1
|
Ding W, Gu J, Xu W, Wu J, Huang Y, Zhang S, Lin S. The Biosynthesis and Applications of Protein Lipidation. Chem Rev 2024. [PMID: 39441663 DOI: 10.1021/acs.chemrev.4c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Protein lipidation dramatically affects protein structure, localization, and trafficking via remodeling protein-membrane and protein-protein interactions through hydrophobic lipid moieties. Understanding the biosynthesis of lipidated proteins, whether natural ones or mimetics, is crucial for reconstructing, validating, and studying the molecular mechanisms and biological functions of protein lipidation. In this Perspective, we first provide an overview of the natural enzymatic biosynthetic pathways of protein lipidation in mammalian cells, focusing on the enzymatic machineries and their chemical linkages. We then discuss strategies to biosynthesize protein lipidation in mammalian cells by engineering modification machineries and substrates. Additionally, we explore site-specific protein lipidation biosynthesis in vitro via enzyme-mediated ligations and in vivo primarily through genetic code expansion strategies. We also discuss the use of small molecule tools to modulate the process of protein lipidation biosynthesis. Finally, we provide concluding remarks and discuss future directions for the biosynthesis and applications of protein lipidation.
Collapse
Affiliation(s)
- Wenlong Ding
- Life Sciences Institute, Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Jiayu Gu
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenyuan Xu
- Life Sciences Institute, Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
| | - Jing Wu
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiwen Huang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuai Zhang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Shixian Lin
- Life Sciences Institute, Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Shaoxing Institute, Zhejiang University, Shaoxing 321000, China
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
2
|
Xie J, Yu Z, Zhu Y, Zheng M, Zhu Y. Functions of Coenzyme A and Acyl-CoA in Post-Translational Modification and Human Disease. FRONT BIOSCI-LANDMRK 2024; 29:331. [PMID: 39344325 DOI: 10.31083/j.fbl2909331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/24/2024] [Accepted: 07/17/2024] [Indexed: 10/01/2024]
Abstract
Coenzyme A (CoA) is synthesized from pantothenate, L-cysteine and adenosine triphosphate (ATP), and plays a vital role in diverse physiological processes. Protein acylation is a common post-translational modification (PTM) that modifies protein structure, function and interactions. It occurs via the transfer of acyl groups from acyl-CoAs to various amino acids by acyltransferase. The characteristics and effects of acylation vary according to the origin, structure, and location of the acyl group. Acetyl-CoA, formyl-CoA, lactoyl-CoA, and malonyl-CoA are typical acyl group donors. The major acyl donor, acyl-CoA, enables modifications that impart distinct biological functions to both histone and non-histone proteins. These modifications are crucial for regulating gene expression, organizing chromatin, managing metabolism, and modulating the immune response. Moreover, CoA and acyl-CoA play significant roles in the development and progression of neurodegenerative diseases, cancer, cardiovascular diseases, and other health conditions. The goal of this review was to systematically describe the types of commonly utilized acyl-CoAs, their functions in protein PTM, and their roles in the progression of human diseases.
