1
|
Feng Y, Gong C, Zhu J, Liu G, Tang Y, Li W. Unraveling the Ligand-Binding Sites of CYP3A4 by Molecular Dynamics Simulations with Solvent Probes. J Chem Inf Model 2024; 64:3451-3464. [PMID: 38593186 DOI: 10.1021/acs.jcim.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Cytochrome P450 3A4 (CYP3A4) is one of the most important drug-metabolizing enzymes in the human body and is well known for its complicated, atypical kinetic characteristics. The existence of multiple ligand-binding sites in CYP3A4 has been widely recognized as being capable of interfering with the active pocket through allosteric effects. The identification of ligand-binding sites other than the canonical active site above the heme is especially important for understanding the atypical kinetic characteristics of CYP3A4 and the intriguing association between the ligand and the receptor. In this study, we first employed mixed-solvent molecular dynamics (MixMD) simulations coupled with the online computational predictive tools to explore potential ligand-binding sites in CYP3A4. The MixMD approach demonstrates better performance in dealing with the receptor flexibility compared with other computational tools. From the sites identified by MixMD, we then picked out multiple sites for further exploration using ensemble docking and conventional molecular dynamics (cMD) simulations. Our results indicate that three extra sites are suitable for ligand binding in CYP3A4, including one experimentally confirmed site and two novel sites.
Collapse
Affiliation(s)
- Yanjun Feng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Changda Gong
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jieyu Zhu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
2
|
Liu J, Kandel SE, Lampe JN, Scott EE. Human cytochrome P450 3A7 binding four copies of its native substrate dehydroepiandrosterone 3-sulfate. J Biol Chem 2023; 299:104993. [PMID: 37392852 PMCID: PMC10388207 DOI: 10.1016/j.jbc.2023.104993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
Human fetal cytochrome P450 3A7 (CYP3A7) is involved in both xenobiotic metabolism and the estriol biosynthetic pathway. Although much is understood about cytochrome P450 3A4 and its role in adult drug metabolism, CYP3A7 is poorly characterized in terms of its interactions with both categories of substrates. Herein, a crystallizable mutated form of CYP3A7 was saturated with its primary endogenous substrate dehydroepiandrosterone 3-sulfate (DHEA-S) to yield a 2.6 Å X-ray structure revealing the unexpected capacity to simultaneously bind four copies of DHEA-S. Two DHEA-S molecules are located in the active site proper, one in a ligand access channel, and one on the hydrophobic F'-G' surface normally embedded in the membrane. While neither DHEA-S binding nor metabolism exhibit cooperative kinetics, the current structure is consistent with cooperativity common to CYP3A enzymes. Overall, this information suggests that mechanism(s) of CYP3A7 interactions with steroidal substrates are complex.
Collapse
Affiliation(s)
- Jinghan Liu
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Sylvie E Kandel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Emily E Scott
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Departments of Pharmacology, Biological Chemistry and Programs in Chemical Biology and Biophysics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
3
|
Pardhe BD, Kwon KP, Park JK, Lee JH, Oh TJ. H 2O 2-Driven Hydroxylation of Steroids Catalyzed by Cytochrome P450 CYP105D18: Exploration of the Substrate Access Channel. Appl Environ Microbiol 2023; 89:e0158522. [PMID: 36511686 PMCID: PMC9888293 DOI: 10.1128/aem.01585-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022] Open
Abstract
CYP105D18 supports H2O2 as an oxygen surrogate for catalysis well and shows high H2O2 resistance capacity. We report the hydroxylation of different steroids using H2O2 as a cosubstrate. Testosterone was regiospecifically hydroxylated to 2β-hydroxytestosterone. Based on the experimental data and molecular docking, we predicted that hydroxylation of methyl testosterone and nandrolone would occur at position 2 in the A-ring, while hydroxylation of androstenedione and adrenosterone was predicted to occur in the B-ring. Further, structure-guided rational design of the substrate access channel was performed with the mutagenesis of residues S63, R82, and F184. Among the mutants, S63A showed a marked decrease in product formation, while F184A showed a significant increase in product formation in testosterone, nandrolone, methyl testosterone, androstenedione, and adrenosterone. The catalytic efficiency (kcat/Km) toward testosterone was increased 1.36-fold in the F184A mutant over that in the wild-type enzyme. These findings might facilitate the potential use of CYP105D18 and further engineering to establish the basis of biotechnological applications. IMPORTANCE The structural modification of steroids is a challenging chemical reaction. Modifying the core ring and the side chain improves the biological activity of steroids. In particular, bacterial cytochrome P450s are used as promiscuous enzymes for the activation of nonreactive carbons of steroids. In the present work, we reported the H2O2-mediated hydroxylation of steroids by CYP105D18, which also overcomes the use of expensive cofactors. Further, exploring the substrate access channel and modifying the bulky amino acid F184A increase substrate conversion while modifying the substrate recognizing amino acid S63 markedly decreases product formation. Exploring the substrate access channel and the rational design of CYP105D18 can improve the substrate conversion, which facilitates the engineering of P450s for industrial application.
Collapse
Affiliation(s)
- Bashu Dev Pardhe
- Department of Life Science and Biochemical Engineering, Sunmoon University, Asan-si, Chungnam, Republic of Korea
| | - Kyoung Pyo Kwon
- Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University, Asan-si, Chungnam, Republic of Korea
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Sunmoon University, Asan-si, Chungnam, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University, Asan-si, Chungnam, Republic of Korea
- Genome-based BioIT Convergence Institute, Asan-si, Chungnam, Republic of Korea
| |
Collapse
|
4
|
Chaudhari AM, Joshi M, Kumar D, Patel A, Lokhande KB, Krishnan A, Hanack K, Filipek S, Liepmann D, Renugopalakrishnan V, Paulmurugan R, Joshi C. Evaluation of immune evasion in SARS-CoV-2 Delta and Omicron variants. Comput Struct Biotechnol J 2022; 20:4501-4516. [PMID: 35965661 PMCID: PMC9359593 DOI: 10.1016/j.csbj.2022.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/18/2022] Open
Abstract
Emerging SARS-CoV-2 variants with higher transmissibility and immune escape remain a persistent threat across the globe. This is evident from the recent outbreaks of the Delta (B.1.617.2) and Omicron variants. These variants have originated from different continents and spread across the globe. In this study, we explored the genomic and structural basis of these variants for their lineage defining mutations of the spike protein through computational analysis, protein modeling, and molecular dynamic (MD) simulations. We further experimentally validated the importance of these deletion mutants for their immune escape using a pseudovirus-based neutralization assay, and an antibody (4A8) that binds directly to the spike protein's NTD. Delta variant with the deletion and mutations in the NTD revealed a better rigidity and reduced flexibility as compared to the wild-type spike protein (Wuhan isolate). Furthermore, computational studies of 4A8 monoclonal antibody (mAb) revealed a reduced binding of Delta variant compared to the wild-type strain. Similarly, the MD simulation data and virus neutralization assays revealed that the Omicron also exhibits immune escape, as antigenic beta-sheets appear to be disrupted. The results of the present study demonstrate the higher possibility of immune escape and thereby achieved better fitness advantages by the Delta and Omicron variants, which warrants further demonstrations through experimental evidences. Our study, based on in-silico computational modelling, simulations, and pseudovirus-based neutralization assay, highlighted and identified the probable mechanism through which the Delta and Omicron variants are more pathogenically evolved with higher transmissibility as compared to the wild-type strain.
Collapse
Affiliation(s)
- Armi M Chaudhari
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar 382011, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar 382011, India
| | - Dinesh Kumar
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar 382011, India
| | - Amrutlal Patel
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar 382011, India
| | - Kiran Bharat Lokhande
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar 382011, India
| | - Anandi Krishnan
- Cellular Pathway Imaging Laboratory (CPIL), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, United States
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94304, United States
| | - Katja Hanack
- Immunotechnology Group, Department of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Slawomir Filipek
- Faculty of Chemistry & Biological and Chemical Research, Centre, University of Warsaw, ul, Pasteura 1, 02-093 Warsaw, Poland
| | - Dorian Liepmann
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Venkatesan Renugopalakrishnan
- Department of Chemistry, Northeastern University, Boston Children's Hospital, Harvard Medical School, Boston, MGB Center for COVID Innovation, MA 02115, United States
| | - Ramasamy Paulmurugan
- Cellular Pathway Imaging Laboratory (CPIL), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, United States
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar 382011, India
| |
Collapse
|
5
|
Affiliation(s)
- Judith Münch
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Pascal Püllmann
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, 32 West seventh Avenue, Tianjin 300308, China
| | - Martin J. Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
- Institute of Chemistry, MartinLuther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120, Halle, Saale, Germany
| |
Collapse
|
6
|
Ducharme J, Polic V, Thibodeaux CJ, Auclair K. Combining Small-Molecule Bioconjugation and Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS) to Expose Allostery: the Case of Human Cytochrome P450 3A4. ACS Chem Biol 2021; 16:882-890. [PMID: 33913317 DOI: 10.1021/acschembio.1c00084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a novel approach to study allostery which combines the use of carefully selected bioconjugates and hydrogen-deuterium exchange mass spectrometry (HDX-MS). This strategy avoids issues related to weak substrate binding and ligand relocalization. The utility of our method is demonstrated using human cytochrome P450 3A4 (CYP3A4), the most important drug-metabolizing enzyme. Allosteric activation and inhibition of CYP3A4 by pharmaceuticals is an important mechanism of drug interactions. We performed HDX-MS analysis on several CYP3A4-effector bioconjugates, some of which mimic the allosteric effect of positive effectors, while others show activity enhancement even though the label does not occupy the allosteric pocket (agonistic) or do not show activation while still blocking the allosteric site (antagonistic). This allowed us to better define the position of the allosteric site, the protein structural dynamics associated with allosteric activation, and the presence of coexisting conformers.
