Division of Hematology/Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Aaron R. Cooper
- Department of Microbiology, Immunology and Molecular Genetics,
Molecular Biology Interdepartmental Ph.D. Program,
Department of Medicine Statistics Core,
Department of Biostatistics, School of Public Health, and
Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCLA, Los Angeles, California, USA.
Division of Research Immunology/Bone Marrow Transplantation, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Children’s Hospital and Research Center, Oakland, California, USA.
Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Division of Hematology and Medical Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.
Division of Hematology/Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Jennifer Wherley
- Department of Microbiology, Immunology and Molecular Genetics,
Molecular Biology Interdepartmental Ph.D. Program,
Department of Medicine Statistics Core,
Department of Biostatistics, School of Public Health, and
Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCLA, Los Angeles, California, USA.
Division of Research Immunology/Bone Marrow Transplantation, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Children’s Hospital and Research Center, Oakland, California, USA.
Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Division of Hematology and Medical Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.
Division of Hematology/Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Michael L. Kaufman
- Department of Microbiology, Immunology and Molecular Genetics,
Molecular Biology Interdepartmental Ph.D. Program,
Department of Medicine Statistics Core,
Department of Biostatistics, School of Public Health, and
Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCLA, Los Angeles, California, USA.
Division of Research Immunology/Bone Marrow Transplantation, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Children’s Hospital and Research Center, Oakland, California, USA.
Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Division of Hematology and Medical Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.
Division of Hematology/Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Roger P. Hollis
- Department of Microbiology, Immunology and Molecular Genetics,
Molecular Biology Interdepartmental Ph.D. Program,
Department of Medicine Statistics Core,
Department of Biostatistics, School of Public Health, and
Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCLA, Los Angeles, California, USA.
Division of Research Immunology/Bone Marrow Transplantation, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Children’s Hospital and Research Center, Oakland, California, USA.
Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Division of Hematology and Medical Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.
Division of Hematology/Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Rafael Ruiz de Assin
- Department of Microbiology, Immunology and Molecular Genetics,
Molecular Biology Interdepartmental Ph.D. Program,
Department of Medicine Statistics Core,
Department of Biostatistics, School of Public Health, and
Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCLA, Los Angeles, California, USA.
Division of Research Immunology/Bone Marrow Transplantation, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Children’s Hospital and Research Center, Oakland, California, USA.
Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Division of Hematology and Medical Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.
Division of Hematology/Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Shantha Senadheera
- Department of Microbiology, Immunology and Molecular Genetics,
Molecular Biology Interdepartmental Ph.D. Program,
Department of Medicine Statistics Core,
Department of Biostatistics, School of Public Health, and
Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCLA, Los Angeles, California, USA.
Division of Research Immunology/Bone Marrow Transplantation, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Children’s Hospital and Research Center, Oakland, California, USA.
Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Division of Hematology and Medical Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.
Division of Hematology/Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Arineh Sahagian
- Department of Microbiology, Immunology and Molecular Genetics,
Molecular Biology Interdepartmental Ph.D. Program,
Department of Medicine Statistics Core,
Department of Biostatistics, School of Public Health, and
Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCLA, Los Angeles, California, USA.
Division of Research Immunology/Bone Marrow Transplantation, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Children’s Hospital and Research Center, Oakland, California, USA.
Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Division of Hematology and Medical Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.
Division of Hematology/Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Xiangyang Jin
- Department of Microbiology, Immunology and Molecular Genetics,
Molecular Biology Interdepartmental Ph.D. Program,
Department of Medicine Statistics Core,
Department of Biostatistics, School of Public Health, and
Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCLA, Los Angeles, California, USA.
Division of Research Immunology/Bone Marrow Transplantation, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Children’s Hospital and Research Center, Oakland, California, USA.
Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Division of Hematology and Medical Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.
Division of Hematology/Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Alyse Gellis
- Department of Microbiology, Immunology and Molecular Genetics,
Molecular Biology Interdepartmental Ph.D. Program,
Department of Medicine Statistics Core,
Department of Biostatistics, School of Public Health, and
Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCLA, Los Angeles, California, USA.
Division of Research Immunology/Bone Marrow Transplantation, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Children’s Hospital and Research Center, Oakland, California, USA.
Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Division of Hematology and Medical Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.
Division of Hematology/Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Xiaoyan Wang
- Department of Microbiology, Immunology and Molecular Genetics,
Molecular Biology Interdepartmental Ph.D. Program,
Department of Medicine Statistics Core,
Department of Biostatistics, School of Public Health, and
Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCLA, Los Angeles, California, USA.
Division of Research Immunology/Bone Marrow Transplantation, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Children’s Hospital and Research Center, Oakland, California, USA.
Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Division of Hematology and Medical Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.
Division of Hematology/Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - David Gjertson
- Department of Microbiology, Immunology and Molecular Genetics,
Molecular Biology Interdepartmental Ph.D. Program,
Department of Medicine Statistics Core,
Department of Biostatistics, School of Public Health, and
Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCLA, Los Angeles, California, USA.
Division of Research Immunology/Bone Marrow Transplantation, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Children’s Hospital and Research Center, Oakland, California, USA.
Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Division of Hematology and Medical Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.
Division of Hematology/Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Satiro DeOliveira
- Department of Microbiology, Immunology and Molecular Genetics,
Molecular Biology Interdepartmental Ph.D. Program,
Department of Medicine Statistics Core,
Department of Biostatistics, School of Public Health, and
Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCLA, Los Angeles, California, USA.
Division of Research Immunology/Bone Marrow Transplantation, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Children’s Hospital and Research Center, Oakland, California, USA.
Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Division of Hematology and Medical Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.
Division of Hematology/Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Pamela Kempert
- Department of Microbiology, Immunology and Molecular Genetics,
Molecular Biology Interdepartmental Ph.D. Program,
Department of Medicine Statistics Core,
Department of Biostatistics, School of Public Health, and
Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCLA, Los Angeles, California, USA.
Division of Research Immunology/Bone Marrow Transplantation, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Children’s Hospital and Research Center, Oakland, California, USA.
Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Division of Hematology and Medical Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.
Division of Hematology/Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Sally Shupien
- Department of Microbiology, Immunology and Molecular Genetics,
Molecular Biology Interdepartmental Ph.D. Program,
Department of Medicine Statistics Core,
Department of Biostatistics, School of Public Health, and
Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCLA, Los Angeles, California, USA.
Division of Research Immunology/Bone Marrow Transplantation, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Children’s Hospital and Research Center, Oakland, California, USA.
Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Division of Hematology and Medical Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.
Division of Hematology/Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Hisham Abdel-Azim
- Department of Microbiology, Immunology and Molecular Genetics,
Molecular Biology Interdepartmental Ph.D. Program,
Department of Medicine Statistics Core,
Department of Biostatistics, School of Public Health, and
Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCLA, Los Angeles, California, USA.
Division of Research Immunology/Bone Marrow Transplantation, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Children’s Hospital and Research Center, Oakland, California, USA.
Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Division of Hematology and Medical Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.
Division of Hematology/Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Mark C. Walters
- Department of Microbiology, Immunology and Molecular Genetics,
Molecular Biology Interdepartmental Ph.D. Program,
Department of Medicine Statistics Core,
Department of Biostatistics, School of Public Health, and
Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCLA, Los Angeles, California, USA.
Division of Research Immunology/Bone Marrow Transplantation, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Children’s Hospital and Research Center, Oakland, California, USA.
Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Division of Hematology and Medical Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.
Division of Hematology/Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Herbert J. Meiselman
- Department of Microbiology, Immunology and Molecular Genetics,
Molecular Biology Interdepartmental Ph.D. Program,
Department of Medicine Statistics Core,
Department of Biostatistics, School of Public Health, and
Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCLA, Los Angeles, California, USA.
Division of Research Immunology/Bone Marrow Transplantation, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Children’s Hospital and Research Center, Oakland, California, USA.
Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Division of Hematology and Medical Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.
Division of Hematology/Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Rosalinda B. Wenby
- Department of Microbiology, Immunology and Molecular Genetics,
Molecular Biology Interdepartmental Ph.D. Program,
Department of Medicine Statistics Core,
Department of Biostatistics, School of Public Health, and
Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCLA, Los Angeles, California, USA.
Division of Research Immunology/Bone Marrow Transplantation, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Children’s Hospital and Research Center, Oakland, California, USA.
Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Division of Hematology and Medical Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.
Division of Hematology/Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Theresa Gruber
- Department of Microbiology, Immunology and Molecular Genetics,
Molecular Biology Interdepartmental Ph.D. Program,
Department of Medicine Statistics Core,
Department of Biostatistics, School of Public Health, and
Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCLA, Los Angeles, California, USA.
Division of Research Immunology/Bone Marrow Transplantation, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Children’s Hospital and Research Center, Oakland, California, USA.
Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Division of Hematology and Medical Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.
Division of Hematology/Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Victor Marder
- Department of Microbiology, Immunology and Molecular Genetics,
Molecular Biology Interdepartmental Ph.D. Program,
Department of Medicine Statistics Core,
Department of Biostatistics, School of Public Health, and
Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCLA, Los Angeles, California, USA.
