1
|
Kines RC, Schiller JT. Harnessing Human Papillomavirus' Natural Tropism to Target Tumors. Viruses 2022; 14:1656. [PMID: 36016277 PMCID: PMC9413966 DOI: 10.3390/v14081656] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPV) are small non-enveloped DNA tumor viruses established as the primary etiological agent for the development of cervical cancer. Decades of research have elucidated HPV's primary attachment factor to be heparan sulfate proteoglycans (HSPG). Importantly, wounding and exposure of the epithelial basement membrane was found to be pivotal for efficient attachment and infection of HPV in vivo. Sulfation patterns on HSPG's become modified at the site of wounds as they serve an important role promoting tissue healing, cell proliferation and neovascularization and it is these modifications recognized by HPV. Analogous HSPG modification patterns can be found on tumor cells as they too require the aforementioned processes to grow and metastasize. Although targeting tumor associated HSPG is not a novel concept, the use of HPV to target and treat tumors has only been realized in recent years. The work herein describes how decades of basic HPV research has culminated in the rational design of an HPV-based virus-like infrared light activated dye conjugate for the treatment of choroidal melanoma.
Collapse
Affiliation(s)
| | - John T. Schiller
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA;
| |
Collapse
|
2
|
Abstract
Glycosaminoglycans (GAGs) are an important component of the tumor microenvironment (TME). GAGs can interact with a variety of binding partners and thereby influence cancer progression on multiple levels. GAGs can modulate growth factor and chemokine signaling, invasion and metastasis formation. Moreover, GAGs are able to change the physical property of the extracellular matrix (ECM). Abnormalities in GAG abundance and structure (e.g., sulfation patterns and molecular weight) are found across various cancer types and show biomarker potential. Targeting GAGs, as well as the usage of GAGs and their mimetics, are promising approaches to interfere with cancer progression. In addition, GAGs can be used as drug and cytokine carriers to induce an anti-tumor response. In this review, we summarize the role of GAGs in cancer and the potential use of GAGs and GAG derivatives to target cancer.
Collapse
Affiliation(s)
- Ronja Wieboldt
- Laboratories for Cancer Immunotherapy and Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Heinz Läubli
- Laboratories for Cancer Immunotherapy and Immunology, Department of Biomedicine, University Hospital and University of Basel, Switzerland; Division of Oncology, Department of Theragnostics, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
3
|
Marques C, Reis CA, Vivès RR, Magalhães A. Heparan Sulfate Biosynthesis and Sulfation Profiles as Modulators of Cancer Signalling and Progression. Front Oncol 2021; 11:778752. [PMID: 34858858 PMCID: PMC8632541 DOI: 10.3389/fonc.2021.778752] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
Heparan Sulfate Proteoglycans (HSPGs) are important cell surface and Extracellular Matrix (ECM) maestros involved in the orchestration of multiple cellular events in physiology and pathology. These glycoconjugates bind to various bioactive proteins via their Heparan Sulfate (HS) chains, but also through the protein backbone, and function as scaffolds for protein-protein interactions, modulating extracellular ligand gradients, cell signalling networks and cell-cell/cell-ECM interactions. The structural features of HS chains, including length and sulfation patterns, are crucial for the biological roles displayed by HSPGs, as these features determine HS chains binding affinities and selectivity. The large HS structural diversity results from a tightly controlled biosynthetic pathway that is differently regulated in different organs, stages of development and pathologies, including cancer. This review addresses the regulatory mechanisms underlying HS biosynthesis, with a particular focus on the catalytic activity of the enzymes responsible for HS glycan sequences and sulfation motifs, namely D-Glucuronyl C5-Epimerase, N- and O-Sulfotransferases. Moreover, we provide insights on the impact of different HS structural epitopes over HSPG-protein interactions and cell signalling, as well as on the effects of deregulated expression of HS modifying enzymes in the development and progression of cancer. Finally, we discuss the clinical potential of HS biosynthetic enzymes as novel targets for therapy, and highlight the importance of developing new HS-based tools for better patients' stratification and cancer treatment.
Collapse
Affiliation(s)
- Catarina Marques
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | | | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Xu Z, Chen S, Feng D, Liu Y, Wang Q, Gao T, Liu Z, Zhang Y, Chen J, Qiu L. Biological role of heparan sulfate in osteogenesis: A review. Carbohydr Polym 2021; 272:118490. [PMID: 34420746 DOI: 10.1016/j.carbpol.2021.118490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022]
Abstract
Heparan sulfate (HS) is extensively expressed in cells, for example, cell membrane and extracellular matrix of most mammalian cells and tissues, playing a key role in the growth and development of life by maintaining homeostasis and implicating in the etiology and diseases. Recent studies have revealed that HS is involved in osteogenesis via coordinating multiple signaling pathways. The potential effect of HS on osteogenesis is a complicated and delicate biological process, which involves the participation of osteocytes, chondrocytes, osteoblasts, osteoclasts and a variety of cytokines. In this review, we summarized the structural and functional characteristics of HS and highlighted the molecular mechanism of HS in bone metabolism to provide novel research perspectives for the further medical research.
Collapse
Affiliation(s)
- Zhujie Xu
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Shayang Chen
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Dehong Feng
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Yi Liu
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China.
| | - Qiqi Wang
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Tianshu Gao
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Zhenwei Liu
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Yan Zhang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Jinghua Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Lipeng Qiu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
5
|
Koganti R, Memon A, Shukla D. Emerging Roles of Heparan Sulfate Proteoglycans in Viral Pathogenesis. Semin Thromb Hemost 2021; 47:283-294. [PMID: 33851373 DOI: 10.1055/s-0041-1725068] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heparan sulfate is a glycosaminoglycan present in nearly all mammalian tissues. Heparan sulfate moieties are attached to the cell surface via heparan sulfate proteoglycans (HSPGs) which are composed of a protein core bound to multiple heparan sulfate chains. HSPGs contribute to the structural integrity of the extracellular matrix and participate in cell signaling by releasing bound cytokines and chemokines once cleaved by an enzyme, heparanase. HSPGs are often exploited by viruses during infection, particularly during attachment and egress. Loss or inhibition of HSPGs initially during infection can yield significant decreases in viral entry and infectivity. In this review, we provide an overview of HSPGs in the lifecycle of multiple viruses, including herpesviruses, human immunodeficiency virus, dengue virus, human papillomavirus, and coronaviruses.
Collapse
Affiliation(s)
- Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Abdullah Memon
- College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
6
|
Zhang NN, Lin T, Xiao M, Li QS, Li X, Yang L, Wang CL, Wang YL. Transcriptome sequencing analysis of mono‑ADP‑ribosylation in colorectal cancer cells. Oncol Rep 2020; 43:1413-1428. [PMID: 32323815 PMCID: PMC7107792 DOI: 10.3892/or.2020.7516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is a global health concern. The role of epigenetics in tumors has garnered increasing interest. ADP ribosylation is an epigenetic modification that is associated with a variety of biological functions and diseases, and its association with tumor development and progression has been hypothesized. However, due to the limitations of available techniques and methods, ADP ribosylation of specific sites is difficult to determine. In previous studies, it was shown that arginine-117 of histone 3 (H3R117) in Lovo cells can be modified by mono-ADP-ribosylation. This site was mutated and Lovo cells overexpressing this mutant construct were established. In the present study, the expression of differentially expressed genes (DEGs) between untransfected Lovo cells and H3R117A Lovo cells was analyzed. A total of 58,174 DEGs were identified, of which 2,324 were significantly differentially expressed (q-value <0.05; fold change >2). Functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment was used to analyze the functions and possible roles of the DEGs. The DEGs were enriched in pathways associated with metabolic process, catalytic activity, organelle and chromatin structure, and dynamics. Through this comprehensive and systematic analysis, the role of mono-ADP-ribosylation in CRC was examined, providing a foundation for future studies.
Collapse
Affiliation(s)
- Ning-Ning Zhang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ting Lin
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ming Xiao
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qing-Shu Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xian Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lian Yang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chuan-Ling Wang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ya-Lan Wang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
7
|
Elgundi Z, Papanicolaou M, Major G, Cox TR, Melrose J, Whitelock JM, Farrugia BL. Cancer Metastasis: The Role of the Extracellular Matrix and the Heparan Sulfate Proteoglycan Perlecan. Front Oncol 2020; 9:1482. [PMID: 32010611 PMCID: PMC6978720 DOI: 10.3389/fonc.2019.01482] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer metastasis is the dissemination of tumor cells to new sites, resulting in the formation of secondary tumors. This process is complex and is spatially and temporally regulated by intrinsic and extrinsic factors. One important extrinsic factor is the extracellular matrix, the non-cellular component of tissues. Heparan sulfate proteoglycans (HSPGs) are constituents of the extracellular matrix, and through their heparan sulfate chains and protein core, modulate multiple events that occur during the metastatic cascade. This review will provide an overview of the role of the extracellular matrix in the events that occur during cancer metastasis, primarily focusing on perlecan. Perlecan, a basement membrane HSPG is a key component of the vascular extracellular matrix and is commonly associated with events that occur during the metastatic cascade. Its contradictory role in these events will be discussed and we will highlight the recent advances in cancer therapies that target HSPGs and their modifying enzymes.