Collapse
Affiliation(s)
- Julie Ducharme
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 0B8
| | - Vanja Polic
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 0B8
| | - Christopher J. Thibodeaux
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 0B8
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 0B8
| |
Collapse
|
7
|
Orr TJ, Kitanovic S, Schramm KM, Skopec MM, Wilderman PR, Halpert JR, Dearing MD. Strategies in herbivory by mammals revisited: The role of liver metabolism in a juniper specialist (Neotoma stephensi) and a generalist (Neotoma albigula). Mol Ecol 2020; 29:1674-1683. [PMID: 32246507 DOI: 10.1111/mec.15431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
Although herbivory is widespread among mammals, few species have adopted a strategy of dietary specialization. Feeding on a single plant species often exposes herbivores to high doses of plant secondary metabolites (PSMs), which may exceed the animal's detoxification capacities. Theory predicts that specialists will have unique detoxification mechanisms to process high levels of dietary toxins. To evaluate this hypothesis, we compared liver microsomal metabolism of a juniper specialist, Neotoma stephensi (diet >85% juniper), to a generalist, N. albigula (diet ≤30% juniper). Specifically, we quantified the concentration of a key detoxification enzyme, cytochrome P450 2B (CYP2B) in liver microsomes, and the metabolism of α-pinene, the most abundant terpene in the juniper species consumed by the specialist woodrat. In both species, a 30% juniper diet increased the total CYP2B concentration (2-3×) in microsomes and microsomal α-pinene metabolism rates (4-fold). In N. stephensi, higher levels of dietary juniper (60% and 100%) further induced CYP2B and increased metabolism rates of α-pinene. Although no species-specific differences in metabolism rates were observed at 30% dietary juniper, total microsomal CYP2B concentration was 1.7× higher in N. stephensi than in N. albigula (p < .01), suggesting N. stephensi produces one or more variant of CYP2B that is less efficient at processing α-pinene. In N. stephensi, the rates of α-pinene metabolism increased with dietary juniper and were positively correlated with CYP2B concentration. The ability of N. stephensi to elevate CYP2B concentration and rate of α-pinene metabolism with increasing levels of juniper in the diet may facilitate juniper specialization in this species.
Collapse
Affiliation(s)
- Teri J Orr
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Smiljka Kitanovic
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Katharina M Schramm
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.,Department of Botany, Weber State University, Ogden, UT, USA
| | | | | | - James R Halpert
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - M Denise Dearing
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
8
|
Polic V, Sevrioukova IF, Auclair K. Steroid bioconjugation to a CYP3A4 allosteric site and its effect on substrate binding and coupling efficiency. Arch Biochem Biophys 2018; 653:90-96. [PMID: 29958895 PMCID: PMC6450699 DOI: 10.1016/j.abb.2018.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/11/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022]
Abstract
Human cytochrome P450 3A4 (CYP3A4) is an important drug metabolizing enzyme involved in a number of drug-drug and food-drug interactions. As such, much effort has been devoted into investigating its mechanism of interaction with ligands. CYP3A4 has one of the highest levels of substrate promiscuity for an enzyme, and can even bind multiple ligands simultaneously. The location and orientation of these ligands depend on the chemical structure and stoichiometry, and are generally poorly understood. In the case of the steroid testosterone, up to three copies of the molecule can associate with the enzyme at once, likely two in the active site and one at a postulated allosteric site. Recently, we demonstrated that steroid bioconjugation at the allosteric site results in an increase in activity of CYP3A4 toward testosterone and 7-benzyloxy-4-trifluoromethylcoumarin oxidation. Here, using the established bioconjugation methodology, we show how steroid bioconjugation at the allosteric site affects the heme spin state, the binding affinity (KS) of CYP3A4 for testosterone, as well as the enzyme coupling efficiency.
Collapse
Affiliation(s)
- Vanja Polic
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, United States
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada.
| |
Collapse
|
9
|
Hackett JC. Membrane-embedded substrate recognition by cytochrome P450 3A4. J Biol Chem 2018; 293:4037-4046. [PMID: 29382727 DOI: 10.1074/jbc.ra117.000961] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/26/2018] [Indexed: 12/15/2022] Open
Abstract
Cytochrome P450 3A4 (CYP3A4) is the dominant xenobiotic-metabolizing enzyme in the liver and intestine and is involved in the disposition of more than 50% of drugs. Because of its ability to bind multiple substrates, its reaction kinetics are complex, and its association with the microsomal membrane confounds our understanding of how this enzyme recognizes and recruits diverse substrates. Testosterone (TST) hydroxylation is the prototypical CYP3A4 reaction, displaying positive homotropic cooperativity with three binding sites. Here, exploiting the capability of accelerated molecular dynamics (aMD) to sample events in the millisecond regime, I performed >25-μs aMD simulations in the presence of three TST molecules. These simulations identified high-occupancy surface-binding sites as well as a pathway for TST ingress into the CYP3A4 active site originating in the membrane. Adaptive biasing force analysis of the latter pathway revealed a metastable intermediate that could constitute a third binding site at high TST concentrations. Prompted by the observation that interactions between TST and the G'-helix mobilize the ligand into the active site, a free-energy analysis of TST distribution in the membrane was conducted and revealed that the depth of the G'-helix is optimal for extracting TST. In summary, these simulations confirm separate, but adjacent substrate-binding sites within the enzyme and the existence of an auxiliary TST-binding site. The broader impact of these simulations is that they support a mechanism in which cytochromes P450 directly recruit membrane-solubilized substrates.
Collapse
Affiliation(s)
- John C Hackett
- From the Department of Physiology and Biophysics and the Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298-0035
| |
Collapse
|
10
|
Kandel SE, Han LW, Mao Q, Lampe JN. Digging Deeper into CYP3A Testosterone Metabolism: Kinetic, Regioselectivity, and Stereoselectivity Differences between CYP3A4/5 and CYP3A7. Drug Metab Dispos 2017; 45:1266-1275. [PMID: 28986474 PMCID: PMC5697443 DOI: 10.1124/dmd.117.078055] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/04/2017] [Indexed: 01/22/2023] Open
Abstract
The metabolism of testosterone to 6β-hydroxytestosterone (6β-OH-T) is a commonly used assay to evaluate human CYP3A enzyme activities. However, previous reports have indicated that CYP3A7 also produces 2α-hydroxytestosterone (2α-OH-T) and that a 2α-OH-T/6β-OH-T ratio may be a unique endogenous biomarker of the activity of the enzyme. Until now, the full metabolite and kinetic profile for testosterone hydroxylation by CYP3A7 has not been fully examined. To this end, we performed a complete kinetic analysis of the 6β-OH-T, 2α-OH-T, and 2β-hydroxytestosterone metabolites for recombinant Supersome CYP3A4, CYP3A5, and CYP3A7 enzymes and monitored metabolism in fetal and adult human liver microsomes for comparison. In general, a decrease in the velocity of the reaction was observed between CYP3A4 and the two other enzymes, with CYP3A7 showing the lowest metabolic capacity. Interestingly, we found that the 2α-OH-T/6β-OH-T ratio varied with substrate concentration when testosterone was incubated with CYP3A7, suggesting that this ratio would likely not function well as a biomarker for CYP3A7 activity. In silico docking studies revealed at least two different binding modes for testosterone between CYP3A4 and CYP3A7. In CYP3A4, the most energetically favorable docking mode places testosterone in a position with the methyl groups directed toward the heme iron, which is more favorable for oxidation at C6β, whereas for CYP3A7 the testosterone methyl groups are positioned away from the heme, which is more favorable for an oxidation event at C2α In conclusion, our data indicate an alternative binding mode for testosterone in CYP3A7 that favors the 2α-hydroxylation, suggesting significant structural differences in its active site compared with CYP3A4/5.
Collapse
Affiliation(s)
- Sylvie E Kandel
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (S.E.K., J.N.L.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (L.W.H., Q.M.); and The University of Kansas Liver Center, Kansas City, Kansas (J.N.L.)
| | - Lyrialle W Han
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (S.E.K., J.N.L.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (L.W.H., Q.M.); and The University of Kansas Liver Center, Kansas City, Kansas (J.N.L.)
| | - Qingcheng Mao
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (S.E.K., J.N.L.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (L.W.H., Q.M.); and The University of Kansas Liver Center, Kansas City, Kansas (J.N.L.)
| | - Jed N Lampe
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (S.E.K., J.N.L.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (L.W.H., Q.M.); and The University of Kansas Liver Center, Kansas City, Kansas (J.N.L.)
| |
Collapse
|
11
|
Ducharme J, Auclair K. Use of bioconjugation with cytochrome P450 enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017. [PMID: 28625736 DOI: 10.1016/j.bbapap.2017.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bioconjugation, defined as chemical modification of biomolecules, is widely employed in biological and biophysical studies. It can expand functional diversity and enable applications ranging from biocatalysis, biosensing and even therapy. This review summarizes how chemical modifications of cytochrome P450 enzymes (P450s or CYPs) have contributed to improving our understanding of these enzymes. Genetic modifications of P450s have also proven very useful but are not covered in this review. Bioconjugation has served to gain structural information and investigate the mechanism of P450s via photoaffinity labeling, mechanism-based inhibition (MBI) and fluorescence studies. P450 surface acetylation and protein cross-linking have contributed to the investigation of protein complexes formation involving P450 and its redox partner or other P450 enzymes. Finally, covalent immobilization on polymer surfaces or electrodes has benefited the areas of biocatalysis and biosensor design. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Julie Ducharme
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
| |
Collapse
|
12
|
Polic V, Auclair K. Allosteric Activation of Cytochrome P450 3A4 via Progesterone Bioconjugation. Bioconjug Chem 2017; 28:885-889. [PMID: 28339191 DOI: 10.1021/acs.bioconjchem.6b00604] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human cytochrome P450 3A4 (CYP3A4) is responsible for the metabolism of the majority of drugs. As such, it is implicated in many adverse drug-drug and food-drug interactions, and is of significant interest to the pharmaceutical industry. This enzyme is known to simultaneously bind multiple ligands and display atypical enzyme kinetics, suggestive of allostery and cooperativity. As well, evidence of a postulated peripheral allosteric binding site has provoked debate around its significance and location. We report the use of bioconjugation to study the significance of substrate binding at the proposed allosteric site and its effect on CYP3A4 activity. CYP3A4 mutants were created and covalently modified with various small molecules including progesterone. The labeled mutants displayed enhanced kinetic stability and improved activity in testosterone and 7-benzyloxy-(4-trifluoromethyl)coumarin oxidation assays. Our work applies a new strategy to study cytochrome P450 allostery and supports the hypothesis that substrate binding at the postulated allosteric site of CYP3A4 may induce functional cooperativity.
