1
|
Rius-Pérez S. p53 at the crossroad between mitochondrial reactive oxygen species and necroptosis. Free Radic Biol Med 2023; 207:183-193. [PMID: 37481144 DOI: 10.1016/j.freeradbiomed.2023.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
p53 is a redox-sensitive transcription factor that can regulate multiple cell death programs through different signaling pathways. In this review, we assess the role of p53 in the regulation of necroptosis, a programmed form of lytic cell death highly involved in the pathophysiology of multiple diseases. In particular, we focus on the role of mitochondrial reactive oxygen species (mtROS) as essential contributors to modulate necroptosis execution through p53. The enhanced generation of mtROS during necroptosis is critical for the correct interaction between receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and 3 (RIPK3), two key components of the functional necrosome. p53 controls the occurrence of necroptosis by modulating the levels of mitochondrial H2O2 via peroxiredoxin 3 and sulfiredoxin. Furthermore, in response to increased levels of H2O2, p53 upregulates the long non-coding RNA necrosis-related factor, favoring the translation of RIPK1 and RIPK3. In parallel, a fraction of cytosolic p53 migrates into mitochondria, a process notably involved in necroptosis execution via its interaction with the mitochondrial permeability transition pore. In conclusion, p53 is located at the intersection between mtROS and the necroptosis machinery, making it a key protein to orchestrate redox signaling during necroptosis.
Collapse
Affiliation(s)
- Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100, Valencia, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
| |
Collapse
|
2
|
Sharapov MG, Goncharov RG, Parfenyuk SB, Glushkova OV. Effect of Peroxiredoxin 6 on p53 Transcription Factor Level. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:839-849. [PMID: 36171649 DOI: 10.1134/s0006297922080156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 06/16/2023]
Abstract
Peroxiredoxin 6 (Prdx6) is an important antioxidant enzyme with multiple functions in the cell. Prdx6 neutralizes a wide range of hydroperoxides, participates in phospholipid metabolism and cell membrane repair, and in transmission of intracellular and intercellular signals. Disruption of normal Prdx6 expression in the cell leads to the development of pathological conditions. Decrease in the Prdx6 concentration leads to increase in oxidative damage to the cell. At the same time, hyperproduction of Prdx6 is associated with increase in antioxidant status, suppression of apoptosis, and carcinogenesis. Currently, mechanisms of carcinogenic action of peroxiredoxins are poorly understood. In this work we established that the 3-4-fold increase in Prdx6 production in mouse embryonic fibroblast 3T3 cells leads to the 4-5-fold decrease in the level of oncosuppressor p53. At the same time, hyperproduction of Prdx6 leads to the increased expression of RELA and HIF1A, which have oncogenic effects. The 3-4-fold increase in intracellular Prdx6 increases intensity of cell proliferation by 20-30%, promotes increase in antioxidant activity by 30-50%, and increases radioresistance of the transfected 3T3 cells by 30-40%. Increase of the level of intranuclear Prdx6 leads to the decrease in expression of the DNA repair genes in response to radiation, indicating decrease in the genomic DNA damage. This work discusses possible molecular mechanisms of p53 suppression during Prdx6 hyperproduction, which could be used in the development of new approaches in cancer therapy.
Collapse
Affiliation(s)
- Mars G Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Ruslan G Goncharov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Svetlana B Parfenyuk
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Olga V Glushkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
3
|
Eriksson SE, Ceder S, Bykov VJN, Wiman KG. p53 as a hub in cellular redox regulation and therapeutic target in cancer. J Mol Cell Biol 2020; 11:330-341. [PMID: 30892598 PMCID: PMC6734141 DOI: 10.1093/jmcb/mjz005] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/21/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
The TP53 tumor suppressor gene encodes a DNA-binding transcription factor that regulates multiple cellular processes including cell growth and cell death. The ability of p53 to bind to DNA and activate transcription is tightly regulated by post-translational modifications and is dependent on a reducing cellular environment. Some p53 transcriptional target genes are involved in regulation of the cellular redox homeostasis, e.g. TIGAR and GLS2. A large fraction of human tumors carry TP53 mutations, most commonly missense mutations that lead to single amino acid substitutions in the core domain. Mutant p53 proteins can acquire so called gain-of-function activities and influence the cellular redox balance in various ways, for instance by binding of the Nrf2 transcription factor, a major regulator of cellular redox state. The DNA-binding core domain of p53 has 10 cysteine residues, three of which participate in holding a zinc atom that is critical for p53 structure and function. Several novel compounds that refold and reactivate missense mutant p53 bind to specific p53 cysteine residues. These compounds can also react with other thiols and target components of the cellular redox system, such as glutathione. Dual targeting of mutant p53 and redox homeostasis may allow more efficient treatment of cancer.
Collapse
Affiliation(s)
- Sofi E Eriksson
- Karolinska Institutet, Department of Oncology-Pathology, BioClinicum, Stockholm, Sweden
| | - Sophia Ceder
- Karolinska Institutet, Department of Oncology-Pathology, BioClinicum, Stockholm, Sweden
| | - Vladimir J N Bykov
- Karolinska Institutet, Department of Oncology-Pathology, BioClinicum, Stockholm, Sweden
| | - Klas G Wiman
- Karolinska Institutet, Department of Oncology-Pathology, BioClinicum, Stockholm, Sweden
| |
Collapse
|
4
|
Fan X, He F, Ding M, Geng C, Chen L, Zou S, Liang Y, Yu J, Dong H. Thioredoxin Reductase Is Involved in Development and Pathogenicity in Fusarium graminearum. Front Microbiol 2019; 10:393. [PMID: 30899249 PMCID: PMC6416177 DOI: 10.3389/fmicb.2019.00393] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/14/2019] [Indexed: 01/03/2023] Open
Abstract
Fusarium graminearum is one of the causal agents of Fusarium head blight and produces the trichothecene mycotoxin, deoxynivalenol (DON). Thioredoxin reductases (TRRs) play critical roles in the recycling of oxidized thioredoxin. However, their functions are not well known in plant pathogenic fungi. In this study, we characterized a TRR orthologue FgTRR in F. graminearum. The FgTRR-GFP fusion protein localized to the cytoplasm. FgTRR gene deletion demonstrated that FgTRR is involved in hyphal growth, conidiation, sexual reproduction, DON production, and virulence. The ΔTRR mutants also exhibited a defect in pigmentation, the expression level of aurofusarin biosynthesis-related genes was significantly decreased in the FgTRR mutant. Furthermore, the ΔTRR mutants were more sensitive to oxidative stress and aggravated apoptosis-like cell death compared with the wild type strain. Taken together, these results indicate that FgTRR is important in development and pathogenicity in F. graminearum.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuancun Liang
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | | | | |
Collapse
|
5
|
Structure, Mechanism, and Inhibition of Aspergillus fumigatus Thioredoxin Reductase. Antimicrob Agents Chemother 2019; 63:AAC.02281-18. [PMID: 30642940 DOI: 10.1128/aac.02281-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/29/2018] [Indexed: 12/27/2022] Open
Abstract
Aspergillus fumigatus infections are associated with high mortality rates and high treatment costs. Limited available antifungals and increasing antifungal resistance highlight an urgent need for new antifungals. Thioredoxin reductase (TrxR) is essential for maintaining redox homeostasis and presents as a promising target for novel antifungals. We show that ebselen [2-phenyl-1,2-benzoselenazol-3(2H)-one] is an inhibitor of A. fumigatus TrxR (Ki = 0.22 μM) and inhibits growth of Aspergillus spp., with in vitro MIC values of 16 to 64 µg/ml. Mass spectrometry analysis demonstrates that ebselen interacts covalently with a catalytic cysteine of TrxR, Cys148. We also present the X-ray crystal structure of A. fumigatus TrxR and use in silico modeling of the enzyme-inhibitor complex to outline key molecular interactions. This provides a scaffold for future design of potent and selective antifungal drugs that target TrxR, improving the potency of ebselen toward inhbition of A. fumigatus growth.