Division of Research Immunology/Bone Marrow Transplantation, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Children’s Hospital and Research Center, Oakland, California, USA.
Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Division of Hematology and Medical Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.
Division of Hematology/Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Thomas D. Coates
- Department of Microbiology, Immunology and Molecular Genetics,
Molecular Biology Interdepartmental Ph.D. Program,
Department of Medicine Statistics Core,
Department of Biostatistics, School of Public Health, and
Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCLA, Los Angeles, California, USA.
Division of Research Immunology/Bone Marrow Transplantation, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Children’s Hospital and Research Center, Oakland, California, USA.
Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Division of Hematology and Medical Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.
Division of Hematology/Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Donald B. Kohn
- Department of Microbiology, Immunology and Molecular Genetics,
Molecular Biology Interdepartmental Ph.D. Program,
Department of Medicine Statistics Core,
Department of Biostatistics, School of Public Health, and
Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCLA, Los Angeles, California, USA.
Division of Research Immunology/Bone Marrow Transplantation, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Children’s Hospital and Research Center, Oakland, California, USA.
Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Division of Hematology and Medical Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.
Division of Hematology/Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
43
|
Holwerda SJB, de Laat W. CTCF: the protein, the binding partners, the binding sites and their chromatin loops. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120369. [PMID: 23650640 PMCID: PMC3682731 DOI: 10.1098/rstb.2012.0369] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CTCF has it all. The transcription factor binds to tens of thousands of genomic sites, some tissue-specific, others ultra-conserved. It can act as a transcriptional activator, repressor and insulator, and it can pause transcription. CTCF binds at chromatin domain boundaries, at enhancers and gene promoters, and inside gene bodies. It can attract many other transcription factors to chromatin, including tissue-specific transcriptional activators, repressors, cohesin and RNA polymerase II, and it forms chromatin loops. Yet, or perhaps therefore, CTCF's exact function at a given genomic site is unpredictable. It appears to be determined by the associated transcription factors, by the location of the binding site relative to the transcriptional start site of a gene, and by the site's engagement in chromatin loops with other CTCF-binding sites, enhancers or gene promoters. Here, we will discuss genome-wide features of CTCF binding events, as well as locus-specific functions of this remarkable transcription factor.
Collapse
Affiliation(s)
| | - Wouter de Laat
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
44
|
Lahiri DK, Maloney B, Rogers JT, Ge YW. PuF, an antimetastatic and developmental signaling protein, interacts with the Alzheimer's amyloid-β precursor protein via a tissue-specific proximal regulatory element (PRE). BMC Genomics 2013; 14:68. [PMID: 23368879 PMCID: PMC3582491 DOI: 10.1186/1471-2164-14-68] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/10/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is intimately tied to amyloid-β (Aβ) peptide. Extraneuronal brain plaques consisting primarily of Aβ aggregates are a hallmark of AD. Intraneuronal Aβ subunits are strongly implicated in disease progression. Protein sequence mutations of the Aβ precursor protein (APP) account for a small proportion of AD cases, suggesting that regulation of the associated gene (APP) may play a more important role in AD etiology. The APP promoter possesses a novel 30 nucleotide sequence, or "proximal regulatory element" (PRE), at -76/-47, from the +1 transcription start site that confers cell type specificity. This PRE contains sequences that make it vulnerable to epigenetic modification and may present a viable target for drug studies. We examined PRE-nuclear protein interaction by gel electrophoretic mobility shift assay (EMSA) and PRE mutant EMSA. This was followed by functional studies of PRE mutant/reporter gene fusion clones. RESULTS EMSA probed with the PRE showed DNA-protein interaction in multiple nuclear extracts and in human brain tissue nuclear extract in a tissue-type specific manner. We identified transcription factors that are likely to bind the PRE, using competition gel shift and gel supershift: Activator protein 2 (AP2), nm23 nucleoside diphosphate kinase/metastatic inhibitory protein (PuF), and specificity protein 1 (SP1). These sites crossed a known single nucleotide polymorphism (SNP). EMSA with PRE mutants and promoter/reporter clone transfection analysis further implicated PuF in cells and extracts. Functional assays of mutant/reporter clone transfections were evaluated by ELISA of reporter protein levels. EMSA and ELISA results correlated by meta-analysis. CONCLUSIONS We propose that PuF may regulate the APP gene promoter and that AD risk may be increased by interference with PuF regulation at the PRE. PuF is targeted by calcium/calmodulin-dependent protein kinase II inhibitor 1, which also interacts with the integrins. These proteins are connected to vital cellular and neurological functions. In addition, the transcription factor PuF is a known inhibitor of metastasis and regulates cell growth during development. Given that APP is a known cell adhesion protein and ferroxidase, this suggests biochemical links among cell signaling, the cell cycle, iron metabolism in cancer, and AD in the context of overall aging.