Collapse
Affiliation(s)
- Jumin Xie
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Zhang Yu
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Ying Zhu
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Mei Zheng
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Yanfang Zhu
- Department of Critical Care Medicine, Huangshi Hospital of TCM (Infectious Disease Hospital), 435003 Huangshi, Hubei, China
| |
Collapse
|
3
|
Geroyska S, Mejia I, Chan AA, Navarrete M, Pandey V, Kharpatin S, Noguti J, Wang F, Srole D, Chou TF, Wohlschlegel J, Nemeth E, Damoiseaux R, Shackelford DB, Lee DJ, Díaz B. N-Myristoytransferase Inhibition Causes Mitochondrial Iron Overload and Parthanatos in TIM17A-Dependent Aggressive Lung Carcinoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:1815-1833. [PMID: 38949950 PMCID: PMC11270646 DOI: 10.1158/2767-9764.crc-23-0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 05/09/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Myristoylation is a type of protein acylation by which the fatty acid myristate is added to the N-terminus of target proteins, a process mediated by N-myristoyltransferases (NMT). Myristoylation is emerging as a promising cancer therapeutic target; however, the molecular determinants of sensitivity to NMT inhibition or the mechanism by which it induces cancer cell death are not completely understood. We report that NMTs are a novel therapeutic target in lung carcinoma cells with LKB1 and/or KEAP1 mutations in a KRAS-mutant background. Inhibition of myristoylation decreases cell viability in vitro and tumor growth in vivo. Inhibition of myristoylation causes mitochondrial ferrous iron overload, oxidative stress, elevated protein poly (ADP)-ribosylation, and death by parthanatos. Furthermore, NMT inhibitors sensitized lung carcinoma cells to platinum-based chemotherapy. Unexpectedly, the mitochondrial transporter translocase of inner mitochondrial membrane 17 homolog A (TIM17A) is a critical target of myristoylation inhibitors in these cells. TIM17A silencing recapitulated the effects of NMT inhibition at inducing mitochondrial ferrous iron overload and parthanatos. Furthermore, sensitivity of lung carcinoma cells to myristoylation inhibition correlated with their dependency on TIM17A. This study reveals the unexpected connection between protein myristoylation, the mitochondrial import machinery, and iron homeostasis. It also uncovers myristoylation inhibitors as novel inducers of parthanatos in cancer, and the novel axis NMT-TIM17A as a potential therapeutic target in highly aggressive lung carcinomas. SIGNIFICANCE KRAS-mutant lung carcinomas with LKB1 and/or KEAP1 co-mutations have intrinsic therapeutic resistance. We show that these tumors are sensitive to NMT inhibitors, which slow tumor growth in vivo and sensitize cells to platinum-based chemotherapy in vitro. Inhibition of myristoylation causes death by parthanatos and thus has the potential to kill apoptosis and ferroptosis-resistant cancer cells. Our findings warrant investigation of NMT as a therapeutic target in highly aggressive lung carcinomas.
Collapse
Affiliation(s)
- Sofia Geroyska
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California.
- Division of Hematology and Oncology at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Isabel Mejia
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California.
- Division of Hematology and Oncology at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Alfred A. Chan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California.
- Division of Dermatology at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Marian Navarrete
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California.
- Division of Dermatology at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Vijaya Pandey
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Samuel Kharpatin
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Juliana Noguti
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California.
- Division of Dermatology at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Feng Wang
- Biology and Biological Engineering, California Institute of Technology, Pasadena, California.
| | - Daniel Srole
- UCLA Center for Iron Disorders, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Tsui-Fen Chou
- Biology and Biological Engineering, California Institute of Technology, Pasadena, California.
| | - James Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Elizabeta Nemeth
- UCLA Center for Iron Disorders, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California.
- California NanoSystems Institute at UCLA, Los Angeles, California.
- Department for Bioengineering, Samueli School of Engineering, UCLA, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California.
| | - David B. Shackelford
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California.
| | - Delphine J. Lee
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California.
- Division of Dermatology at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California.
| | - Begoña Díaz
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California.
- Division of Hematology and Oncology at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California.
