1
|
Jang I, Menon S, Indra I, Basith R, Beningo KA. Calpain Small Subunit Mediated Secretion of Galectin-3 Regulates Traction Stress. Biomedicines 2024; 12:1247. [PMID: 38927454 PMCID: PMC11200796 DOI: 10.3390/biomedicines12061247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The complex regulation of traction forces (TF) produced during cellular migration remains poorly understood. We have previously found that calpain 4 (Capn4), the small non-catalytic subunit of the calpain 1 and 2 proteases, regulates the production of TF independent of the proteolytic activity of the larger subunits. Capn4 was later found to facilitate tyrosine phosphorylation and secretion of the lectin-binding protein galectin-3 (Gal3). In this study, recombinant Gal3 (rGal3) was added to the media-enhanced TF generated by capn4-/- mouse embryonic fibroblasts (MEFs). Extracellular Gal3 also rescued defects in the distribution, morphology, and adhesive strength of focal adhesions present in capn4-/- MEF cells. Surprisingly, extracellular Gal3 does not influence mechanosensing. c-Abl kinase was found to affect Gal3 secretion and the production of TF through phosphorylation of Y107 on Gal3. Our study also suggests that Gal3-mediated regulation of TF occurs through signaling pathways triggered by β1 integrin but not by focal adhesion kinase (FAK) Y397 autophosphorylation. Our findings provide insights into the signaling mechanism by which Capn4 and secreted Gal3 regulate cell migration through the modulation of TF distinctly independent from a mechanosensing mechanism.
Collapse
Affiliation(s)
| | | | | | | | - Karen A. Beningo
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA; (I.J.)
| |
Collapse
|
2
|
Manso JA, Marcos T, Ruiz-Martín V, Casas J, Alcón P, Sánchez Crespo M, Bayón Y, de Pereda JM, Alonso A. PSTPIP1-LYP phosphatase interaction: structural basis and implications for autoinflammatory disorders. Cell Mol Life Sci 2022; 79:131. [PMID: 35152348 PMCID: PMC8840930 DOI: 10.1007/s00018-022-04173-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/14/2022] [Accepted: 01/27/2022] [Indexed: 11/25/2022]
Abstract
AbstractMutations in the adaptor protein PSTPIP1 cause a spectrum of autoinflammatory diseases, including PAPA and PAMI; however, the mechanism underlying these diseases remains unknown. Most of these mutations lie in PSTPIP1 F-BAR domain, which binds to LYP, a protein tyrosine phosphatase associated with arthritis and lupus. To shed light on the mechanism by which these mutations generate autoinflammatory disorders, we solved the structure of the F-BAR domain of PSTPIP1 alone and bound to the C-terminal homology segment of LYP, revealing a novel mechanism of recognition of Pro-rich motifs by proteins in which a single LYP molecule binds to the PSTPIP1 F-BAR dimer. The residues R228, D246, E250, and E257 of PSTPIP1 that are mutated in immunological diseases directly interact with LYP. These findings link the disruption of the PSTPIP1/LYP interaction to these diseases, and support a critical role for LYP phosphatase in their pathogenesis.
Collapse
Affiliation(s)
- José A Manso
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, Campus Unamuno, 37007, Salamanca, Spain
| | - Tamara Marcos
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, c/ Sanz y Forés 3, 47003, Valladolid, Spain
| | - Virginia Ruiz-Martín
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, c/ Sanz y Forés 3, 47003, Valladolid, Spain
| | - Javier Casas
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, c/ Sanz y Forés 3, 47003, Valladolid, Spain
| | - Pablo Alcón
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, Campus Unamuno, 37007, Salamanca, Spain
| | - Mariano Sánchez Crespo
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, c/ Sanz y Forés 3, 47003, Valladolid, Spain
| | - Yolanda Bayón
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, c/ Sanz y Forés 3, 47003, Valladolid, Spain
| | - José M de Pereda
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, Campus Unamuno, 37007, Salamanca, Spain
| | - Andrés Alonso
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, c/ Sanz y Forés 3, 47003, Valladolid, Spain.
| |
Collapse
|
3
|
Yeast as a Model to Understand Actin-Mediated Cellular Functions in Mammals-Illustrated with Four Actin Cytoskeleton Proteins. Cells 2020; 9:cells9030672. [PMID: 32164332 PMCID: PMC7140605 DOI: 10.3390/cells9030672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has an actin cytoskeleton that comprises a set of protein components analogous to those found in the actin cytoskeletons of higher eukaryotes. Furthermore, the actin cytoskeletons of S. cerevisiae and of higher eukaryotes have some similar physiological roles. The genetic tractability of budding yeast and the availability of a stable haploid cell type facilitates the application of molecular genetic approaches to assign functions to the various actin cytoskeleton components. This has provided information that is in general complementary to that provided by studies of the equivalent proteins of higher eukaryotes and hence has enabled a more complete view of the role of these proteins. Several human functional homologues of yeast actin effectors are implicated in diseases. A better understanding of the molecular mechanisms underpinning the functions of these proteins is critical to develop improved therapeutic strategies. In this article we chose as examples four evolutionarily conserved proteins that associate with the actin cytoskeleton: (1) yeast Hof1p/mammalian PSTPIP1, (2) yeast Rvs167p/mammalian BIN1, (3) yeast eEF1A/eEF1A1 and eEF1A2 and (4) yeast Yih1p/mammalian IMPACT. We compare the knowledge on the functions of these actin cytoskeleton-associated proteins that has arisen from studies of their homologues in yeast with information that has been obtained from in vivo studies using live animals or in vitro studies using cultured animal cell lines.
Collapse
|
4
|
Cugno M, Borghi A, Marzano AV. PAPA, PASH and PAPASH Syndromes: Pathophysiology, Presentation and Treatment. Am J Clin Dermatol 2017; 18:555-562. [PMID: 28236224 DOI: 10.1007/s40257-017-0265-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pyoderma gangrenosum (PG) is a neutrophilic dermatosis usually manifesting as skin ulcers with undermined erythematous-violaceous borders. It may be isolated, associated with systemic conditions or occurring in the context of autoinflammatory syndromes such as PAPA (pyogenic arthritis, PG and acne), PASH (PG, acne and suppurative hidradenitis) or PAPASH (pyogenic arthritis, acne, PG and suppurative hidradenitis). From a physiopathological point of view, all these conditions share common mechanisms consisting of over-activation of the innate immune system leading to increased production of the interleukin (IL)-1 family and 'sterile' neutrophil-rich cutaneous inflammation. From a genetic point of view, a number of mutations affecting the proteins of the inflammasome complex (the molecular platform responsible for triggering autoinflammation) or the proteins that regulate inflammasome function have been described in these disorders. As these debilitating entities are all associated with the over-expression of IL-1 and tumour necrosis factor (TNF)-α, biological drugs specifically targeting these cytokines are currently the most effective treatments but, given the emerging role of IL-17 in the pathogenesis of these syndromes, IL-17 antagonists may represent the future management of these conditions.
Collapse
Affiliation(s)
- Massimo Cugno
- Medicina Interna, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, Via Pace, 9, 20122, Milan, Italy.
| | - Alessandro Borghi
- Dipartimento di Scienze Mediche, Sezione di Dermatologia e Malattie Infettive, Università degli Studi di Ferrara, Ferrara, Italy
| | - Angelo V Marzano
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Unità Operativa di Dermatologia, IRCCS Fondazione Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
5
|
Abstract
As cells grow, move, and divide, they must reorganize and rearrange their membranes and cytoskeleton. The F-BAR protein family links cellular membranes with actin cytoskeletal rearrangements in processes including endocytosis, cytokinesis, and cell motility. Here we review emerging information on mechanisms of F-BAR domain oligomerization and membrane binding, and how these activities are coordinated with additional domains to accomplish scaffolding and signaling functions.
Collapse
Affiliation(s)
- Nathan A McDonald
- a Department of Cell and Developmental Biology , Vanderbilt University , Nashville , TN , USA
| | - Kathleen L Gould
- a Department of Cell and Developmental Biology , Vanderbilt University , Nashville , TN , USA
| |
Collapse
|
6
|
Chakrabandhu K, Huault S, Durivault J, Lang K, Ta Ngoc L, Bole A, Doma E, Dérijard B, Gérard JP, Pierres M, Hueber AO. An Evolution-Guided Analysis Reveals a Multi-Signaling Regulation of Fas by Tyrosine Phosphorylation and its Implication in Human Cancers. PLoS Biol 2016; 14:e1002401. [PMID: 26942442 PMCID: PMC4778973 DOI: 10.1371/journal.pbio.1002401] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/09/2016] [Indexed: 12/14/2022] Open
Abstract
Demonstrations of both pro-apoptotic and pro-survival abilities of Fas (TNFRSF6/CD95/APO-1) have led to a shift from the exclusive “Fas apoptosis” to “Fas multisignals” paradigm and the acceptance that Fas-related therapies face a major challenge, as it remains unclear what determines the mode of Fas signaling. Through protein evolution analysis, which reveals unconventional substitutions of Fas tyrosine during divergent evolution, evolution-guided tyrosine-phosphorylated Fas proxy, and site-specific phosphorylation detection, we show that the Fas signaling outcome is determined by the tyrosine phosphorylation status of its death domain. The phosphorylation dominantly turns off the Fas-mediated apoptotic signal, while turning on the pro-survival signal. We show that while phosphorylations at Y232 and Y291 share some common functions, their contributions to Fas signaling differ at several levels. The findings that Fas tyrosine phosphorylation is regulated by Src family kinases (SFKs) and the phosphatase SHP-1 and that Y291 phosphorylation primes clathrin-dependent Fas endocytosis, which contributes to Fas pro-survival signaling, reveals for the first time the mechanistic link between SFK/SHP-1-dependent Fas tyrosine phosphorylation, internalization route, and signaling choice. We also demonstrate that levels of phosphorylated Y232 and Y291 differ among human cancer types and differentially respond to anticancer therapy, suggesting context-dependent involvement of Fas phosphorylation in cancer. This report provides a new insight into the control of TNF receptor multisignaling by receptor phosphorylation and its implication in cancer biology, which brings us a step closer to overcoming the challenge in handling Fas signaling in treatments of cancer as well as other pathologies such as autoimmune and degenerative diseases. Signalling by the tumor necrosis factor receptor (TNFR) superfamily member Fas can promote either survival or death of a cell, but the mechanism underlying this choice is unclear. This study reveals that the outcome of Fas signalling (death versus survival) is determined by the tyrosine phosphorylation status of its death domain. The versatility of the tumor necrosis factor receptor superfamily members in cell fate regulation is well illustrated by the dual signaling generated by one of the most extensively studied members of the family, Fas (CD95/TNFSFR6). Upon binding its ligand, Fas is able to elicit both pro-death and pro-survival signals. Until now, we have lacked mechanistic knowledge about when and how one signaling output of Fas is favored over the other. We demonstrate here that the outcome of Fas signaling is determined by the phosphorylation status of two tyrosine residues (Y232 and Y291) within the death domain. Dephosphorylation of Fas tyrosines by SHP-1 tyrosine phosphatase turns on the pro-apoptotic signal whereas the tyrosine phosphorylation by Src family kinases (SFKs) turns off the pro-apoptotic signal and turns on the pro-survival signal. Furthermore, we provide evidence that Fas tyrosine phosphorylation status may vary among different cancer types and influence the response to anti-cancer treatments. This information reveals an opportunity to use the screening of Fas tyrosine phosphorylation, a newly discovered direct molecular indicator of Fas functional output, to aid the design of Fas-related cancer therapies.