Collapse
Affiliation(s)
- Debomoy K Lahiri
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bryan Maloney
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN, 46202, USA
| | - Jack T Rogers
- Neurochemistry lab, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charleston, MA, 02129, USA
| | - Yuan-Wen Ge
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN, 46202, USA
| |
Collapse
|
45
|
Wang H, Maurano MT, Qu H, Varley KE, Gertz J, Pauli F, Lee K, Canfield T, Weaver M, Sandstrom R, Thurman RE, Kaul R, Myers RM, Stamatoyannopoulos JA. Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Res 2013; 22:1680-8. [PMID: 22955980 PMCID: PMC3431485 DOI: 10.1101/gr.136101.111] [Citation(s) in RCA: 446] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
CTCF is a ubiquitously expressed regulator of fundamental genomic processes including transcription, intra- and interchromosomal interactions, and chromatin structure. Because of its critical role in genome function, CTCF binding patterns have long been assumed to be largely invariant across different cellular environments. Here we analyze genome-wide occupancy patterns of CTCF by ChIP-seq in 19 diverse human cell types, including normal primary cells and immortal lines. We observed highly reproducible yet surprisingly plastic genomic binding landscapes, indicative of strong cell-selective regulation of CTCF occupancy. Comparison with massively parallel bisulfite sequencing data indicates that 41% of variable CTCF binding is linked to differential DNA methylation, concentrated at two critical positions within the CTCF recognition sequence. Unexpectedly, CTCF binding patterns were markedly different in normal versus immortal cells, with the latter showing widespread disruption of CTCF binding associated with increased methylation. Strikingly, this disruption is accompanied by up-regulation of CTCF expression, with the result that both normal and immortal cells maintain the same average number of CTCF occupancy sites genome-wide. These results reveal a tight linkage between DNA methylation and the global occupancy patterns of a major sequence-specific regulatory factor.
Collapse
Affiliation(s)
- Hao Wang
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Belzil VV, Gendron TF, Petrucelli L. RNA-mediated toxicity in neurodegenerative disease. Mol Cell Neurosci 2012; 56:406-19. [PMID: 23280309 DOI: 10.1016/j.mcn.2012.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 12/12/2022] Open
Abstract
Cellular viability depends upon the well-orchestrated functions carried out by numerous protein-coding and non-coding RNAs, as well as RNA-binding proteins. During the last decade, it has become increasingly evident that abnormalities in RNA processing represent a common feature among many neurodegenerative diseases. In "RNAopathies", which include diseases caused by non-coding repeat expansions, RNAs exert toxicity via diverse mechanisms: RNA foci formation, bidirectional transcription, and the production of toxic RNAs and proteins by repeat associated non-ATG translation. The mechanisms of toxicity in "RNA-binding proteinopathies", diseases in which RNA-binding proteins like TDP-43 and FUS play a prominent role, have yet to be fully elucidated. Nonetheless, both loss of function of the RNA binding protein, and a toxic gain of function resulting from its aggregation, are thought to be involved in disease pathogenesis. As part of the special issue on RNA and Splicing Regulation in Neurodegeneration, this review intends to explore the diverse RNA-related mechanisms contributing to neurodegeneration, with a special emphasis on findings emerging from animal models.
Collapse
Affiliation(s)
- Veronique V Belzil
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | | |
Collapse
|
47
|
Holwerda S, de Laat W. Chromatin loops, gene positioning, and gene expression. Front Genet 2012; 3:217. [PMID: 23087710 PMCID: PMC3473233 DOI: 10.3389/fgene.2012.00217] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/01/2012] [Indexed: 01/09/2023] Open
Abstract
Technological developments and intense research over the last years have led to a better understanding of the 3D structure of the genome and its influence on genome function inside the cell nucleus. We will summarize topological studies performed on four model gene loci: the α- and β-globin gene loci, the antigen receptor loci, the imprinted H19-Igf2 locus and the Hox gene clusters. Collectively, these studies show that regulatory DNA sequences physically contact genes to control their transcription. Proteins set up the 3D configuration of the genome and we will discuss the roles of the key structural organizers CTCF and cohesin, the nuclear lamina and the transcription machinery. Finally, genes adopt non-random positions in the nuclear interior. We will review studies on gene positioning and propose that cell-specific genome conformations can juxtapose a regulatory sequence on one chromosome to a responsive gene on another chromosome to cause altered gene expression in subpopulations of cells.