Collapse
Affiliation(s)
- Zehra Elgundi
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Michael Papanicolaou
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Gretel Major
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Thomas R Cox
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, St Leonards, NSW, Australia
| | - John M Whitelock
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Brooke L Farrugia
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Wu L, Davies GJ. An Overview of the Structure, Mechanism and Specificity of Human Heparanase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:139-167. [PMID: 32274709 DOI: 10.1007/978-3-030-34521-1_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The retaining endo-β-D-glucuronidase Heparanase (HPSE) is the primary mammalian enzyme responsible for breakdown of the glycosaminoglycan heparan sulfate (HS). HPSE activity is essential for regulation and turnover of HS in the extracellular matrix, and its activity affects diverse processes such as inflammation, angiogenesis and cell migration. Aberrant heparanase activity is strongly linked to cancer metastasis, due to structural breakdown of extracellular HS networks and concomitant release of sequestered HS-binding growth factors. A full appreciation of HPSE activity in health and disease requires a structural understanding of the enzyme, and how it engages with its HS substrates. This chapter summarizes key findings from the recent crystal structures of human HPSE and its proenzyme. We present details regarding the 3-dimensional protein structure of HPSE and the molecular basis for its interaction with HS substrates of varying sulfation states. We also examine HPSE in a wider context against related β-D-glucuronidases from other species, highlighting the structural features that control exo/endo - glycosidase selectivity in this family of enzymes.
Collapse
Affiliation(s)
- Liang Wu
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York, UK.
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York, UK
| |
Collapse
|
9
|
Xu L, Tang L, Zhang L. Proteoglycans as miscommunication biomarkers for cancer diagnosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:59-92. [DOI: 10.1016/bs.pmbts.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Veraldi N, Parra A, Urso E, Cosentino C, Locatelli M, Corsini S, Pedrini E, Naggi A, Bisio A, Sangiorgi L. Structural Features of Heparan Sulfate from Multiple Osteochondromas and Chondrosarcomas. Molecules 2018; 23:E3277. [PMID: 30544937 PMCID: PMC6321082 DOI: 10.3390/molecules23123277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/23/2018] [Accepted: 12/06/2018] [Indexed: 12/29/2022] Open
Abstract
Multiple osteochondromas (MO) is a hereditary disorder associated with benign cartilaginous tumors, known to be characterized by absence or highly reduced amount of heparan sulfate (HS) in the extracellular matrix of growth plate cartilage, which alters proper signaling networks leading to improper bone growth. Although recent studies demonstrated accumulation of HS in the cytoplasm of MO chondrocytes, nothing is known on the structural alterations which prevent HS from undergoing its physiologic pathway. In this work, osteochondroma (OC), peripheral chondrosarcoma, and healthy cartilaginous human samples were processed following a procedure previously set up to structurally characterize and compare HS from pathologic and physiologic conditions, and to examine the phenotypic differences that arise in the presence of either exostosin 1 or 2 (EXT1 or EXT2) mutations. Our data suggest that HS chains from OCs are prevalently below 10 kDa and slightly more sulfated than healthy ones, whereas HS chains from peripheral chondrosarcomas (PCSs) are mostly higher than 10 kDa and remarkably more sulfated than all the other samples. Although deeper investigation is still necessary, the approach here applied pointed out, for the first time, structural differences among OC, PCS, and healthy HS chains extracted from human cartilaginous excisions, and could help in understanding how the structural features of HS are modulated in the presence of pathological situations also involving different tissues.
Collapse
Affiliation(s)
- Noemi Veraldi
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, V. G. Colombo 81, 20133 Milan, Italy.
| | - Alessandro Parra
- IRCCS-Istituto Ortopedico Rizzoli, V. di Barbiano 1/10, 40136 Bologna, Italy.
| | - Elena Urso
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, V. G. Colombo 81, 20133 Milan, Italy.
| | - Cesare Cosentino
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, V. G. Colombo 81, 20133 Milan, Italy.
| | - Manuela Locatelli
- Department of Medical Genetics and Rare Orthopaedic Diseases-IRCCS, Istituto Ortopedico Rizzoli, V. di Barbiano 1/10, 40136 Bologna, Italy.
| | - Serena Corsini
- Department of Medical Genetics and Rare Orthopaedic Diseases-IRCCS, Istituto Ortopedico Rizzoli, V. di Barbiano 1/10, 40136 Bologna, Italy.
| | - Elena Pedrini
- Department of Medical Genetics and Rare Orthopaedic Diseases-IRCCS, Istituto Ortopedico Rizzoli, V. di Barbiano 1/10, 40136 Bologna, Italy.
| | - Annamaria Naggi
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, V. G. Colombo 81, 20133 Milan, Italy.
| | - Antonella Bisio
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, V. G. Colombo 81, 20133 Milan, Italy.
| | - Luca Sangiorgi
- Department of Medical Genetics and Rare Orthopaedic Diseases & CLIBI Laboratory-IRCCS, Istituto Ortopedico Rizzoli, V. di Barbiano 1/10, 40136 Bologna, Italy.
| |
Collapse
|
11
|
Crespo A, García-Suárez O, Fernández-Vega I, Solis-Hernandez MP, García B, Castañón S, Quirós LM. Heparan sulfate proteoglycans undergo differential expression alterations in left sided colorectal cancer, depending on their metastatic character. BMC Cancer 2018; 18:687. [PMID: 29940912 PMCID: PMC6019305 DOI: 10.1186/s12885-018-4597-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 06/15/2018] [Indexed: 12/21/2022] Open
Abstract
Background Heparan sulfate proteoglycans (HSPGs) are complex molecules which play a role in the invasion and growth and metastatic properties of cancerous cells. In this work we analyze changes in the patterns of expression of HSPGs in left sided colorectal cancer (LSCRC), both metastatic and non-metastatic, and the results are also compared with those previously obtained for right sided tumors (RSCRCs). Methods Eighteen LSCRCs were studied using qPCR to analyze the expression of both the proteoglycan core proteins and the enzymes involved in heparan sulfate chain biosynthesis. Certain HSPGs also carry chondroitin sulfate chains and so we also studied the genes involved in its biosynthesis. The expression of certain genes that showed significant expression differences were also analysed using immunohistochemical techniques. Results Changes in proteoglycan core proteins were dependent on their location, and the main differences between metastatic and non-metastatic tumors affected cell-surface glypicans, while other molecules were quite similar. Glypicans were also responsible for the main differences between RS- and LS- malignances. Regarding the biosynthesis of heparan sulfate chains, differential alterations in transcription depending on the presence or not of metastasis affected genes involved in the modification of uronic acid (epimerization and 2-O sulfation), and some isoforms responsible for sulfation of glucosamine (NDST1, HS6ST1). Moreover, in RSCRCs differences were preferentially found in the expression of genes involved in C6 and C3 sulfation of glucosamine, but not in NDSTs or SULFs. Finally, synthesis of chondroitin sulfate showed some alterations, which affected various steps, including polimerization and the modification of chains, but the main variations dependent on the presence of metastases were epimerization and 6C sulfation; however, when compared with RSCRCs, the essential divergences affected polymerization of the chains and the 6C sulfation of the galactosamine residue. Conclusions We evidenced alterations in the expression of HSPGs, including the expression of cell surface core proteins, many glycosiltransferases and some enzymes that modify the GAG chains in LSCRCs, but this was dependent on the metastatic nature of the tumor. Some of these alterations are shared with RSCRCs, while others, focused on specific gene groups, are dependent on tumor localization. Electronic supplementary material The online version of this article (10.1186/s12885-018-4597-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ainara Crespo
- Department of Biotechnology, Neiker-Tecnalia Arkaute, 01080, Vitoria-Gasteiz, Spain
| | - Olivia García-Suárez
- Instituto Universitario Fernández-Vega, and Department of Morphology and Cell Biology, University of Oviedo, 33006, Oviedo, Spain
| | - Iván Fernández-Vega
- Instituto Universitario Fernández-Vega, and Department of Pathology, Hospital Universitario Central de Asturias, Oviedo, 33006, Spain.,Department of Surgery and Medical-surgical Specialties, University of Oviedo, 33006, Oviedo, Spain
| | | | - Beatriz García
- Instituto Universitario Fernández-Vega, and Department of Functional Biology, University of Oviedo, 33006, Oviedo, Spain
| | - Sonia Castañón
- Department of Biotechnology, Neiker-Tecnalia Arkaute, 01080, Vitoria-Gasteiz, Spain
| | - Luis M Quirós
- Instituto Universitario Fernández-Vega, and Department of Functional Biology, University of Oviedo, 33006, Oviedo, Spain.
| |
Collapse
|
12
|
Epigenetic Regulation of the Biosynthesis & Enzymatic Modification of Heparan Sulfate Proteoglycans: Implications for Tumorigenesis and Cancer Biomarkers. Int J Mol Sci 2017; 18:ijms18071361. [PMID: 28672878 PMCID: PMC5535854 DOI: 10.3390/ijms18071361] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/05/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence suggests that the enzymes in the biosynthetic pathway for the synthesis of heparan sulfate moieties of heparan sulfate proteoglycans (HSPGs) are epigenetically regulated at many levels. As the exact composition of the heparan sulfate portion of the resulting HSPG molecules is critical to the broad spectrum of biological processes involved in oncogenesis, the epigenetic regulation of heparan sulfate biosynthesis has far-reaching effects on many cellular activities related to cancer progression. Given the current focus on developing new anti-cancer therapeutics focused on epigenetic targets, it is important to understand the effects that these emerging therapeutics may have on the synthesis of HSPGs as alterations in HSPG composition may have profound and unanticipated effects. As an introduction, this review will briefly summarize the variety of important roles which HSPGs play in a wide-spectrum of cancer-related cellular and physiological functions and then describe the biosynthesis of the heparan sulfate chains of HSPGs, including how alterations observed in cancer cells serve as potential biomarkers. This review will then focus on detailing the multiple levels of epigenetic regulation of the enzymes in the heparan sulfate synthesis pathway with a particular focus on regulation by miRNA and effects of epigenetic therapies on HSPGs. We will also explore the use of lectins to detect differences in heparan sulfate composition and preview their potential diagnostic and prognostic use in the clinic.