| |
Collapse
|
4
|
Rodríguez-Hernández D, Fenwick MK, Zigweid R, Sankaran B, Myler PJ, Sunnerhagen P, Kaushansky A, Staker BL, Grøtli M. Exploring Subsite Selectivity within Plasmodium vivax N-Myristoyltransferase Using Pyrazole-Derived Inhibitors. J Med Chem 2024; 67:7312-7329. [PMID: 38680035 PMCID: PMC11089503 DOI: 10.1021/acs.jmedchem.4c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
N-myristoyltransferase (NMT) is a promising antimalarial drug target. Despite biochemical similarities between Plasmodium vivax and human NMTs, our recent research demonstrated that high selectivity is achievable. Herein, we report PvNMT-inhibiting compounds aimed at identifying novel mechanisms of selectivity. Various functional groups are appended to a pyrazole moiety in the inhibitor to target a pocket formed beneath the peptide binding cleft. The inhibitor core group polarity, lipophilicity, and size are also varied to probe the water structure near a channel. Selectivity index values range from 0.8 to 125.3. Cocrystal structures of two selective compounds, determined at 1.97 and 2.43 Å, show that extensions bind the targeted pocket but with different stabilities. A bulky naphthalene moiety introduced into the core binds next to instead of displacing protein-bound waters, causing a shift in the inhibitor position and expanding the binding site. Our structure-activity data provide a conceptual foundation for guiding future inhibitor optimizations.
Collapse
Affiliation(s)
- Diego Rodríguez-Hernández
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, S-405 30 Gothenburg, Sweden
- Department
of Structural and Functional Biology, Synthetic Biology Laboratory,
Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Michael K. Fenwick
- Seattle
Structural Genomics Center for Infectious Disease, Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Rachael Zigweid
- Seattle
Structural Genomics Center for Infectious Disease, Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Banumathi Sankaran
- Molecular
Biophysics and Integrated Bioimaging, Berkeley Center for Structural
Biology, Advanced Light Source, Berkeley
National Laboratory, Berkeley, California 94720, United States
| | - Peter J. Myler
- Seattle
Structural Genomics Center for Infectious Disease, Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
- Department
of Pediatrics, University of Washington, Seattle, Washington 98195, United States
| | - Per Sunnerhagen
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Alexis Kaushansky
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
- Department
of Pediatrics, University of Washington, Seattle, Washington 98195, United States
| | - Bart L. Staker
- Seattle
Structural Genomics Center for Infectious Disease, Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Morten Grøtli
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, S-405 30 Gothenburg, Sweden
| |
Collapse
|
5
|
Beauchamp E, Gamma JM, Cromwell CR, Moussa EW, Pain R, Kostiuk MA, Acevedo-Morantes C, Iyer A, Yap M, Vincent KM, Postovit LM, Julien O, Hubbard BP, Mackey JR, Berthiaume LG. Multiomics analysis identifies oxidative phosphorylation as a cancer vulnerability arising from myristoylation inhibition. J Transl Med 2024; 22:431. [PMID: 38715059 PMCID: PMC11075276 DOI: 10.1186/s12967-024-05150-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/31/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND In humans, two ubiquitously expressed N-myristoyltransferases, NMT1 and NMT2, catalyze myristate transfer to proteins to facilitate membrane targeting and signaling. We investigated the expression of NMTs in numerous cancers and found that NMT2 levels are dysregulated by epigenetic suppression, particularly so in hematologic malignancies. This suggests that pharmacological inhibition of the remaining NMT1 could allow for the selective killing of these cells, sparing normal cells with both NMTs. METHODS AND RESULTS Transcriptomic analysis of 1200 NMT inhibitor (NMTI)-treated cancer cell lines revealed that NMTI sensitivity relates not only to NMT2 loss or NMT1 dependency, but also correlates with a myristoylation inhibition sensitivity signature comprising 54 genes (MISS-54) enriched in hematologic cancers as well as testis, brain, lung, ovary, and colon cancers. Because non-myristoylated proteins are degraded by a glycine-specific N-degron, differential proteomics revealed the major impact of abrogating NMT1 genetically using CRISPR/Cas9 in cancer cells was surprisingly to reduce mitochondrial respiratory complex I proteins rather than cell signaling proteins, some of which were also reduced, albeit to a lesser extent. Cancer cell treatments with the first-in-class NMTI PCLX-001 (zelenirstat), which is undergoing human phase 1/2a trials in advanced lymphoma and solid tumors, recapitulated these effects. The most downregulated myristoylated mitochondrial protein was NDUFAF4, a complex I assembly factor. Knockout of NDUFAF4 or in vitro cell treatment with zelenirstat resulted in loss of complex I, oxidative phosphorylation and respiration, which impacted metabolomes. CONCLUSIONS Targeting of both, oxidative phosphorylation and cell signaling partly explains the lethal effects of zelenirstat in select cancer types. While the prognostic value of the sensitivity score MISS-54 remains to be validated in patients, our findings continue to warrant the clinical development of zelenirstat as cancer treatment.