Collapse
Affiliation(s)
- Vanja Polic
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Karine Auclair
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| |
Collapse
|
13
|
Du H, Li J, Cai Y, Zhang H, Liu G, Tang Y, Li W. Computational Investigation of Ligand Binding to the Peripheral Site in CYP3A4: Conformational Dynamics and Inhibitor Discovery. J Chem Inf Model 2017; 57:616-626. [DOI: 10.1021/acs.jcim.7b00012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Hanwen Du
- Shanghai Key Laboratory of New Drug Design,
School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Junhao Li
- Shanghai Key Laboratory of New Drug Design,
School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yingchun Cai
- Shanghai Key Laboratory of New Drug Design,
School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hongxiao Zhang
- Shanghai Key Laboratory of New Drug Design,
School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design,
School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design,
School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design,
School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
14
|
Challenges in assignment of allosteric effects in cytochrome P450-catalyzed substrate oxidations to structural dynamics in the hemoprotein architecture. J Inorg Biochem 2017; 167:100-115. [DOI: 10.1016/j.jinorgbio.2016.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/17/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
|
15
|
Schiavini P, Cheong KJ, Moitessier N, Auclair K. Active Site Crowding of Cytochrome P450 3A4 as a Strategy To Alter Its Selectivity. Chembiochem 2016; 18:248-252. [PMID: 27897366 DOI: 10.1002/cbic.201600546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Paolo Schiavini
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Kin J. Cheong
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Nicolas Moitessier
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Karine Auclair
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| |
Collapse
|
16
|
Bioactivation and Regioselectivity of Pig Cytochrome P450 3A29 towards Aflatoxin B₁. Toxins (Basel) 2016; 8:toxins8090267. [PMID: 27626447 PMCID: PMC5037493 DOI: 10.3390/toxins8090267] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/05/2016] [Indexed: 01/10/2023] Open
Abstract
Due to unavoidable contaminations in feedstuff, pigs are easily exposed to aflatoxin B1 (AFB1) and suffer from poisoning, thus the poisoned products potentially affect human health. Heretofore, the metabolic process of AFB1 in pigs remains to be clarified, especially the principal cytochrome P450 oxidases responsible for its activation. In this study, we cloned CYP3A29 from pig liver and expressed it in Escherichia coli, and its activity has been confirmed with the typical P450 CO-reduced spectral characteristic and nifedipine-oxidizing activity. The reconstituted membrane incubation proved that the recombinant CYP3A29 was able to oxidize AFB1 to form AFB1-exo-8,9-epoxide in vitro. The structural basis for the regioselective epoxidation of AFB1 by CYP3A29 was further addressed. The T309A mutation significantly decreased the production of AFBO, whereas F304A exhibited an enhanced activation towards AFB1. In agreement with the mutagenesis study, the molecular docking simulation suggested that Thr309 played a significant role in stabilization of AFB1 binding in the active center through a hydrogen bond. In addition, the bulk phenyl group of Phe304 potentially imposed steric hindrance on the binding of AFB1. Our study demonstrates the bioactivation of pig CYP3A29 towards AFB1 in vitro, and provides the insight for understanding regioselectivity of CYP3A29 to AFB1.
Collapse
|
17
|
Milichovský J, Bárta F, Schmeiser HH, Arlt VM, Frei E, Stiborová M, Martínek V. Active Site Mutations as a Suitable Tool Contributing to Explain a Mechanism of Aristolochic Acid I Nitroreduction by Cytochromes P450 1A1, 1A2 and 1B1. Int J Mol Sci 2016; 17:213. [PMID: 26861298 PMCID: PMC4783945 DOI: 10.3390/ijms17020213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/13/2016] [Accepted: 01/21/2016] [Indexed: 12/21/2022] Open
Abstract
Aristolochic acid I (AAI) is a plant drug found in Aristolochia species that causes aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. AAI is activated via nitroreduction producing genotoxic N-hydroxyaristolactam, which forms DNA adducts. The major enzymes responsible for the reductive bioactivation of AAI are NAD(P)H quinone oxidoreductase and cytochromes P450 (CYP) 1A1 and 1A2. Using site-directed mutagenesis we investigated the possible mechanisms of CYP1A1/1A2/1B1-catalyzed AAI nitroreduction. Molecular modelling predicted that the hydroxyl groups of serine122/threonine124 (Ser122/Thr124) amino acids in the CYP1A1/1A2-AAI binary complexes located near to the nitro group of AAI, are mechanistically important as they provide the proton required for the stepwise reduction reaction. In contrast, the closely related CYP1B1 with no hydroxyl group containing residues in its active site is ineffective in catalyzing AAI nitroreduction. In order to construct an experimental model, mutant forms of CYP1A1 and 1A2 were prepared, where Ser122 and Thr124 were replaced by Ala (CYP1A1-S122A) and Val (CYP1A2-T124V), respectively. Similarly, a CYP1B1 mutant was prepared in which Ala133 was replaced by Ser (CYP1B1-A133S). Site-directed mutagenesis was performed using a quickchange approach. Wild and mutated forms of these enzymes were heterologously expressed in Escherichia coli and isolated enzymes characterized using UV-vis spectroscopy to verify correct protein folding. Their catalytic activity was confirmed with CYP1A1, 1A2 and 1B1 marker substrates. Using (32)P-postlabelling we determined the efficiency of wild-type and mutant forms of CYP1A1, 1A2, and 1B1 reconstituted with NADPH:CYP oxidoreductase to bioactivate AAI to reactive intermediates forming covalent DNA adducts. The S122A and T124V mutations in CYP1A1 and 1A2, respectively, abolished the efficiency of CYP1A1 and 1A2 enzymes to generate AAI-DNA adducts. In contrast, the formation of AAI-DNA adducts was catalyzed by CYP1B1 with the A133S mutation. Our experimental model confirms the importance of the hydroxyl group possessing amino acids in the active center of CYP1A1 and 1A2 for AAI nitroreduction.
Collapse
Affiliation(s)
- Jan Milichovský
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-12843 Prague 2, Czech Republic.
| | - František Bárta
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-12843 Prague 2, Czech Republic.
| | - Heinz H Schmeiser
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London SE1 9NH, UK.
| | - Eva Frei
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-12843 Prague 2, Czech Republic.
| | - Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-12843 Prague 2, Czech Republic.
| | - Václav Martínek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-12843 Prague 2, Czech Republic.
| |
Collapse
|
18
|
Jang HH, Liu J, Lee GY, Halpert JR, Wilderman PR. Functional importance of a peripheral pocket in mammalian cytochrome P450 2B enzymes. Arch Biochem Biophys 2015; 584:61-9. [PMID: 26319176 DOI: 10.1016/j.abb.2015.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 01/11/2023]
Abstract
The functional importance of a peripheral pocket found in previously published X-ray crystal structures of CYP2B4 and CYP2B6 was probed using a biophysical approach. Introduction of tryptophan within the pocket of CYP2B4 at F202 or I241 leads to marked impairment of 7-ethoxy-4-(trifluoromethyl)coumarin (7-EFC) or 7-benzyloxyresorufin O-dealkylation efficiency; a similar substitution at F195, near the surface access to the pocket, does not affect these activities. The analogous CYP2B6 F202W mutant is inactive in the 7-EFC O-dealkylation assay. The stoichiometry of 7-EFC deethylation suggested that the decreased activity of F202W and I241W in CYP2B4 and lack of activity of F202W in CYP2B6 coincided with a sharp increase in the flux of reducing equivalents through the oxidase shunt to produce excess water. The results indicate that the chemical identity of residues within this peripheral pocket, but not at the mouth of the pocket, is important in substrate turnover and redox coupling, likely through effects on active site topology.
Collapse
Affiliation(s)
- Hyun-Hee Jang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - Jingbao Liu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Ga-Young Lee
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - James R Halpert
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - P Ross Wilderman
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
19
|
Baj-Rossi C, Müller C, von Mandach U, De Micheli G, Carrara S. Faradic Peaks Enhanced by Carbon Nanotubes in Microsomal Cytochrome P450 Electrodes. ELECTROANAL 2015. [DOI: 10.1002/elan.201400726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Denisov IG, Grinkova YV, Baylon JL, Tajkhorshid E, Sligar SG. Mechanism of drug-drug interactions mediated by human cytochrome P450 CYP3A4 monomer. Biochemistry 2015; 54:2227-39. [PMID: 25777547 DOI: 10.1021/acs.biochem.5b00079] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Using Nanodiscs, we quantitate the heterotropic interaction between two different drugs mediated by monomeric CYP3A4 incorporated into a nativelike membrane environment. The mechanism of this interaction is deciphered by global analysis of multiple-turnover experiments performed under identical conditions using the pure substrates progesterone (PGS) and carbamazepine (CBZ) and their mixtures. Activation of CBZ epoxidation and simultaneous inhibition of PGS hydroxylation are measured and quantitated through differences in their respective affinities for both a remote allosteric site and the productive catalytic site near the heme iron. Preferred binding of PGS at the allosteric site and a stronger preference for CBZ binding at the productive site give rise to a nontrivial drug-drug interaction. Molecular dynamics simulations indicate functionally important conformational changes caused by PGS binding at the allosteric site and by two CBZ molecules positioned inside the substrate binding pocket. Structural changes involving Phe-213, Phe-219, and Phe-241 are thought to be responsible for the observed synergetic effects and positive allosteric interactions between these two substrates. Such a mechanism is likely of general relevance to the mutual heterotropic effects caused by biologically active compounds that exhibit different patterns of interaction with the distinct allosteric and productive sites of CYP3A4, as well as other xenobiotic metabolizing cytochromes P450 that are also involved in drug-drug interactions. Importantly, this work demonstrates that a monomeric CYP3A4 can display the full spectrum of activation and cooperative effects that are observed in hepatic membranes.