Collapse
|
13
|
Xu Y, Moon AF, Xu S, Krahn JM, Liu J, Pedersen LC. Structure Based Substrate Specificity Analysis of Heparan Sulfate 6-O-Sulfotransferases. ACS Chem Biol 2017; 12:73-82. [PMID: 28103688 PMCID: PMC5331487 DOI: 10.1021/acschembio.6b00841] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Heparan sulfate (HS) is a sulfated polysaccharide exhibiting essential physiological functions. HS 6-O-sulfotransferase (6-OST) transfers a sulfo group to the 6-OH position of glucosamine units to confer a variety of HS biological activities. There are three different isoforms of 6-OST in the human genome. Here, we report crystal structures of the ternary complex of 6-OST with the sulfo donor analog 3'-phosphoadenosine 5'-phosphate and three different oligosaccharide substrates at 1.95 to 2.1 Å resolutions. Structural and mutational analyses reveal amino acid residues that contribute to catalysis and substrate recognition of 6-OST. Unexpectedly, the structures reveal 6-OST engages HS in a completely different orientation than other HS sulfotransferases and sheds light on the basic HS requirements for specificity. These findings also contribute structural information to understand mutations in human 6-OST isoform 1 associated with the human genetic disease idiopathic hypogonadotropic hypogonadism characterized by incomplete or lack of puberty.
Collapse
Affiliation(s)
- Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrea F Moon
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Shuqin Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
| | - Juno M. Krahn
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lars C. Pedersen
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
14
|
The "in and out" of glucosamine 6-O-sulfation: the 6th sense of heparan sulfate. Glycoconj J 2016; 34:285-298. [PMID: 27812771 DOI: 10.1007/s10719-016-9736-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 01/06/2023]
Abstract
The biological properties of Heparan sulfate (HS) polysaccharides essentially rely on their ability to bind and modulate a multitude of protein ligands. These interactions involve internal oligosaccharide sequences defined by their sulfation patterns. Amongst these, the 6-O-sulfation of HS contributes significantly to the polysaccharide structural diversity and is critically involved in the binding of many proteins. HS 6-O-sulfation is catalyzed by 6-O-sulfotransferases (6OSTs) during biosynthesis, and it is further modified by the post-synthetic action of 6-O-endosulfatases (Sulfs), two enzyme families that remain poorly characterized. The aim of the present review is to summarize the contribution of 6-O-sulfates in HS structure/function relationships and to discuss the present knowledge on the complex mechanisms regulating HS 6-O-sulfation.
Collapse
|
15
|
Fernández-Vega I, García-Suárez O, García B, Crespo A, Astudillo A, Quirós LM. Heparan sulfate proteoglycans undergo differential expression alterations in right sided colorectal cancer, depending on their metastatic character. BMC Cancer 2015; 15:742. [PMID: 26482785 PMCID: PMC4617710 DOI: 10.1186/s12885-015-1724-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 10/08/2015] [Indexed: 12/22/2022] Open
Abstract
Background Heparan sulfate proteoglycans (HSPGs) are complex molecules involved in the growth, invasion and metastatic properties of cancerous cells. This study analyses the alterations in the expression patterns of these molecules in right sided colorectal cancer (CRC), both metastatic and non-metastatic. Methods Twenty right sided CRCs were studied. A transcriptomic approach was used, employing qPCR to analyze both the expression of the enzymes involved in heparan sulfate (HS) chains biosynthesis, as well as the proteoglycan core proteins. Since some of these proteoglycans can also carry chondroitin sulfate (CS) chains, we include the study of the genes involved in the biosynthesis of these glycosaminoglycans. Immunohistochemical techniques were also used to analyze tissue expression of particular genes showing significant expression differences, of potential interest. Results Changes in proteoglycan core proteins differ depending on their location; those located intracellularly or in the extracellular matrix show very similar alteration patterns, while those located on the cell surface vary greatly depending on the nature of the tumor: glypicans 1, 3, 6 and betaglycan are affected in the non-metastatic tumors, whereas in the metastatic, only glypican-1 and syndecan-1 are modified, the latter showing opposing alterations in levels of RNA and of protein, suggesting post-transcriptional regulation in these tumors. Furthermore, in non-metastatic tumors, polymerization of glycosaminoglycan chains is modified, particularly affecting the synthesis of the tetrasaccharide linker and the initiation and elongation of CS chains, HS chains being less affected. Regarding the enzymes responsible for the modificaton of the HS chains, alterations were only found in non-metastatic tumors, affecting N-sulfation and the isoforms HS6ST1, HS3ST3B and HS3ST5. In contrast, synthesis of the CS chains suggests changes in epimerization and sulfation of the C4 and C2 in both types of tumor. Conclusions Right sided CRCs show alterations in the expression of HSPGs, including the expression of the cell surface core proteins, many glycosiltransferases and some enzymes that modify the HS chains depending on the metastatic nature of the tumor, resulting more affected in non-metastatic ones. However, matrix proteoglycans and enzymes involved in CS fine structure synthesis are extensively modified independetly of the presence of lymph node metastasis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1724-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iván Fernández-Vega
- Servicio de Patología. Hospital Universitario de Araba, Álava, 01009, Spain.
| | - Olivia García-Suárez
- Department of Morphology and Cell Biology, University of Oviedo, 33006, Oviedo, Spain.
| | - Beatriz García
- University Institute of Oncology of Asturias, Oviedo, Spain. .,Department of Functional Biology, University of Oviedo, 33006, Oviedo, Spain.
| | - Ainara Crespo
- Department of Biotechnology, Neiker-Tecnalia Arkaute, 01080, Vitoria-Gasteiz, Spain.
| | - Aurora Astudillo
- University Institute of Oncology of Asturias, Oviedo, Spain. .,Department of Pathology, Hospital, Universitario Central de Asturias, 33006, Oviedo, Spain.
| | - Luis M Quirós
- University Institute of Oncology of Asturias, Oviedo, Spain. .,Department of Functional Biology, University of Oviedo, 33006, Oviedo, Spain.
| |
Collapse
|
16
|
|
17
|
Abstract
Angiogenesis has emerged as a novel target for anti-cancer therapies through randomized clinical trials that tested the benefit of adding vascular endothelial growth factor (VEGF) inhibitors to conventional cytotoxic therapies. However, despite improvements in the progression-free survival, the benefit in overall survival is modest. Tumour angiogenesis is regulated by a number of angiogenic cytokines. Thus innate or acquired resistance to VEGF inhibitors can be caused, at least in part, through expression of other angiogenic cytokines, including fibroblast growth factor 2 (FGF2), interleukin 8 (IL-8) and stromal-cell-derived factor 1α (SDF-1α), which make tumours insensitive to VEGF signalling pathway inhibition. The majority of angiogenic cytokines, including VEGF-A, FGF2, IL-8 and SDF-1α, manifest an obligate dependence on heparan sulfate (HS) for their biological activity. This mandatory requirement of angiogenic cytokines for HS identifies HS as a potential target for novel anti-angiogenic therapy. Targeting multiple angiogenic cytokines with HS mimetics may represent an opportunity to inhibit tumour angiogenesis more efficiently. Our published studies and unpublished work have demonstrated the feasibility of generating synthetic HS fragments of defined structure with biological activity against a number of angiogenic cytokines.
Collapse
|
18
|
Brusilovsky M, Radinsky O, Yossef R, Campbell KS, Porgador A. Carbohydrate-mediated modulation of NK cell receptor function: structural and functional influences of heparan sulfate moieties expressed on NK cell surface. Front Oncol 2014; 4:185. [PMID: 25077071 PMCID: PMC4100077 DOI: 10.3389/fonc.2014.00185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/01/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michael Brusilovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Olga Radinsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Rami Yossef
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Kerry S Campbell
- The Research Institute of Fox Chase Cancer Center , Philadelphia, PA , USA
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev , Beer-Sheva , Israel ; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| |
Collapse
|
19
|
Rachel H, Chang-Chun L. Recent advances toward the development of inhibitors to attenuate tumor metastasis via the interruption of lectin-ligand interactions. Adv Carbohydr Chem Biochem 2014; 69:125-207. [PMID: 24274369 DOI: 10.1016/b978-0-12-408093-5.00005-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aberrant glycosylation is a well-recognized phenomenon that occurs on the surface of tumor cells, and the overexpression of a number of ligands (such as TF, sialyl Tn, and sialyl Lewis X) has been correlated to a worse prognosis for the patient. These unique carbohydrate structures play an integral role in cell-cell communication and have also been associated with more metastatic cancer phenotypes, which can result from binding to lectins present on cell surfaces. The most well studied metastasis-associated lectins are the galectins and selectins, which have been correlated to adhesion, neoangiogenesis, and immune-cell evasion processes. In order to slow the rate of metastatic lesion formation, a number of approaches have been successfully developed which involve interfering with the tumor lectin-substrate binding event. Through the generation of inhibitors, or by attenuating lectin and/or carbohydrate expression, promising results have been observed both in vitro and in vivo. This article briefly summarizes the involvement of lectins in the metastatic process and also describes different approaches used to prevent these undesirable carbohydrate-lectin binding events, which should ultimately lead to improvement in current cancer therapies.