Collapse
Affiliation(s)
| | - Jay M Gamma
- Department of Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Christopher R Cromwell
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Eman W Moussa
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Rony Pain
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Morris A Kostiuk
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Claudia Acevedo-Morantes
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Aishwarya Iyer
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Megan Yap
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Krista M Vincent
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Lynne M Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Olivier Julien
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Basil P Hubbard
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | - Luc G Berthiaume
- Pacylex Pharmaceuticals Inc., Edmonton, AB, Canada.
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
6
|
Yuan Y, Li P, Li J, Zhao Q, Chang Y, He X. Protein lipidation in health and disease: molecular basis, physiological function and pathological implication. Signal Transduct Target Ther 2024; 9:60. [PMID: 38485938 PMCID: PMC10940682 DOI: 10.1038/s41392-024-01759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 03/18/2024] Open
Abstract
Posttranslational modifications increase the complexity and functional diversity of proteins in response to complex external stimuli and internal changes. Among these, protein lipidations which refer to lipid attachment to proteins are prominent, which primarily encompassing five types including S-palmitoylation, N-myristoylation, S-prenylation, glycosylphosphatidylinositol (GPI) anchor and cholesterylation. Lipid attachment to proteins plays an essential role in the regulation of protein trafficking, localisation, stability, conformation, interactions and signal transduction by enhancing hydrophobicity. Accumulating evidence from genetic, structural, and biomedical studies has consistently shown that protein lipidation is pivotal in the regulation of broad physiological functions and is inextricably linked to a variety of diseases. Decades of dedicated research have driven the development of a wide range of drugs targeting protein lipidation, and several agents have been developed and tested in preclinical and clinical studies, some of which, such as asciminib and lonafarnib are FDA-approved for therapeutic use, indicating that targeting protein lipidations represents a promising therapeutic strategy. Here, we comprehensively review the known regulatory enzymes and catalytic mechanisms of various protein lipidation types, outline the impact of protein lipidations on physiology and disease, and highlight potential therapeutic targets and clinical research progress, aiming to provide a comprehensive reference for future protein lipidation research.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyuan Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianghui Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Xingxing He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| |
Collapse
|
7
|
Gamerdinger M, Deuerling E. Cotranslational sorting and processing of newly synthesized proteins in eukaryotes. Trends Biochem Sci 2024; 49:105-118. [PMID: 37919225 DOI: 10.1016/j.tibs.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Ribosomes interact with a variety of different protein biogenesis factors that guide newly synthesized proteins to their native 3D shapes and cellular localization. Depending on the type of translated substrate, a distinct set of cotranslational factors must interact with the ribosome in a timely and coordinated manner to ensure proper protein biogenesis. While cytonuclear proteins require cotranslational maturation and folding factors, secretory proteins must be maintained in an unfolded state and processed cotranslationally by transport and membrane translocation factors. Here we explore the specific cotranslational processing steps for cytonuclear, secretory, and membrane proteins in eukaryotes and then discuss how the nascent polypeptide-associated complex (NAC) cotranslationally sorts these proteins into the correct protein biogenesis pathway.