Collapse
Affiliation(s)
- Ilia G Denisov
- †Department of Biochemistry, ‡Center for Biophysics and Computational Biology, and §Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yelena V Grinkova
- †Department of Biochemistry, ‡Center for Biophysics and Computational Biology, and §Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Javier L Baylon
- †Department of Biochemistry, ‡Center for Biophysics and Computational Biology, and §Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- †Department of Biochemistry, ‡Center for Biophysics and Computational Biology, and §Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stephen G Sligar
- †Department of Biochemistry, ‡Center for Biophysics and Computational Biology, and §Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
Sergeev GV, Gilep AA, Usanov SA. The role of cytochrome b5 structural domains in interaction with cytochromes P450. BIOCHEMISTRY (MOSCOW) 2015; 79:406-16. [PMID: 24954591 DOI: 10.1134/s0006297914050046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To understand the role of the structural elements of cytochrome b5 in its interaction with cytochrome P450 and the catalysis performed by this heme protein, we carried out comparative structural and functional analysis of the two major mammalian forms of membrane-bound cytochrome b5 - microsomal and mitochondrial, designed chimeric forms of the heme proteins in which the hydrophilic domain of one heme protein is replaced by the hydrophilic domain of another one, and investigated the effect of the highly purified native and chimeric heme proteins on the enzymatic activity of recombinant cytochromes P4503A4 and P45017A1 (CYP3A4 and CYP17A1). We show that the presence of a hydrophobic domain in the structure of cytochrome b5 is necessary for its effective interaction with its redox partners, while the nature of the hydrophobic domain has no significant effect on the ability of cytochrome b5 to stimulate the activity of cytochrome P450-catalyzed reactions. Thus, the functional properties of cytochrome b5 are mainly determined by the structure of the heme-binding domain.
Collapse
Affiliation(s)
- G V Sergeev
- Institute of Bioorganic Chemistry, Academy of Sciences of Belarus, Minsk, 220141, Belarus.
| | | | | |
Collapse
|
22
|
Müller CS, Knehans T, Davydov DR, Bounds PL, von Mandach U, Halpert JR, Caflisch A, Koppenol WH. Concurrent cooperativity and substrate inhibition in the epoxidation of carbamazepine by cytochrome P450 3A4 active site mutants inspired by molecular dynamics simulations. Biochemistry 2015; 54:711-21. [PMID: 25545162 PMCID: PMC4310618 DOI: 10.1021/bi5011656] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Cytochrome P450 3A4 (CYP3A4) is the
major human P450 responsible
for the metabolism of carbamazepine (CBZ). To explore the mechanisms
of interactions of CYP3A4 with this anticonvulsive drug, we carried
out multiple molecular dynamics (MD) simulations, starting with the
complex of CYP3A4 manually docked with CBZ. On the basis of these
simulations, we engineered CYP3A4 mutants I369F, I369L, A370V, and
A370L, in which the productive binding orientation was expected to
be stabilized, thus leading to increased turnover of CBZ to the 10,11-epoxide
product. In addition, we generated CYP3A4 mutant S119A as a control
construct with putative destabilization of the productive binding
pose. Evaluation of the kinetics profiles of CBZ epoxidation demonstrate
that CYP3A4-containing bacterial membranes (bactosomes) as well as
purified CYP3A4 (wild-type and mutants I369L/F) exhibit substrate
inhibition in reconstituted systems. In contrast, mutants S119A and
A370V/L exhibit S-shaped profiles that are indicative of homotropic
cooperativity. MD simulations with two to four CBZ molecules provide
evidence that the substrate-binding pocket of CYP3A4 can accommodate
more than one molecule of CBZ. Analysis of the kinetics profiles of
CBZ metabolism with a model that combines the formalism of the Hill
equation with an allowance for substrate inhibition demonstrates that
the mechanism of interactions of CBZ with CYP3A4 involves multiple
substrate-binding events (most likely three). Despite the retention
of the multisite binding mechanism in the mutants, functional manifestations
reveal an exquisite sensitivity to even minor structural changes in
the binding pocket that are introduced by conservative substitutions
such as I369F, I369L, and A370V.
Collapse
Affiliation(s)
- Christian S Müller
- Department of Obstetrics, University Hospital Zurich , Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Cheng G, Liu C, Wang X, Ma H, Pan Y, Huang L, Hao H, Dai M, Yuan Z. Structure-function analysis of porcine cytochrome P450 3A29 in the hydroxylation of T-2 toxin as revealed by docking and mutagenesis studies. PLoS One 2014; 9:e106769. [PMID: 25184434 PMCID: PMC4153680 DOI: 10.1371/journal.pone.0106769] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 08/08/2014] [Indexed: 11/18/2022] Open
Abstract
T-2 toxin, one of the type A trichothecenes, presents a potential hazard to human and animal health. Our previous work demonstrated that porcine cytochrome P450 3A29 (CYP3A29) played an important role in the hydroxylation of T-2 toxin. To identify amino acids involved in this metabolic process, T-2 toxin was docked into a homology model of CYP3A29 based on a crystal structure of CYP3A4 using AutoDock 4.0. Nine residues of CYP3A29, Arg105, Arg106, Phe108, Ser119, Lys212, Phe213, Phe215, Arg372 and Glu374, which were found within 5 Å around T-2 toxin were subjected to site-directed mutagenesis. In the oxidation of nifedipine, the CLint value of R106A was increased by nearly two-folds compared with the wild-type CYP3A29, while the substrate affinities and CLint values of S119A and K212A were significantly reduced. In the hydroxylation of T-2 toxin, the generation of 3′-OH-T-2 by R105A, S119A and K212A was significantly less than that by the wild-type, whereas R106A slightly increased the generation of 3′-OH-T-2. These results were further confirmed by isothermal titration calorimetry analysis, suggesting that these four residues are important in the hydroxylation of T-2 toxin and Arg105 may be a specific recognition site for the toxin. Our study suggests a possible structure-function relationship of CYP3A29 in the hydroxylation of T-2 toxin, providing with new insights into the mechanism of CYP3A enzymes in the biotransformation of T-2 toxin.
Collapse
Affiliation(s)
- Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Changcun Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Xu Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Hongmin Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education) at the School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Menghong Dai
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zonghui Yuan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
24
|
Chen W, Lee MK, Jefcoate C, Kim SC, Chen F, Yu JH. Fungal cytochrome p450 monooxygenases: their distribution, structure, functions, family expansion, and evolutionary origin. Genome Biol Evol 2014; 6:1620-34. [PMID: 24966179 PMCID: PMC4122930 DOI: 10.1093/gbe/evu132] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cytochrome P450 (CYP) monooxygenase superfamily contributes a broad array of biological functions in living organisms. In fungi, CYPs play diverse and pivotal roles in versatile metabolism and fungal adaptation to specific ecological niches. In this report, CYPomes in the 47 genomes of fungi belong to the phyla Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota have been studied. The comparison of fungal CYPomes suggests that generally fungi possess abundant CYPs belonging to a variety of families with the two global families CYP51 and CYP61, indicating individuation of CYPomes during the evolution of fungi. Fungal CYPs show highly conserved characteristic motifs, but very low overall sequence similarities. The characteristic motifs of fungal CYPs are distinguishable from those of CYPs in animals, plants, and especially archaea and bacteria. The four representative motifs contribute to the general function of CYPs. Fungal CYP51s and CYP61s can be used as the models for the substrate recognition sites analysis. The CYP proteins are clustered into 15 clades and the phylogenetic analyses suggest that the wide variety of fungal CYPs has mainly arisen from gene duplication. Two large duplication events might have been associated with the booming of Ascomycota and Basidiomycota. In addition, horizontal gene transfer also contributes to the diversification of fungal CYPs. Finally, a possible evolutionary scenario for fungal CYPs along with fungal divergences is proposed. Our results provide the fundamental information for a better understanding of CYP distribution, structure and function, and new insights into the evolutionary events of fungal CYPs along with the evolution of fungi.
Collapse
Affiliation(s)
- Wanping Chen
- Department of Food Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, ChinaDepartment of Bacteriology and Genetics, University of Wisconsin-Madison
| | - Mi-Kyung Lee
- Department of Bacteriology and Genetics, University of Wisconsin-Madison
| | - Colin Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison
| | - Sun-Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Dae-Jon, Republic of Korea
| | - Fusheng Chen
- Department of Food Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jae-Hyuk Yu
- Department of Bacteriology and Genetics, University of Wisconsin-Madison
| |
Collapse
|
25
|
Wilderman PR, Jang HH, Malenke JR, Salib M, Angermeier E, Lamime S, Dearing MD, Halpert JR. Functional characterization of cytochromes P450 2B from the desert woodrat Neotoma lepida. Toxicol Appl Pharmacol 2013; 274:393-401. [PMID: 24361551 DOI: 10.1016/j.taap.2013.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
Abstract
Mammalian detoxification processes have been the focus of intense research, but little is known about how wild herbivores process plant secondary compounds, many of which have medicinal value or are drugs. cDNA sequences that code for three enzymes of the cytochrome P450 (CYP) 2B subfamily, here termed 2B35, 2B36, and 2B37 have been recently identified from a wild rodent, the desert woodrat (Malenke et al., 2012). Two variant clones of each enzyme were engineered to increase protein solubility and to facilitate purification, as reported for CYP2B enzymes from multiple species. When expressed in Escherichia coli each of the woodrat proteins gave the characteristic maximum at 450nm in a reduced carbon monoxide difference spectrum but generally expressed at lower levels than rat CYP2B1. Two enzymes, 2B36 and 2B37, showed dealkylation activity with the model substrates 7-ethoxy-4-(trifluoromethyl)coumarin and 7-benzyloxyresorufin, whereas 2B35 was inactive. Binding of the monoterpene (+)-α-pinene produced a Type I shift in the absorbance spectrum of each enzyme. Mutation of 2B37 at residues 114, 262, or 480, key residues governing ligand interactions with other CYP2B enzymes, did not significantly change expression levels or produce the expected functional changes. In summary, two catalytic and one ligand-binding assay are sufficient to distinguish among CYP2B35, 2B36, and 2B37. Differences in functional profiles between 2B36 and 2B37 are partially explained by changes in substrate recognition site residue 114, but not 480. The results advance our understanding of the mechanisms of detoxification in wild mammalian herbivores and highlight the complexity of this system.