Collapse
Affiliation(s)
- Hevey Rachel
- Alberta Glycomics Centre, Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
20
|
Alhasan AA, Spielhofer J, Kusche-Gullberg M, Kirby JA, Ali S. Role of 6-O-sulfated heparan sulfate in chronic renal fibrosis. J Biol Chem 2014; 289:20295-306. [PMID: 24878958 DOI: 10.1074/jbc.m114.554691] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Heparan sulfate (HS) plays a crucial role in the fibrosis associated with chronic allograft dysfunction by binding and presenting cytokines and growth factors to their receptors. These interactions critically depend on the distribution of 6-O-sulfated glucosamine residues, which is generated by glucosaminyl-6-O-sulfotransferases (HS6STs) and selectively removed by cell surface HS-6-O-endosulfatases (SULFs). Using human renal allografts we found increased expression of 6-O-sulfated HS domains in tubular epithelial cells during chronic rejection as compared with the controls. Stimulation of renal epithelial cells with TGF-β induced SULF2 expression. To examine the role of 6-O-sulfated HS in the development of fibrosis, we generated stable HS6ST1 and SULF2 overexpressing renal epithelial cells. Compared with mock transfectants, the HS6ST1 transfectants showed significantly increased binding of FGF2 (p = 0.0086) and pERK activation. HS6ST1 transfectants displayed a relative increase in mono-6-O-sulfated disaccharides accompanied by a decrease in iduronic acid 2-O-sulfated disaccharide structures. In contrast, SULF2 transfectants showed significantly reduced FGF2 binding and phosphorylation of ERK. Structural analysis of HS showed about 40% down-regulation in 6-O-sulfation with a parallel increase in iduronic acid mono-2-O-sulfated disaccharides. To assess the relevance of these data in vivo we established a murine model of fibrosis (unilateral ureteric obstruction (UUO)). HS-specific phage display antibodies (HS3A8 and RB4EA12) showed significant increase in 6-O-sulfation in fibrotic kidney compared with the control. These results suggest an important role of 6-O-sulfation in the pathogenesis of fibrosis associated with chronic rejection.
Collapse
Affiliation(s)
- Abd A Alhasan
- From the Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom and
| | - Julia Spielhofer
- From the Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom and
| | - Marion Kusche-Gullberg
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - John A Kirby
- From the Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom and
| | - Simi Ali
- From the Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom and
| |
Collapse
|
21
|
Lu J, Auduong L, White ES, Yue X. Up-regulation of heparan sulfate 6-O-sulfation in idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2014; 50:106-14. [PMID: 23962103 DOI: 10.1165/rcmb.2013-0204oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are integral components of the lung. Changes in HSPGs have been documented in idiopathic pulmonary fibrosis (IPF). Many of the biological functions of HSPGs are mediated by heparan sulfate (HS) side chains, and little is understood about these side chains in the pathogenesis of IPF. The aims of this study were to compare HS structure between normal and IPF lungs and to examine how changes in HS regulate the fibrotic process. HS disaccharide analysis revealed that HS 6-O-sulfation was significantly increased in IPF lungs compared with normal lungs, concomitant with overexpression of HS 6-O-sulfotransferases 1 and 2 (HS6ST1/2) mRNA. Immunohistochemistry revealed that HS6ST2 was specifically expressed in bronchial epithelial cells, including those lining the honeycomb cysts in IPF lungs, whereas HS6ST1 had a broad expression pattern. Lung fibroblasts in the fibroblastic foci of IPF lungs expressed HS6ST1, and overexpression of HS6ST1 mRNA was observed in primary lung fibroblasts isolated from IPF lungs compared with those from normal lungs. In vitro, small interference RNA-mediated silencing of HS6ST1 in primary normal lung fibroblasts resulted in reduced Smad2 expression and activation and in reduced expression of collagen I and α-smooth muscle actin after TGF-β1 stimulation. Similar results were obtained in primary IPF lung fibroblasts. Furthermore, silencing of HS6ST1 in normal and IPF lung fibroblasts resulted in significant down-regulation of TβRIII (betaglycan). In summary, HS 6-O-sulfation is up-regulated in IPF with overexpression of HS6ST1 and HS6ST2, and overexpression of HS6ST1 in lung fibroblasts may regulate their fibrotic responses to TGF-β1.
Collapse
Affiliation(s)
- Jingning Lu
- 1 Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana; and
| | | | | | | |
Collapse
|
22
|
Mesenchymal stem cells, neural lineage potential, heparan sulfate proteoglycans and the matrix. Dev Biol 2014; 388:1-10. [DOI: 10.1016/j.ydbio.2014.01.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 01/08/2014] [Accepted: 01/30/2014] [Indexed: 12/23/2022]
|
23
|
Vivès RR, Seffouh A, Lortat-Jacob H. Post-Synthetic Regulation of HS Structure: The Yin and Yang of the Sulfs in Cancer. Front Oncol 2014; 3:331. [PMID: 24459635 PMCID: PMC3890690 DOI: 10.3389/fonc.2013.00331] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/27/2013] [Indexed: 12/11/2022] Open
Abstract
Heparan sulfate (HS) is a complex polysaccharide that takes part in most major cellular processes, through its ability to bind and modulate a very large array of proteins. These interactions involve saccharide domains of specific sulfation pattern (S-domains), the assembly of which is tightly orchestrated by a highly regulated biosynthesis machinery. Another level of structural control does also take place at the cell surface, where degrading enzymes further modify HS post-synthetically. Amongst them are the Sulfs, a family of extracellular sulfatases (two isoforms in human) that catalyze the specific 6-O-desulfation of HS. By targeting HS functional sulfated domains, Sulfs dramatically alter its ligand binding properties, thereby modulating a broad range of signaling pathways. Consequently, Sulfs play major roles during development, as well as in tissue homeostasis and repair. Sulfs have also been associated with many pathologies including cancer, but despite increasing interest, the role of Sulfs in tumor development still remains unclear. Studies have been hindered by a poor understanding of the Sulf enzymatic activities and conflicting data have shown either anti-oncogenic or tumor-promoting effects of these enzymes, depending on the tumor models analyzed. These opposite effects clearly illustrate the fine tuning of HS functions by the Sulfs, and the need to clarify the mechanisms involved. In this review, we will detail the present knowledge on the structural and functional properties of the Sulfs, with a special focus on their implication during tumor progression. Finally, we will discuss attempts and perspectives of using the Sulfs as a biomarker of cancer prognosis and diagnostic and as a target for anti-cancer therapies.
Collapse
Affiliation(s)
- Romain R Vivès
- Université Grenoble-Alpes, Institut de Biologie Structurale , Grenoble , France ; CNRS, Institut de Biologie Structurale , Grenoble , France ; CEA, DSV, Institut de Biologie Structurale , Grenoble , France
| | - Amal Seffouh
- Université Grenoble-Alpes, Institut de Biologie Structurale , Grenoble , France ; CNRS, Institut de Biologie Structurale , Grenoble , France ; CEA, DSV, Institut de Biologie Structurale , Grenoble , France
| | - Hugues Lortat-Jacob
- Université Grenoble-Alpes, Institut de Biologie Structurale , Grenoble , France ; CNRS, Institut de Biologie Structurale , Grenoble , France ; CEA, DSV, Institut de Biologie Structurale , Grenoble , France
| |
Collapse
|
24
|
Tetrasaccharide iteration synthesis of a heparin-like dodecasaccharide and radiolabelling for in vivo tissue distribution studies. Nat Commun 2013; 4:2016. [PMID: 23828390 PMCID: PMC3715853 DOI: 10.1038/ncomms3016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 05/16/2013] [Indexed: 01/10/2023] Open
Abstract
Heparin-like oligosaccharides mediate numerous important biological interactions, of which many are implicated in various diseases. Synthetic improvements are central to the development of such oligosaccharides as therapeutics and, in addition, there are no methods to elucidate the pharmacokinetics of structurally defined heparin-like oligosaccharides. Here we report an efficient two-cycle [4+4+4] tetrasaccharide-iteration-based approach for rapid chemical synthesis of a structurally defined heparin-related dodecasaccharide, combined with the incorporation of a latent aldehyde tag, unmasked in the final step of chemical synthesis, providing a generic end group for labelling/conjugation. We exploit this latent aldehyde tag for 3H radiolabelling to provide the first example of this kind of agent for monitoring in vivo tissue distribution and in vivo stability of a biologically active, structurally defined heparin related dodecasaccharide. Such studies are critical for the development of related saccharide therapeutics, and the data here establish that a biologically active, synthetic, heparin-like dodecasaccharide provides good organ distribution, and serum lifetimes relevant to developing future oligosaccharide therapeutics. Heparin-like oligosaccharides are implicated in various diseases. Hansen et al. report an efficient two-cycle [4+4+4] tetrasaccharide-iteration-based approach to synthesize a structurally defined heparin dodecasaccharide with a latent aldehyde tag for labelling and conjugation.