Collapse
Affiliation(s)
- Martin Gamerdinger
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany.
| | - Elke Deuerling
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
8
|
Abstract
N-myristoyltransferase 1 (NMT1) is an indispensable eukaryotic enzyme that catalyses the transfer of myristoyl groups to the amino acid terminal residues of numerous proteins. This catalytic process is required for the growth and development of many eukaryotes and viruses. Elevated expression and activity of NMT1 is observed to varying degrees in a variety of tumour types (e.g. colon, lung and breast tumours). Furthermore, an elevated level of NMT1 in tumours is associated with poor survival. Therefore, a relationship exists between NMT1 and tumours. In this review, we discuss the underlying mechanisms by which NMT1 is associated with tumour development from the perspective of oncogene signalling, involvement in cellular metabolism, and endoplasmic reticulum stress. Several NMT inhibitors used in cancer treatment are introduced. The review will provide some directions for future research.Key MessagesElevated expression and activity of NMT1 is observed to varying degrees in a variety of tumour types which creates the possibility of targeting NMT1 in tumours.NMT1-mediated myristoylation plays a pivotal role in cancer cell metabolism and may be particularly relevant to cancer metastasis and drug resistance. These insights can be used to direct potential therapeutic avenues for NMT1 inhibitors.
Collapse
Affiliation(s)
- Hong Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Xu
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic OncologyShanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic OncologyShanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Medical Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongxia Qiao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Jamabo M, Mahlalela M, Edkins AL, Boshoff A. Tackling Sleeping Sickness: Current and Promising Therapeutics and Treatment Strategies. Int J Mol Sci 2023; 24:12529. [PMID: 37569903 PMCID: PMC10420020 DOI: 10.3390/ijms241512529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Human African trypanosomiasis is a neglected tropical disease caused by the extracellular protozoan parasite Trypanosoma brucei, and targeted for eradication by 2030. The COVID-19 pandemic contributed to the lengthening of the proposed time frame for eliminating human African trypanosomiasis as control programs were interrupted. Armed with extensive antigenic variation and the depletion of the B cell population during an infectious cycle, attempts to develop a vaccine have remained unachievable. With the absence of a vaccine, control of the disease has relied heavily on intensive screening measures and the use of drugs. The chemotherapeutics previously available for disease management were plagued by issues such as toxicity, resistance, and difficulty in administration. The approval of the latest and first oral drug, fexinidazole, is a major chemotherapeutic achievement for the treatment of human African trypanosomiasis in the past few decades. Timely and accurate diagnosis is essential for effective treatment, while poor compliance and resistance remain outstanding challenges. Drug discovery is on-going, and herein we review the recent advances in anti-trypanosomal drug discovery, including novel potential drug targets. The numerous challenges associated with disease eradication will also be addressed.
Collapse
Affiliation(s)
- Miebaka Jamabo
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| | - Maduma Mahlalela
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| | - Adrienne L. Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Centre (BioBRU), Rhodes University, Makhanda 6139, South Africa;
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| |
Collapse
|
10
|
Chang YH. Impact of Protein N α-Modifications on Cellular Functions and Human Health. Life (Basel) 2023; 13:1613. [PMID: 37511988 PMCID: PMC10381334 DOI: 10.3390/life13071613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Most human proteins are modified by enzymes that act on the α-amino group of a newly synthesized polypeptide. Methionine aminopeptidases can remove the initiator methionine and expose the second amino acid for further modification by enzymes responsible for myristoylation, acetylation, methylation, or other chemical reactions. Specific acetyltransferases can also modify the initiator methionine and sometimes the acetylated methionine can be removed, followed by further modifications. These modifications at the protein N-termini play critical roles in cellular protein localization, protein-protein interaction, protein-DNA interaction, and protein stability. Consequently, the dysregulation of these modifications could significantly change the development and progression status of certain human diseases. The focus of this review is to highlight recent progress in our understanding of the roles of these modifications in regulating protein functions and how these enzymes have been used as potential novel therapeutic targets for various human diseases.