Collapse
Affiliation(s)
| | - Sébastien Huault
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100 Nice, France
| | - Jérôme Durivault
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100 Nice, France
| | - Kévin Lang
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100 Nice, France
| | - Ly Ta Ngoc
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100 Nice, France
| | - Angelique Bole
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, UM2, Marseille, France, INSERM, U1104, Marseille, France, and CNRS, UMR 7280, Marseille, France
| | - Eszter Doma
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100 Nice, France
| | - Benoit Dérijard
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100 Nice, France
| | | | - Michel Pierres
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, UM2, Marseille, France, INSERM, U1104, Marseille, France, and CNRS, UMR 7280, Marseille, France
| | - Anne-Odile Hueber
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100 Nice, France
- * E-mail: (AOH); (KC)
| |
Collapse
|
7
|
de Jesus AA, Canna SW, Liu Y, Goldbach-Mansky R. Molecular mechanisms in genetically defined autoinflammatory diseases: disorders of amplified danger signaling. Annu Rev Immunol 2015; 33:823-74. [PMID: 25706096 DOI: 10.1146/annurev-immunol-032414-112227] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Patients with autoinflammatory diseases present with noninfectious fever flares and systemic and/or disease-specific organ inflammation. Their excessive proinflammatory cytokine and chemokine responses can be life threatening and lead to organ damage over time. Studying such patients has revealed genetic defects that have helped unravel key innate immune pathways, including excessive IL-1 signaling, constitutive NF-κB activation, and, more recently, chronic type I IFN signaling. Discoveries of monogenic defects that lead to activation of proinflammatory cytokines have inspired the use of anticytokine-directed treatment approaches that have been life changing for many patients and have led to the approval of IL-1-blocking agents for a number of autoinflammatory conditions. In this review, we describe the genetically characterized autoinflammatory diseases, we summarize our understanding of the molecular pathways that drive clinical phenotypes and that continue to inspire the search for novel treatment targets, and we provide a conceptual framework for classification.
Collapse
Affiliation(s)
- Adriana Almeida de Jesus
- Translational Autoinflammatory Diseases Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland 20892;
| | | | | | | |
Collapse
|
8
|
Kita A, Higa M, Doi A, Satoh R, Sugiura R. Imp2, the PSTPIP homolog in fission yeast, affects sensitivity to the immunosuppressant FK506 and membrane trafficking in fission yeast. Biochem Biophys Res Commun 2015; 457:273-9. [PMID: 25580011 DOI: 10.1016/j.bbrc.2014.12.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 12/22/2014] [Indexed: 11/18/2022]
Abstract
Cytokinesis is a highly ordered process that divides one cell into two cells, which is functionally linked to the dynamic remodeling of the plasma membrane coordinately with various events such as membrane trafficking. Calcineurin is a highly conserved serine/threonine protein phosphatase, which regulates multiple biological functions, such as membrane trafficking and cytokinesis. Here, we isolated imp2-c3, a mutant allele of the imp2(+) gene, encoding a homolog of the mouse PSTPIP1 (proline-serine-threonine phosphatase interacting protein 1), using a genetic screen for mutations that are synthetically lethal with calcineurin deletion in fission yeast. The imp2-c3 mutants showed a defect in cytokinesis with multi-septated phenotypes, which was further enhanced upon treatment with the calcineurin inhibitor FK506. Notably, electron micrographs revealed that the imp2-c3 mutant cells accumulated aberrant multi-lamella Golgi structures and putative post-Golgi secretory vesicles, and exhibited fragmented vacuoles in addition to thickened septa. Consistently, imp2-c3 mutants showed a reduced secretion of acid phosphatase and defects in vacuole fusion. The imp2-c3 mutant cells exhibited a weakened cell wall, similar to the membrane trafficking mutants identified in the same genetic screen such as ypt3-i5. These findings implicate the PSTPIP1 homolog Imp2 in Golgi/vacuole function, thereby affecting various cellular processes, including cytokinesis and cell integrity.
Collapse
Affiliation(s)
- Ayako Kita
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Mari Higa
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Akira Doi
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan; Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan.
| |
Collapse
|
9
|
Goldbach-Mansky R, de Jesus AA, McDermott MF, Kastner DL. Monogenic autoinflammatory diseases. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00165-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
10
|
Marcos T, Ruiz-Martín V, de la Puerta ML, Trinidad AG, Rodríguez MDC, de la Fuente MA, Sánchez Crespo M, Alonso A, Bayón Y. Proline-serine-threonine phosphatase interacting protein 1 inhibition of T-cell receptor signaling depends on its SH3 domain. FEBS J 2014; 281:3844-54. [PMID: 25040622 DOI: 10.1111/febs.12912] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/19/2014] [Accepted: 07/04/2014] [Indexed: 01/06/2023]
Abstract
Proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1) is an adaptor protein associated with the cytoskeleton that is mainly expressed in hematopoietic cells. Mutations in PSTPIP1 cause the rare autoinflammatory disease called pyogenic arthritis, pyoderma gangrenosum, and acne. We carried out this study to further our knowledge on PSTPIP1 function in T cells, particularly in relation to the phosphatase lymphoid phosphatase (LYP), which is involved in several autoimmune diseases. LYP-PSTPIP1 binding occurs through the C-terminal homology domain of LYP and the F-BAR domain of PSTPIP1. PSTPIP1 inhibits T-cell activation upon T-cell receptor (TCR) and CD28 engagement, regardless of CD2 costimulation. This function of PSTPIP1 depends on the presence of an intact SH3 domain rather than on the F-BAR domain, indicating that ligands of the F-BAR domain, such as the PEST phosphatases LYP and PTP-PEST, are not critical for its negative regulatory role in TCR signaling. Additionally, PSTPIP1 mutations that cause the pyogenic arthritis, pyoderma gangrenosum and acne syndrome do not affect PSTPIP1 function in T-cell activation through the TCR.
Collapse
Affiliation(s)
- Tamara Marcos
- Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
The F-BAR protein PSTPIP1 controls extracellular matrix degradation and filopodia formation in macrophages. Blood 2014; 123:2703-14. [PMID: 24421327 DOI: 10.1182/blood-2013-07-516948] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PSTPIP1 is a cytoskeletal adaptor and F-BAR protein that has been implicated in autoinflammatory disease, most notably in the PAPA syndrome: pyogenic sterile arthritis, pyoderma gangrenosum, and acne. However, the mechanism by which PSTPIP1 regulates the actin cytoskeleton and contributes to disease pathogenesis remains elusive. Here, we show that endogenous PSTPIP1 negatively regulates macrophage podosome organization and matrix degradation. We identify a novel PSTPIP1-R405C mutation in a patient presenting with aggressive pyoderma gangrenosum. Identification of this mutation reveals that PSTPIP1 regulates the balance of podosomes and filopodia in macrophages. The PSTPIP1-R405C mutation is in the SRC homology 3 (SH3) domain and impairs Wiskott-Aldrich syndrome protein (WASP) binding, but it does not affect interaction with protein-tyrosine phosphatase (PTP)-PEST. Accordingly, WASP inhibition reverses the elevated F-actin content, filopodia formation, and matrix degradation induced by PSTPIP1-R405C. Our results uncover a novel role for PSTPIP1 and WASP in orchestrating different types of actin-based protrusions. Our findings implicate the cytoskeletal regulatory functions of PSTPIP1 in the pathogenesis of pyoderma gangrenosum and suggest that the cytoskeleton is a rational target for therapeutic intervention in autoinflammatory disease.
Collapse
|
12
|
Sanchez GAM, de Jesus AA, Goldbach-Mansky R. Monogenic autoinflammatory diseases: disorders of amplified danger sensing and cytokine dysregulation. Rheum Dis Clin North Am 2013; 39:701-34. [PMID: 24182851 PMCID: PMC3888876 DOI: 10.1016/j.rdc.2013.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathogenesis of monogenic autoinflammatory diseases converges on the presence of exaggerated immune responses that are triggered through activation of altered pattern recognition receptor (PRR) pathways and result in cytokine/chemokine amplification loops and the inflammatory clinical phenotype seen in autoinflammatory patients. The PRR response can be triggered by accumulation of metabolites, by mutations in sensors leading to their constitutive overactivation, or by mutations in mediator cytokine pathways that lead to amplification and/or inability to downregulate an inflammatory response in hematopoietic and/or nonhematopoietic cells. The study of the pathogenesis of sterile inflammation in patients with autoinflammatory syndromes continues to uncover novel inflammatory pathways.