Collapse
|
25
|
Wei W, Miller RL, Leary JA. Method development and analysis of free HS and HS in proteoglycans from pre- and postmenopausal women: evidence for biosynthetic pathway changes in sulfotransferase and sulfatase enzymes. Anal Chem 2013; 85:5917-23. [PMID: 23659730 DOI: 10.1021/ac400690g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Heparan sulfate (HS) is one of the most complex and informative biopolymers found on the cell surface or in the extracellular matrix as either free HS fragments or constituents of HS proteoglycans (HSPGs). Analysis of free HS and HSPG sugar chains in human serum at the disaccharide level has great potential for early disease diagnosis and prognosis; however, the low concentration of HS in human serum, together with the complexity of the serum matrix, limits the information on HS. In this study, we present and validate the development of a new sensitive method for in-depth compositional analysis of free HS and HSPG sugar chains. This protocol involved several steps including weak anion exchange chromatography, ultrafiltration, and solid-phase extraction for enhanced detection prior to LC-MS/MS analysis. Using this protocol, a total of 51 serum samples from 26 premenopausal and 25 postmenopausal women were analyzed. Statistically significant differences in heparin/HS disaccharide profiles were observed. The proportion of N-acetylation and N-sulfation in both free HS and HSPG sugar chains were significantly different between pre- and postmenopausal women, indicating changes in N-deacetylase/N-sulfotransferases (NDSTs), the enzymes involved in the initial step of the biosynthetic pathway. Differences in the proportion of 6-O-sulfation suggest that 6-O-sulfotransferase and/or 6-O-sulfatase enzymes may also be implicated.
Collapse
Affiliation(s)
- Wei Wei
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
26
|
Park PJ, Shukla D. Role of heparan sulfate in ocular diseases. Exp Eye Res 2013; 110:1-9. [PMID: 23410824 DOI: 10.1016/j.exer.2013.01.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 12/12/2022]
Abstract
Heparan sulfate (HS), a ubiquitous and structurally diverse cell surface polysaccharide and extracellular matrix component, is a factor common to several major eye pathologies. Its multitude of functions and variable distribution among the different ocular tissues makes it an important contributor to a variety of disease states. Although HS facilitates the pathogenesis of many disorders, its role in each varies. Unique functions of HS have been particularly noted in viral and bacterial keratitis and age-related macular degeneration. Combined, these pathologies comprise a large portion of conditions leading to visual impairment worldwide. Given this prevalence of diseases facilitated by HS, it is prudent to take an in-depth look at this compound in the context of these pathologic states. While the initial part of the review will discuss the pathogenic aspects of HS, it is also important to consider the wider implications of such roles for HS. The remainder of the article will specifically address one such implication, the possibility for future use of novel HS-based therapeutics to combat these eye pathologies.
Collapse
Affiliation(s)
- Paul J Park
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
27
|
Miller GJ, Hansen SU, Avizienyte E, Rushton G, Cole C, Jayson GC, Gardiner JM. Efficient chemical synthesis of heparin-like octa-, deca- and dodecasaccharides and inhibition of FGF2- and VEGF165-mediated endothelial cell functions. Chem Sci 2013. [DOI: 10.1039/c3sc51217g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
28
|
Desbois M, Rusakiewicz S, Locher C, Zitvogel L, Chaput N. Natural killer cells in non-hematopoietic malignancies. Front Immunol 2012; 3:395. [PMID: 23269924 PMCID: PMC3529393 DOI: 10.3389/fimmu.2012.00395] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 12/06/2012] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells belong to the innate immune system and were initially described functionallywise by their spontaneous cytotoxic potential against transformed or virus-infected cells. A delicate balance between activating and inhibiting receptors regulates NK cell tolerance. A better understanding of tissue resident NK cells, of NK cell maturation stages and migration patterns has evolved allowing a thoughtful evaluation of their modus operandi. While evidence has been brought up for their relevance as gate keepers in some hematopoietic malignancies, the role of NK cells against progression and dissemination of solid tumors remains questionable. Hence, many studies pointed out the functional defects of the rare NK cell infiltrates found in tumor beds and the lack of efficacy of adoptively transferred NK cells in patients. However, several preclinical evidences suggest their anti-metastatic role in a variety of mouse tumor models. In the present review, we discuss NK cell functions according to their maturation stage and environmental milieu, the receptor/ligand interactions dictating tumor cell recognition and recapitulate translational studies aimed at deciphering their prognostic or predictive role against human solid malignancies.
Collapse
Affiliation(s)
- Mélanie Desbois
- Institut de Cancérologie Gustave Roussy Villejuif, France ; Centre d'Investigation Clinique Biothérapie 507, Institut de cancérologie Gustave Roussy Villejuif, France ; Faculté de Médecine, Université Paris-Sud Le Kremlin-Bicȴtre, France xs
| | | | | | | | | |
Collapse
|
29
|
Abstract
Syndecans are transmembrane heparan sulphate proteoglycans (HSPGs) that have gained increasing interest as regulators of a variety of tissue responses, including cartilage development and remodelling. These proteoglycans are composed of a core protein to which extracellular glycosaminoglycan (GAG) chains are attached. Through these GAG chains, syndecans can interact with a variety of extracellular matrix molecules and bind to a number of soluble mediators including morphogens, growth factors, chemokines and cytokines. The structure and post-translational modification of syndecan GAG chains seem to differ not only from cell to cell, but also during different stages of cellular differentiation, leading to a complexity of syndecan function that is unique among membrane-bound HSPGs. Unlike other membrane-bound HSPGs, syndecans contain intracellular signalling motifs that can initiate signalling mainly through protein kinase C. This Review summarizes our knowledge of the biology of syndecans and the mechanisms by which binding of molecules to syndecans exert different biological effects, particularly in the joints. On the basis of the structural and functional peculiarities of syndecans, we discuss the regulation of syndecans and their roles in the developing joint as well as during degenerative and inflammatory cartilage remodelling as understood from expression studies and functional analyses involving syndecan-deficient mice.
Collapse
Affiliation(s)
- Thomas Pap
- Institute of Experimental Musculoskeletal Medicine, University Hospital Münster, Domagkstraße 3, D-48149 Münster, Germany.
| | | |
Collapse
|
30
|
Brusilovsky M, Rosental B, Shemesh A, Appel MY, Porgador A. Human NK cell recognition of target cells in the prism of natural cytotoxicity receptors and their ligands. J Immunotoxicol 2012; 9:267-74. [PMID: 22524686 DOI: 10.3109/1547691x.2012.675366] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The matter of the pathogen- and cancer-associated ligands recognized by the Natural Cytotoxicity Receptors (NCRs) has been a subject of intense research ever since the identification of the NCRs more than 12 years ago by Alessandro and Lorenzo Moretta: NKp46 in 1997, NKp44 in 1998, and finally NKp30 in 1999. Expression patterns recognized by NCRs include pathogen-derived, pathogen-induced, and cancer-associated cellular 'self' ligands. Pathogen-exposed cells may exhibit both types of pathogen-associated ligands. Transformed cells, in contrast, exhibit only 'self' ligands which are derived from both the intracellular- and membrane-associated milieu of self molecules. These expression patterns allow for NCR-based NK cell discrimination between healthy and affected cells, in the realms of both pathogenic infection and potential tumorigenesis. The focus of this review is on the current knowledge regarding the identities of NCR ligands and the type of target cells expressing these ligands.
Collapse
Affiliation(s)
- Michael Brusilovsky
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | |
Collapse
|
31
|
Riedl S, Zweytick D, Lohner K. Membrane-active host defense peptides--challenges and perspectives for the development of novel anticancer drugs. Chem Phys Lipids 2011; 164:766-81. [PMID: 21945565 PMCID: PMC3220766 DOI: 10.1016/j.chemphyslip.2011.09.004] [Citation(s) in RCA: 302] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 12/22/2022]
Abstract
Although much progress has been achieved in the development of cancer therapies in recent decades, problems continue to arise particularly with respect to chemotherapy due to resistance to and low specificity of currently available drugs. Host defense peptides as effector molecules of innate immunity represent a novel strategy for the development of alternative anticancer drug molecules. These cationic amphipathic peptides are able to discriminate between neoplastic and non-neoplastic cells interacting specifically with negatively charged membrane components such as phosphatidylserine (PS), sialic acid or heparan sulfate, which differ between cancer and non-cancer cells. Furthermore, an increased number of microvilli has been found on cancer cells leading to an increase in cell surface area, which may in turn enhance their susceptibility to anticancer peptides. Thus, part of this review will be devoted to the differences in membrane composition of non-cancer and cancer cells with a focus on the exposure of PS on the outer membrane. Normally, surface exposed PS triggers apoptosis, which can however be circumvented by cancer cells by various means. Host defense peptides, which selectively target differences between cancer and non-cancer cell membranes, have excellent tumor tissue penetration and can thus reach the site of both primary tumor and distant metastasis. Since these molecules kill their target cells rapidly and mainly by perturbing the integrity of the plasma membrane, resistance is less likely to occur. Hence, a chapter will also describe studies related to the molecular mechanisms of membrane damage as well as alternative non-membrane related mechanisms. In vivo studies have demonstrated that host defense peptides display anticancer activity against a number of cancers such as e.g. leukemia, prostate, ascite and ovarian tumors, yet so far none of these peptides has made it on the market. Nevertheless, optimization of host defense peptides using various strategies to enhance further selectivity and serum stability is expected to yield novel anticancer drugs with improved properties in respect of cancer cell toxicity as well as reduced development of drug resistance.