Collapse
Affiliation(s)
- Yie-Hwa Chang
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University Medical School, Saint Louis, MO 63104, USA
| |
Collapse
|
11
|
Spassov DS, Atanasova M, Doytchinova I. Inhibitor Trapping in N-Myristoyltransferases as a Mechanism for Drug Potency. Int J Mol Sci 2023; 24:11610. [PMID: 37511367 PMCID: PMC10380619 DOI: 10.3390/ijms241411610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Predicting inhibitor potency is critical in drug design and development, yet it has remained one of computational biology's biggest unresolved challenges. Here, we show that in the case of the N-myristoyltransferase (NMT), this problem could be traced to the mechanisms by which the NMT enzyme is inhibited. NMT adopts open or closed conformations necessary for orchestrating the different steps of the catalytic process. The results indicate that the potency of the NMT inhibitors is determined by their ability to stabilize the enzyme conformation in the closed state, and that in this state, the small molecules themselves are trapped and locked inside the structure of the enzyme, creating a significant barrier for their dissociation. By using molecular dynamics simulations, we demonstrate that the conformational stabilization of the protein molecule in its closed form is highly correlated with the ligands activity and can be used to predict their potency. Hence, predicting inhibitor potency in silico might depend on modeling the conformational changes of the protein molecule upon binding of the ligand rather than estimating the changes in free binding energy that arise from their interaction.
Collapse
Affiliation(s)
- Danislav S Spassov
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Mariyana Atanasova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Irini Doytchinova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
12
|
Nascimento IJDS, Cavalcanti MDAT, de Moura RO. Exploring N-myristoyltransferase as a promising drug target against parasitic neglected tropical diseases. Eur J Med Chem 2023; 258:115550. [PMID: 37336067 DOI: 10.1016/j.ejmech.2023.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Neglected tropical diseases (NTDs) constitute a group of approximately 20 infectious diseases that mainly affect the impoverished population without basic sanitation in tropical countries. These diseases are responsible for many deaths worldwide, costing billions of dollars in public health investment to treat and control these infections. Among them are the diseases caused by protozoa of the Trypanosomatid family, which constitute Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (sleeping sickness), and Leishmaniasis. In addition, there is a classification of other diseases, called the big three, AIDS, tuberculosis, and malaria, which are endemic in countries with tropical conditions. Despite the high mortality rates, there is still a gap in the treatment. The drugs have a high incidence of side effects and protozoan resistance, justifying the investment in developing new alternatives. In fact, the Target-Based Drug Design (TBDD) approach is responsible for identifying several promising compounds, and among the targets explored through this approach, N-myristoyltransferase (NMT) stands out. It is an enzyme related to the co-translational myristoylation of N-terminal glycine in various peptides. The myristoylation process is a co-translation that occurs after removing the initiator methionine. This process regulates the assembly of protein complexes and stability, which justifies its potential as a drug target. In order to propose NMT as a potential target for parasitic diseases, this review will address the entire structure and function of this enzyme and the primary studies demonstrating its promising potential against Leishmaniasis, T. cruzi, T. brucei, and malaria. We hope our information can help researchers worldwide search for potential drugs against these diseases that have been threatening the health of the world's population.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Cesmac University Center, Pharmacy Departament, Maceió, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil.