Collapse
|
6
|
Zhang J, Wang Y, Du J, Huang Z, Fang A, Yang Y, Bi C, Qing L, Yu Y. Sclerotinia sclerotiorum Thioredoxin Reductase Is Required for Oxidative Stress Tolerance, Virulence, and Sclerotial Development. Front Microbiol 2019; 10:233. [PMID: 30837967 PMCID: PMC6382746 DOI: 10.3389/fmicb.2019.00233] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/28/2019] [Indexed: 01/25/2023] Open
Abstract
Sclerotinia sclerotiorum is a destructive ascomycete plant pathogen with worldwide distribution. Extensive research on different aspects of this pathogen's capability to cause disease will help to uncover clues about new ways to safely control Sclerotinia diseases. The thioredoxin (Trx) system consists of Trx and thioredoxin reductase (TrxR), which play critical roles in maintenance of cellular redox homeostasis. In this study, we functionally characterized a gene encoding a TrxR (SsTrr1) in S. sclerotiorum. The amino acids of SsTrr1 exhibited high similarity with reported TrxRs in plant pathogens and targeted silencing of SsTrr1 lead to a decrease in TrxR activities of mycelium. SsTrr1 showed high expression levels during hyphae growth, and the levels decreased at the different stages of sclerotial development. SsTrr1 gene-silenced strains produced a smaller number of larger sclerotia on potato dextrose agar medium. The observations were consistent with the inhibitory effects on sclerotial development by the TrxR inhibitor, anrunofin. The expression of SsTrr1 showed a dramatic increase under the oxidative stress and the hyphal growth of gene-silenced strains showed more sensitivity to H2O2. SsTrr1 gene-silenced strains also showed impaired virulence in different hosts. Taken together, our results suggest that SsTrr1 encodes a TrxR that is of great important for oxidative stress tolerance, virulence, and sclerotial development of S. sclerotiorum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Kritsiligkou P, Rand JD, Weids AJ, Wang X, Kershaw CJ, Grant CM. Endoplasmic reticulum (ER) stress-induced reactive oxygen species (ROS) are detrimental for the fitness of a thioredoxin reductase mutant. J Biol Chem 2018; 293:11984-11995. [PMID: 29871930 DOI: 10.1074/jbc.ra118.001824] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
The unfolded protein response (UPR) is constitutively active in yeast thioredoxin reductase mutants, suggesting a link between cytoplasmic thiol redox control and endoplasmic reticulum (ER) oxidative protein folding. The unique oxidative environment of the ER lumen requires tight regulatory control, and we show that the active UPR depends on the presence of oxidized thioredoxins rather than arising because of a loss of thioredoxin function. Preventing activation of the UPR by deletion of HAC1, encoding the UPR transcription factor, rescues a number of thioredoxin reductase mutant phenotypes, including slow growth, shortened longevity, and oxidation of the cytoplasmic GSH pool. This is because the constitutive UPR in a thioredoxin reductase mutant results in the generation of hydrogen peroxide. The oxidation of thioredoxins in a thioredoxin reductase mutant requires aerobic metabolism and the presence of the Tsa1 and Tsa2 peroxiredoxins, indicating that a complete cytoplasmic thioredoxin system is crucial for maintaining ER redox homeostasis.
Collapse
Affiliation(s)
- Paraskevi Kritsiligkou
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Jonathan D Rand
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Alan J Weids
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Ximeng Wang
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Chris J Kershaw
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Chris M Grant
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
8
|
May HC, Yu JJ, Guentzel MN, Chambers JP, Cap AP, Arulanandam BP. Repurposing Auranofin, Ebselen, and PX-12 as Antimicrobial Agents Targeting the Thioredoxin System. Front Microbiol 2018; 9:336. [PMID: 29556223 PMCID: PMC5844926 DOI: 10.3389/fmicb.2018.00336] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/12/2018] [Indexed: 01/23/2023] Open
Abstract
As microbial resistance to drugs continues to rise at an alarming rate, finding new ways to combat pathogens is an issue of utmost importance. Development of novel and specific antimicrobial drugs is a time-consuming and expensive process. However, the re-purposing of previously tested and/or approved drugs could be a feasible way to circumvent this long and costly process. In this review, we evaluate the U.S. Food and Drug Administration tested drugs auranofin, ebselen, and PX-12 as antimicrobial agents targeting the thioredoxin system. These drugs have been shown to act on bacterial, fungal, protozoan, and helminth pathogens without significant toxicity to the host. We propose that the thioredoxin system could serve as a useful therapeutic target with broad spectrum antimicrobial activity.
Collapse
Affiliation(s)
- Holly C. May
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - M. N. Guentzel
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - James P. Chambers
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - Andrew P. Cap
- United States Army Institute for Surgical Research, San Antonio Military Medical Center, San Antonio, TX, United States
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
9
|
The Yeast Saccharomyces cerevisiae as a Model for Understanding RAS Proteins and their Role in Human Tumorigenesis. Cells 2018; 7:cells7020014. [PMID: 29463063 PMCID: PMC5850102 DOI: 10.3390/cells7020014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 12/16/2022] Open
Abstract
The exploitation of the yeast Saccharomyces cerevisiae as a biological model for the investigation of complex molecular processes conserved in multicellular organisms, such as humans, has allowed fundamental biological discoveries. When comparing yeast and human proteins, it is clear that both amino acid sequences and protein functions are often very well conserved. One example of the high degree of conservation between human and yeast proteins is highlighted by the members of the RAS family. Indeed, the study of the signaling pathways regulated by RAS in yeast cells led to the discovery of properties that were often found interchangeable with RAS proto-oncogenes in human pathways, and vice versa. In this work, we performed an updated critical literature review on human and yeast RAS pathways, specifically highlighting the similarities and differences between them. Moreover, we emphasized the contribution of studying yeast RAS pathways for the understanding of human RAS and how this model organism can contribute to unveil the roles of RAS oncoproteins in the regulation of mechanisms important in the tumorigenic process, like autophagy.
Collapse
|
10
|
Distinct roles of two cytoplasmic thioredoxin reductases (Trr1/2) in the redox system involving cysteine synthesis and host infection of Beauveria bassiana. Appl Microbiol Biotechnol 2016; 100:10363-10374. [DOI: 10.1007/s00253-016-7688-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/17/2016] [Accepted: 06/13/2016] [Indexed: 01/01/2023]
|
11
|
Studying p53 family proteins in yeast: induction of autophagic cell death and modulation by interactors and small molecules. Exp Cell Res 2014; 330:164-77. [PMID: 25265062 DOI: 10.1016/j.yexcr.2014.09.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/19/2014] [Accepted: 09/20/2014] [Indexed: 01/08/2023]
Abstract
In this work, the yeast Saccharomyces cerevisiae was used to individually study human p53, p63 (full length and truncated forms) and p73. Using this cell system, the effect of these proteins on cell proliferation and death, and the influence of MDM2 and MDMX on their activities were analyzed. When expressed in yeast, wild-type p53, TAp63, ΔNp63 and TAp73 induced growth inhibition associated with S-phase cell cycle arrest. This growth inhibition was accompanied by reactive oxygen species production and autophagic cell death. Furthermore, they stimulated rapamycin-induced autophagy. On the contrary, none of the tested p53 family members induced apoptosis either per se or after apoptotic stimuli. As previously reported for p53, also TAp63, ΔNp63 and TAp73 increased actin expression levels and its depolarization, suggesting that ACT1 is also a p63 and p73 putative yeast target gene. Additionally, MDM2 and MDMX inhibited the activity of all tested p53 family members in yeast, although the effect was weaker on TAp63. Moreover, Nutlin-3a and SJ-172550 were identified as potential inhibitors of the p73 interaction with MDM2 and MDMX, respectively. Altogether, the yeast-based assays herein developed can be envisaged as a simplified cell system to study the involvement of p53 family members in autophagy, the modulation of their activities by specific interactors (MDM2 and MDMX), and the potential of new small molecules to modulate these interactions.
Collapse
|
12
|
Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 2013; 19:1539-605. [PMID: 23397885 PMCID: PMC3797455 DOI: 10.1089/ars.2012.4599] [Citation(s) in RCA: 496] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Abstract
Thioredoxins (Trxs), glutaredoxins (Grxs), and peroxiredoxins (Prxs) have been characterized as electron donors, guards of the intracellular redox state, and "antioxidants". Today, these redox catalysts are increasingly recognized for their specific role in redox signaling. The number of publications published on the functions of these proteins continues to increase exponentially. The field is experiencing an exciting transformation, from looking at a general redox homeostasis and the pathological oxidative stress model to realizing redox changes as a part of localized, rapid, specific, and reversible redox-regulated signaling events. This review summarizes the almost 50 years of research on these proteins, focusing primarily on data from vertebrates and mammals. The role of Trx fold proteins in redox signaling is discussed by looking at reaction mechanisms, reversible oxidative post-translational modifications of proteins, and characterized interaction partners. On the basis of this analysis, the specific regulatory functions are exemplified for the cellular processes of apoptosis, proliferation, and iron metabolism. The importance of Trxs, Grxs, and Prxs for human health is addressed in the second part of this review, that is, their potential impact and functions in different cell types, tissues, and various pathological conditions.
Collapse
Affiliation(s)
- Eva-Maria Hanschmann
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| | - José Rodrigo Godoy
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Christoph Hudemann
- Institute of Laboratory Medicine, Molecular Diagnostics, Philipps University, Marburg, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| |
Collapse
|
13
|
Guaragnella N, Palermo V, Galli A, Moro L, Mazzoni C, Giannattasio S. The expanding role of yeast in cancer research and diagnosis: insights into the function of the oncosuppressors p53 and BRCA1/2. FEMS Yeast Res 2013; 14:2-16. [PMID: 24103154 DOI: 10.1111/1567-1364.12094] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/26/2013] [Accepted: 09/12/2013] [Indexed: 12/16/2022] Open
Abstract
When the glucose supply is high, despite the presence of oxygen, Saccharomyces cerevisiae uses fermentation as its main metabolic pathway and switches to oxidative metabolism only when this carbon source is limited. There are similarities between glucose-induced repression of oxidative metabolism of yeast and metabolic reprogramming of tumor cells. The glucose-induced repression of oxidative metabolism is regulated by oncogene homologues in yeast, such as RAS and Sch9p, the yeast homologue of Akt. Yeast also undergoes an apoptosis-like programmed cell death process sharing several features with mammalian apoptosis, including oxidative stress and a major role played by mitochondria. Evasion of apoptosis and sustained proliferative signaling are hallmarks of cancer. This, together with the possibility of heterologous expression of human genes in yeast, has allowed new insights to be obtained into the function of mammalian oncogenes/oncosuppressors. Here, we elaborate on the similarities between tumor and yeast cells underpinning the use of this model organism in cancer research. We also review the achievements obtained through heterologous expression in yeast of p53, BRCA1, and BRCA2, which are among the best-known cancer-susceptibility genes, with the aim of understanding their role in tumorigenesis. Yeast-cell-based functional assays for cancer genetic testing will also be dealt with.