Collapse
Affiliation(s)
- P Ross Wilderman
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA.
| | - Hyun-Hee Jang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jael R Malenke
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Mariam Salib
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Elisabeth Angermeier
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sonia Lamime
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - M Denise Dearing
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - James R Halpert
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
26
|
Hamid AAA, Tengku Abdul Hamid TH, Wahab RA, Huyop F. Identification of functional residues essential for dehalogenation by the non-stereospecific α-haloalkanoic acid dehalogenase fromRhizobiumsp. RC1. J Basic Microbiol 2013; 55:324-30. [DOI: 10.1002/jobm.201300526] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Azzmer Azzar Abdul Hamid
- Department of Biotechnology; Kulliyyah of Science, IIUM, Bandar Indera Mahkota; Kuantan Pahang Malaysia
| | | | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science; Universiti Teknologi Malaysia (UTM); Johor Bahru Johor Malaysia
| | - Fahrul Huyop
- Department of Biotechnology and Medical Engineering, Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia (UTM); Johor Bahru Johor Malaysia
| |
Collapse
|
27
|
Shah MB, Kufareva I, Pascual J, Zhang Q, Stout CD, Halpert JR. A structural snapshot of CYP2B4 in complex with paroxetine provides insights into ligand binding and clusters of conformational states. J Pharmacol Exp Ther 2013; 346:113-20. [PMID: 23633618 DOI: 10.1124/jpet.113.204776] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An X-ray crystal structure of CYP2B4 in complex with the drug paroxetine [(3S,4R)-3-[(2H-1,3-benzodioxol-5-yloxy)methyl]-4-(4-fluorophenyl)piperidine] was solved at 2.14 Å resolution. The structure revealed a conformation intermediate to that of the recently solved complex with amlodipine and that of the more compact complex with 4-(4-chlorophenyl)imidazole in terms of the placement of the F-G cassette. Moreover, comparison of the new structure with 15 previously solved structures of CYP2B4 revealed some new insights into the determinants of active-site size and shape. The 2B4-paroxetine structure is nearly superimposable on a previously solved closed structure in a ligand-free state. Despite the overall conformational similarity among multiple closed structures, the active-site cavity volume of the paroxetine complex is enlarged. Further analysis of the accessible space and binding pocket near the heme reveals a new subchamber that resulted from the movement of secondary structural elements and rearrangements of active-site side chains. Overall, the results from the comparison of all 16 structures of CYP2B4 demonstrate a cluster of protein conformations that were observed in the presence or absence of various ligands.
Collapse
Affiliation(s)
- Manish B Shah
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, Mail Code 0703, La Jolla, CA 92093-0703, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Zhang H, Gay SC, Shah M, Foroozesh M, Liu J, Osawa Y, Zhang Q, Stout CD, Halpert JR, Hollenberg PF. Potent mechanism-based inactivation of cytochrome P450 2B4 by 9-ethynylphenanthrene: implications for allosteric modulation of cytochrome P450 catalysis. Biochemistry 2013; 52:355-64. [PMID: 23276288 DOI: 10.1021/bi301567z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism-based inactivation of cytochrome P450 2B4 (CYP2B4) by 9-ethynylphenanthrene (9EP) has been investigated. The partition ratio and k(inact) are 0.2 and 0.25 min(-1), respectively. Intriguingly, the inactivation exhibits sigmoidal kinetics with a Hill coefficient of 2.5 and an S(50) of 4.5 μM indicative of homotropic cooperativity. Enzyme inactivation led to an increase in mass of the apo-CYP2B4 by 218 Da as determined by electrospray ionization liquid chromatography and mass spectrometry, consistent with covalent protein modification. The modified CYP2B4 was purified to homogeneity and its structure determined by X-ray crystallography. The structure showed that 9EP is covalently attached to Oγ of Thr 302 via an ester bond, which is consistent with the increased mass of the protein. The presence of the bulky phenanthrenyl ring resulted in inward rotations of Phe 297 and Phe 206, leading to a compact active site. Thus, binding of another molecule of 9EP in the active site is prohibited. However, results from the quenching of 9EP fluorescence by unmodified or 9EP-modified CYP2B4 revealed at least two binding sites with distinct affinities, with the low-affinity site being the catalytic site and the high-affinity site on the protein periphery. Computer-aided docking and molecular dynamics simulations with one or two ligands bound revealed that the high-affinity site is situated at the entrance of a substrate access channel surrounded by the F' helix, β1-β2 loop, and β4 loop and functions as an allosteric site to enhance the efficiency of activation of the acetylenic group of 9EP and subsequent covalent modification of Thr 302.
Collapse
Affiliation(s)
- Haoming Zhang
- Department of Pharmacology, The University of Michigan Medical School , Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wassmur B, Gräns J, Norström E, Wallin M, Celander MC. Interactions of pharmaceuticals and other xenobiotics on key detoxification mechanisms and cytoskeleton in Poeciliopsis lucida hepatocellular carcinoma, PLHC-1 cell line. Toxicol In Vitro 2012; 27:111-20. [PMID: 23064032 DOI: 10.1016/j.tiv.2012.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 09/03/2012] [Accepted: 10/03/2012] [Indexed: 01/15/2023]
Abstract
Fish are exposed to chemicals, including pharmaceuticals, in their natural habitat. This study focuses on effects of chemicals, including nine classes of pharmaceuticals, on key detoxification mechanisms in a fish liver cell-line (PLHC-1). Chemical interactions were investigated on efflux pumps, P-glycoprotein (Pgp) and multidrug resistance associated proteins (MRP1/MRP2), and on biotransformation enzymes, cytochrome P450 (CYP1A/CYP3A). Diclofenac and troleandomycin inhibited efflux activities, whereas ethinylestradiol activated efflux function. Exposure to troleandomycin and β-naphthoflavone induced MRP2 mRNA levels, but no effects were seen on MRP1 or Pgp expressions. Inhibition of CYP1A activities were seen in cells exposed to α-naphthoflavone, β-naphthoflavone, clotrimazole, nocodazole, ketoconazole, omeprazole, ethinylestradiol, lithocholic acid, rifampicin and troleandomycin. Exposure to fulvestrant, clotrimazole and nocodazole resulted in induction of CYP1A mRNA levels. Although, exposure to nocodazole resulted in disassembled microtubules. A CYP3A-like cDNA sequence was isolated from PLHC-1, but basal expression and activities were low and the gene was not responsive to prototypical CYP3A inducers. Exposure to ibuprofen, lithocholic acid and omeprazole resulted in fragmentation of microtubules. This study revealed multiple interactions on key detoxification systems, which illustrates the importance of study effects on regulation combined with functional studies to provide a better picture of the dynamics of the chemical defense system.
Collapse
Affiliation(s)
- Britt Wassmur
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
30
|
Shah MB, Wilderman PR, Pascual J, Zhang Q, Stout CD, Halpert JR. Conformational adaptation of human cytochrome P450 2B6 and rabbit cytochrome P450 2B4 revealed upon binding multiple amlodipine molecules. Biochemistry 2012; 51:7225-38. [PMID: 22909231 DOI: 10.1021/bi300894z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Structures of human cytochrome P450 2B6 and rabbit cytochrome P450 2B4 in complex with two molecules of the calcium channel blocker amlodipine have been determined by X-ray crystallography. The presence of two drug molecules suggests clear substrate access channels in each P450. According to a previously established nomenclature, amlodipine molecules were trapped in access pathway 2f in P450 2B6 and in pathway 2a or 2f in P450 2B4. These pathways overlap for part of the length and then diverge as they extend toward the protein surface. A previously described solvent channel was also found in each enzyme. The results indicate that key residues located on the surface and at the entrance of the substrate access channels in each of these P450s may play a crucial role in guiding substrate entry. In addition, the region of P450 2B6 and 2B4 involving helices B', F, F', and G' and part of helix G is substantially more open in the amlodipine complexes than in the corresponding 4-(4-chlorophenyl)imidazole complexes. The increased active site volume observed results from the major retraction of helices F, F', and B' and the β4 sheet region located close to the binding cavity to accommodate amlodipine. These structures demonstrate novel insight into distinct conformational states not observed with previous P450 2B structures and provide clear evidence of the substrate access channels in two drug-metabolizing P450s. In addition, the structures exhibit the versatility that can be exploited via in silico studies with other P450 2B6 ligands as large as raloxifene and itraconazole.
Collapse
Affiliation(s)
- Manish B Shah
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States.
| | | | | | | | | | | |
Collapse
|
31
|
Lu Y, Hendrix CW, Bumpus NN. Cytochrome P450 3A5 plays a prominent role in the oxidative metabolism of the anti-human immunodeficiency virus drug maraviroc. Drug Metab Dispos 2012; 40:2221-30. [PMID: 22923690 DOI: 10.1124/dmd.112.048298] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Maraviroc is an anti-human immunodeficiency virus drug that acts by blocking viral entry into target cells. With use of ultra-performance liquid chromatography-mass spectrometry several monooxygenated, dioxygenated, and glucuronidated metabolites of maraviroc were identified both in vitro and in vivo. Characterization of the enzymes involved in the production of these metabolites determined that cytochrome P450 3A5 was the principal enzyme responsible for the formation of an abundant metabolite of maraviroc that resulted from oxygenation of the dichlorocyclohexane ring. For the formation of this metabolite, the V(max) values for CYP3A4 and CYP3A5 were 0.04 and 0.93 pmol · min⁻¹ · pmol P450⁻¹, and the K(m) values were 11.1 and 48.9 μM, respectively. Furthermore, human liver microsomes isolated from donors homozygous for the loss-of-function CYP3A5*3 allele exhibited a 79% decrease in formation of this metabolite compared with those homozygous for the wild-type CYP3A5*1 allele. To probe which divergent residues between CYP3A4 and CYP3A5 might play a role in the differential activities of these enzymes toward maraviroc, mutations were introduced into both enzymes and metabolism of maraviroc was measured. A CYP3A5 L57F mutant exhibited a 61% decrease in the formation of this metabolite, whereas formation by a CYP3A4 F57L mutant was increased by 337% compared with that of the wild type. Taken together, these data provide novel insights into the biotransformation of maraviroc as well as the potential role of CYP3A4 and CYP3A5 divergent residues in the enzymatic activities of these two highly homologous enzymes.