| | - Misael de Azevedo Teotônio Cavalcanti
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Ricardo Olimpio de Moura
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
13
|
Wang Y, Lin R, Liu M, Wang S, Chen H, Zeng W, Nie X, Wang S. N-Myristoyltransferase, a Potential Antifungal Candidate Drug-Target for Aspergillus flavus. Microbiol Spectr 2023; 11:e0421222. [PMID: 36541770 PMCID: PMC9927591 DOI: 10.1128/spectrum.04212-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
The filamentous fungus Aspergillus flavus causes devastating diseases not only to cash crops but also to humans by secreting a series of secondary metabolites called aflatoxins. In the cotranslational or posttranslational process, N-myristoyltransferase (Nmt) is a crucial enzyme that catalyzes the myristate group from myristoyl-coenzyme A (myristoyl-CoA) to the N terminus or internal glycine residue of a protein by forming a covalent bond. Members of the Nmt family execute a diverse range of biological functions across a broad range of fungi. However, the underlying mechanism of AflNmt action in the A. flavus life cycle is unclear, particularly during the growth, development, and secondary metabolic synthesis stages. In the present study, AlfNmt was found to be essential for the development of spore and sclerotia, based on the regulation of the xylose-inducible promoter. AflNmt, located in the cytoplasm of A. flavus, is also involved in modulating aflatoxin (AFB1) in A. flavus, which has not previously been reported in Aspergillus spp. In addition, we purified, characterized, and crystallized the recombinant AflNmt protein (rAflNmt) from the Escherichia coli expression system. Interestingly, the crystal structure of rAlfNmt is moderately different from the models predicted by AlphaFold2 in the N-terminal region, indicating the limitations of machine-learning prediction. In conclusion, these results provide a molecular basis for the functional role of AflNmt in A. flavus and structural insights concerning protein prediction. IMPORTANCE As an opportunistic pathogen, A. flavus causes crop loss due to fungal growth and mycotoxin contamination. Investigating the role of virulence factors during infection and searching for novel drug targets have been popular scientific topics in the field of fungal control. Nmt has become a potential target in some organisms. However, whether Nmt is involved in the developmental stages of A. flavus and aflatoxin synthesis, and whether AlfNmt is an ideal target for structure-based drug design, remains unclear. This study systematically explored and identified the role of AlfNmt in the development of spore and sclerotia, especially in aflatoxin biosynthesis. Moreover, although there is not much difference between the AflNmt model predicted using the AlphaFold2 technique and the structure determined using the X-ray method, current AI prediction models may not be suitable for structure-based drug development. There is still room for further improvements in protein prediction.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ranxun Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Mengxin Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Sen Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hongyu Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wanlin Zeng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xinyi Nie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
14
|
Priyamvada L, Kallemeijn WW, Faronato M, Wilkins K, Goldsmith CS, Cotter CA, Ojeda S, Solari R, Moss B, Tate EW, Satheshkumar PS. Inhibition of vaccinia virus L1 N-myristoylation by the host N-myristoyltransferase inhibitor IMP-1088 generates non-infectious virions defective in cell entry. PLoS Pathog 2022; 18:e1010662. [PMID: 36215331 PMCID: PMC9584500 DOI: 10.1371/journal.ppat.1010662] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/20/2022] [Accepted: 08/26/2022] [Indexed: 11/06/2022] Open
Abstract
We have recently shown that the replication of rhinovirus, poliovirus and foot-and-mouth disease virus requires the co-translational N-myristoylation of viral proteins by human host cell N-myristoyltransferases (NMTs), and is inhibited by treatment with IMP-1088, an ultrapotent small molecule NMT inhibitor. Here, we examine the importance of N-myristoylation during vaccinia virus (VACV) infection in primate cells and demonstrate the anti-poxviral effects of IMP-1088. N-myristoylated proteins from VACV and the host were metabolically labelled with myristic acid alkyne during infection using quantitative chemical proteomics. We identified VACV proteins A16, G9 and L1 to be N-myristoylated. Treatment with NMT inhibitor IMP-1088 potently abrogated VACV infection, while VACV gene expression, DNA replication, morphogenesis and EV formation remained unaffected. Importantly, we observed that loss of N-myristoylation resulted in greatly reduced infectivity of assembled mature virus particles, characterized by significantly reduced host cell entry and a decline in membrane fusion activity of progeny virus. While the N-myristoylation of VACV entry proteins L1, A16 and G9 was inhibited by IMP-1088, mutational and genetic studies demonstrated that the N-myristoylation of L1 was the most critical for VACV entry. Given the significant genetic identity between VACV, monkeypox virus and variola virus L1 homologs, our data provides a basis for further investigating the role of N-myristoylation in poxviral infections as well as the potential of selective NMT inhibitors like IMP-1088 as broad-spectrum poxvirus inhibitors.