Collapse
|
14
|
MacDiarmid CW, Taggart J, Kerdsomboon K, Kubisiak M, Panascharoen S, Schelble K, Eide DJ. Peroxiredoxin chaperone activity is critical for protein homeostasis in zinc-deficient yeast. J Biol Chem 2013; 288:31313-27. [PMID: 24022485 DOI: 10.1074/jbc.m113.512384] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Zinc is required for the folding and function of many proteins. In Saccharomyces cerevisiae, homeostatic and adaptive responses to zinc deficiency are regulated by the Zap1 transcription factor. One Zap1 target gene encodes the Tsa1 peroxiredoxin, a protein with both peroxidase and protein chaperone activities. Consistent with its regulation, Tsa1 is critical for growth under low zinc conditions. We previously showed that Tsa1's peroxidase function decreases the oxidative stress that occurs in zinc deficiency. In this report, we show that Tsa1 chaperone, and not peroxidase, activity is the more critical function in zinc-deficient cells. Mutations restoring growth to zinc-deficient tsa1 cells inactivated TRR1, encoding thioredoxin reductase. Because Trr1 is required for oxidative stress tolerance, this result implicated the Tsa1 chaperone function in tolerance to zinc deficiency. Consistent with this hypothesis, the tsa1Δ zinc requirement was complemented by a Tsa1 mutant allele that retained only chaperone function. Additionally, growth of tsa1Δ was also restored by overexpression of holdase chaperones Hsp26 and Hsp42, which lack peroxidase activity, and the Tsa1 paralog Tsa2 contributed to suppression by trr1Δ, even though trr1Δ inactivates Tsa2 peroxidase activity. The essentiality of the Tsa1 chaperone suggested that zinc-deficient cells experience a crisis of disrupted protein folding. Consistent with this model, assays of protein homeostasis suggested that zinc-limited tsa1Δ mutants accumulated unfolded proteins and induced a corresponding stress response. These observations demonstrate a clear physiological role for a peroxiredoxin chaperone and reveal a novel and unexpected role for protein homeostasis in tolerating metal deficiency.
Collapse
Affiliation(s)
- Colin W MacDiarmid
- From the Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706 and
| | | | | | | | | | | | | |
Collapse
|
15
|
Pereira C, Coutinho I, Soares J, Bessa C, Leão M, Saraiva L. New insights into cancer-related proteins provided by the yeast model. FEBS J 2012; 279:697-712. [PMID: 22239976 DOI: 10.1111/j.1742-4658.2012.08477.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cancer is a devastating disease with a profound impact on society. In recent years, yeast has provided a valuable contribution with respect to uncovering the molecular mechanisms underlying this disease, allowing the identification of new targets and novel therapeutic opportunities. Indeed, several attributes make yeast an ideal model system for the study of human diseases. It combines a high level of conservation between its cellular processes and those of mammalian cells, with advantages such as a short generation time, ease of genetic manipulation and a wealth of experimental tools for genome- and proteome-wide analyses. Additionally, the heterologous expression of disease-causing proteins in yeast has been successfully used to gain an understanding of the functions of these proteins and also to provide clues about the mechanisms of disease progression. Yeast research performed in recent years has demonstrated the tremendous potential of this model system, especially with the validation of findings obtained with yeast in more physiologically relevant models. The present review covers the major aspects of the most recent developments in the yeast research area with respect to cancer. It summarizes our current knowledge on yeast as a cellular model for investigating the molecular mechanisms of action of the major cancer-related proteins that, even without yeast orthologues, still recapitulate in yeast some of the key aspects of this cellular pathology. Moreover, the most recent contributions of yeast genetics and high-throughput screening technologies that aim to identify some of the potential causes underpinning this disorder, as well as discover new therapeutic agents, are discussed.
Collapse
Affiliation(s)
- Clara Pereira
- REQUIMTE, Department of Biological Sciences, Laboratory of Microbiology, University of Porto, Portugal
| | | | | | | | | | | |
Collapse
|
16
|
Redox modification of cell signaling in the cardiovascular system. J Mol Cell Cardiol 2011; 52:550-8. [PMID: 21945521 DOI: 10.1016/j.yjmcc.2011.09.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/09/2011] [Accepted: 09/10/2011] [Indexed: 12/22/2022]
Abstract
Oxidative stress is presumed to be involved in the pathogenesis of many diseases, including cardiovascular disease. However, oxidants are also generated in healthy cells, and increasing evidence suggests that they can act as signaling molecules. The intracellular reduction-oxidation (redox) status is tightly regulated by oxidant and antioxidant systems. Imbalance between them causes oxidative or reductive stress which triggers cellular damage or aberrant signaling, leading to dysregulation. In this review, we will briefly summarize the aspects of ROS generation and neutralization mechanisms in the cardiovascular system. ROS can regulate cell signaling through oxidation and reduction of specific amino acids within proteins. Structural changes during post-translational modification allow modification of protein activity which can result in altered cellular function. We will focus on the molecular basis of redox protein modification and how this regulatory mechanism affects signal transduction in the cardiovascular system. Finally, we will discuss some techniques applied to monitoring redox status and identifying redox-sensitive proteins in the heart. This article is part of a Special Section entitled "Post-translational Modification."
Collapse
|
17
|
Hafsi H, Hainaut P. Redox control and interplay between p53 isoforms: roles in the regulation of basal p53 levels, cell fate, and senescence. Antioxid Redox Signal 2011; 15:1655-67. [PMID: 21194382 DOI: 10.1089/ars.2010.3771] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The p53 tumor suppressor protein has achieved stardom in molecular oncology owing to frequent inactivation in a large range of cancers. Known as a factor activated by multiple forms of stress and causing a broad suppressive response to DNA damage, its regulation and functions in basal (non-stress) conditions has received relatively little attention. We summarize recent findings highlighting roles of p53 in physiological processes such as stem cell maintenance, development, aging and senescence, and regulation of basal oxidative cell metabolism. We suggest that these properties are regulated through two integrated biochemical systems: the redox-sensing capacity of the p53 protein (due to its structural features and its regulation by redox factors such as thioredoxin, metallothioneins, or the redox-repair enzyme APE1/ref-1), and the expression of p53 as multiple isoforms with antagonist effects. We propose that interactions between p53 and its isoforms Δ40p53 or Δ133p53 play critical roles in intracellular signaling by reactive oxygen species. We also discuss evidence that p53 controls energy production by repressing glycolysis and enhancing mitochondrial oxidative metabolism. Together, these mechanisms suggest that p53 acts not only as a "guardian of the genome" against DNA damage but also as a finely-tuned regulator of redox-dependent physiological processes.
Collapse
Affiliation(s)
- Hind Hafsi
- International Agency for Research on Cancer, 150 cours Albert Thomas, Lyon, France
| | | |
Collapse
|
18
|
Abstract
p53 regulates the cell cycle and deoxyribonucleic acid (DNA) repair pathways as part of its unequivocally important function to maintain genomic stability. Intriguingly, recent studies show that p53 can also transactivate genes involved in coordinating the two major pathways of energy generation to promote aerobic metabolism, but how this serves to maintain genomic stability is less clear. In an attempt to understand the biology, this review presents human epidemiologic data on the inverse relationship between aerobic capacity and cancer incidence that appears to be mirrored by the impact of p53 on aerobic capacity in mouse models. The review summarizes mechanisms by which p53 regulates mitochondrial respiration and proposes how this might contribute to maintaining genomic stability. Although disparate in nature, the data taken together suggest that the promotion of aerobic metabolism by p53 serves as an important tumor suppressor activity and may provide insights for cancer prevention strategies in the future.
Collapse
Affiliation(s)
- Cory U. Lago
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Ho Joong Sung
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, GyeongGi-Do, Korea
| | - Wenzhe Ma
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Ping-yuan Wang
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul M. Hwang
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
19
|
Kim DH, Kundu JK, Surh YJ. Redox modulation of p53: mechanisms and functional significance. Mol Carcinog 2011; 50:222-34. [PMID: 21465572 DOI: 10.1002/mc.20709] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The tumor suppressor protein p53 functions as a stress-responsive transcription factor. In response to oxidative, nitrosative, and electrophilic insults, p53 undergoes post-translational modifications, such as oxidation and covalent modification of cysteines, nitration of tyrosines, acetylation of lysines, phosphorylation of serine/threonine residues, etc. Because p53 plays a vital role in the transcriptional regulation of genes encoding proteins involved in a wide spectrum of biochemical processes including DNA repair, cell-cycle regulation, and programmed cell death, the redox-modification of p53 appears to be an important determinant of cell fate. This review highlights the redox regulation of p53 and its consequences on cellular function.