Collapse
Affiliation(s)
- Yanhui Lu
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., WBSB 302, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
32
|
Ghassabian S, Rawling T, Zhou F, Doddareddy MR, Tattam BN, Hibbs DE, Edwards RJ, Cui PH, Murray M. Role of human CYP3A4 in the biotransformation of sorafenib to its major oxidized metabolites. Biochem Pharmacol 2012; 84:215-23. [PMID: 22513143 DOI: 10.1016/j.bcp.2012.04.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 02/07/2023]
|
33
|
Denisov IG, Sligar SG. A novel type of allosteric regulation: functional cooperativity in monomeric proteins. Arch Biochem Biophys 2012; 519:91-102. [PMID: 22245335 PMCID: PMC3329180 DOI: 10.1016/j.abb.2011.12.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
Abstract
Cooperative functional properties and allosteric regulation in cytochromes P450 play an important role in xenobiotic metabolism and define one of the main mechanisms of drug-drug interactions. Recent experimental results suggest that ability to bind simultaneously two or more small organic molecules can be the essential feature of cytochrome P450 fold, and often results in rich and complex pattern of allosteric behavior. Manifestations of non-Michaelis kinetics include homotropic and heterotropic activation and inhibition effects depending on the stoichiometric ratios of substrate and effector, changes in the regio- and stereospecificity of catalytic transformations, and often give rise to the clinically important drug-drug interactions. In addition, functional response of P450 systems is modulated by the presence of specific and non-specific effector molecules, metal ions, membrane incorporation, formation of homo- and hetero-oligomers, and interactions with the protein redox partners. In this article we briefly overview the main factors contributing to the allosteric effects in cytochromes P450 with the main focus on the sources of cooperative behavior in xenobiotic metabolizing monomeric heme enzymes with their conformational flexibility and extremely broad substrate specificity. The novel mechanism of functional cooperativity in P450 enzymes does not require substantial binding cooperativity, rather it implies the presence of one or more binding sites with higher affinity than the single catalytically active site in the vicinity of the heme iron.
Collapse
Affiliation(s)
- Ilia G. Denisov
- Department of Biochemistry, University of Illinois, Urbana, IL, 61801
| | - Stephen G. Sligar
- Department of Biochemistry, University of Illinois, Urbana, IL, 61801
- Beckman Institute, University of Illinois, Urbana, IL, 61801
- School of Molecular and Cellular Biology, University of Illinois, Urbana, IL, 61801
| |
Collapse
|
34
|
Sevrioukova IF, Poulos TL. Interaction of human cytochrome P4503A4 with ritonavir analogs. Arch Biochem Biophys 2012; 520:108-16. [PMID: 22410611 DOI: 10.1016/j.abb.2012.02.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 11/18/2022]
Abstract
Ritonavir is a HIV protease inhibitor that also potently inactivates cytochrome P450 3A4 (CYP3A4), a major human drug-metabolizing enzyme. To better understand the mechanism of ligand binding and to find strategies for improvement of the inhibitory potency of ritonavir, currently administered to enhance pharmacokinetics of other anti-HIV drugs that are quickly metabolized by CYP3A4, we compared the manner of CYP3A4 interaction with the drug and two analogs lacking either the heme-ligating thiazole nitrogen or the entire thiazole group. Based on the kinetic, mutagenesis and structural data, we conclude that: (i) the active site residue Arg212 assists binding of all investigated compounds and, thus, may play a more prominent role in metabolic transformation of xenobiotics than previously thought, (ii) peripheral binding of ritonavir limits the heme coordination rate and complicates the binding kinetics, (iii) association of ritonavir-like type II ligands is driven by heme coordination whereas hydrophobic forces define the binding mode, and (iv) substitution of one phenyl group in ritonavir with a smaller hydrophobic moiety could prevent steric clashing and, hence, increase the affinity and inhibitory potency of the drug.
Collapse
Affiliation(s)
- Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 92697, United States.
| | | |
Collapse
|
35
|
Sevrioukova IF, Poulos TL. Structural and mechanistic insights into the interaction of cytochrome P4503A4 with bromoergocryptine, a type I ligand. J Biol Chem 2011; 287:3510-7. [PMID: 22157006 DOI: 10.1074/jbc.m111.317081] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P4503A4 (CYP3A4), a major human drug-metabolizing enzyme, is responsible for the oxidation and clearance of the majority of administered drugs. One of the CYP3A4 substrates is bromoergocryptine (BEC), a dopamine receptor agonist prescribed for the inhibition of prolactin secretion and treatment of Parkinson disease, type 2 diabetes, and several other pathological conditions. Here we present a 2.15 Å crystal structure of the CYP3A4-BEC complex in which the drug, a type I heme ligand, is bound in a productive mode. The manner of BEC binding is consistent with the in vivo metabolite analysis and identifies the 8' and 9' carbons of the proline ring as the primary sites of oxidation. The crystal structure predicts the importance of Arg(212) and Thr(224) for binding of the tripeptide and lysergic moieties of BEC, respectively, which we confirmed experimentally. Our data support a three-step BEC binding model according to which the drug binds first at a peripheral site without perturbing the heme spectrum and then translocates into the active site cavity, where formation of a hydrogen bond between Thr(224) and the N1 atom of the lysergic moiety is followed by a slower conformational readjustment of the tripeptide group modulated by Arg(212).
Collapse
Affiliation(s)
- Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, USA
| | | |
Collapse
|
36
|
Wilderman PR, Gay SC, Jang HH, Zhang Q, Stout CD, Halpert JR. Investigation by site-directed mutagenesis of the role of cytochrome P450 2B4 non-active-site residues in protein-ligand interactions based on crystal structures of the ligand-bound enzyme. FEBS J 2011; 279:1607-20. [PMID: 22051155 DOI: 10.1111/j.1742-4658.2011.08411.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Residues located outside the active site of cytochromes P450 2B have exhibited importance in ligand binding, structural stability and drug metabolism. However, contributions of non-active-site residues to the plasticity of these enzymes are not known. Thus, a systematic investigation was undertaken of unique residue-residue interactions found in crystal structures of P450 2B4 in complex with 4-(4-chlorophenyl)imidazole (4-CPI), a closed conformation, or in complex with bifonazole, an expanded conformation. Nineteen mutants distributed over 11 sites were constructed, expressed in Escherichia coli and purified. Most mutants showed significantly decreased expression, especially in the case of interactions found in the 4-CPI structure. Six mutants (H172A, H172F, H172Q, L437A, E474D and E474Q) were chosen for detailed functional analysis. Among these, the K(s) of H172F for bifonazole was ∼ 20 times higher than for wild-type 2B4, and the K(s) of L437A for 4-CPI was ∼ 50 times higher than for wild-type, leading to significantly altered inhibitor selectivity. Enzyme function was tested with the substrates 7-ethoxy-4-(trifluoromethyl)coumarin, 7-methoxy-4-(trifluoromethyl)coumarin and 7-benzyloxyresorufin (7-BR). H172F was inactive with all three substrates, and L437A did not turn over 7-BR. Furthermore, H172A, H172Q, E474D and E474Q showed large changes in k(cat)/K(M) for each of the three substrates, in some cases up to 50-fold. Concurrent molecular dynamics simulations yielded distances between some of the residues in these putative interaction pairs that are not consistent with contact. The results indicate that small changes in the protein scaffold lead to large differences in solution behavior and enzyme function.
Collapse
Affiliation(s)
- P Ross Wilderman
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Shah MB, Pascual J, Zhang Q, Stout CD, Halpert JR. Structures of cytochrome P450 2B6 bound to 4-benzylpyridine and 4-(4-nitrobenzyl)pyridine: insight into inhibitor binding and rearrangement of active site side chains. Mol Pharmacol 2011; 80:1047-55. [PMID: 21875942 DOI: 10.1124/mol.111.074427] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The biochemical, biophysical, and structural analysis of the cytochrome P450 2B subfamily of enzymes has provided a wealth of information regarding conformational plasticity and substrate recognition. The recent X-ray crystal structure of the drug-metabolizing P450 2B6 in complex with 4-(4-chlorophenyl)imidazole (4-CPI) yielded the first atomic view of this human enzyme. However, knowledge of the structural basis of P450 2B6 specificity and inhibition has remained limited. In this study, structures of P450 2B6 were determined in complex with the potent inhibitors 4-benzylpyridine (4-BP) and 4-(4-nitrobenzyl)pyridine (4-NBP). Comparison of the present structures with the previous P450 2B6-4-CPI complex showed that reorientation of side chains of the active site residue Phe206 on the F-helix and Phe297 on the I-helix was necessary to accommodate the inhibitors. However, P450 2B6 does not require any major side chain rearrangement to bind 4-NBP compared with 4-BP, and the enzyme provides no hydrogen-bonding partners for the polar nitro group of 4-NBP within the hydrophobic active site. In addition, on the basis of these new structures, substitution of residue 172 with histidine as observed in the single nucleotide polymorphism Q172H and in P450 2B4 may contribute to a hydrogen bonding network connecting the E- and I-helices, thereby stabilizing active site residues on the I-helix. These results provide insight into the role of active site side chains upon inhibitor binding and indicate that the recognition of the benzylpyridines in the closed conformation structure of P450 2B6 is based solely on hydrophobicity, size, and shape.
Collapse
Affiliation(s)
- Manish B Shah
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0703, USA.
| | | | | | | | | |
Collapse
|
38
|
Kille S, Zilly FE, Acevedo JP, Reetz MT. Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution. Nat Chem 2011; 3:738-43. [PMID: 21860465 DOI: 10.1038/nchem.1113] [Citation(s) in RCA: 295] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/07/2011] [Indexed: 11/09/2022]
Abstract
A current challenge in synthetic organic chemistry is the development of methods that allow the regio- and stereoselective oxidative C-H activation of natural or synthetic compounds with formation of the corresponding alcohols. Cytochrome P450 enzymes enable C-H activation at non-activated positions, but the simultaneous control of both regio- and stereoselectivity is problematic. Here, we demonstrate that directed evolution using iterative saturation mutagenesis provides a means to solve synthetic problems of this kind. Using P450 BM3(F87A) as the starting enzyme and testosterone as the substrate, which results in a 1:1 mixture of the 2β- and 15β-alcohols, mutants were obtained that are 96-97% selective for either of the two regioisomers, each with complete diastereoselectivity. The mutants can be used for selective oxidative hydroxylation of other steroids without performing additional mutagenesis experiments. Molecular dynamics simulations and docking experiments shed light on the origin of regio- and stereoselectivity.