Collapse
Affiliation(s)
- Sjoerd Holwerda
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht Utrecht, Netherlands
| | | |
Collapse
|
48
|
Whitfield TW, Wang J, Collins PJ, Partridge EC, Aldred SF, Trinklein ND, Myers RM, Weng Z. Functional analysis of transcription factor binding sites in human promoters. Genome Biol 2012; 13:R50. [PMID: 22951020 PMCID: PMC3491394 DOI: 10.1186/gb-2012-13-9-r50] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 04/19/2012] [Accepted: 06/18/2012] [Indexed: 12/19/2022] Open
Abstract
Background The binding of transcription factors to specific locations in the genome is integral to the orchestration of transcriptional regulation in cells. To characterize transcription factor binding site function on a large scale, we predicted and mutagenized 455 binding sites in human promoters. We carried out functional tests on these sites in four different immortalized human cell lines using transient transfections with a luciferase reporter assay, primarily for the transcription factors CTCF, GABP, GATA2, E2F, STAT, and YY1. Results In each cell line, between 36% and 49% of binding sites made a functional contribution to the promoter activity; the overall rate for observing function in any of the cell lines was 70%. Transcription factor binding resulted in transcriptional repression in more than a third of functional sites. When compared with predicted binding sites whose function was not experimentally verified, the functional binding sites had higher conservation and were located closer to transcriptional start sites (TSSs). Among functional sites, repressive sites tended to be located further from TSSs than were activating sites. Our data provide significant insight into the functional characteristics of YY1 binding sites, most notably the detection of distinct activating and repressing classes of YY1 binding sites. Repressing sites were located closer to, and often overlapped with, translational start sites and presented a distinctive variation on the canonical YY1 binding motif. Conclusions The genomic properties that we found to associate with functional TF binding sites on promoters -- conservation, TSS proximity, motifs and their variations -- point the way to improved accuracy in future TFBS predictions.
Collapse
Affiliation(s)
- Troy W Whitfield
- Program in Bioinformatics and Integrative Biology and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Sun Q, Yang YM, Yu SH, Zhang YX, He XG, Sun SS, Liang XS, Pang D. Covariation of copy number located at 16q22.1: new evidence in mammary ductal carcinoma. Oncol Rep 2012; 28:2156-62. [PMID: 23007606 DOI: 10.3892/or.2012.2050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/07/2012] [Indexed: 11/05/2022] Open
Abstract
Copy number variation (CNV) is crucial for gene regulation in humans. A number of studies have revealed that CNV contributes to the initiation and progression of cancer. In this study, we analysed four breast cancer cell lines and six fresh frozen tissues from patients to evaluate the CNV present in the genome using microarray-based comparative genomic hybridization (aCGH). Six genes located at 16q22.1 were analysed by real-time PCR. The real-time PCR analysis revealed that the loss of CDH1/E2F4 may be associated with worse clinical and pathological findings. Interestingly, covariation of CDH1, CDH3, CTCF and E2F4 was found to be associated with triple negative breast cancer and HER-2 receptor status. In conclusion, our study supports the idea that CNV at 16q22.1 in breast cancer is a frequent event; furthermore, it reveals the covariation of CDH1, CDH3, CTCF and E2F4. The role of the covariation is more complex than a simple additive effect of these four separate genes, which may provide a novel target for breast cancer.
Collapse
Affiliation(s)
- Qian Sun
- Department of Breast Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lee BK, Iyer VR. Genome-wide studies of CCCTC-binding factor (CTCF) and cohesin provide insight into chromatin structure and regulation. J Biol Chem 2012; 287:30906-13. [PMID: 22952237 PMCID: PMC3438923 DOI: 10.1074/jbc.r111.324962] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Eukaryotic genomes are organized into higher order chromatin architectures by protein-mediated long-range interactions in the nucleus. CCCTC-binding factor (CTCF), a sequence-specific transcription factor, serves as a chromatin organizer in building this complex chromatin structure by linking chromosomal domains. Recent genome-wide studies mapping the binding sites of CTCF and its interacting partner, cohesin, using chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) revealded that CTCF globally co-localizes with cohesin. This partnership between CTCF and cohesin is emerging as a novel and perhaps pivotal aspect of gene regulatory mechanisms, in addition to playing a role in the organization of higher order chromatin architecture.
Collapse
Affiliation(s)
- Bum-Kyu Lee
- From the Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, University of Texas, Austin, Texas 78712
| | - Vishwanath R. Iyer
- From the Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, University of Texas, Austin, Texas 78712
| |
Collapse
|