Collapse
Affiliation(s)
- Do-Hee Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | | | | |
Collapse
|
20
|
Abadio AKR, Kioshima ES, Teixeira MM, Martins NF, Maigret B, Felipe MSS. Comparative genomics allowed the identification of drug targets against human fungal pathogens. BMC Genomics 2011; 12:75. [PMID: 21272313 PMCID: PMC3042012 DOI: 10.1186/1471-2164-12-75] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 01/27/2011] [Indexed: 11/16/2022] Open
Abstract
Background The prevalence of invasive fungal infections (IFIs) has increased steadily worldwide in the last few decades. Particularly, there has been a global rise in the number of infections among immunosuppressed people. These patients present severe clinical forms of the infections, which are commonly fatal, and they are more susceptible to opportunistic fungal infections than non-immunocompromised people. IFIs have historically been associated with high morbidity and mortality, partly because of the limitations of available antifungal therapies, including side effects, toxicities, drug interactions and antifungal resistance. Thus, the search for alternative therapies and/or the development of more specific drugs is a challenge that needs to be met. Genomics has created new ways of examining genes, which open new strategies for drug development and control of human diseases. Results In silico analyses and manual mining selected initially 57 potential drug targets, based on 55 genes experimentally confirmed as essential for Candida albicans or Aspergillus fumigatus and other 2 genes (kre2 and erg6) relevant for fungal survival within the host. Orthologs for those 57 potential targets were also identified in eight human fungal pathogens (C. albicans, A. fumigatus, Blastomyces dermatitidis, Paracoccidioides brasiliensis, Paracoccidioides lutzii, Coccidioides immitis, Cryptococcus neoformans and Histoplasma capsulatum). Of those, 10 genes were present in all pathogenic fungi analyzed and absent in the human genome. We focused on four candidates: trr1 that encodes for thioredoxin reductase, rim8 that encodes for a protein involved in the proteolytic activation of a transcriptional factor in response to alkaline pH, kre2 that encodes for α-1,2-mannosyltransferase and erg6 that encodes for Δ(24)-sterol C-methyltransferase. Conclusions Our data show that the comparative genomics analysis of eight fungal pathogens enabled the identification of four new potential drug targets. The preferred profile for fungal targets includes proteins conserved among fungi, but absent in the human genome. These characteristics potentially minimize toxic side effects exerted by pharmacological inhibition of the cellular targets. From this first step of post-genomic analysis, we obtained information relevant to future new drug development.
Collapse
|
21
|
Selenium: a double-edged sword for defense and offence in cancer. Arch Toxicol 2010; 84:919-38. [PMID: 20871980 DOI: 10.1007/s00204-010-0595-8] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 09/09/2010] [Indexed: 10/19/2022]
Abstract
Selenium (Se) is an essential dietary component for animals including humans and is regarded as a protective agent against cancer. Although the mode of anticancer action of Se is not fully understood yet, several mechanisms, such as antioxidant protection by selenoenzymes, specific inhibition of tumor cell growth by Se metabolites, modulation of cell cycle and apoptosis, and effect on DNA repair have all been proposed. Despite the unsupported results of the last SELECT trial, the cancer-preventing activity of Se was demonstrated in majority of the epidemiological studies. Moreover, recent studies suggest that Se has a potential to be used not only in cancer prevention but also in cancer treatment where in combination with other anticancer drugs or radiation, it can increase efficacy of cancer therapy. In combating cancer cells, Se acts as pro-oxidant rather than antioxidant, inducing apoptosis through the generation of oxidative stress. Thus, the inorganic Se compound, sodium selenite (SeL), due to its prooxidant character, represents a promising alternative for cancer therapy. However, this Se compound is highly toxic compared to organic Se forms. Thus, the unregulated intake of dietary or pharmacological Se supplements mainly in the form of SeL has a potential to expose the body tissues to the toxic levels of Se with subsequent negative consequences on DNA integrity. Hence, due to a broad interest to exploit the positive effects of Se on human health and cancer therapy, studies investigating the negative effects such as toxicity and DNA damage induction resulting from high Se intake are also highly required. Here, we review a role of Se in cancer prevention and cancer therapy, as well as mechanisms underlying Se-induced toxicity and DNA injury. Since Saccharomyces cerevisiae has proven a powerful tool for addressing some important questions regarding Se biology, a part of this review is devoted to this model system.
Collapse
|
22
|
Tan SX, Greetham D, Raeth S, Grant CM, Dawes IW, Perrone GG. The thioredoxin-thioredoxin reductase system can function in vivo as an alternative system to reduce oxidized glutathione in Saccharomyces cerevisiae. J Biol Chem 2009; 285:6118-26. [PMID: 19951944 DOI: 10.1074/jbc.m109.062844] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular mechanisms that maintain redox homeostasis are crucial, providing buffering against oxidative stress. Glutathione, the most abundant low molecular weight thiol, is considered the major cellular redox buffer in most cells. To better understand how cells maintain glutathione redox homeostasis, cells of Saccharomyces cerevisiae were treated with extracellular oxidized glutathione (GSSG), and the effect on intracellular reduced glutathione (GSH) and GSSG were monitored over time. Intriguingly cells lacking GLR1 encoding the GSSG reductase in S. cerevisiae accumulated increased levels of GSH via a mechanism independent of the GSH biosynthetic pathway. Furthermore, residual NADPH-dependent GSSG reductase activity was found in lysate derived from glr1 cell. The cytosolic thioredoxin-thioredoxin reductase system and not the glutaredoxins (Grx1p, Grx2p, Grx6p, and Grx7p) contributes to the reduction of GSSG. Overexpression of the thioredoxins TRX1 or TRX2 in glr1 cells reduced GSSG accumulation, increased GSH levels, and reduced cellular glutathione E(h)'. Conversely, deletion of TRX1 or TRX2 in the glr1 strain led to increased accumulation of GSSG, reduced GSH levels, and increased cellular E(h)'. Furthermore, it was found that purified thioredoxins can reduce GSSG to GSH in the presence of thioredoxin reductase and NADPH in a reconstituted in vitro system. Collectively, these data indicate that the thioredoxin-thioredoxin reductase system can function as an alternative system to reduce GSSG in S. cerevisiae in vivo.
Collapse
Affiliation(s)
- Shi-Xiong Tan
- Ramaciotti Centre for Gene Function Analysis, Sydney, New South Wales 2052, Australia
| | | | | | | | | | | |
Collapse
|
23
|
Expressing and functional analysis of mammalian apoptotic regulators in yeast. Cell Death Differ 2009; 17:737-45. [DOI: 10.1038/cdd.2009.177] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
24
|
Stoner CS, Pearson GD, Koç A, Merwin JR, Lopez NI, Merrill GF. Effect of thioredoxin deletion and p53 cysteine replacement on human p53 activity in wild-type and thioredoxin reductase null yeast. Biochemistry 2009; 48:9156-69. [PMID: 19681600 DOI: 10.1021/bi900757q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reporter gene transactivation by human p53 is inhibited in budding yeast lacking the TRR1 gene encoding thioredoxin reductase. To investigate the role of thioredoxin in controlling p53 activity, the level of reporter gene transactivation by p53 was determined in yeast lacking the TRX1 and TRX2 genes encoding cytosolic thioredoxin. Surprisingly, p53 activity was unimpaired in yeast lacking thioredoxin. Subsequent analyses showed that thioredoxin deletion suppressed the inhibitory effect of thioredoxin reductase deletion, suggesting that accumulation of oxidized thioredoxin in mutant yeast was necessary for p53 inhibition. Purified human thioredoxin and p53 interacted in vitro (Kd = 0.9 microM thioredoxin). To test the idea that dithio-disulfide exchange reactions between p53 and thioredoxin were responsible for p53 inhibition in mutant yeast, each p53 cysteine was changed to serine, and the effect of the substitution on p53 activity in TRR1 and Deltatrr1 yeast was determined. Substitutions at Zn-coordinating cysteines C176, C238, or C242 resulted in p53 inactivation. Unexpectedly, substitution at cysteine C275 also inactivated p53, which was the first evidence for a non-zinc-coordinating cysteine being essential for p53 function. Cysteine substitutions at six positions (C124, C135, C141, C182, C229, and C277) neither inactivated p53 nor relieved the requirement for thioredoxin reductase. Furthermore, no tested combination of these six cysteine substitutions relieved thioredoxin reductase dependence. The results suggested that p53 dependence on thioredoxin reductase either was indirect, perhaps mediated by an upstream activator of p53, or was due to oxidation of one or more of the four essential cysteines.