Collapse
Affiliation(s)
- Gina A Montealegre Sanchez
- Translational Autoinflammatory Disease Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Building 10, Room 6D47-B, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
13
|
Oh Y, Schreiter J, Nishihama R, Wloka C, Bi E. Targeting and functional mechanisms of the cytokinesis-related F-BAR protein Hof1 during the cell cycle. Mol Biol Cell 2013; 24:1305-20. [PMID: 23468521 PMCID: PMC3639043 DOI: 10.1091/mbc.e12-11-0804] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hof1 targets to the division site by interacting with septins and myosin II sequentially during the cell cycle. It plays a role in cytokinesis by coupling actomyosin ring constriction to primary septum formation through interactions with Myo1 and Chs2. F-BAR proteins are membrane‑associated proteins believed to link the plasma membrane to the actin cytoskeleton in cellular processes such as cytokinesis and endocytosis. In the budding yeast Saccharomyces cerevisiae, the F‑BAR protein Hof1 localizes to the division site in a complex pattern during the cell cycle and plays an important role in cytokinesis. However, the mechanisms underlying its localization and function are poorly understood. Here we show that Hof1 contains three distinct targeting domains that contribute to cytokinesis differentially. The N‑terminal half of Hof1 localizes to the bud neck and the sites of polarized growth during the cell cycle. The neck localization is mediated mainly by an interaction between the second coiled‑coil region in the N‑terminus and the septin Cdc10, whereas the localization to the sites of polarized growth is mediated entirely by the F‑BAR domain. In contrast, the C‑terminal half of Hof1 interacts with Myo1, the sole myosin‑II heavy chain in budding yeast, and localizes to the bud neck in a Myo1‑dependent manner from the onset to the completion of cytokinesis. We also show that the SH3 domain in the C‑terminus plays an important role in maintaining the symmetry of Myo1 ring constriction during cytokinesis and that Hof1 interacts with Chs2, a chitin synthase that is required for primary septum formation. Together these data define a mechanism that accounts for the localization of Hof1 during the cell cycle and suggest that Hof1 may function in cytokinesis by coupling actomyosin ring constriction to primary septum formation through interactions with Myo1 and Chs2.
Collapse
Affiliation(s)
- Younghoon Oh
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
14
|
Hansen MDH, Kwiatkowski AV. Control of actin dynamics by allosteric regulation of actin binding proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:1-25. [PMID: 23445807 DOI: 10.1016/b978-0-12-407697-6.00001-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The regulated assembly and organization of actin filaments allows the cell to construct a large diversity of actin-based structures specifically suited to a range of cellular processes. A vast array of actin regulatory proteins must work in concert to form specific actin networks within cells, and spatial and temporal requirements for actin assembly necessitate rapid regulation of protein activity. This chapter explores a common mechanism of controlling the activity of actin binding proteins: allosteric autoinhibition by interdomain head-tail interactions. Intramolecular interactions maintain these proteins in a closed conformation that masks protein domains needed to regulate actin dynamics. Autoinhibition is typically relieved by two or more ligand binding and/or posttranslational modification events that expose key protein domains. Regulation through multiple inputs permits precise temporal and spatial control of protein activity to guide actin network formation.
Collapse
Affiliation(s)
- Marc D H Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA.
| | | |
Collapse
|
15
|
Bristow JM, Reno TA, Jo M, Gonias SL, Klemke RL. Dynamic phosphorylation of tyrosine 665 in pseudopodium-enriched atypical kinase 1 (PEAK1) is essential for the regulation of cell migration and focal adhesion turnover. J Biol Chem 2012; 288:123-31. [PMID: 23105102 DOI: 10.1074/jbc.m112.410910] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pseudopodium-enriched atypical kinase 1 (PEAK1) is a recently described tyrosine kinase that associates with the actin cytoskeleton and focal adhesion (FA) in migrating cells. PEAK1 is known to promote cell migration, but the responsible mechanisms remain unclear. Here, we show that PEAK1 controls FA assembly and disassembly in a dynamic pathway controlled by PEAK1 phosphorylation at Tyr-665. Knockdown of endogenous PEAK1 inhibits random cell migration. In PEAK1-deficient cells, FA lifetimes are decreased, FA assembly times are shortened, and FA disassembly times are extended. Phosphorylation of Tyr-665 in PEAK1 is essential for normal PEAK1 localization and its function in the regulation of FAs; however, constitutive phosphorylation of PEAK1 Tyr-665 is also disruptive of its function, indicating a requirement for precise spatiotemporal regulation of PEAK1. Src family kinases are required for normal PEAK1 localization and function. Finally, we provide evidence that PEAK1 promotes cancer cell invasion through Matrigel by a mechanism that requires dynamic regulation of Tyr-665 phosphorylation.
Collapse
Affiliation(s)
- Jeanne M Bristow
- Department of Pathology and Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
16
|
Tatárová Z, Brábek J, Rösel D, Novotný M. SH3 domain tyrosine phosphorylation--sites, role and evolution. PLoS One 2012; 7:e36310. [PMID: 22615764 PMCID: PMC3352900 DOI: 10.1371/journal.pone.0036310] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/01/2012] [Indexed: 11/30/2022] Open
Abstract
Background SH3 domains are eukaryotic protein domains that participate in a plethora of cellular processes including signal transduction, proliferation, and cellular movement. Several studies indicate that tyrosine phosphorylation could play a significant role in the regulation of SH3 domains. Results To explore the incidence of the tyrosine phosphorylation within SH3 domains we queried the PhosphoSite Plus database of phosphorylation sites. Over 100 tyrosine phosphorylations occurring on 20 different SH3 domain positions were identified. The tyrosine corresponding to c–Src Tyr-90 was by far the most frequently identified SH3 domain phosphorylation site. A comparison of sequences around this tyrosine led to delineation of a preferred sequence motif ALYD(Y/F). This motif is present in about 15% of human SH3 domains and is structurally well conserved. We further observed that tyrosine phosphorylation is more abundant than serine or threonine phosphorylation within SH3 domains and other adaptor domains, such as SH2 or WW domains. Tyrosine phosphorylation could represent an important regulatory mechanism of adaptor domains. Conclusions While tyrosine phosphorylation typically promotes signaling protein interactions via SH2 or PTB domains, its role in SH3 domains is the opposite - it blocks or prevents interactions. The regulatory function of tyrosine phosphorylation is most likely achieved by the phosphate moiety and its charge interfering with binding of polyproline helices of SH3 domain interacting partners.
Collapse
Affiliation(s)
- Zuzana Tatárová
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Daniel Rösel
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Marian Novotný
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
17
|
The BAR Domain Superfamily Proteins from Subcellular Structures to Human Diseases. MEMBRANES 2012; 2:91-117. [PMID: 24957964 PMCID: PMC4021885 DOI: 10.3390/membranes2010091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/07/2012] [Accepted: 02/15/2012] [Indexed: 12/11/2022]
Abstract
Eukaryotic cells have complicated membrane systems. The outermost plasma membrane contains various substructures, such as invaginations and protrusions, which are involved in endocytosis and cell migration. Moreover, the intracellular membrane compartments, such as autophagosomes and endosomes, are essential for cellular viability. The Bin-Amphiphysin-Rvs167 (BAR) domain superfamily proteins are important players in membrane remodeling through their structurally determined membrane binding surfaces. A variety of BAR domain superfamily proteins exist, and each family member appears to be involved in the formation of certain subcellular structures or intracellular membrane compartments. Most of the BAR domain superfamily proteins contain SH3 domains, which bind to the membrane scission molecule, dynamin, as well as the actin regulatory WASP/WAVE proteins and several signal transduction molecules, providing possible links between the membrane and the cytoskeleton or other machineries. In this review, we summarize the current information about each BAR superfamily protein with an SH3 domain(s). The involvement of BAR domain superfamily proteins in various diseases is also discussed.
Collapse
|
18
|
Akiva E, Friedlander G, Itzhaki Z, Margalit H. A dynamic view of domain-motif interactions. PLoS Comput Biol 2012; 8:e1002341. [PMID: 22253583 PMCID: PMC3257277 DOI: 10.1371/journal.pcbi.1002341] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 11/20/2011] [Indexed: 11/19/2022] Open
Abstract
Many protein-protein interactions are mediated by domain-motif interaction, where a domain in one protein binds a short linear motif in its interacting partner. Such interactions are often involved in key cellular processes, necessitating their tight regulation. A common strategy of the cell to control protein function and interaction is by post-translational modifications of specific residues, especially phosphorylation. Indeed, there are motifs, such as SH2-binding motifs, in which motif phosphorylation is required for the domain-motif interaction. On the contrary, there are other examples where motif phosphorylation prevents the domain-motif interaction. Here we present a large-scale integrative analysis of experimental human data of domain-motif interactions and phosphorylation events, demonstrating an intriguing coupling between the two. We report such coupling for SH3, PDZ, SH2 and WW domains, where residue phosphorylation within or next to the motif is implied to be associated with switching on or off domain binding. For domains that require motif phosphorylation for binding, such as SH2 domains, we found coupled phosphorylation events other than the ones required for domain binding. Furthermore, we show that phosphorylation might function as a double switch, concurrently enabling interaction of the motif with one domain and disabling interaction with another domain. Evolutionary analysis shows that co-evolution of the motif and the proximal residues capable of phosphorylation predominates over other evolutionary scenarios, in which the motif appeared before the potentially phosphorylated residue, or vice versa. Our findings provide strengthening evidence for coupled interaction-regulation units, defined by a domain-binding motif and a phosphorylated residue. Domain-motif interactions are instrumental for many central cellular processes, and are therefore tightly regulated. Phosphorylation events are known modulators of protein-protein interactions in general, including domain-motif interactions. Here, we addressed the association of phosphorylation and domain-motif interaction taking a motif-centred view. We integrated human domain-motif interaction and phosphorylation data for four representative domains (SH2, WW, SH3 and PDZ), and showed that the adjacency between phosphorylation and domain-motif interactions is extensive, suggesting interesting functional links between them that extend the classical and widely studied phospho-regulation of SH2 or WW domain-motif interactions. Furthermore, we show that such interaction-regulation units may function as double switches, concurrently enabling interaction of the motif with one domain and disabling interaction with another domain. These latter interaction-regulation units are more conserved in evolution than the individual units comprising them. Assuming that the four analyzed domain-motif interaction types are reliable representatives of such interactions, our results support the existence of units comprising motifs and associated phosphorylation sites, in which the regulation of domain-motif interaction is inherent.