Collapse
Affiliation(s)
- Sabrina Riedl
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Schmiedlstrasse 6, Graz, Austria
| | | | | |
Collapse
|
32
|
Han CH, Huang YJ, Lu KH, Liu Z, Mills GB, Wei Q, Wang LE. Polymorphisms in the SULF1 gene are associated with early age of onset and survival of ovarian cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:5. [PMID: 21214932 PMCID: PMC3025876 DOI: 10.1186/1756-9966-30-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 01/07/2011] [Indexed: 02/03/2023]
Abstract
BACKGROUND SULF1 (sulfatase 1) selectively removes the 6-O-sulphate group from heparan sulfate, changing the binding sites for extracellular growth factors. SULF1 expression has been reported to be decreased in various cancers, including ovarian cancer. We hypothesized that single nucleotide polymorphisms (SNPs) of SULF1 would impact clinicopathologic characteristics. METHODS We genotyped five common (minor allele frequency>0.05) regulatory SNPs with predicted functionalities (rs2623047 G>A, rs13264163 A>G, rs6990375 G>A, rs3802278 G>A, and rs3087714 C>T) in 168 patients with primary epithelial ovarian cancer, using the polymerase chain reaction-restriction fragment length polymorphism method. RESULTS We found that rs2623047 G>A was significantly associated with an early age of onset of ovarian cancer in the G allele dose-response manner (P = 0.027; Ptrend = 0.007) and that rs2623047 GG/GA genotypes were associated with longer progression-free survival; rs6990375 G>A was also associated with the early age of onset in the A allele dose-response manner (P = 0.013; Ptrend= 0.009). The significant differences in age of disease onset persisted among carriers of haplotypes of rs2623047 and rs6990375 (P = 0.014; Ptrend = 0.004). In luciferase reporter gene assays, rs2623047 G allele showed a slightly higher promoter activity than the A allele in the SKOV3 tumorigenic cell line. CONCLUSIONS These findings suggest that genetic variations in SULF1 may play a role in ovarian cancer onset and prognosis. Further studies with large sample sizes and of the mechanistic relevance of SULF1 SNPs are warranted.
Collapse
Affiliation(s)
- Chan H Han
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu-Jing Huang
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Karen H Lu
- Department of Gynecologic Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhensheng Liu
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Qingyi Wei
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Li-E Wang
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
33
|
Abstract
HSs (heparan sulfates) are a complex family of cell-surface and matrix polysaccharides that have diverse biological functions, underpinned by structurally diverse patterns of backbone chain modification, especially by sulfate groups. These variant structures represent a molecular code, the 'heparanome', that confers the ability to interact selectively with a wide interactome of proteins, the 'heparactome', and thereby influence a network of cellular events. It is becoming increasingly apparent that understanding the structure-activity relationships of these enigmatic molecules requires the development of a holistic systems biology view of their structure and interactions. In the present paper, I describe some of the new tools available to realize this strategy, and discuss the future potential for the combined application of glycomics and other '-omics' approaches to define the molecular code of the heparanome.
Collapse
|
34
|
Thompson SM, Jesudason EC, Turnbull JE, Fernig DG. Heparan sulfate in lung morphogenesis: The elephant in the room. ACTA ACUST UNITED AC 2010; 90:32-44. [PMID: 20301217 DOI: 10.1002/bdrc.20169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Heparan sulfate (HS) is a structurally complex polysaccharide located on the cell surface and in the extracellular matrix, where it participates in numerous biological processes through interactions with a vast number of regulatory proteins such as growth factors and morphogens. HS is crucial for lung development; disruption of HS synthesis in flies and mice results in a major aberration of airway branching, and in mice, it results in neonatal death as a consequence of malformed lungs and respiratory distress. Epithelial-mesenchymal interactions governing lung morphogenesis are directed by various diffusible proteins, many of which bind to, and are regulated by HS, including fibroblast growth factors, sonic hedgehog, and bone morphogenetic proteins. The majority of research into the molecular mechanisms underlying defective lung morphogenesis and pulmonary pathologies, such as bronchopulmonary dysplasia and pulmonary hypoplasia associated with congenital diaphragmatic hernia (CDH), has focused on abnormal protein expression. The potential contribution of HS to abnormalities of lung development has yet to be explored to any significant extent, which is somewhat surprising given the abnormal lung phenotype exhibited by mutant mice synthesizing abnormal HS. This review summarizes our current understanding of the role of HS and HS-binding proteins in lung morphogenesis and will present in vitro and in vivo evidence for the fundamental importance of HS in airway development. Finally, we will discuss the future possibility of HS-based therapeutics for ameliorating insufficient lung growth associated with lung diseases such as CDH.
Collapse
Affiliation(s)
- Sophie M Thompson
- School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom.
| | | | | | | |
Collapse
|
35
|
Naimy H, Leymarie N, Zaia J. Screening for anticoagulant heparan sulfate octasaccharides and fine structure characterization using tandem mass spectrometry. Biochemistry 2010; 49:3743-52. [PMID: 20345121 DOI: 10.1021/bi100135d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heparan sulfate (HS) is a sulfated glycosaminoglycan located on the surface and extracellular matrix of mammalian cells. HS is constituted of highly N-sulfated domains (NS domains) interrupted by lower sulfation domains. The arrangement of these domains dictates the function of HS which is mainly involved in binding proteins and regulating their biological activities. Heparin, a heparan sulfate analogue present in mast cells, resembles the NS domains of HS but lacks the alternating high and low sulfation architecture. Because the NS domains that range up to hexadecasaccharide in size are the main protein binders, heparin has been used as a model for HS in protein binding studies. Heparan sulfate, however, is the more physiologically relevant modulator of growth factor-receptor interactions. In this work, liquid chromatography and mass spectrometry (LC-MS) were used to compare the compositions of affinity-purified heparin and HS octasaccharides with anticoagulant activities versus library octasaccharides. The fine structures of the biologically active HS compositions were then compared against those of library octasaccharides using low-energy collision-induced dissociation tandem mass spectrometry. This approach confirmed isomeric enrichment of these compositions and, most importantly, produces ions diagnostic of their biological activity.
Collapse
Affiliation(s)
- Hicham Naimy
- Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
36
|
Abstract
The heparan sulfate (HS) family of glycosaminoglycans are highly complex and structurally diverse polysaccharides with information encoded within the chains that imparts the ability to bind selectively to a wide range of proteins-the "HS interactome"-and to regulate their biological activities. However, there are two key questions which need to be addressed; first, the extent of structural variation of expressed HS structures-the "heparanome"-in specific biological contexts and second, the degree of functional selectivity exerted by these structures in regulating biological processes. There is a clear need to develop more systematic and high throughput approaches in order to address these questions. Here, we describe a cohort of protocols for profiling different aspects of HS structure and activity, focusing particularly on disaccharide building blocks and larger oligosaccharide domains, the latter representing the functional units of HS chains. A range of other complementary methods in the literature are also discussed. Together these provide a new and more comprehensive toolkit to investigate HS structure and activity in a higher throughput manner in selected biological systems. The implementation of such a glycomics strategy will enable development of a systems biology view of HS structure-function relationships and help to resolve the significant puzzle of the extensive interactome of HS, which remains a key question in the glycobiology field. We anticipate that the next decade will see major advances in our understanding of the complex biology of HS.
Collapse
|
37
|
Uebersax L, Merkle HP, Meinel L. Biopolymer-Based Growth Factor Delivery for Tissue Repair: From Natural Concepts to Engineered Systems. TISSUE ENGINEERING PART B-REVIEWS 2009; 15:263-89. [DOI: 10.1089/ten.teb.2008.0668] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lorenz Uebersax
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zurich, Switzerland
| | - Hans P. Merkle
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zurich, Switzerland
| | - Lorenz Meinel
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zurich, Switzerland
| |
Collapse
|
38
|
Haupt LM, Murali S, Mun FK, Teplyuk N, Mei LF, Stein GS, van Wijnen AJ, Nurcombe V, Cool SM. The heparan sulfate proteoglycan (HSPG) glypican-3 mediates commitment of MC3T3-E1 cells toward osteogenesis. J Cell Physiol 2009; 220:780-91. [PMID: 19479939 DOI: 10.1002/jcp.21825] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Heparan sulfate (HS) sugar chains attached to core proteoglycans (PGs) termed HSPGs mediate an extensive range of cell-extracellular matrix (ECM) and growth factor interactions based upon their sulfation patterns. When compared with non-osteogenic (maintenance media) culture conditions, under established osteogenic culture conditions, MC3T3-E1 cells characteristically increase their osteogenic gene expression profile and switch their dominant fibroblast growth factor receptor (FGFR) from FGFR1 (0.5-fold decrease) to FGFR3 (1.5-fold increase). The change in FGFR expression profile of the osteogenic-committed cultures was reflected by their inability to sustain an FGF-2 stimulus, but respond to BMP-2 at day 14 of culture. The osteogenic cultures decreased their chondroitin and dermatan sulfate PGs (biglycan, decorin, and versican), but increased levels of the HS core protein gene expression, in particular glypican-3. Commitment and progress through osteogenesis is accompanied by changes in FGFR expression, decreased GAG initiation but increased N- and O-sulfation and reduced remodeling of the ECM (decreased heparanase expression) resulting in the production of homogenous (21 kDa) HS chain. With the HSPG glypican-3 expression strongly upregulated in these processes, siRNA was used to knockdown this gene to examine the effect on osteogenic commitment. Reduced glypican-3 abrogated the expression of Runx2, and thus differentiation. The reintroduction of this HSPG into Runx2-null cells allowed osteogenesis to proceed. These results demonstrate the dependence of osteogenesis on specific HS chains, in particular those associated with glypican-3.