Collapse
Affiliation(s)
- Christopher S Stoner
- Department of Biochemistry and Biophysics, Oregon State University, 2011 ALS Building, Corvallis, Oregon 97331-7305, USA
| | | | | | | | | | | |
Collapse
|
25
|
Hrdina J, Banning A, Kipp A, Loh G, Blaut M, Brigelius-Flohé R. The gastrointestinal microbiota affects the selenium status and selenoprotein expression in mice. J Nutr Biochem 2009; 20:638-48. [DOI: 10.1016/j.jnutbio.2008.06.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 06/12/2008] [Accepted: 06/17/2008] [Indexed: 11/24/2022]
|
26
|
Wäster PK, Öllinger KM. Redox-Dependent Translocation of p53 to Mitochondria or Nucleus in Human Melanocytes after UVA- and UVB-Induced Apoptosis. J Invest Dermatol 2009; 129:1769-81. [DOI: 10.1038/jid.2008.421] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Zhang Z, Bao R, Zhang Y, Yu J, Zhou CZ, Chen Y. Crystal structure of Saccharomyces cerevisiae cytoplasmic thioredoxin reductase Trr1 reveals the structural basis for species-specific recognition of thioredoxin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:124-8. [DOI: 10.1016/j.bbapap.2008.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 08/15/2008] [Accepted: 09/16/2008] [Indexed: 11/25/2022]
|
28
|
Reconstitution of Mdm2-dependent post-translational modifications of p53 in yeast. PLoS One 2008; 3:e1507. [PMID: 18231594 PMCID: PMC2200829 DOI: 10.1371/journal.pone.0001507] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 12/29/2007] [Indexed: 11/19/2022] Open
Abstract
p53 mediates cell cycle arrest or apoptosis in response to DNA damage. Its activity is subject to a tight regulation involving a multitude of post-translational modifications. The plethora of functional protein interactions of p53 at present precludes a clear understanding of regulatory principles in the p53 signaling network. To circumvent this complexity, we studied here the minimal requirements for functionally relevant p53 post-translational modifications by expressing human p53 together with its best characterized modifier Mdm2 in budding yeast. We find that expression of the human p53-Mdm2 module in yeast is sufficient to faithfully recapitulate key aspects of p53 regulation in higher eukaryotes, such as Mdm2-dependent targeting of p53 for degradation, sumoylation at lysine 386 and further regulation of this process by p14ARF. Interestingly, sumoylation is necessary for the recruitment of p53-Mdm2 complexes to yeast nuclear bodies morphologically akin to human PML bodies. These results suggest a novel role for Mdm2 as well as for p53 sumoylation in the recruitment of p53 to nuclear bodies. The reductionist yeast model that was established and validated in this study will now allow to incrementally study simplified parts of the intricate p53 network, thus helping elucidate the core mechanisms of p53 regulation as well as test novel strategies to counteract p53 malfunctions.
Collapse
|
29
|
Maulik N, Das DK. Emerging potential of thioredoxin and thioredoxin interacting proteins in various disease conditions. Biochim Biophys Acta Gen Subj 2008; 1780:1368-82. [PMID: 18206121 DOI: 10.1016/j.bbagen.2007.12.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 12/12/2007] [Accepted: 12/17/2007] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species (ROS) are known to be mediators of intracellular signaling pathways. However the excessive production of ROS may be detrimental to the cell as a result of the increased oxidative stress and loss of cell function. Hence, well tuned, balanced and responsive antioxidant systems are vital for proper regulation of the redox status of the cell. The cells are normally able to defend themselves against the oxidative stress induced damage through the use of several antioxidant systems. Even though the free radical scavenging enzymes such as superoxide dismutase (SOD) and catalase can handle huge amounts of reactive oxygen species, should these systems fail some reactive molecules will evade the detoxification process and damage potential targets. In such a scenario, cells recruit certain small molecules and proteins as 'rescue specialists' in case the 'bodyguards' fail to protect potential targets from oxidative damage. The thioredoxin (Trx) system thus plays a vital role in the maintenance of a reduced intracellular redox state which is essential for the proper functioning of each individual cell. Trx alterations have been implicated in many diseases such as cataract formation, ischemic heart diseases, cancers, AIDS, complications of diabetes, hypertension etc. The interactions of Trx with many different proteins and different metabolic and signaling pathways as well as the significant species differences make it an attractive target for therapeutic intervention in many fields of medical science. In this review, we present, the critical roles that thioredoxins play in limiting oxidant stress through either its direct effect as an antioxidant or through its interactions with other key signaling proteins (thioredoxin interacting proteins) and its implications in various disease models.
Collapse
Affiliation(s)
- Nilanjana Maulik
- Cardiovascular Research Center, University of Connecticut Health Center, Farmington, Connecticut, 06030 USA
| | | |
Collapse
|
30
|
López-Mirabal HR, Winther JR. The thiol oxidant dipyridyl disulfide can supply the PDI-Ero1p pathway with additional oxidative equivalents. Antonie Van Leeuwenhoek 2007; 92:463-72. [PMID: 17564811 DOI: 10.1007/s10482-007-9174-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 05/04/2007] [Indexed: 11/26/2022]
Abstract
Membrane-permeant oxidants have become a standard tool for studying eukaryotic organisms because they affect the redox state and the redox regulation of different compartments. The ero1-1 mutant is temperature sensitive (37 degrees C) and cannot grow under anaerobic conditions. Low micromolar concentrations of the specific thiol-oxidant dipyridyl disulfide (DPS) rescue both these growth defects. Furthermore, the unfolded protein response (UPR) is slightly induced by a DPS treatment. We infer that DPS may change the redox state of important ER-proteins by GSH-oxidation in the ER or, more likely, by directly oxidizing these targets. Therefore, DPS may be useful in genetic studies dealing with unknown factors of the Ero1p-driven pathway. The ero1-1 mutation and the overproduction of Ero1p confer DPS-sensitivity that could be partially related to a more oxidized cytosolic GSH redox potential and the presence of reactive oxidative species (ROS) in the cell.
Collapse
|
31
|
Abstract
Thioredoxin and glutaredoxin systems in mammalian cells utilize thiol and selenol groups to maintain a reducing intracellular redox state acting as antioxidants and reducing agents in redox signaling with oxidizing reactive oxygen species. During the last decade, the functional roles of thioredoxin in particular have continued to expand, also including novel functions such as a secreted growth factor or a chemokine for immune cells. The role of thioredoxin and glutaredoxin in antioxidant defense and the role of thioredoxin in controlling recruitment of inflammatory cells offer potential use in clinical therapy. The fundamental differences between bacterial and mammalian thioredoxin reductases offer new principles for treatment of infections. Clinical drugs already in use target the active site selenol in thioredoxin reductases, inducing cell death in tumor cells. Thioredoxin and binding proteins (ASK1 and TBP2) appear to control apoptosis or metabolic states such as carbohydrate and lipid metabolism related to diseases such as diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Christopher Horst Lillig
- The Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
32
|
Abstract
The production of reactive oxygen species (ROS) accompanies many signaling events. Antioxidants and ROS scavenging enzymes in general have effects that indicate a critical role for ROS in downstream signaling, but a mechanistic understanding of the contribution of ROS as second messengers is incomplete. Here, the role of reactive oxygen species in cell signaling is discussed, emphasizing the ability of ROS to directly modify signaling proteins through thiol oxidation. Examples are provided of protein thiol modifications that control signal transduction effectors that include protein kinases, phosphatases, and transcription factors. Whereas the effects of cysteine oxidation on these proteins in experimental systems is clear, it has proven more difficult to demonstrate these modifications in response to physiologic stimuli. Improved detection methods for analysis of thiol modification will be essential to define these regulatory mechanisms. Bridging these two areas of research could reveal new regulatory mechanisms in signaling pathways, and identify new therapeutic targets.
Collapse
Affiliation(s)
- Janet V Cross
- Department of Pathology, University of Virginia, Charlottesville, 22908, USA
| | | |
Collapse
|
33
|
Tanaka T, Izawa S, Inoue Y. GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae. J Biol Chem 2005; 280:42078-87. [PMID: 16251189 DOI: 10.1074/jbc.m508622200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously reported that Saccharomyces cerevisiae has three glutathione peroxidase homologues (GPX1, GPX2, and GPX3) (Inoue, Y., Matsuda, T., Sugiyama, K., Izawa, S., and Kimura, A. (1999) J. Biol. Chem. 274, 27002-27009). Of these, the GPX2 gene product (Gpx2) shows the greatest similarity to phospholipid hydroperoxide glutathione peroxidase. Here we show that GPX2 encodes an atypical 2-Cys peroxiredoxin which uses thioredoxin as an electron donor. Gpx2 was essentially in a reduced form even in mutants defective in glutathione reductase or glutaredoxin under oxidative stressed conditions. On the other hand, Gpx2 was partially oxidized in a mutant defective in cytosolic thioredoxin (trx1Deltatrx2Delta) under non-stressed conditions and completely oxidized in tert-butyl hydroperoxide-treated cells of trx1Deltatrx2Delta and thioredoxin reductase-deficient mutant cells. Alanine scanning of cysteine residues of Gpx2 revealed that an intramolecular disulfide bond was formed between Cys37 and Cys83 in vivo. Gpx2 was purified to determine whether it functions as a peroxidase that uses thioredoxin as an electron donor in vitro. Gpx2 reduced H2O2 and tert-butyl hydroperoxide in the presence of thioredoxin, thioredoxin reductase, and NADPH (for H2O2, Km= 20 microm, kcat = 9.57 x 10(2) s(-1); for tert-butyl hydroperoxide, Km= 62.5 microm, kcat = 3.68 x 10(2) s(-1)); however, it showed remarkably less activity toward these peroxides in the presence of glutathione, glutathione reductase, and NADPH. The sensitivity of yeast cells to tert-butyl hydroperoxide was found to be exacerbated by the co-existence of Ca2+, a tendency that was most obvious in gpx2Delta cells. Although the redox state of Gpx2 was not affected by Ca2+, the Gpx2 level was markedly increased in the presence of both tert-butyl hydroperoxide and Ca2+. Gpx2 is likely to play an important role in the protection of cells from oxidative stress in the presence of Ca2+.