Collapse
Affiliation(s)
- Eyal Akiva
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gilgi Friedlander
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zohar Itzhaki
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
19
|
Singh CR, Watanabe R, Zhou D, Jennings MD, Fukao A, Lee B, Ikeda Y, Chiorini JA, Campbell SG, Ashe MP, Fujiwara T, Wek RC, Pavitt GD, Asano K. Mechanisms of translational regulation by a human eIF5-mimic protein. Nucleic Acids Res 2011; 39:8314-28. [PMID: 21745818 PMCID: PMC3201852 DOI: 10.1093/nar/gkr339] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/22/2011] [Accepted: 04/25/2011] [Indexed: 11/29/2022] Open
Abstract
The translation factor eIF5 is an important partner of eIF2, directly modulating its function in several critical steps. First, eIF5 binds eIF2/GTP/Met-tRNA(i)(Met) ternary complex (TC), promoting its recruitment to 40S ribosomal subunits. Secondly, its GTPase activating function promotes eIF2 dissociation for ribosomal subunit joining. Finally, eIF5 GDP dissociation inhibition (GDI) activity can antagonize eIF2 reactivation by competing with the eIF2 guanine exchange factor (GEF), eIF2B. The C-terminal domain (CTD) of eIF5, a W2-type HEAT domain, mediates its interaction with eIF2. Here, we characterize a related human protein containing MA3- and W2-type HEAT domains, previously termed BZW2 and renamed here as eIF5-mimic protein 1 (5MP1). Human 5MP1 interacts with eIF2 and eIF3 and inhibits general and gene-specific translation in mammalian systems. We further test whether 5MP1 is a mimic or competitor of the GEF catalytic subunit eIF2Bε or eIF5, using yeast as a model. Our results suggest that 5MP1 interacts with yeast eIF2 and promotes TC formation, but inhibits TC binding to the ribosome. Moreover, 5MP1 is not a GEF but a weak GDI for yeast eIF2. We propose that 5MP1 is a partial mimic and competitor of eIF5, interfering with the key steps by which eIF5 regulates eIF2 function.
Collapse
Affiliation(s)
- Chingakham Ranjit Singh
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - Ryosuke Watanabe
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - Donghui Zhou
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - Martin D. Jennings
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - Akira Fukao
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - Bumjun Lee
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - Yuka Ikeda
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - John A. Chiorini
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - Susan G. Campbell
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - Mark P. Ashe
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - Toshinobu Fujiwara
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - Ronald C. Wek
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - Graham D. Pavitt
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - Katsura Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Ahmed S, Bu W, Lee RTC, Maurer-Stroh S, Goh WI. F-BAR domain proteins: Families and function. Commun Integr Biol 2011; 3:116-21. [PMID: 20585502 DOI: 10.4161/cib.3.2.10808] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 11/30/2009] [Indexed: 12/13/2022] Open
Abstract
The F-BAR domain is emerging as an important player in membrane remodeling pathways. F-BAR domain proteins couple membrane remodeling with actin dynamics associated with endocytic pathways and filopodium formation. Here, we provide a comprehensive analysis of F-BAR domain proteins in terms of their evolutionary relationships and protein function. F-BAR domain containing proteins can be categorized into five subfamilies based on their phylogeny which is consistent with the additional protein domains they possess, for example, RhoGAP domains, Cdc42 binding sites, SH3 domains and tyrosine kinase domains. We derive a protein-protein interaction network suggesting that dynamin1/2, N-WASP, Huntingtin, intersectin and Cdc42 are central nodes influencing F-BAR domain protein function.
Collapse
|
21
|
Dovas A, Cox D. Signaling networks regulating leukocyte podosome dynamics and function. Cell Signal 2011; 23:1225-34. [PMID: 21342664 DOI: 10.1016/j.cellsig.2011.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 02/10/2011] [Indexed: 01/07/2023]
Abstract
Podosomes are ventral adhesion structures prominent in cells of the myeloid lineage. A common aspect of these cells is that they are highly motile and must to traverse multiple tissue barriers in order to perform their functions. Recently podosomes have gathered attention from researchers as important cellular structures that can influence cell adhesion, motility and matrix remodeling. Adhesive and soluble ligands act via transmembrane receptors and propagate signals to the leukocyte cytoskeleton via small G proteins of the Rho family, tyrosine kinases and scaffold proteins and are able to induce podosome formation and rearrangements. Manipulation of the signals that regulate podosome formation and dynamics can therefore be a strategy to interfere with leukocyte functions in a multitude of pathological settings, such as infections, atherosclerosis and arthritis. Here, we review the major signaling molecules that act in the formation and regulation of podosomes.
Collapse
Affiliation(s)
- Athanassios Dovas
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | | |
Collapse
|
22
|
Roberts-Galbraith RH, Ohi MD, Ballif BA, Chen JS, McLeod I, McDonald WH, Gygi SP, Yates JR, Gould KL. Dephosphorylation of F-BAR protein Cdc15 modulates its conformation and stimulates its scaffolding activity at the cell division site. Mol Cell 2010; 39:86-99. [PMID: 20603077 DOI: 10.1016/j.molcel.2010.06.012] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 03/22/2010] [Accepted: 04/16/2010] [Indexed: 01/11/2023]
Abstract
Cytokinesis in Schizosaccharomyces pombe requires the function of Cdc15, the founding member of the pombe cdc15 homology (PCH) family of proteins. As an early, abundant contractile ring component with multiple binding partners, Cdc15 plays a key role in organizing the ring. We demonstrate that Cdc15 phosphorylation at many sites generates a closed conformation, inhibits Cdc15 assembly at the division site in interphase, and precludes interaction of Cdc15 with its binding partners. Cdc15 dephosphorylation induces an open conformation, oligomerization, and scaffolding activity during mitosis. Cdc15 mutants with reduced phosphorylation precociously appear at the division site in filament-like structures and display increased association with protein partners and the membrane. Our results indicate that Cdc15 phosphoregulation impels both assembly and disassembly of the contractile apparatus and suggest a regulatory strategy that PCH family and BAR superfamily members might broadly employ to achieve temporal specificity in their roles as linkers between membrane and cytoskeleton.
Collapse
Affiliation(s)
- Rachel H Roberts-Galbraith
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Waite AL, Schaner P, Richards N, Balci-Peynircioglu B, Masters SL, Brydges SD, Fox M, Hong A, Yilmaz E, Kastner DL, Reinherz EL, Gumucio DL. Pyrin Modulates the Intracellular Distribution of PSTPIP1. PLoS One 2009; 4:e6147. [PMID: 19584923 PMCID: PMC2702820 DOI: 10.1371/journal.pone.0006147] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/03/2009] [Indexed: 01/23/2023] Open
Abstract
PSTPIP1 is a cytoskeleton-associated adaptor protein that links PEST-type phosphatases to their substrates. Mutations in PSTPIP1 cause PAPA syndrome (Pyogenic sterile Arthritis, Pyoderma gangrenosum, and Acne), an autoinflammatory disease. PSTPIP1 binds to pyrin and mutations in pyrin result in familial Mediterranean fever (FMF), a related autoinflammatory disorder. Since disease-associated mutations in PSTPIP1 enhance pyrin binding, PAPA syndrome and FMF are thought to share a common pathoetiology. The studies outlined here describe several new aspects of PSTPIP1 and pyrin biology. We document that PSTPIP1, which has homology to membrane-deforming BAR proteins, forms homodimers and generates membrane-associated filaments in native and transfected cells. An extended FCH (Fes-Cip4 homology) domain in PSTPIP1 is necessary and sufficient for its self-aggregation. We further show that the PSTPIP1 filament network is dependent upon an intact tubulin cytoskeleton and that the distribution of this network can be modulated by pyrin, indicating that this is a dynamic structure. Finally, we demonstrate that pyrin can recruit PSTPIP1 into aggregations (specks) of ASC, another pyrin binding protein. ASC specks are associated with inflammasome activity. PSTPIP1 molecules with PAPA-associated mutations are recruited by pyrin to ASC specks with particularly high efficiency, suggesting a unique mechanism underlying the robust inflammatory phenotype of PAPA syndrome.
Collapse
Affiliation(s)
- Andrea L. Waite
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Philip Schaner
- Division of Radiology/Oncology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Neil Richards
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | - Seth L. Masters
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Susannah D. Brydges
- Genetics and Genomics Branch, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Michelle Fox
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Arthur Hong
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Engin Yilmaz
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Daniel L. Kastner
- Genetics and Genomics Branch, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Ellis L. Reinherz
- Harvard Medical School, Laboratory of Immunology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Deborah L. Gumucio
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
24
|
Sulka B, Lortat-Jacob H, Terreux R, Letourneur F, Rousselle P. Tyrosine dephosphorylation of the syndecan-1 PDZ binding domain regulates syntenin-1 recruitment. J Biol Chem 2009; 284:10659-71. [PMID: 19228696 DOI: 10.1074/jbc.m807643200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heparan sulfate proteoglycan receptor syndecan-1 interacts with the carboxyl-terminal LG4/5 domain in laminin 332 (alpha3LG4/5) and participates in cell adhesion and spreading. To dissect the function of syndecan-1 in these processes, we made use of a cell adhesion model in which syndecan-1 exclusively interacts with a recombinantly expressed alpha3LG4/5 fragment. Plating HT1080 cells on this fragment induces the formation of actin-containing protrusive structures in an integrin-independent manner. Here we show that syndecan-1-mediated formation of membrane protrusions requires dephosphorylation of tyrosine residues in syndecan-1. Accordingly, inhibition of phosphatases with orthovanadate decreases cell adhesion to the alpha3LG4/5 fragment. We demonstrate that the PDZ-containing protein syntenin-1, known to connect cytoskeletal proteins, binds to syndecan-1 in cells plated on the alpha3LG4/5 fragment and participates in the formation of membrane protrusions. We further show that syntenin-1 recruitment depends on the dephosphorylation of Tyr-309 located within syndecan-1 PDZ binding domain EFYA. We propose that tyrosine dephosphorylation of syndecan-1 may regulate its association with cytoskeleton components.