Collapse
Affiliation(s)
- Larisa M Haupt
- Stem Cells and Tissue Repair Group, Institute of Medical Biology, A*STAR (Agency for Science, Technology and Research), Biopolis 138648, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fadnes B, Rekdal O, Uhlin-Hansen L. The anticancer activity of lytic peptides is inhibited by heparan sulfate on the surface of the tumor cells. BMC Cancer 2009; 9:183. [PMID: 19527490 PMCID: PMC2703650 DOI: 10.1186/1471-2407-9-183] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 06/15/2009] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Cationic antimicrobial peptides (CAPs) with antitumor activity constitute a promising group of novel anticancer agents. These peptides induce lysis of cancer cells through interactions with the plasma membrane. It is not known which cancer cell membrane components influence their susceptibility to CAPs. We have previously shown that CAPs interact with the two glycosaminoglycans (GAGs), heparan sulfate (HS) and chondroitin sulfate (CS), which are present on the surface of most cells. The purpose of this study was to investigate the role of the two GAGs in the cytotoxic activity of CAPs. METHODS Various cell lines, expressing different levels of cell surface GAGs, were exposed to bovine lactoferricin (LfcinB) and the designer peptide, KW5. The cytotoxic effect of the peptides was investigated by use of the colorimetric MTT viability assay. The cytotoxic effect on wild type CHO cells, expressing normal amounts of GAGs on the cell surface, and the mutant pgsA-745, that has no expression of GAGs on the cell surface, was also investigated. RESULTS We show that cells not expressing HS were more susceptible to CAPs than cells expressing HS at the cell surface. Further, exogenously added heparin inhibited the cytotoxic effect of the peptides. Chondroitin sulfate had no effect on the cytotoxic activity of KW5 and only minor effects on LfcinB cytotoxicity. CONCLUSION Our results show for the first time that negatively charged molecules at the surface of cancer cells inhibit the cytotoxic activity of CAPs. Our results indicate that HS at the surface of cancer cells sequesters CAPs away from the phospholipid bilayer and thereby impede their ability to induce cytolysis.
Collapse
Affiliation(s)
- Bodil Fadnes
- Department of Medical Biochemistry, Institute of Medical Biology, University of Tromsø, Tromsø, Norway.
| | | | | |
Collapse
|
40
|
Basappa, Murugan S, Sugahara KN, Lee CM, ten Dam GB, van Kuppevelt TH, Miyasaka M, Yamada S, Sugahara K. Involvement of chondroitin sulfate E in the liver tumor focal formation of murine osteosarcoma cells. Glycobiology 2009; 19:735-42. [DOI: 10.1093/glycob/cwp041] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
41
|
Peramo A, Meads MB, Dalton WS, Matthews WG. Polymer model of cancer cell adhesion to glycosaminoglycan substrates using the radius of gyration. J Appl Polym Sci 2009. [DOI: 10.1002/app.28951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Li F, Ten Dam GB, Murugan S, Yamada S, Hashiguchi T, Mizumoto S, Oguri K, Okayama M, van Kuppevelt TH, Sugahara K. Involvement of highly sulfated chondroitin sulfate in the metastasis of the Lewis lung carcinoma cells. J Biol Chem 2008; 283:34294-304. [PMID: 18930920 PMCID: PMC2662238 DOI: 10.1074/jbc.m806015200] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 10/08/2008] [Indexed: 12/14/2022] Open
Abstract
The altered expression of cell surface chondroitin sulfate (CS) and dermatan sulfate (DS) in cancer cells has been demonstrated to play a key role in malignant transformation and tumor metastasis. However, the functional highly sulfated structures in CS/DS chains and their involvement in the process have not been well documented. In the present study, a structural analysis of CS/DS from two mouse Lewis lung carcinoma (3LL)-derived cell lines with different metastatic potentials revealed a higher proportion of Delta(4,5)HexUA-GalNAc(4,6-O-disulfate) generated from E-units (GlcUA-GalNAc(4, 6-O-disulfate)) in highly metastatic LM66-H11 cells than in low metastatic P29 cells, although much less CS/DS is expressed by LM66-H11 than P29 cells. This key finding prompted us to study the role of CS-E-like structures in experimental lung metastasis. The metastasis of LM66-H11 cells to lungs was effectively inhibited by enzymatic removal of tumor cell surface CS or by preadministration of CS-E rich in E-units in a dose-dependent manner. In addition, immunocytochemical analysis showed that LM66-H11 rather than P29 cells expressed more strongly the CS-E epitope, which was specifically recognized by the phage display antibody GD3G7. More importantly, this antibody and a CS-E decasaccharide fraction, the minimal structure recognized by GD3G7, strongly inhibited the metastasis of LM66-H11 cells probably by modifying the proliferative and invading behavior of the metastatic tumor cells. These results suggest that the E-unit-containing epitopes are involved in the metastatic process and a potential target for the diagnosis and treatment of malignant tumors.
Collapse
Affiliation(s)
- Fuchuan Li
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yue X, Li X, Nguyen HT, Chin DR, Sullivan DE, Lasky JA. Transforming growth factor-beta1 induces heparan sulfate 6-O-endosulfatase 1 expression in vitro and in vivo. J Biol Chem 2008; 283:20397-407. [PMID: 18503048 DOI: 10.1074/jbc.m802850200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Transforming growth factor (TGF)-beta1 plays an important role in the development of pulmonary fibrosis. In this study we examined the relationship between TGF-beta1 stimulation and the expression of heparan sulfate (HS) 6-O-endosulfatase 1 (Sulf1) in cultured normal human lung fibroblasts (NHLFs) and in murine lungs in vivo. By removing 6-O-sulfates from specific HS intrachain sites on the cell surface, Sulf1 has been shown to modulate the activities of many HS binding growth factors and morphogens including fibroblast growth factor (FGF)-2. Real time reverse transcription-PCR analysis revealed that TGF-beta1 increased Sulf1 expression in NHLFs in a dose- and time-dependent manner which was accompanied by a decrease in 6-O-sulfated disaccharides as revealed by high performance liquid chromatography analysis. Decreased ERK activation after FGF-2 stimulation was observed in TGF-beta1-treated NHLFs compared with control cells without changes in HS-dependent FGF-2 binding or FGF-2.FR1c complex formation. To study the function of Sulf1, negative control or Sulf1-specific small interference RNA (siRNA)-transfected NHLFs were stimulated with TGF-beta1. Enhanced Smad2/3 phosphorylation and elevated total Smad2 protein level were observed in Sulf1 siRNA-transfected cells and were accompanied by enhanced expression of alpha-smooth muscle actin and fibronectin. In addition, Sulf1 siRNA transfection enhanced the anti-proliferative effect of TGF-beta1. Finally Sulf1 expression was up-regulated in the lungs of mice treated with adenovirus encoding active TGF-beta1. Taken together, our data indicate that Sulf1 is a TGF-beta1-responsive gene both in vitro and in vivo and may function as a negative regulator of TGF-beta1-induced fibrogenesis.
Collapse
Affiliation(s)
- Xinping Yue
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
44
|
Skidmore MA, Guimond SE, Rudd TR, Fernig DG, Turnbull JE, Yates EA. The activities of heparan sulfate and its analogue heparin are dictated by biosynthesis, sequence, and conformation. Connect Tissue Res 2008; 49:140-4. [PMID: 18661329 DOI: 10.1080/03008200802148595] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The glycosaminoglycan heparan sulfate (HS), is expressed on the surface of virtually all mammalian cells and is implicated in many crucial biological activities. The activities of HS and its close structural analogue heparin are mediated through interactions with proteins. However, the relationship between structure and activity is not simple, because the structure and conformation of HS and heparin are complex. This review surveys some of the relevant findings in HS/heparin chemistry, biochemistry, and biology.
Collapse
Affiliation(s)
- Mark A Skidmore
- School of Biological Sciences, University of Liverpool, Liverpool, England
| | | | | | | | | | | |
Collapse
|
45
|
Vynios DH, Theocharis DA, Papageorgakopoulou N, Papadas TA, Mastronikolis NS, Goumas PD, Stylianou M, Skandalis SS. Biochemical changes of extracellular proteoglycans in squamous cell laryngeal carcinoma. Connect Tissue Res 2008; 49:239-43. [PMID: 18661351 DOI: 10.1080/03008200802147662] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Larynx is a complicated organ with peculiar properties, having a noticeable impact in vocal and respiratory physiology. In squamous cell laryngeal carcinoma, the extracellular matrix components underwent significant modifications concerning their fine chemical structure. Degradation of aggrecan is observed, whereas versican and decorin amounts are increased. The expression of aggrecan is almost totally ceased in later cancer stages, whereas decorin is expressed in normal and cancerous samples. But its expression is increased in cancer, being related to cancer stage. However, the expression of versican seems to be characteristic of the tumor, since none or traces expression is observed in normal samples. Chondroitin/dermatan sulfate is the major glycosaminoglycan, but its sulfation shows a shift from C6 position of galactosamine in normal samples to C4 in malignancy. Dermatan sulfate represents minor amounts in normal samples but increases in proportion up to one-fourth of total sulfated glycosaminoglycans in malignancy. In addition, an increase in the amounts of hyaluronan is also observed in malignant samples. Accumulated data demonstrate that tumor progression is closely related to the alteration of the expression and biochemical composition of specific extracellular constituents that describes the mild aggressive phenotype of squamous cell laryngeal carcinoma.