Collapse
Affiliation(s)
- Tomoaki Tanaka
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
34
|
Trotter EW, Grant CM. Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae. EUKARYOTIC CELL 2005; 4:392-400. [PMID: 15701801 PMCID: PMC549330 DOI: 10.1128/ec.4.2.392-400.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Thioredoxins are small, highly conserved oxidoreductases which are required to maintain the redox homeostasis of the cell. Saccharomyces cerevisiae contains a cytoplasmic thioredoxin system (TRX1, TRX2, and TRR1) as well as a complete mitochondrial thioredoxin system, comprising a thioredoxin (TRX3) and a thioredoxin reductase (TRR2). In the present study we have analyzed the functional overlap between the two systems. By constructing mutant strains with deletions of both the mitochondrial and cytoplasmic systems (trr1 trr2 and trx1 trx2 trx3), we show that cells can survive in the absence of both systems. Analysis of the redox state of the cytoplasmic thioredoxins reveals that they are maintained independently of the mitochondrial system. Similarly, analysis of the redox state of Trx3 reveals that it is maintained in the reduced form in wild-type cells and in mutants lacking components of the cytoplasmic thioredoxin system (trx1 trx2 or trr1). Surprisingly, the redox state of Trx3 is also unaffected by the loss of the mitochondrial thioredoxin reductase (trr2) and is largely maintained in the reduced form unless cells are exposed to an oxidative stress. Since glutathione reductase (Glr1) has been shown to colocalize to the cytoplasm and mitochondria, we examined whether loss of GLR1 influences the redox state of Trx3. During normal growth conditions, deletion of TRR2 and GLR1 was found to result in partial oxidation of Trx3, indicating that both Trr2 and Glr1 are required to maintain the redox state of Trx3. The oxidation of Trx3 in this double mutant is even more pronounced during oxidative stress or respiratory growth conditions. Taken together, these data indicate that Glr1 and Trr2 have an overlapping function in the mitochondria.
Collapse
Affiliation(s)
- Eleanor W Trotter
- The Faculty of Life Sciences, The University of Manchester, Manchester M60 1QD, United Kingdom
| | | |
Collapse
|
35
|
Missall TA, Lodge JK. Thioredoxin reductase is essential for viability in the fungal pathogen Cryptococcus neoformans. EUKARYOTIC CELL 2005; 4:487-9. [PMID: 15701811 PMCID: PMC549343 DOI: 10.1128/ec.4.2.487-489.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thioredoxin reductase (TRR1) is an important component of the thioredoxin oxidative stress resistance pathway. Here we show that it is induced during oxidative and nitrosative stress and is preferentially localized to the mitochondria in Cryptococcus neoformans. The C. neoformans TRR1 gene encodes the low-molecular-weight isoform of the thioredoxin reductase enzyme, which shares little homology with that of its mammalian host. By replacing the endogenous TRR1 promoter with an inducible copper transporter promoter, we showed that Trr1 appears to be essential for viability of this pathogenic fungus, making it a potential antifungal target.
Collapse
Affiliation(s)
- Tricia A Missall
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | |
Collapse
|
36
|
Thiele M, Bernhagen J. Link between macrophage migration inhibitory factor and cellular redox regulation. Antioxid Redox Signal 2005; 7:1234-48. [PMID: 16115028 DOI: 10.1089/ars.2005.7.1234] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is an evolutionary conserved 12.5-kDa protein mediator with multiple functions in innate and acquired immunity. Upon leaderless secretion, MIF acts as a typical inflammatory cytokine, but there is no structural homology between MIF and any of the known cytokine protein families. Also, MIF is unique among cytokines in that it exhibits certain endocrine properties and has enzymatic activity. The catalytic thiol-protein oxidoreductase (TPOR) activity of MIF is mediated by a Cys-Ala-Leu-Cys active site between residues 57 and 60 that can undergo reversible intramolecular disulfide formation. Such a redox motif is typically found in TPORs of the thioredoxin (Trx) family of proteins. MIF seems to act as a disulfide reductase, and structure-function analyses of the redox site indicate that this activity is not only observed in vitro, but plays a role in cellular redox homeostasis, apoptosis inhibition, MIF-mediated monocyte/macrophage activation, and possibly the modulation of the activity of MIF-binding proteins. In this Forum review, the biochemical and biological evidence for a role of the TPOR activity for various MIF functions is summarized and discussed. In particular, the marked functional homologies with Trx proteins, the MIF redox/MHC II link, and recent attempts to discern the intra- versus extracellular roles of the MIF TPOR activity are dealt with.
Collapse
Affiliation(s)
- Michael Thiele
- Department of Biochemistry and Molecular Cell Biology, Institute of Biochemistry, University Hospital RWTH Aachen, Aachen, Germany
| | | |
Collapse
|
37
|
McEligot AJ, Yang S, Meyskens FL. REDOX REGULATION BY INTRINSIC SPECIES AND EXTRINSIC NUTRIENTS IN NORMAL AND CANCER CELLS. Annu Rev Nutr 2005; 25:261-95. [PMID: 16011468 DOI: 10.1146/annurev.nutr.25.050304.092633] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells in multicellular organisms are exposed to both endogenous oxidative stresses generated metabolically and to oxidative stresses that originate from neighboring cells and from other tissues. To protect themselves from oxidative stress, cells are equipped with reducing buffer systems (glutathione/GSH and thioredoxin/thioredoxin reductase) and have developed several enzymatic mechanisms against oxidants that include catalase, superoxide dismutase, and glutathione peroxidase. Other major extrinsic defenses (from the diet) include ascorbic acid, beta-carotene and other carotenoids, and selenium. Recent evidence indicates that in addition to their antioxidant function, several of these redox species and systems are involved in regulation of biological processes, including cellular signaling, transcription factor activity, and apoptosis in normal and cancer cells. The survival and overall well-being of the cell is dependent upon the balance between the activity and the intracellular levels of these antioxidants as well as their interaction with various regulatory factors, including Ref-1, nuclear factor-kappaB, and activating protein-1.
Collapse
Affiliation(s)
- Archana Jaiswal McEligot
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868, USA.
| | | | | |
Collapse
|
38
|
Seemann S, Hainaut P. Roles of thioredoxin reductase 1 and APE/Ref-1 in the control of basal p53 stability and activity. Oncogene 2005; 24:3853-63. [PMID: 15824742 DOI: 10.1038/sj.onc.1208549] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The p53 protein is redox-sensitive in vitro but in vivo effectors of this sensitivity are not known. In yeasts deficient for thioredoxin (Trx) reductase (TRR), p53 accumulates in an inactive, oxidized form, suggesting a role for TRR-Trx in controlling p53. In mammalian cells, p53 binds to redox factor-1 (APE/Ref-1), an enzyme containing an abasic endonuclease domain involved in base excision repair, and a thiol reductase domain recycled by Trx and involved in regulating the transcription factor AP-1. To evaluate the role of TRR and APE/Ref-1 in p53 regulation, we have abrogated their expression using RNA interference in cell lines expressing wild-type p53. Inhibition of TRR resulted in accumulation of oxidized Trx and increased levels and DNA-binding activity of p53, with no phosphorylation of Ser15 or Ser20. In contrast, inhibition of APE/Ref-1 accelerated p53 protein turnover, resulting in a decrease in p53 levels and activity. However, inhibition of either TRR or APE/Ref-1 did not prevent activation and accumulation of p53 in response to DNA-damage by doxorubicin. When both factors were inhibited, basal levels of p53 were restored. These results suggest that TRR-Trx and APE/Ref-1 cooperate in the control of basal p53 activity, but not in its induction by DNA-damage.