Collapse
Affiliation(s)
- Béatrice Sulka
- IFR128 BioSciences Gerland-Lyon Sud, Institut de Biologie et Chimie des Protéines, UMR 5086, CNRS, Université Lyon1, 7 passage du Vercors, 69367 Lyon, France
| | | | | | | | | |
Collapse
|
25
|
Xia F, Li J, Hickey GW, Tsurumi A, Larson K, Guo D, Yan SJ, Silver-Morse L, Li WX. Raf activation is regulated by tyrosine 510 phosphorylation in Drosophila. PLoS Biol 2008; 6:e128. [PMID: 18494562 PMCID: PMC2386837 DOI: 10.1371/journal.pbio.0060128] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 04/15/2008] [Indexed: 12/22/2022] Open
Abstract
The proto-oncoprotein Raf is pivotal for mitogen-activated protein kinase (MAPK) signaling, and its aberrant activation has been implicated in multiple human cancers. However, the precise molecular mechanism of Raf activation, especially for B-Raf, remains unresolved. By genetic and biochemical studies, we demonstrate that phosphorylation of tyrosine 510 is essential for activation of Drosophila Raf (Draf), which is an ortholog of mammalian B-Raf. Y510 of Draf is phosphorylated by the c-src homolog Src64B. Acidic substitution of Y510 promotes and phenylalanine substitution impairs Draf activation without affecting its enzymatic activity, suggesting that Y510 plays a purely regulatory role. We further show that Y510 regulates Draf activation by affecting the autoinhibitory interaction between the N- and C-terminal fragments of the protein. Finally, we show that Src64B is required for Draf activation in several developmental processes. Together, these results suggest a novel mechanism of Raf activation via Src-mediated tyrosine phosphorylation. Since Y510 is a conserved residue in the kinase domain of all Raf proteins, this mechanism is likely evolutionarily conserved. Receptor tyrosine kinase (RTK)/Ras signaling pathways control many different biological processes during metazoan development. Mutations that disrupt this signaling pathway cause many human diseases, including cancer. The proto-oncoprotein Raf functions downstream of Ras in transducing signals from RTK. Activating mutations in both Ras and Raf have been linked to many types of human cancers. Despite the importance of these oncoproteins in tumorigenesis, the molecular mechanisms of Raf activation remains unresolved. Here, using a genetic screen in Drosophila, we show that the Src homolog Src64B is an activator of Drosophila Raf (Draf) .Src64B phosphorylates tyrosine Y510, in the Draf kinase domain and will activate a full-length Draf, but not a truncated Draf that contains only its kinase domain, suggesting that Y510 phosphorylation may relieve the autoinhibition of full-length Draf. Since Y510 is conserved among all the members of the Raf protein family, its phosphorylation may serve as a mechanism of Raf regulation in general. Phosphorylation of a conserved tyrosine residue located in the kinase domain of Raf family proteins can serve as a mechanism of Raf activation.
Collapse
Affiliation(s)
- Fan Xia
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jinghong Li
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Gavin W Hickey
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Amy Tsurumi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Kimberly Larson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Dongdong Guo
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Shian-Jang Yan
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Louis Silver-Morse
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Willis X Li
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
26
|
Dickinson RB. Models for actin polymerization motors. J Math Biol 2008; 58:81-103. [PMID: 18612640 DOI: 10.1007/s00285-008-0200-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 06/06/2008] [Indexed: 01/06/2023]
Abstract
Actin polymerization drives cell membrane protrusions and the propulsion of intracellular pathogens. The molecular mechanisms driving actin polymerization are not yet fully understood. Various mathematical models have been proposed to explain how cells convert chemical energy released upon actin polymerization into a pushing force on a surface. These models have attempted to explain puzzling properties of actin-based motility, including persistent attachment of the network to the membrane during propulsion and the interesting trajectories of propelled particles. These models fall generally into two classes: those requiring filament (+)-ends to fluctuate freely from the membrane to add subunits, and those where filaments elongate with their (+)-ends persistently associated with surface through filament end-tracking proteins ("actoclampin" models). This review compares and contrasts the key predictions of these two classes of models with regard to force-velocity profiles, and evaluates them with respect to experiments with biomimetic particles, and the experimental evidence on the role of end-tracking proteins such as formins and nucleation-promoting factors in actin-based motility.
Collapse
Affiliation(s)
- Richard B Dickinson
- Departments of Chemical Engineering and Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
27
|
Aspenström P. Roles of F-BAR/PCH proteins in the regulation of membrane dynamics and actin reorganization. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:1-31. [PMID: 19121815 DOI: 10.1016/s1937-6448(08)01601-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Pombe Cdc15 Homology (PCH) proteins have emerged in many species as important coordinators of signaling pathways that regulate actomyosin assembly and membrane dynamics. The hallmark of the PCH proteins is the presence of a Fes/CIP4 homology-Bin/Amphiphysin/Rvsp (F-BAR) domain; therefore they are commonly referred to as F-BAR proteins. The prototype F-BAR protein, Cdc15p of Schizosaccharomyces pombe, has a role in the formation of the contractile actomyosin ring during cytokinesis. Vertebrate F-BAR proteins have an established role in binding phospholipids and they participate in membrane deformations, for instance, during the internalization of transmembrane receptors. This way the F-BAR proteins will function as linkers between the actin polymerization apparatus and the machinery regulating membrane dynamics. Interestingly, some members of the F-BAR proteins are implicated in inflammatory or neurodegenerative disorders and the observations can be expected to have clinical implications for the treatment of the diseases.
Collapse
Affiliation(s)
- Pontus Aspenström
- Ludwig Institute for Cancer Research, Uppsala University, SE-751 24 Uppsala, Sweden
| |
Collapse
|
28
|
Lettau M, Beyer A, Janssen O. Novel monoclonal antibodies for the investigation of PCH family proteins. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/sita.200600130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Hussain A, Cao D, Peng J. Identification of conserved tyrosine residues important for gibberellin sensitivity of Arabidopsis RGL2 protein. PLANTA 2007; 226:475-83. [PMID: 17333251 DOI: 10.1007/s00425-007-0497-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 02/06/2007] [Indexed: 05/14/2023]
Abstract
DELLA proteins are regulators in the signaling pathway of gibberellin (GA), a plant growth regulator of diverse functions. GA typically induces the degradation of DELLA proteins to overcome their repressive roles in growth and development. We have previously evaluated the likely roles of Ser-Thr phosphorylation of DELLA proteins in GA signaling (Hussain et al., Plant J 44:88-99, 2005). Here we report that four DELLA proteins of Arabidopsis, namely GAI, RGL1, RGL2 and RGL3, expressed in tobacco BY2 cells, are degradable by GA. Both, proteasome inhibitor and protein tyrosine (Tyr) kinase inhibitors, strongly inhibit GA-induced DELLA degradation whereas phospho-Tyr phosphatase inhibitors have no effect, suggesting that Tyr phosphorylation is critical in GA-induced DELLA degradation. Mutation of eight conserved Tyr residues of RGL2 into alanine shows four mutant proteins (Y52A, Y89A, Y223A and Y435A) are resistant to GA-induced degradation. Substitution of these four critical Tyr residues into negatively charged glutamate (Y --> E) also resulted in stabilization of these mutants against GA treatment. However, further mutation of these four Tyrs into conservative phenylalanine (Y --> F) rendered the mutant proteins sensitive to GA like the wild-type RGL2. Since Y --> E mutations sometimes mimic phosphor-Tyr whereas Y --> F mutations render the protein unphosphorylatable at these Tyr sites, we conclude that these four conserved Tyrs, despite being critical for GA-sensitivity, are unlikely to be sites of Tyr phosphorylation but instead play important roles in maintaining the structure integrity of RGL2 for GA-sensitivity.
Collapse
Affiliation(s)
- Alamgir Hussain
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673
| | | | | |
Collapse
|
30
|
Abstract
Tyrosyl phosphorylation plays a critical role in multiple signaling pathways regulating innate and acquired immunity. Although tyrosyl phosphorylation is a reversible process, we know much more about the functions of protein-tyrosine kinases (PTKs) than about protein-tyrosine phosphatases (PTPs). Genome sequencing efforts have revealed a large and diverse superfamily of PTPs, which can be subdivided into receptor-like (RPTPs) and nonreceptor (NRPTPs). The role of the RPTP CD45 in immune cell signaling is well known, but those of most other PTPs remain poorly understood. Here, we review the mechanism of action, regulation, and physiological functions of NRPTPs in immune cell signaling. Such an analysis indicates that PTPs are as important as PTKs in regulating the immune system.
Collapse
Affiliation(s)
- Lily I Pao
- Cancer Biology Program, Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | |
Collapse
|
31
|
Chitu V, Stanley ER. Pombe Cdc15 homology (PCH) proteins: coordinators of membrane-cytoskeletal interactions. Trends Cell Biol 2007; 17:145-56. [PMID: 17296299 DOI: 10.1016/j.tcb.2007.01.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 12/20/2006] [Accepted: 01/25/2007] [Indexed: 12/27/2022]
Abstract
Cellular adhesion, motility, endocytosis, exocytosis and cytokinesis involve the coordinated reorganization of the cytoskeleton and of the plasma membrane. The 'Pombe Cdc15 homology' (PCH) family of adaptor proteins has recently been shown to coordinate the membrane and cytoskeletal dynamics involved in these processes by curving membranes, recruiting dynamin and controlling the architecture of the actin cytoskeleton. Mutations in PCH family members or proteins that interact with them are associated with autoinflammatory, neurological or neoplastic diseases. Here, we review the nature, actions and disease associations of the vertebrate PCH family members, highlighting their fundamental roles in the regulation of processes involving membrane-cytoskeletal interactions.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental Biology and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA
| | | |
Collapse
|
32
|
Aspenström P, Fransson A, Richnau N. Pombe Cdc15 homology proteins: regulators of membrane dynamics and the actin cytoskeleton. Trends Biochem Sci 2006; 31:670-9. [PMID: 17074490 DOI: 10.1016/j.tibs.2006.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 09/21/2006] [Accepted: 10/18/2006] [Indexed: 11/18/2022]
Abstract
Pombe Cdc15 homology (PCH) proteins have emerged in many species as important coordinators of signalling pathways that regulate actomyosin assembly and membrane dynamics. For example, the prototype PCH protein, Cdc15p of Schizosaccharomyces pombe, has a role in assembly of the contractile ring, which is needed to separate dividing cells. Recently, mammalian PCH proteins have been found to bind phospholipids and to participate in membrane deformation. These findings suggest that PCH proteins are crucial linkers of membrane dynamics and actin polymerization, for example, during the internalization of transmembrane receptors. Intriguingly, some members of the PCH protein family are mutated in neurodegenerative and inflammatory diseases, which has implications for the identification of cures for such disorders.