Collapse
Affiliation(s)
- Sabrina Kille
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | | | | | | |
Collapse
|
39
|
Comparison of the substrate kinetics of pig CYP3A29 with pig liver microsomes and human CYP3A4. Biosci Rep 2011; 31:211-20. [DOI: 10.1042/bsr20100084] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
CYP (cytochrome P450) 3A29 in pigs could be an important candidate gene responsible for xenobiotic metabolism, similar to CYP3A4 in humans. Accordingly, the tissue expression of CYP3A29 mRNA in domestic pigs has been determined by a real-time PCR. The enzymatic properties of CYP3A29, CYP3A4 and PLM (pig liver microsomes) were compared by kinetic analysis of TST (testosterone) 6β-hydroxylation and NIF (nifedipine) oxidation. CYP3A29 mRNA was highly expressed in the liver and small intestines of domestic pigs. The CYP3A29 enzyme expressed in Sf9 cells had the same TST-metabolizing activity as human CYP3A4 based on their roughly equal in vitro intrinsic clearance values. The affinity of CYP3A29 for NIF was lower than that of CYP3A4 but higher than that of PLM. KET (ketoconazole) was a more potent inhibitor of TST 6β-hydroxylation and NIF oxidation activities of CYP3A29 than TAO (troleandomycin). These findings indicate that pig CYP3A29 is similar to human CYP3A4 in both extent of expression and activity. The results reported in this paper provide a basis for future in vitro toxicity and metabolism studies.
Collapse
|
40
|
Talakad JC, Shah MB, Walker GS, Xiang C, Halpert JR, Dalvie D. Comparison of in vitro metabolism of ticlopidine by human cytochrome P450 2B6 and rabbit cytochrome P450 2B4. Drug Metab Dispos 2010; 39:539-50. [PMID: 21156812 DOI: 10.1124/dmd.110.037101] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A recent X-ray crystal structure of a rabbit cytochrome P450 2B4 (CYP2B4)-ticlopidine complex indicated that the compound could be modeled with either the thiophene or chlorophenyl group oriented toward the heme prosthetic group. Subsequent NMR relaxation and molecular docking studies suggested that orientation with the chlorophenyl ring closer to the heme was the preferred one. To evaluate the predictive value of these findings, the oxidation of ticlopidine by reconstituted CYP2B4 was studied and compared with CYP2B6, in which the thiophene portion of the molecule likely orients toward the heme. In vitro incubation of ticlopidine with both enzymes yielded the same set of metabolites: 7-hydroxyticlopidine (M1), 2-oxoticlopidine (M2), 5-(2-chlorobenzyl)thieno[3,2-c]pyridin-5-ium metabolite (M3), 5-(2-chlorobenzyl)thieno[3,2-c]pyridin-5-ium metabolite (M4), ticlopidine N-oxide (M5), and ticlopidine S-oxide dimer, a dimerization product of ticlopidine S-oxide (M6). The rates of metabolite formation deviated markedly from linearity with time, consistent with the known inactivation of CYP2B6 by ticlopidine. Fitting to a first-order equation yielded similar rate constants (k(obs)) for both enzymes. However, the amplitude (R(max)) of M1 and M6 formation was 4 to 5 times higher for CYP2B6 than CYP2B4, indicating a greater residence time of ticlopidine with its thiophene ring closer to heme in CYP2B6. In contrast, CYP2B4 formed M4 and M5 in more abundance than CYP2B6, indicating an alternate orientation. Overall, the results suggest that the preferential orientation of ticlopidine in the active site of CYP2B4 predicted by X-ray crystallography and NMR studies is unproductive and that ticlopidine likely reorients within CYP2B4 to a more productive mode.
Collapse
Affiliation(s)
- Jyothi C Talakad
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
41
|
Jin M, Arya P, Patel K, Singh B, Silverstein PS, Bhat HK, Kumar A, Kumar S. Effect of alcohol on drug efflux protein and drug metabolic enzymes in U937 macrophages. Alcohol Clin Exp Res 2010; 35:132-9. [PMID: 21039635 DOI: 10.1111/j.1530-0277.2010.01330.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND ATP-binding cassette (ABC) proteins and cytochrome P450 (CYP) enzymes regulate the bioavailability of HIV-1 antiretroviral therapeutic drugs, non-nucleoside reverse transcriptase inhibitors (NNRTIs), and protease inhibitors (PIs). They are also involved in regulating, and responding to, oxidative stress in various tissues and organs including liver. This study is designed to assess the effect of alcohol on the ABCC1 and CYP enzymes involved in the metabolism of NNRTIs and PIs (CYP2B6, CYP2D6, and CYP3A4) and oxidative stress (CYP1A1, CYP2A6, and CYP2E1) in U937 macrophages. The U937 cell line has been utilized as an in vitro model of human macrophages. METHODS The expression levels of the ABCC1 and CYP enzymes in U937 macrophages were characterized in terms of mRNA quantification, protein analysis, and assays for functional activity. In addition, oxidative stress was monitored by measuring the activities of oxidative stress marker enzymes and production of reactive oxygen species (ROS). RESULTS The order of mRNA expression in U937 macrophages was ABCC1 ∼ CYP2A6 > CYP3A4 ∼ CYP2E1 ∼ CYP1A1 > CYP2D6 > CYP2B6. Alcohol (100 mM) increased the mRNA levels of ABCC1 and CYP2A6 (200%), CYP2B6 and CYP3A4 (150%), and CYP2E1 (400%) compared with the control. Alcohol caused significant upregulation of ABCC1, CYP2A6, CYP2E1, and CYP3A4 proteins (50 to 85%) and showed >50% increase in the specific activity of CYP2A6 and CYP3A4 in U937 macrophages. Furthermore, alcohol increased the production of ROS and significantly enhanced the activity of oxidative stress marker enzymes, superoxide dismutase, and catalase in U937 macrophages. CONCLUSIONS Our study showed that alcohol causes increases in the genetic and functional expressions of ABCC1 and CYP enzymes in U937 macrophages. This study has clinical implications in alcoholic HIV-1 individuals, because alcohol consumption is reported to reduce the therapeutic efficacy of NNRTIs and PIs and increases oxidative stress.
Collapse
Affiliation(s)
- Mengyao Jin
- University of Missouri-Kansas City, 64108, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wassmur B, Gräns J, Kling P, Celander MC. Interactions of pharmaceuticals and other xenobiotics on hepatic pregnane X receptor and cytochrome P450 3A signaling pathway in rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 100:91-100. [PMID: 20719396 DOI: 10.1016/j.aquatox.2010.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 05/29/2023]
Abstract
The pregnane X receptor (PXR) belongs to the nuclear hormone receptor (NR) superfamily and is commonly described as a xenophore or a pharmacophore, as it can be activated by a wide array of xenobiotics, including numerous pharmaceuticals and other environmental pollutants. The PXR regulates expression of e.g. cytochrome P450 3A (CYP3A) and the P-glycoprotein (P-gp) that are involved in excretion of lipophilic xenobiotics and endobiotics. A full length PXR cDNA was isolated from rainbow trout liver and it was expressed in a descending order of magnitude in liver>intestine>kidney>heart. A rainbow trout PXR reporter assay was developed and a suite of pharmaceuticals and other xenobiotics were screened. However, no specific activation of rainbow trout PXR was observed with the substances tested. Interactions of prototypical PXR agonists on PXR signaling in rainbow trout were further investigated in cells of hepatic origin exposed in vitro and in juvenile rainbow trout exposed in vivo. The rainbow trout hepatoma cell line (RTH-149), displayed 600 times lower expression of CYP3A mRNA compared to primary cultures of hepatocytes, and did not respond to treatment with either pregnenolone 16α-carbonitrile (PCN), ketoconazole (KCZ) or rifampicin (RIF), which implies a non-functional PXR in this cell line. Exposure of hepatocytes to PCN and lithocholic acid (LA), resulted in a weak concentration-dependent induction of CYP3A and P-gp mRNA levels, though, exposure to the higher concentration of LA (50 μM) decreased PXR mRNA levels. Exposure to dexamethasone (DEX) resulted in a decrease in PXR mRNA, without affecting CYP3A mRNA levels in hepatocytes in vitro. Injections of rainbow trout in vivo with 1 mg LA/kg fish resulted in a slight (albeit not significant) increase in CYP3A mRNA levels without affecting PXR mRNA levels. Although, injection with 10mg omeprazole (OME)/kg fish had no effect on PXR and CYP3A mRNA levels, a 60% inhibition of CYP3A enzyme activities was evident. An in vitro screening of the chemicals used showed that OME and RIF acted as weak CYP3A inhibitors whereas LA and DEX did not affect the CYP3A activity. In contrast, PCN acted as an activator of the CYP3A enzyme activity in vitro. Taken together, these data show that some prototypical PXR agonists weakly affect PXR activation in rainbow trout. Besides, some of these agonists have a stronger effect on the CYP3A catalyst. This study demonstrates the importance of investigation effects of pharmaceuticals on the PXR signaling pathway in non-target animals such as fish.