Collapse
Affiliation(s)
- Séverine Seemann
- Group of Molecular Carcinogenesis, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon, France
| | | |
Collapse
|
39
|
Kalvakolanu DV. The GRIMs: a new interface between cell death regulation and interferon/retinoid induced growth suppression. Cytokine Growth Factor Rev 2004; 15:169-94. [PMID: 15110800 DOI: 10.1016/j.cytogfr.2004.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cytokines and vitamins play a central role in controlling neoplastic cell growth. The interferon (IFN) family of cytokines regulates antiviral, anti-tumor, antimicrobial, differentiation, and immune responses in mammals. Significant advances have been made with respect to IFN-induced signal transduction pathways and antiviral responses. However, the IFN-induced anti-tumor actions are poorly defined. Although IFNs themselves inhibit tumor growth, combination of IFNs with retinoids (a class of Vitamin A related compounds) strongly potentiates the IFN-regulated anti-tumor action in a number of cell types. To define the molecular mechanisms involved in IFN/retinoid (RA)-induced apoptosis we have employed a genetic approach and identified several critical genes. In this review, I provide the current picture of IFN- RA- and IFN/RA-regulated growth suppressive pathways. In particular, I focus on a novel set of genes, the genes-associated with retinoid-interferon induced mortality (GRIM). GRIMs may be novel types of tumor suppressors, useful as biological response markers and potentially novel targets for drug development.
Collapse
Affiliation(s)
- Dhananjaya V Kalvakolanu
- Molecular and Cell Biology Graduate Program, Department of Microbiology and Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
40
|
Gomez-Lazaro M, Fernandez-Gomez FJ, Jordán J. p53: Twenty five years understanding the mechanism of genome protection. J Physiol Biochem 2004; 60:287-307. [PMID: 15957248 DOI: 10.1007/bf03167075] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This year the p53 protein, also known as "guardian of the genome", turns twenty five years old. During this period the p53 knowledge have changed from an initial pro-oncogene activity to the tumorsupressor p53 function. p53 is activated upon stress signals, such as gamma irradiation, UV, hypoxia, virus infection, and DNA damage, leading to protection of cells by inducing target genes. The molecules activated by p53 induce cell cycle arrest, DNA repair to conserve the genome and apoptosis. The regulation of p53 functions is tightly controlled through several mechanisms including p53 transcription and translation, protein stability, post-translational modifications, and subcellular localization. In fact, mutations in p53 are the most frequent molecular alterations detected in human tumours. Furthermore, in some degenerative processes, fragmentation and oxidative damage in DNA take place, and in these situations p53 is involved. So, p53 is considered a pharmacological target, p53 overexpression induces apoptosis in cancer and its expression blockage protects cells against lethal insults.
Collapse
Affiliation(s)
- M Gomez-Lazaro
- Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Avda. Almansa, 02006 Albacete, Spain
| | | | | |
Collapse
|
41
|
Diwadkar-Navsariwala V, Diamond AM. The link between selenium and chemoprevention: a case for selenoproteins. J Nutr 2004; 134:2899-902. [PMID: 15514248 DOI: 10.1093/jn/134.11.2899] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Selenium is effective in reducing cancer incidence in animal models, and epidemiologic data, as well as supplementation trials, have indicated that selenium is likely to be effective in humans. The mechanism by which selenium prevents cancer remains unknown. The mammalian genome encodes 25 selenoprotein genes, each containing one or more molecules of selenium in the form of the amino acid selenocysteine, translationally inserted into the growing peptide in response to the UGA codon. There is evidence that several of these proteins may be involved with the mechanism by which selenium provides its anticancer effects. Data are reviewed indicating that genetic variants of the cytosolic glutathione peroxidase are associated with increased cancer risk, and that loss of one of the copies of this same gene may be involved with malignant progression. Similarly, allelic differences in the gene for a second selenoprotein, Sep15, may be relevant to the protection provided by selenium, and allelic loss at this locus have been reported as well. These data, along with the differential expression patterns reported for other selenoproteins in tumor vs. normal tissues, support the role of selenoproteins in the chemoprotection by selenium.
Collapse
|
42
|
Damdimopoulos AE, Miranda-Vizuete A, Treuter E, Gustafsson JA, Spyrou G. An Alternative Splicing Variant of the Selenoprotein Thioredoxin Reductase Is a Modulator of Estrogen Signaling. J Biol Chem 2004; 279:38721-9. [PMID: 15199063 DOI: 10.1074/jbc.m402753200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The selenoprotein thioredoxin reductase (TrxR1) is an integral part of the thioredoxin system. It serves to transfer electrons from NADPH to thioredoxin leading to its reduction. Interestingly, recent work has indicated that thioredoxin reductase can regulate the activity of transcription factors such as p53, hypoxia-inducible factor, and AP-1. Here, we describe that an alternative splicing variant of thioredoxin reductase (TrxR1b) containing an LXXLL peptide motif, is implicated in direct binding to nuclear receptors. In vitro interaction studies revealed direct interaction of the TrxR1b with the estrogen receptors alpha and beta. Confocal microscopy analysis showed nuclear colocalization of the TrxR1b with both estrogen receptor alpha and beta in estradiol-17beta-treated cells. Transcriptional studies demonstrated that TrxR1b can affect estrogen-dependent gene activation differentially at classical estrogen response elements as compared with AP-1 response elements. Based on these results, we propose a model where thioredoxin reductase directly influences the estrogen receptor-coactivator complex assembly on non-classical estrogen response elements such as AP-1. In summary, our results suggest that TrxR1b is an important modulator of estrogen signaling.
Collapse
|
43
|
Desaint S, Luriau S, Aude JC, Rousselet G, Toledano MB. Mammalian Antioxidant Defenses Are Not Inducible by H2O2. J Biol Chem 2004; 279:31157-63. [PMID: 15155764 DOI: 10.1074/jbc.m401888200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As an approach to understanding how mammals regulate H(2)O(2) toxicity, intracellular concentration to prevent its we analyzed the genome-wide mRNA profile changes of human cells after treatment with a non-toxic H(2)O(2) concentration. We identified a large and essentially late H(2)O(2) response of induced and repressed genes that unexpectedly comprise few or no antioxidants but mostly apoptosis and cell cycle control activities. The requirement of the p53 regulator for regulating about a third of this H(2)O(2) stimulon and the lack of an associated enhancement of total cellular H(2)O(2) scavenging activity further suggest that H(2)O(2) elicits a stress antiproliferative/repair response that does not increase antioxidant defenses. We conclude that mammalian antioxidant defenses are constitutive, a finding that contrasts with the oxidant-inducibility of such defenses in microorganisms. This finding might be important in understanding the role of H(2)O(2) as a key signaling molecule in mammals.
Collapse
Affiliation(s)
- Stéphane Desaint
- Laboratoire Stress Oxydants et Cancer, Service de Biologie Moléculaire Systémique, Départment de Biologie Joliot-Curie, Commissariat à l'Energie Atomique/Saclay, Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
44
|
Turunen N, Karihtala P, Mantyniemi A, Sormunen R, Holmgren A, Kinnula VL, Soini Y. Thioredoxin is associated with proliferation, p53 expression and negative estrogen and progesterone receptor status in breast carcinoma. APMIS 2004; 112:123-32. [PMID: 15056229 DOI: 10.1111/j.1600-0463.2004.apm1120207.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the expression of thioredoxin and thioredoxin reductase in a large set of breast invasive and in situ carcinomas by immunohistochemistry. Additionally, NF-kappa B, p53 and proliferating cell nuclear antigen (PCNA) expression was studied. Thioredoxin and thioredoxin reductase expression was located in both cytoplasmic and nuclear compartments of the cell. Cytoplasmic thioredoxin positivity was found in 67 % and nuclear in 59 % of the cases, while thioredoxin reductase was found in 55 % and 6 % of cases, respectively. Ductal carcinomas showed stronger cytoplasmic thioredoxin immunoreactivity than lobular ones. Nuclear thioredoxin positivity was more often found in in situ lesions, and lobular carcinomas were more often negative than ductal ones. Both cytoplasmic and nuclear thioredoxin-positive cases had a high proliferation measured by PCNA staining. Positive nuclear immunostaining was associated with negative estrogen and progesterone receptor status. Cases with high p53 expression showed significantly higher nuclear thioredoxin positivity, but lower thioredoxin reductase positivity. Whilst thioredoxin or thioredoxin reductase was not associated with patient survival, cases showing both cytoplasmic and nuclear thioredoxin reductase-positive tumours had a shorter disease-free interval than those with negative immunostaining.
Collapse
Affiliation(s)
- Nina Turunen
- Department of Pathology, Oulu University Hospital, Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
45
|
Spurgers KB, Coombes KR, Meyn RE, Gold DL, Logothetis CJ, Johnson TJ, McDonnell TJ. A comprehensive assessment of p53-responsive genes following adenoviral-p53 gene transfer in Bcl-2-expressing prostate cancer cells. Oncogene 2003; 23:1712-23. [PMID: 14647426 DOI: 10.1038/sj.onc.1207293] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The p53 protein can induce cell cycle arrest or apoptosis following activation in response to DNA damage. The function of p53 is largely mediated by regulating the expression of downstream target genes. Adenoviral-p53 gene transfer (Ad-p53) is currently being evaluated in clinical trials as a therapeutic intervention. Tumor response is likely to be influenced by context-dependent variables, such as expression of bcl-2. Bcl-2 is upregulated in a variety of neoplasms, and can inhibit p53-dependent apoptosis. It was therefore of interest to use a global genomic strategy to assess gene expression following Ad-p53 gene transfer and to determine if the expression of specific Ad-p53-responsive genes could be modulated in the context of bcl-2 gene deregulation. cDNA arrays were used to identify p53-responsive genes following Ad-p53 gene transfer in control and bcl-2-overexpressing PC3 prostate cancer cells. A total of 40 transcripts were significantly upregulated by Ad-p53 in both control and bcl-2-transfectant PC3 cells. Conversely, 19 transcripts were significantly repressed in both cell lines. These Ad-p53-responsive transcripts included previously identified p53 targets, known genes representing candidate p53 targets, and transcripts identified as expressed sequence tags. A subset of 15 transcripts was differentially modulated by Ad-p53 in the context of bcl-2. Some of these genes were also differentially modulated in LNCaP (wt p53) cells following DNA damage. These results document a number of potential p53 targets and mediators of therapeutically relevant genotoxic stress. The findings further suggest that bcl-2 may inhibit cell death at multiple points downstream of p53 activation.