Collapse
Affiliation(s)
- Pontus Aspenström
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, SE-751 24 Uppsala, Sweden.
| | | | | |
Collapse
|
33
|
Qian J, Chen W, Lettau M, Podda G, Zörnig M, Kabelitz D, Janssen O. Regulation of FasL expression: A SH3 domain containing protein family involved in the lysosomal association of FasL. Cell Signal 2006; 18:1327-37. [PMID: 16318909 DOI: 10.1016/j.cellsig.2005.10.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Accepted: 10/07/2005] [Indexed: 10/25/2022]
Abstract
As a death factor of T cells and Natural Killer (NK) cells, Fas Ligand (FasL) is stored in association with secretory lysosomes. Upon stimulation, these cytotoxic granules are transported to the cell membrane where FasL is exposed on the cell surface, shed or secreted. It has been noted before that the proline-rich domain within the cytosolic part of FasL is required for its vesicular association. However, the molecular interactions involved in targeting FasL to secretory lysosomes or to the plasma membrane have not been elucidated. We now identified a family of structurally related proteins that upon co-expression with FasL reallocate the death factor from a membrane to an intracellular localization. Members of this protein family are characterized by a similar domain structure and include FBP17, PACSIN1-3, CD2BP1, CIP4, Rho-GAP C1 and several hypothetical proteins. We show that all tested members of this "FCH/SH3-family" co-precipitate FasL from transfectants. The interactions strictly depend on functional SH3 domains within the FCH/SH3 proteins. Since co-expression of FasL with individual FCH/SH3 proteins dramatically alters the intracellular localization of FasL especially in non-hematopoietic cells, our data suggest that FCH/SH3 proteins might play an important role for the subcellular distribution and lysosomal association of FasL.
Collapse
Affiliation(s)
- Jing Qian
- Institute of Immunology, University Hospital Schleswig-Holstein Campus Kiel, Michaelisstr. 5, D-24105 Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Yang H, Reinherz EL. CD2BP1 modulates CD2-dependent T cell activation via linkage to protein tyrosine phosphatase (PTP)-PEST. THE JOURNAL OF IMMUNOLOGY 2006; 176:5898-907. [PMID: 16670297 DOI: 10.4049/jimmunol.176.10.5898] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human CD2 regulates T cell activation and adhesion via mechanisms yet to be fully understood. This study focuses on CD2BP1, a CD2 cytoplasmic tail-binding protein preferentially expressed in hematopoetic cells. Structural and functional analyses suggest that CD2BP1 acts as a scaffold protein, participating in regulation of the actin cytoskeleton. In this study, using a murine Ag-specific primary T cell transduction system to assess CD69, IL-2, and IFN-gamma expression, we provide evidence that CD2BP1 directly and negatively impacts T cell activation via isolated CD2 triggering or TCR stimulation dependent on coordinate CD2 engagement. Disruption of protein tyrosine phosphatase-PEST and/or CD2BP1 association with the CD2 signalsome rescues T cells from the inhibitory effect of CD2 crosslinking. The overexpression of CD2BP1 selectively attenuates phospholipase Cgamma1, ERK1/2, and p38 phosphorylation without abrogating CD2-independent TCR stimulation. This study provides new insight on the regulation of T cell activation and may have implications for autoimmune processes known to be associated with CD2BP1 mutations.
Collapse
Affiliation(s)
- Hailin Yang
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | |
Collapse
|
35
|
Grosse J, Chitu V, Marquardt A, Hanke P, Schmittwolf C, Zeitlmann L, Schropp P, Barth B, Yu P, Paffenholz R, Stumm G, Nehls M, Stanley ER. Mutation of mouse Mayp/Pstpip2 causes a macrophage autoinflammatory disease. Blood 2006; 107:3350-8. [PMID: 16397132 PMCID: PMC1895761 DOI: 10.1182/blood-2005-09-3556] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 11/30/2005] [Indexed: 02/02/2023] Open
Abstract
Macrophage actin-associated tyrosine phosphorylated protein (MAYP)/PSTPIP2, a PCH protein, is involved in the regulation of macrophage motility. Mutations in a closely related gene, PSTPIP1/CD2BP1, cause a dominantly inherited autoinflammatory disorder known as PAPA syndrome. A mutant mouse obtained by chemical mutagenesis exhibited an autoinflammatory disorder characterized by macrophage infiltration and inflammation, leading to osteolysis and necrosis in paws and necrosis of ears. Positional cloning of this recessive mutation, termed Lupo, identified a T to A nucleotide exchange leading to an amino acid substitution (I282N) in the sequence of MAYP. Mayp(Lp/Lp) disease was transferable by bone marrow transplantation and developed in the absence of lymphocytes. Consistent with the involvement of macrophages, lesion development could be prevented by the administration of clodronate liposomes. MAYP is expressed in monocytes/macrophages and in a Mac1+ subfraction of granulocytes. LPS stimulation increases its expression in macrophages. Because of the instability of the mutant protein, MAYP expression is reduced 3-fold in Mayp(Lp/Lp) macrophages and, on LPS stimulation, does not rise above the level of unstimulated wild-type (WT) cells. Mayp(Lp/Lp) mice expressed elevated circulating levels of several cytokines, including MCP-1; their macrophages exhibited altered cytokine production in vitro. These studies suggest that MAYP plays an anti-inflammatory role in macrophages.
Collapse
|
36
|
Baum W, Kirkin V, Fernández SBM, Pick R, Lettau M, Janssen O, Zörnig M. Binding of the Intracellular Fas Ligand (FasL) Domain to the Adaptor Protein PSTPIP Results in a Cytoplasmic Localization of FasL. J Biol Chem 2005; 280:40012-24. [PMID: 16204241 DOI: 10.1074/jbc.m502222200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor necrosis factor family member Fas ligand (FasL) induces apoptosis in Fas receptor-expressing target cells and is an important cytotoxic effector molecule used by CTL- and NK-cells. In these hematopoietic cells, newly synthesized FasL is stored in specialized secretory lysosomes and only delivered to the cell surface upon activation and target cell recognition. FasL contains an 80-amino acid-long cytoplasmic tail, which includes a proline-rich domain as a bona fide Src homology 3 domain-binding site. This proline-rich domain has been implicated in FasL sorting to secretory lysosomes, and it may also be important for reverse signaling via FasL, which has been described to influence T-cell activation. Here we report the identification of the Src homology 3 domain-containing adaptor protein PSTPIP as a FasL-interacting partner, which binds to the proline-rich domain. PSTPIP co-expression leads to an increased intracellular localization of Fas ligand, thereby regulating extracellular availability and cytotoxic activity of the molecule. In addition, we demonstrate recruitment of the tyrosine phosphatase PTP-PEST by PSTPIP into FasL.PSTPIP.PTP-PEST complexes which may contribute to FasL reverse signaling.
Collapse
Affiliation(s)
- Wiebke Baum
- Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, Frankfurt D-60596, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Ren G, Wang J, Brinkworth R, Winsor B, Kobe B, Munn AL. Verprolin Cytokinesis Function Mediated by the Hof One Trap Domain. Traffic 2005; 6:575-93. [PMID: 15941409 DOI: 10.1111/j.1600-0854.2005.00300.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In budding yeast, partitioning of the cytoplasm during cytokinesis can proceed via a pathway dependent on the contractile actomyosin ring, as in other eukaryotes, or alternatively via a septum deposition pathway dependent on an SH3 domain protein, Hof1/Cyk2 (the yeast PSTPIP1 ortholog). In dividing yeast cells, Hof1 forms a ring at the bud neck distinct from the actomyosin ring, and this zone is active in septum deposition. We previously showed the yeast Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) ortholog, verprolin/Vrp1/End5, interacts with Hof1 and facilitates Hof1 recruitment to the bud neck. A Vrp1 fragment unable to interact with yeast WASP (Las17/Bee1), localize to the actin cytoskeleton or function in polarization of the cortical actin cytoskeleton nevertheless retains function in Hof1 recruitment and cytokinesis. Here, we show the ability of this Vrp1 fragment to bind the Hof1 SH3 domain via its Hof one trap (HOT) domain is critical for cytokinesis. The Vrp1 HOT domain consists of three tandem proline-rich motifs flanked by serines. Unexpectedly, the Hof1 SH3 domain itself is not required for cytokinesis and indeed appears to negatively regulate cytokinesis. The Vrp1 HOT domain promotes cytokinesis by binding to the Hof1 SH3 domain and counteracting its inhibitory effect.