Collapse
Affiliation(s)
- Demitrios H Vynios
- Department of Chemistry, Laboratory of Biochemistry, University of Patras, Patras, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sanderson RD, Yang Y. Syndecan-1: a dynamic regulator of the myeloma microenvironment. Clin Exp Metastasis 2007; 25:149-59. [PMID: 18027090 DOI: 10.1007/s10585-007-9125-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 10/23/2007] [Indexed: 12/13/2022]
Abstract
Emerging data in myeloma and other cancers indicates that heparan sulfate proteoglycans promote tumor progression by enhancing their growth and metastasis. By acting as key regulators of cell signaling via their interactions with multiple growth and angiogenic factors, heparan sulfates mediate a shift in the microenvironment that supports the tumor as an 'organ' and promotes an aggressive tumor phenotype. In addition, enzymatic remodeling of heparan sulfate proteoglycans provides a mechanism for rapid, localized and dynamic modulation of proteoglycan function thereby tightly regulating activities within the tumor microenvironment. New data from animal models demonstrates that heparan sulfate or the enzymes that regulate heparan sulfate are viable targets for cancer therapy. This strategy of targeting heparan sulfate may be particularly effective for attacking cancers like myeloma where extensive genetic chaos renders them unlikely to respond well to agents that target a single signaling pathway.
Collapse
Affiliation(s)
- Ralph D Sanderson
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Alabama at Birmingham, 814 Shelby Building, 1530 Third Avenue South, Birmingham, AL 35294-2182, USA.
| | | |
Collapse
|
47
|
Abstract
Heparan sulphate proteoglycans are ubiquitous macromolecules of cell surfaces and extracellular matrices. Numerous extracellular matrix proteins, growth factors, morphogens, cytokines, chemokines and coagulation factors are bound and regulated by heparan sulphate. Degradation of heparan sulphate thus potentially profoundly affects cell and tissue function. Although there is evidence that several heparan sulphate-degrading endoglucuronidases (heparanases) might exist, so far only one transcript encoding a functional heparanase has been identified: heparanase-1. In the first part of this review, we discuss the current knowledge about heparan sulphate proteoglycans and the functional importance of their versatile interactions. In the second part, we summarize recent findings that have contributed to the characterization of heparanase-1, focusing on the molecular properties, working mechanism, substrate specificity, expression pattern, cellular activation and localization of this enzyme. Additionally, we review data implicating heparanase-1 in several normal and pathological processes, focusing on tumour metastasis and angiogenesis, and on evidence for a potentially direct signalling function of the molecule. In that context, we also briefly discuss heparanase-2, an intriguing close homologue of heparanase-1, for which, so far, no heparan sulphate-degrading activity could be demonstrated.
Collapse
Affiliation(s)
- Veronique Vreys
- Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
- Laboratory for Glycobiology and Developmental Genetics, Department of Human Genetics, Catholic University of Leuven, Leuven, Belgium
- *Correspondence to: Guido DAVID Centre for Human Genetics, Campus Gasthuisberg, O&N1, Herestraat 49, 3000 Leuven, Belgium. Tel.: +32-16-345863; Fax: +32-16-347166; E-mail:
| | - Guido David
- Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
- Laboratory for Glycobiology and Developmental Genetics, Department of Human Genetics, Catholic University of Leuven, Leuven, Belgium
- *Correspondence to: Guido DAVID Centre for Human Genetics, Campus Gasthuisberg, O&N1, Herestraat 49, 3000 Leuven, Belgium. Tel.: +32-16-345863; Fax: +32-16-347166; E-mail:
| |
Collapse
|
48
|
Transgenic or tumor-induced expression of heparanase upregulates sulfation of heparan sulfate. Nat Chem Biol 2007; 3:773-8. [PMID: 17952066 DOI: 10.1038/nchembio.2007.41] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 08/30/2007] [Indexed: 11/08/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) interact with numerous proteins of importance in animal development and homeostasis. Heparanase, which is expressed in normal tissues and upregulated in angiogenesis, cancer and inflammation, selectively cleaves beta-glucuronidic linkages in HS chains. In a previous study, we transgenically overexpressed heparanase in mice to assess the overall effects of heparanase on HS metabolism. Metabolic labeling confirmed extensive fragmentation of HS in vivo. In the current study we found that in liver showing excessive heparanase overexpression, HSPG turnover is accelerated along with upregulation of HS N- and O-sulfation, thus yielding heparin-like chains without the domain structure typical of HS. Heparanase overexpression in other mouse organs and in human tumors correlated with increased 6-O-sulfation of HS, whereas the domain structure was conserved. The heavily sulfated HS fragments strongly promoted formation of ternary complexes with fibroblast growth factor 1 (FGF1) or FGF2 and FGF receptor 1. Heparanase thus contributes to regulation of HS biosynthesis in a way that may promote growth factor action in tumor angiogenesis and metastasis.
Collapse
|
49
|
ten Dam GB, van de Westerlo EMA, Purushothaman A, Stan RV, Bulten J, Sweep FCGJ, Massuger LF, Sugahara K, van Kuppevelt TH. Antibody GD3G7 selected against embryonic glycosaminoglycans defines chondroitin sulfate-E domains highly up-regulated in ovarian cancer and involved in vascular endothelial growth factor binding. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1324-33. [PMID: 17717144 PMCID: PMC1988881 DOI: 10.2353/ajpath.2007.070111] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chondroitin sulfate (CS) is abundantly present in the tumor stroma, and tumor-specific CS modifications might be potential targets to influence tumor development. We applied the phage display technology to select antibodies that identify these tumor-specific CS modifications. Antibody GD3G7 was selected against embryonic glycosaminoglycans, and it reacted strongly with CS-E (rich in GlcA-GalNAc4S6S units). In ovarian adenocarcinomas, strong expression of this CS-E epitope was found in the extracellular matrix, and occasionally on tumor cells. No expression was found in normal ovary and cystadenomas. Differential expression was found in ovarian carcinoma cell lines, which correlated with the gene expression of the GalNAc4S-6st enzyme, involved in biosynthesis of CS-E. Vascular endothelial growth factor (VEGF)-sensitive fenestrated (in normal tissues) and tumor blood vessels were both identified by antibody GD3G7, which might implicate a role for CS-E in VEGF biology. VEGF bound to CS-E and antibody GD3G7 could compete for binding of VEGF to CS-E. In conclusion, antibody GD3G7 identified rare CS-E-like structures that were strongly expressed in ovarian adenocarcinomas. This antibody might therefore be instrumental for identifying tumor-related CS alterations.
Collapse
Affiliation(s)
- Gerdy B ten Dam
- Department of Biochemistry 280, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, PO. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Skandalis SS, Stylianou M, Vynios DH, Papageorgakopoulou N, Theocharis DA. The structural and compositional changes of glycosaminoglycans are closely associated with tissue type in human laryngeal cancer. Biochimie 2007; 89:1573-80. [PMID: 17716802 DOI: 10.1016/j.biochi.2007.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 07/10/2007] [Indexed: 10/23/2022]
Abstract
Hyaluronan and sulfated glycosaminoglycans, as intrinsic components of proteoglycans, are playing important roles in cancer biology. In the present study, we investigated in detail the glycosaminoglycans on both fine chemical and structural levels in laryngeal cartilaginous and non-cartilaginous tissues at different stages of laryngeal cancer. The results indicated that in cartilaginous tissues the amounts of chondroitin sulfate, keratan sulfate, dermatan sulfate and hyaluronan presented a dramatic decrease in contrast to the non-cartilaginous tissues, which showed a significant increase of these glycosaminoglycans compared to their normal counterparts. On fine chemical structure, the molar ratios of 4-sulfated to 6-sulfated and non-sulfated to sulfated disaccharides from both cartilaginous and non-cartilaginous cancerous tissues showed a significant increase. On molecular-size level, in laryngeal cancer, the chromatographic behaviour of the sulfated glycosaminoglycan chains from both tissue-types revealed their lower M(r) with a more polydisperse and heterogeneous distribution compared to the normal ones. In addition, in both tissues, a significant decrease of high molecular-size hyaluronan was observed. Of particular interest was the great increase of hyaluronan of low molecular mass in the laryngeal non-cartilaginous tissues, which ranged from 330 to 890 kDa. The kind and the extent of these alterations, which presented an intense stage-related behaviour, depended on the tissue origin and could be associated with the malignant phenotype of human laryngeal cancer.
Collapse
Affiliation(s)
- Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, School of Natural Sciences, University of Patras, 265 00 Patras, Greece
| | | | | | | | | |
Collapse
|