Collapse
Affiliation(s)
- Britt Wassmur
- Department of Zoology, University of Gothenburg, Box 463, SE-40530 Göteborg, Sweden
| | | | | | | |
Collapse
|
43
|
Turino L, Mariano R, Cabrera M, Scándolo D, Maciel M, Grau R. Pharmacokinetics of progesterone in lactating dairy cows: Gaining some insights into the metabolism from kinetic modeling. J Dairy Sci 2010; 93:988-99. [DOI: 10.3168/jds.2009-2519] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Accepted: 11/14/2009] [Indexed: 11/19/2022]
|
44
|
Talakad JC, Wilderman PR, Davydov DR, Kumar S, Halpert JR. Rational engineering of cytochromes P450 2B6 and 2B11 for enhanced stability: Insights into structural importance of residue 334. Arch Biochem Biophys 2009; 494:151-8. [PMID: 19944064 DOI: 10.1016/j.abb.2009.11.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 11/18/2009] [Accepted: 11/19/2009] [Indexed: 11/18/2022]
Abstract
Rational mutagenesis was used to improve the thermal stability of human cytochrome P450 2B6 and canine P450 2B11. Comparison of the amino acid sequences revealed seven sites that are conserved between the stable 2B1 and 2B4 but different from those found in the less stable 2B6 and 2B11. P334S was the only mutant that showed increased heterologous expression levels and thermal stability in both 2B6 and 2B11. The mechanism of this effect was explored with pressure-perturbation spectroscopy. Compressibility of the heme pocket in variants of all four CYP2B enzymes containing proline at position 334 are characterized by lower compressibility than their more stable serine 334 counterpart. Therefore, the stabilizing effect of P334S is associated with increased conformational flexibility in the region of the heme pocket. Improved stability of P334S 2B6 and 2B11 may facilitate the studies of these enzymes by X-ray crystallography and biophysical techniques.
Collapse
Affiliation(s)
- Jyothi C Talakad
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093-0703, USA.
| | | | | | | | | |
Collapse
|
45
|
Kasai N, Ikushiro S, Hirosue S, Arisawa A, Ichinose H, Uchida Y, Wariishi H, Ohta M, Sakaki T. Atypical kinetics of cytochromes P450 catalysing 3'-hydroxylation of flavone from the white-rot fungus Phanerochaete chrysosporium. J Biochem 2009; 147:117-25. [PMID: 19819902 DOI: 10.1093/jb/mvp155] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We cloned full-length cDNAs of 130 cytochrome P450s (P450s) derived from Phanerochaete chrysosporium and successfully expressed 70 isoforms in Saccharomyces cerevisiae. To elucidate substrate specificity of P. chrysosporium P450s, we examined various substrates including steroid hormones, several drugs, flavonoids and polycyclic aromatic hydrocarbons using the recombinant S. cerevisiae cells. Of these P450s, two CYPs designated as PcCYP50c and PcCYP142c with 14% identity in their amino acid sequences catalyse 3'-hydroxylation of flavone and O-deethylation of 7-ethoxycoumarin. Kinetic data of both enzymes on both reactions fitted not to the Michaelis-Menten equation but to Hill's equation with a coefficient of 2, suggesting that two substrates bind to the active site. Molecular modelling of PcCYP50c and a docking study of flavone to its active site supported this hypothesis. The enzymatic properties of PcCYP50c and PcCYP142c resemble mammalian drug-metabolizing P450s, suggesting that their physiological roles are metabolism of xenobiotics. It is noted that these unique P. chrysosporium P450s have a potential for the production of useful flavonoids.
Collapse
Affiliation(s)
- Noriyuki Kasai
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhang YY, Yang L. Interactions between human cytochrome P450 enzymes and steroids: physiological and pharmacological implications. Expert Opin Drug Metab Toxicol 2009; 5:621-9. [DOI: 10.1517/17425250902967648] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Kumar S, Qiu H, Oezguen N, Herlyn H, Halpert JR, Wojnowski L. Ligand diversity of human and chimpanzee CYP3A4: activation of human CYP3A4 by lithocholic acid results from positive selection. Drug Metab Dispos 2009; 37:1328-33. [PMID: 19299527 DOI: 10.1124/dmd.108.024372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
For currently unknown reasons, the evolution of CYP3A4 underwent acceleration in the human lineage after the split from chimpanzee. We investigated the significance of this event by comparing Escherichia coli-expressed CYP3A4 from humans, chimpanzee, and their most recent common ancestor. The expression level of chimpanzee CYP3A4 was approximately 50% of the human CYP3A4, whereas ancestral CYP3A4 did not express in E. coli. Steady-state kinetic analysis with 7-benzyloxyquinoline, 7-benzyloxy-4-(trifluoromethyl)coumarin (7-BFC), and testosterone showed no significant differences between human and chimpanzee CYP3A4. Upon addition of alpha-naphthoflavone (25 microM), human CYP3A4 showed a slightly decreased substrate concentration at which 50% of the maximal rate V(max) is reached for 7-BFC, whereas chimpanzee CYP3A4 showed a >2-fold increase. No significant differences in inhibition/activation were found for a panel of 43 drugs and endogenous compounds, suggesting that the wide substrate spectrum of human CYP3A4 precedes the human-chimpanzee split. A striking exception was the hepatotoxic secondary bile acid lithocholic acid, which at saturation caused a 5-fold increase in 7-BFC debenzylation by human CYP3A4 but not by chimpanzee CYP3A4. Mutagenesis of human CYP3A4 revealed that at least four of the six amino acids positively selected in the human lineage contribute to the activating effect of lithocholic acid. In summary, the wide functional conservation between chimpanzee and human CYP3A4 raises the prospect that phylogenetically more distant primate species such as rhesus and squirrel monkey represent suitable models of the human counterpart. Positive selection on the human CYP3A4 may have been triggered by an increased load of dietary steroids, which led to a novel defense mechanism against cholestasis.
Collapse
Affiliation(s)
- Santosh Kumar
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
48
|
Sun H, Moore C, Dansette PM, Kumar S, Halpert JR, Yost GS. Dehydrogenation of the indoline-containing drug 4-chloro-N-(2-methyl-1-indolinyl)-3-sulfamoylbenzamide (indapamide) by CYP3A4: correlation with in silico predictions. Drug Metab Dispos 2008; 37:672-84. [PMID: 19074530 DOI: 10.1124/dmd.108.022707] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
4-Chloro-N-(2-methyl-1-indolinyl)-3-sulfamoylbenzamide (indapamide), an indoline-containing diuretic drug, has recently been evaluated in a large Phase III clinical trial (ADVANCE) with a fixed-dose combination of an angiotensin-converting enzyme inhibitor, perindopril, and shown to significantly reduce the risks of major vascular toxicities in people with type 2 diabetes. The original metabolic studies of indapamide reported that the indoline functional group was aromatized to indole through a dehydrogenation pathway by cytochromes P450. However, the enzymatic efficiency of indapamide dehydrogenation was not elucidated. A consequence of indoline aromatization is that the product indoles might have dramatically different therapeutic potencies. Thus, studies that characterize dehydrogenation of the functional indoline of indapamide were needed. Here we identified several indapamide metabolic pathways in vitro with human liver microsomes and recombinant CYP3A4 that include the dehydrogenation of indapamide to its corresponding indole form, and also hydroxylation and epoxidation metabolites, as characterized by liquid chromatography/mass spectrometry. Indapamide dehydrogenation efficiency (V(max)/K(m)=204 min/mM) by CYP3A4 was approximately 10-fold greater than that of indoline dehydrogenation. In silico molecular docking of indapamide into two CYP3A4 crystal structures, to evaluate the active site parameters that control dehydrogenation, produced conflicting results about the interactions of Arg212 with indapamide in the active site. These conflicting theories were addressed by functional studies with a CYP3A4R212A mutant enzyme, which showed that Arg212 does not seem to facilitate positioning of indapamide for dehydrogenation. However, the metabolites of indapamide were precisely consistent with in silico predictions of binding orientations using three diverse computer methods to predict drug metabolism pathways.
Collapse
Affiliation(s)
- Hao Sun
- Lead Generation Group, Department of Pharmacokinetics, Dynamics, and Drug Metabolism, Global Research and Development, Pfizer, Inc., Groton, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
49
|
Lewis DFV, Lake BG, Dickins M, Goldfarb PS. Homology modelling of CYP3A4 from the CYP2C5 crystallographic template: analysis of typical CYP3A4 substrate interactions. Xenobiotica 2008; 34:549-69. [PMID: 15277015 DOI: 10.1080/00498250410001691325] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. The results of homology modelling of cytochrome P4503A4 (CYP3A4), which is a human enzyme of major importance for the Phase 1 metabolism of drug substrates, from the CYP2C5 crystal structure is reported. 2. The overall homology between the two protein sequences was generally good (46%) with 24% of amino acid residues being identical and a 22% similarity between matched pairs in the CYP3A4 and CYP2C5 aligned sequences, thus indicating that CYP2C5 represents a viable template for modelling CYP3A4 by homology. 3. The CYP3A4 model appears to show consistency with the reported findings from the extensive site-directed mutagenesis studies already published. 4. Typical CYP3A4 substrates, such as midazolam, testosterone, nifedipine and verapamil, are shown to fit the putative active site of the enzyme structure in a manner consistent with their known positions of metabolism.
Collapse
Affiliation(s)
- D F V Lewis
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford 2GU2 7XH, UK.
| | | | | | | |
Collapse
|
50
|
Kapelyukh Y, Paine MJI, Maréchal JD, Sutcliffe MJ, Wolf CR, Roberts GCK. Multiple substrate binding by cytochrome P450 3A4: estimation of the number of bound substrate molecules. Drug Metab Dispos 2008; 36:2136-44. [PMID: 18645035 DOI: 10.1124/dmd.108.021733] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cytochrome P450 3A4, a major drug-metabolizing enzyme in man, is well known to show non-Michaelis-Menten steady-state kinetics for a number of substrates, indicating that more than one substrate can bind to the enzyme simultaneously, but it has proved difficult to obtain reliable estimates of exactly how many substrate molecules can bind. We have used a simple method involving studies of the effect of large inhibitors on the Hill coefficient to provide improved estimates of substrate stoichiometry from simple steady-state kinetics. Using a panel of eight inhibitors, we show that at least four molecules of the widely used CYP3A4 substrate 7-benzyloxyquinoline can bind simultaneously to the enzyme. Computational docking studies show that this is consistent with the recently reported crystal structures of the enzyme. In the case of midazolam, which shows simple Michaelis-Menten kinetics, the inhibitor effects demonstrate that two molecules must bind simultaneously, consistent with earlier evidence, whereas for diltiazem, the experiments provide no evidence for the binding of more than one molecule. The consequences of this "inhibitor-induced cooperativity" for the prediction of pharmacokinetics and drug-drug interactions are discussed.
Collapse
Affiliation(s)
- Yury Kapelyukh
- Biomedical Research Centre, University of Dundee, Ninewells Hospital and Medical, School, Dundee, United Kingdom
| | | | | | | | | | | |
Collapse
|