Collapse
Affiliation(s)
- Gang Ren
- Laboratory of Yeast Cell Biology, Institute of Molecular and Cell Biology, A*STAR Biomedical Sciences Institutes, Singapore, 138673, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
38
|
Chitu V, Pixley FJ, Macaluso F, Larson DR, Condeelis J, Yeung YG, Stanley ER. The PCH family member MAYP/PSTPIP2 directly regulates F-actin bundling and enhances filopodia formation and motility in macrophages. Mol Biol Cell 2005; 16:2947-59. [PMID: 15788569 PMCID: PMC1142438 DOI: 10.1091/mbc.e04-10-0914] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Macrophage actin-associated tyrosine phosphorylated protein (MAYP) belongs to the Pombe Cdc15 homology (PCH) family of proteins involved in the regulation of actin-based functions including cell adhesion and motility. In mouse macrophages, MAYP is tyrosine phosphorylated after activation of the colony-stimulating factor-1 receptor (CSF-1R), which also induces actin reorganization, membrane ruffling, cell spreading, polarization, and migration. Because MAYP associates with F-actin, we investigated the function of MAYP in regulating actin organization in macrophages. Overexpression of MAYP decreased CSF-1-induced membrane ruffling and increased filopodia formation, motility and CSF-1-mediated chemotaxis. The opposite phenotype was observed with reduced expression of MAYP, indicating that MAYP is a negative regulator of CSF-1-induced membrane ruffling and positively regulates formation of filopodia and directional migration. Overexpression of MAYP led to a reduction in total macrophage F-actin content but was associated with increased actin bundling. Consistent with this, purified MAYP bundled F-actin and regulated its turnover in vitro. In addition, MAYP colocalized with cortical and filopodial F-actin in vivo. Because filopodia are postulated to increase directional motility by acting as environmental sensors, the MAYP-stimulated increase in directional movement may be at least partly explained by enhancement of filopodia formation.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Millard TH, Sharp SJ, Machesky LM. Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex. Biochem J 2004; 380:1-17. [PMID: 15040784 PMCID: PMC1224166 DOI: 10.1042/bj20040176] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 02/18/2004] [Accepted: 03/25/2004] [Indexed: 01/15/2023]
Abstract
The assembly of a branched network of actin filaments provides the mechanical propulsion that drives a range of dynamic cellular processes, including cell motility. The Arp2/3 complex is a crucial component of such filament networks. Arp2/3 nucleates new actin filaments while bound to existing filaments, thus creating a branched network. In recent years, a number of proteins that activate the filament nucleation activity of Arp2/3 have been identified, most notably the WASP (Wiskott-Aldrich syndrome protein) family. WASP-family proteins activate the Arp2/3 complex, and consequently stimulate actin assembly, in response to extracellular signals. Structural studies have provided a significant refinement in our understanding of the molecular detail of how the Arp2/3 complex nucleates actin filaments. There has also been much progress towards an understanding of the complicated signalling processes that regulate WASP-family proteins. In addition, the use of gene disruption in a number of organisms has led to new insights into the specific functions of individual WASP-family members. The present review will discuss the Arp2/3 complex and its regulators, in particular the WASP-family proteins. Emphasis will be placed on recent developments in the field that have furthered our understanding of actin dynamics and cell motility.
Collapse
Affiliation(s)
- Thomas H Millard
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | |
Collapse
|
40
|
Imai K, Nonoyama S, Ochs HD. WASP (Wiskott-Aldrich syndrome protein) gene mutations and phenotype. Curr Opin Allergy Clin Immunol 2004; 3:427-36. [PMID: 14612666 DOI: 10.1097/00130832-200312000-00003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT), characterized by chronic microthrombocytopenia with and without immunodeficiency, are caused by mutations of the WAS protein (WASP) gene. WASP has been reported to interact with many cytoplasmic molecules linking cellular signaling to the actin cytoskeleton. In this review we will focus on recent molecular findings that provide a better understanding of the pathogenesis of this complex disease and explore the correlation of genotype and clinical phenotype. RECENT FINDINGS Recent investigations have provided evidence that WASP and several related proteins are involved in the reorganization of the actin cytoskeleton by activating Arp2/3-mediated actin polymerization. This function is controlled mainly by a small GTPase Cdc42. Activated GTP-bound Cdc42 dissociates the intramolecular autoinhibitory loop formation of WASP. In addition, WASP is involved in cytoplasmic signaling by its interaction with a variety of adaptor molecules or kinases and serves as a link to actin reorganization, which is important for immunological synapse formation, cell trafficking and motility. Tyrosine or serine phosphorylation of WASP increases the actin polymerization activity of WASP via Arp2/3. Mutation analysis of WAS/XLT patients has provided evidence for a strong correlation between phenotype and genotype. Gene therapy for WASP-deficient human lymphocytes and Wasp-deficient mice was performed successfully. SUMMARY The study of WASP and its mutations has led to a better understanding of the pathogenesis of the syndrome (thrombocytopenia, immunodeficiency, atopic dermatitis, autoimmune and malignant diseases) and the mechanisms required for cell mobility, cell-cell interaction and cytoplasmic signaling, as well as thrombopoiesis and maintenance of the number of platelets.
Collapse
Affiliation(s)
- Kohsuke Imai
- INSERM (The French Institute of Health and Medical Research) U429, Hôpital Necker-Enfants Malades, Paris, France.
| | | | | |
Collapse
|
41
|
Svenson IK, Kloos MT, Gaskell PC, Nance MA, Garbern JY, Hisanaga SI, Pericak-Vance MA, Ashley-Koch AE, Marchuk DA. Intragenic modifiers of hereditary spastic paraplegia due to spastin gene mutations. Neurogenetics 2004; 5:157-64. [PMID: 15248095 DOI: 10.1007/s10048-004-0186-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2004] [Indexed: 11/24/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a genetically heterogeneous neurodegenerative disease characterized by wide variability in phenotypic expression, both within and among families. The most-common cause of autosomal dominant HSP is mutation of the gene encoding spastin, a protein of uncertain function. We report the existence of intragenic polymorphisms of spastin that modify the HSP phenotype. One (S44L) is a previously described recessively acting allele and the second is a novel allele affecting the adjacent amino acid residue (P45Q). In 4 HSP families in which either L44 or Q45 segregates independently of a missense or splicing mutation in the AAA domain of spastin, L44 and Q45 are each associated with a striking decrease in age at onset in the presence of the AAA domain mutations. Using a bioinformatics approach, we found that the highly conserved S44 is predicted to be phosphorylated by a number of family members of the proline-directed serine/threonine cyclin-dependent kinases (Cdks). Cdk1 and Cdk5 showed no kinase activity toward synthetic spastin peptide in an in vitro kinase assay, suggesting that this serine residue may be phosphorylated by a different Cdk. Our identification of S44L and P45Q as modifiers of the HSP phenotype suggests a role for spastin phosphorylation by Cdks in the neurodegeneration of the most-common form of HSP.
Collapse
Affiliation(s)
- Ingrid K Svenson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Saha AR, Hill J, Utton MA, Asuni AA, Ackerley S, Grierson AJ, Miller CC, Davies AM, Buchman VL, Anderton BH, Hanger DP. Parkinson's disease α-synuclein mutations exhibit defective axonal transport in cultured neurons. J Cell Sci 2004; 117:1017-24. [PMID: 14996933 DOI: 10.1242/jcs.00967] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
α-Synuclein is a major protein constituent of Lewy bodies and mutations in α-synuclein cause familial autosomal dominant Parkinson's disease. One explanation for the formation of perikaryal and neuritic aggregates of α-synuclein, which is a presynaptic protein, is that the mutations disrupt α-synuclein transport and lead to its proximal accumulation. We found that mutant forms of α-synuclein, either associated with Parkinson's disease (A30P or A53T) or mimicking defined serine, but not tyrosine, phosphorylation states exhibit reduced axonal transport following transfection into cultured neurons. Furthermore, transfection of A30P, but not wild-type, α-synuclein results in accumulation of the protein proximal to the cell body. We propose that the reduced axonal transport exhibited by the Parkinson's disease-associated α-synuclein mutants examined in this study might contribute to perikaryal accumulation of α-synuclein and hence Lewy body formation and neuritic abnormalities in diseased brain.
Collapse
Affiliation(s)
- Anirban R Saha
- Department of Neuroscience, PO Box 38, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Shoham NG, Centola M, Mansfield E, Hull KM, Wood G, Wise CA, Kastner DL. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc Natl Acad Sci U S A 2003; 100:13501-6. [PMID: 14595024 PMCID: PMC263843 DOI: 10.1073/pnas.2135380100] [Citation(s) in RCA: 339] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pyrin, the familial Mediterranean fever protein, is found in association with the cytoskeleton in myeloid/monocytic cells and modulates IL-1beta processing, NF-kappaB activation, and apoptosis. These effects are mediated in part through cognate interactions with the adaptor protein ASC, which shares an N-terminal motif with pyrin. We sought additional upstream regulators of inflammation by using pyrin as the bait in yeast two-hybrid assays. We now show that proline serine threonine phosphatase-interacting protein [PSTPIP1, or CD2-binding protein 1 (CD2BP1)], a tyrosine-phosphorylated protein involved in cytoskeletal organization, also interacts with pyrin. Recently, PSTPIP1/CD2BP1 mutations were shown to cause the syndrome of pyogenic arthritis, pyoderma gangrenosum, and acne (PAPA), a dominantly inherited autoinflammatory disorder mediated predominantly by granulocytes. Endogenous PSTPIP1/CD2BP1 and pyrin are coexpressed in monocytes and granulocytes and can be coimmunoprecipitated from THP-1 cells. The B box segment of pyrin was necessary and the B box/coiled-coil segment sufficient for this interaction, whereas the SH3 and coiled-coil domains of PSTPIP1/CD2BP1 were both necessary, but neither was sufficient, for pyrin binding. The Y344F PSTPIP1/CD2BP1 mutation, which blocks tyrosine phosphorylation, was associated with a marked reduction in pyrin binding in pervanadate-treated cells. PAPA-associated A230T and E250Q PSTPIP1/CD2BP1 mutations markedly increased pyrin binding as assayed by immunoprecipitation and, relative to WT, these mutants were hyperphosphorylated when coexpressed with c-Abl kinase. Consistent with the hypothesis that these mutations exert a dominant-negative effect on the previously reported activity of pyrin, we found increased IL-1beta production by peripheral blood leukocytes from a clinically active PAPA patient with the A230T PSTPIP1/CD2BP1 mutation and in cell lines transfected with both PAPA-associated mutants.