Collapse
Affiliation(s)
- Kevin B Spurgers
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Biswal S, Maxwell T, Rangasamy T, Kehrer JP. Modulation of benzo[a]pyrene-induced p53 DNA activity by acrolein. Carcinogenesis 2003; 24:1401-6. [PMID: 12807757 DOI: 10.1093/carcin/bgg061] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Acrolein, a highly electrophilic alpha,beta-unsaturated aldehyde, is by far the most reactive amongst the aldehydes present in smoke. The relative contribution of acrolein to complex mixture toxicity of smoke at the molecular level remains unknown. The current study examines the ability of acrolein to modulate the effect of benzo[a]pyrene (B[a]P), a major carcinogen found in smoke, on p53. Exposure of human lung adenocarcinoma A549 cells to 1 mM B[a]P for 48 h strongly activated the expression of p53 as seen by western blotting, and its DNA binding as shown by an electrophoretic mobility shift assay. Treatment of A549 cells with a non-lethal dose of acrolein alone (50 fmol/cell for 0.5 h) depleted 80% of total cellular glutathione but had no effect on basal p53 protein levels. When B[a]P-treated cells (48 h) were exposed to acrolein for 0.5 h there was also no effect on B[a]P-induced p53 protein levels. However, acrolein treatments profoundly inhibited the DNA binding of p53 under both basal and B[a]P-induced conditions. Depleting glutathione with buthionine sulfoximine in B[a]P-treated cells to levels similar to those obtained with acrolein decreased p53 DNA binding substantially less than with acrolein. Using a p53 dual luciferase reporter assay, acrolein caused an 83% decrease in the p53 activity induced by B[a]P (1 mM for 24 h post-transfection). The p53 protein that was immunoprecipitated after acrolein treatment was reactive with an anti-acrolein antibody indicating covalent modification. Results from this study suggest that acrolein can inhibit p53 DNA binding and activity by direct covalent modification as well as alteration of intracellular redox status. As both acrolein and B[a]P are found in cigarette smoke, this type of interaction may play an important role in the initiation of lung cancer by altering the tumor suppressor activity of p53.
Collapse
Affiliation(s)
- Shyam Biswal
- Division of Toxicological Sciences, Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
47
|
Trotter EW, Grant CM. Non-reciprocal regulation of the redox state of the glutathione-glutaredoxin and thioredoxin systems. EMBO Rep 2003; 4:184-8. [PMID: 12612609 PMCID: PMC1315827 DOI: 10.1038/sj.embor.embor729] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2002] [Revised: 10/31/2002] [Accepted: 11/20/2002] [Indexed: 01/23/2023] Open
Abstract
Our studies in yeast show that there is an essential requirement for either an active thioredoxin or an active glutathione (GSH)-glutaredoxin system for cell viability. Glutathione reductase (Glr1) and thioredoxin reductase (Trr1) are key regulatory enzymes that determine the redox state of the GSH-glutaredoxin and thioredoxin systems, respectively. Here we show that Trr1 is required during normal cell growth, whereas there is no apparent requirement for Glr1. Analysis of the redox state of thioredoxins and glutaredoxins in glr1 and trr1 mutants reveals that thioredoxins are maintained independently of the glutathione system. In contrast, there is a strong correlation between the redox state of glutaredoxins and the oxidation state of the GSSG/2GSH redox couple. We suggest that independent redox regulation of thioredoxins enables cells to survive in conditions under which the GSH-glutaredoxin system is oxidized.
Collapse
Affiliation(s)
- Eleanor W. Trotter
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), PO Box 88, Manchester M60 1QD, UK
| | - Chris M. Grant
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), PO Box 88, Manchester M60 1QD, UK
- Tel: +44 161 200 4192; Fax: +44 161 236 0409;
| |
Collapse
|
48
|
Moos PJ, Edes K, Cassidy P, Massuda E, Fitzpatrick FA. Electrophilic prostaglandins and lipid aldehydes repress redox-sensitive transcription factors p53 and hypoxia-inducible factor by impairing the selenoprotein thioredoxin reductase. J Biol Chem 2003; 278:745-50. [PMID: 12424231 DOI: 10.1074/jbc.m211134200] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor suppressor p53 exhibits an enigmatic phenotype in cells exposed to electrophilic, cyclopentenone prostaglandins of the A and J series. Namely, cells harboring a wild-type p53 gene accumulate p53 protein that is conformationally and functionally impaired. This occurs via an unknown molecular mechanism. We report that electrophilic cyclopentenone prostaglandins covalently modify and inhibit thioredoxin reductase, a selenoprotein that governs p53 and other redox-sensitive transcription factors. This mechanism accounts fully for the unusual p53 phenotype in cells exposed to electrophilic prostaglandins. Based on this mechanism we derived, tested, and affirmed several predictions regarding the kinetics of p53 inactivation; the protective effects of selenium; the structure-activity relationships for inhibition of thioredoxin reductase and impairment of p53 by electrophilic lipids; the susceptibility of hypoxia-inducible factor to inactivation by electrophilic lipids; and the equivalence of chemical inactivation of p53 to deletion of a p53 allele. Chemical precepts dictate that other electrophilic agents should also inhibit thioredoxin reductase and impair its governance of redox-sensitive proteins. Our results provide a novel framework to understand how endogenous and exogenous electrophiles might participate in carcinogenesis; how selenoproteins and selenium might confer protection against cancer; how certain tumors might acquire their paradoxical p53 phenotype; and how chronic inflammation might heighten the risk for cancer.
Collapse
Affiliation(s)
- Philip J Moos
- Huntsman Cancer Institute and Departments of Oncological Science and Medicinal Chemistry, University of Utah, Salt Lake City 84112-5550, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
The thioredoxin system-formed by thioredoxin reductase and its characteristic substrate thioredoxin-is an important constituent of the intracellular redox milieu. Interactions with many different metabolic pathways such as DNA-synthesis, selenium metabolism, and the antioxidative network as well as significant species differences render this system an attractive target for chemotherapeutic approaches in many fields of medicine-ranging from infectious diseases to cancer therapy. In this review we will present and evaluate the preclinical and clinical results available today. Current trends in drug development are emphasized.
Collapse
Affiliation(s)
- Stephan Gromer
- Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
50
|
Trotter EW, Grant CM. Thioredoxins are required for protection against a reductive stress in the yeast Saccharomyces cerevisiae. Mol Microbiol 2002; 46:869-78. [PMID: 12410842 DOI: 10.1046/j.1365-2958.2002.03216.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Thioredoxins are small, highly conserved oxidoreductases that are required to maintain the redox homeostasis of the cell. They have been best characterized for their role as antioxidants in protection against reactive oxygen species. We show here that thioredoxins (TRX1, TRX2) and thioredoxin reductase (TRR1) are also required for protection against a reductive stress induced by exposure to dithiothreitol (DTT). This sensitivity to reducing conditions is not a general property of mutants affected in redox control, as mutants lacking components of the glutathione/glutaredoxin system are unaffected. Furthermore, TRX2 gene expression is induced in response to DTT treatment, indicating that thioredoxins form part of the cellular response to a reductive challenge. Our data indicate that the sensitivity of thioredoxin mutants to reducing stress appears to be a consequence of elevated glutathione levels, which is present predominantly in the reduced form (GSH). The elevated GSH levels also result in a constitutively high unfolded protein response (UPR), indicative of an accumulation of unfolded proteins in the endoplasmic reticulum (ER). However, there does not appear to be a general defect in ER function in thioredoxin mutants, as oxidative protein folding of the model protein carboxypeptidase Y occurs with similar kinetics to the wild-type strain, and trx1 trx2 mutants are unaffected in sensitivity to the glycosylation inhibitor tunicamycin. Furthermore, trr1 mutants are resistant to tunicamycin, consistent with their high UPR. The high UPR seen in trr1 mutants can be abrogated by the GSH-specific reagent 1-chloro-2,4-dinitrobenzene. In summary, thioredoxins are required to maintain redox homeostasis in response to both oxidative and reductive stress conditions.
Collapse
Affiliation(s)
- Eleanor W Trotter
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester M60 1QD, UK
| | | |
Collapse
|