Collapse
Affiliation(s)
- Nitza G Shoham
- Genetics and Genomics Branch and Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Wu RF, Gu Y, Xu YC, Nwariaku FE, Terada LS. Vascular endothelial growth factor causes translocation of p47phox to membrane ruffles through WAVE1. J Biol Chem 2003; 278:36830-40. [PMID: 12855698 DOI: 10.1074/jbc.m302251200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth factors initiate cytoskeletal rearrangements tightly coordinated with nuclear signaling events. We hypothesized that the angiogenic growth factor, vascular endothelial growth factor (VEGF), may utilize oxidants that are site-directed to a complex critical to both cytoskeletal and mitogenic signaling. We identified the WASP-family verprolin homologous protein-1 (WAVE1) as a binding partner for the NADPH oxidase adapter p47phox within membrane ruffles of VEGF-stimulated cells. Within 15 min of VEGF stimulation, p47phox coprecipitated with WAVE1, with the ruffle and oxidase agonist Rac1, and with the Rac1 effector PAK1. VEGF also increased p47phox phosphorylation, oxidant production, and ruffle formation, all of which were dependent upon PAK1 kinase activity. The antioxidant Mn (III) tetrakis(4-benzoic acid) porphyrin and ectopic expression of either the p47-binding WAVE1 domain or the WAVE1-binding p47phox domain decreased VEGF-induced ruffling, whereas the active mutant p4-(S303D, S304D,S328D) stimulated oxidant production and formation of circular dorsal ruffles. Both kinase-dead PAK1-(K298A) and Mn (III) tetrakis(4-benzoic acid) porphyrin decreased c-Jun N-terminal kinase (JNK) activation by VEGF, whereas dominant-negative JNK did not block ruffle formation, suggesting a bifurcation of mitogenic and cytoskeletal signaling events at or distal to the oxidase but proximal to JNK. Thus, WAVE1 may act as a scaffold to recruit the NADPH oxidase to a complex involved with both cytoskeletal regulation and downstream JNK activation.
Collapse
Affiliation(s)
- Ru Feng Wu
- University of Texas Southwestern and The Dallas Veterans Medical Center, Dallas, Texas 75216, USA
| | | | | | | | | |
Collapse
|
45
|
Carnahan RH, Gould KL. The PCH family protein, Cdc15p, recruits two F-actin nucleation pathways to coordinate cytokinetic actin ring formation in Schizosaccharomyces pombe. J Cell Biol 2003; 162:851-62. [PMID: 12939254 PMCID: PMC2172828 DOI: 10.1083/jcb.200305012] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytokinetic actin ring (CAR) formation in Schizosaccharomyces pombe requires two independent actin nucleation pathways, one dependent on the Arp2/3 complex and another involving the formin Cdc12p. Here we investigate the role of the S. pombe Cdc15 homology family protein, Cdc15p, in CAR assembly and find that it interacts with proteins from both of these nucleation pathways. Cdc15p binds directly to the Arp2/3 complex activator Myo1p, which likely explains why actin patches and the Arp2/3 complex fail to be medially recruited during mitosis in cdc15 mutants. Cdc15p also binds directly to Cdc12p. Cdc15p and Cdc12p not only display mutual dependence for CAR localization, but also exist together in a ring-nucleating structure before CAR formation. The disruption of these interactions in cdc15 null cells is likely to be the reason for their complete lack of CARs. We propose a model in which Cdc15p plays a critical role in recruiting and coordinating the pathways essential for the assembly of medially located F-actin filaments and construction of the CAR.
Collapse
Affiliation(s)
- Robert H Carnahan
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
46
|
Zeng R, Cannon JL, Abraham RT, Way M, Billadeau DD, Bubeck-Wardenberg J, Burkhardt JK. SLP-76 coordinates Nck-dependent Wiskott-Aldrich syndrome protein recruitment with Vav-1/Cdc42-dependent Wiskott-Aldrich syndrome protein activation at the T cell-APC contact site. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1360-8. [PMID: 12874226 DOI: 10.4049/jimmunol.171.3.1360] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have shown previously that Wiskott-Aldrich syndrome protein (WASP) activation at the site of T cell-APC interaction is a two-step process, with recruitment dependent on the proline-rich domain and activation dependent on binding of Cdc42-GTP to the GTPase binding domain. Here, we show that WASP recruitment occurs through binding to the C-terminal Src homology 3 domain of Nck. In contrast, WASP activation requires Vav-1. In Vav-1-deficient T cells, WASP recruitment proceeds normally, but localized activation of Cdc42 and WASP is disrupted. The recruitment and activation of WASP are coordinated by tyrosine-phosphorylated Src homology 2 domain-containing leukocyte protein of 76 kDa, which functions as a scaffold, bringing Nck and WASP into proximity with Vav-1 and Cdc42-GTP. Taken together, these findings reconstruct the signaling pathway leading from TCR ligation to localized WASP activation.
Collapse
Affiliation(s)
- Rong Zeng
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Badour K, Zhang J, Shi F, McGavin MKH, Rampersad V, Hardy LA, Field D, Siminovitch KA. The Wiskott-Aldrich syndrome protein acts downstream of CD2 and the CD2AP and PSTPIP1 adaptors to promote formation of the immunological synapse. Immunity 2003; 18:141-54. [PMID: 12530983 DOI: 10.1016/s1074-7613(02)00516-2] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Wiskott-Aldrich syndrome protein (WASp) couples actin cytoskeletal rearrangement to T cell activation, but the mechanisms involved are unknown. Here, we show that antigen-induced formation of T cell:APC conjugates and synapses is abrogated in WASp-deficient T cells and that CD2 engagement evokes interactions between the proline-rich region required for WASp translocation to the synapse and the PSTPIP1 adaptor SH3 domain and between the PSTPIp1 coiled-coil domain and both CD2 and another CD2-binding adaptor, CD2AP. The induced colocalization of these proteins at the synapse is disrupted by expression of coiled-coil domain-deleted PSTPIP1. These data, together with the impairment in CD2-induced actin polymerization observed in WASp-deficient cells, suggest that PSTPIP1 acts downstream of CD2/CD2AP to link CD2 engagement to the WASp-evoked actin polymerization required for synapse formation and T cell activation.
Collapse
Affiliation(s)
- Karen Badour
- Department of Medical Genetics and Microbiology, University of Toronto, 600 University Avenue, Toronto, M5G 1X5 Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Sastry SK, Lyons PD, Schaller MD, Burridge K. PTP-PEST controls motility through regulation of Rac1. J Cell Sci 2002; 115:4305-16. [PMID: 12376562 DOI: 10.1242/jcs.00105] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The cytoplasmic protein tyrosine phosphatase, PTP-PEST, associates with the focal adhesion proteins p130cas and paxillin and has recently been implicated in cell migration. In this study, we investigated the mechanism by which PTP-PEST regulates this phenomenon. We find that PTP-PEST is activated in an adhesion-dependent manner and localizes to the tips of membrane protrusions in spreading fibroblasts. We show that the catalytic activity of PTP-PEST is a key determinant for its effects on motility. Overexpression of PTP-PEST, but not a catalytically inactive form, impairs haptotaxis, cell spreading and formation of membrane protrusions in CHOK1 cells. In addition, overexpression of PTP-PEST in Rat1 fibroblasts perturbs membrane ruffling and motility in response to PDGF stimulation. The expression level of PTP-PEST modulates the activity of the small GTPase, Rac1. PTP-PEST overexpression suppresses activation of Rac1 in response to both integrin-mediated adhesion or growth factor stimulation. In contrast, fibroblasts that lack PTP-PEST expression show enhanced Rac1 activity. Co-expression of constitutively active Rac1 with PTP-PEST overcomes the inhibition of cell spreading and migration indicating that PTP-PEST acts by antagonizing Rac1 activation. Our data suggest a model in which PTP-PEST is activated by integrins and localized to regions where it can control motile events at the leading edge through inhibition of the small GTPase Rac1.
Collapse
Affiliation(s)
- Sarita K Sastry
- Department of Cell and Developmental Biology and Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
49
|
Abstract
The regulation of many immunological events depends on systems that mediate dynamic actin reorganization in response to signals from the cell membrane. The Wiskott-Aldrich syndrome protein (WASp) is the founding member of a family of proteins that have emerged as crucial effectors of Rho GTPases and activators of the cytoskeletal-organizing complex Arp2/3. Now, WASp has been shown to be intimately involved in many pathways that influence the function of the immune system. Disturbances in these systems result in the complex immunodysregulation of Wiskott-Aldrich syndrome.
Collapse
Affiliation(s)
- Adrian J Thrasher
- Molecular Immunology Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
50
|
Benachenhou N, Massy I, Vacher J. Characterization and expression analyses of the mouse Wiskott-Aldrich syndrome protein (WASP) family member Wave1/Scar. Gene 2002; 290:131-40. [PMID: 12062808 DOI: 10.1016/s0378-1119(02)00560-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Characterization of multiprotein complexes involved in actin remodeling and cytoskeleton reorganization is essential to understand the basic mechanisms of cell motility and migration. To identify proteins implicated in these processes, we have isolated the mouse Wave1/Scar gene, a member of the Wiskott-Aldrich syndrome protein (WASP) family. The mouse Wave1 gene was physically localized on chromosome 10 and spans over 12 Kb comprising eight exons and seven introns. The mouse Wave1 complementary DNA encodes a predicted 559 amino acid protein, with a SCAR homology domain, a basic domain, a proline-rich region, a WASP homology domain and an acidic domain conserved in the orthologous proteins. The Wave1 transcription initiation site was mapped 210 base pairs upstream of the ATG translational start site. The presumptive proximal promoter contains putative consensus binding sites for E2 basic helix-loop-helix transcription factors, hepatocyte nuclear factor-3beta, S8 homeodomain protein, zinc finger transcription factor MZF-1, and an interferon-stimulated response element. Northern analysis demonstrated a strong expression of a unique approximately 2.6 Kb Wave1 transcript in brain tissue, and in situ hybridization showed restricted expression to Purkinje cells from the cerebellum and pyramidal cells from the hippocampus. Characterization and expression analyses of the murine Wave1 gene provide the basis toward functional studies in mouse models of the role of Wave1 in neuronal cytoskeleton organization.
Collapse
Affiliation(s)
- Nadia Benachenhou
- Institut de Recherches Cliniques de Montréal, Faculté de Médecine de l'Université de Montréal, 110 Pine avenue West, Room 5690, Montréal, Québec H2W 1R7, Canada
| | | | | |
Collapse
|