Collapse
Affiliation(s)
- Lalita Priyamvada
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Wouter W. Kallemeijn
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Monica Faronato
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Kimberly Wilkins
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Cynthia S. Goldsmith
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Catherine A. Cotter
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Suany Ojeda
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Clinipace, Morrisville, North Carolina, United States of America
| | - Roberto Solari
- National Heart and Lung Institute, Imperial College of Science, Technology & Medicine, London, United Kingdom
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Edward W. Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- * E-mail: (EWT); (PSS)
| | - Panayampalli Subbian Satheshkumar
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail: (EWT); (PSS)
| |
Collapse
|
15
|
Novel Hits for N-Myristoyltransferase Inhibition Discovered by Docking-Based Screening. Molecules 2022; 27:molecules27175478. [PMID: 36080246 PMCID: PMC9457982 DOI: 10.3390/molecules27175478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022] Open
Abstract
N-myristoyltransferase (NMT) inhibitors that were initially developed for treatment of parasitic protozoan infections, including sleeping sickness, malaria, and leismaniasis, have also shown great promise as treatment for oncological diseases. The successful transition of NMT inhibitors, which are currently at preclinical to early clinical stages, toward clinical approval and utilization may depend on the development and design of a diverse set of drug molecules with particular selectivity or pharmacological properties. In our study, we report that a common feature in the inhibitory mechanism of NMT is the formation of a salt bridge between a positively charged chemical group of the small molecule and the negatively charged C-terminus of an enzyme. Based on this observation, we designed a virtual screening protocol to identify novel ligands that mimic this mode of interaction. By screening over 1.1 million structures downloaded from the ZINC database, several hits were identified that displayed NMT inhibitory activity. The stability of the inhibitor-NMT complexes was evaluated by molecular dynamics simulations. The ligands from the stable complexes were tested in vitro and some of them appear to be promising leads for further optimization.
Collapse
|
16
|
Li W, Li F, Zhang X, Lin HK, Xu C. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. Signal Transduct Target Ther 2021; 6:422. [PMID: 34924561 PMCID: PMC8685280 DOI: 10.1038/s41392-021-00825-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022] Open
Abstract
More and more in-depth studies have revealed that the occurrence and development of tumors depend on gene mutation and tumor heterogeneity. The most important manifestation of tumor heterogeneity is the dynamic change of tumor microenvironment (TME) heterogeneity. This depends not only on the tumor cells themselves in the microenvironment where the infiltrating immune cells and matrix together forming an antitumor and/or pro-tumor network. TME has resulted in novel therapeutic interventions as a place beyond tumor beds. The malignant cancer cells, tumor infiltrate immune cells, angiogenic vascular cells, lymphatic endothelial cells, cancer-associated fibroblastic cells, and the released factors including intracellular metabolites, hormonal signals and inflammatory mediators all contribute actively to cancer progression. Protein post-translational modification (PTM) is often regarded as a degradative mechanism in protein destruction or turnover to maintain physiological homeostasis. Advances in quantitative transcriptomics, proteomics, and nuclease-based gene editing are now paving the global ways for exploring PTMs. In this review, we focus on recent developments in the PTM area and speculate on their importance as a critical functional readout for the regulation of TME. A wealth of information has been emerging to prove useful in the search for conventional therapies and the development of global therapeutic strategies.
Collapse
Affiliation(s)
- Wen Li
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China
| | - Feifei Li
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Chuan Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China.
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA.
| |
Collapse
|
17
|
Giglione C, Meinnel T. Mapping the myristoylome through a complete understanding of protein myristoylation biochemistry. Prog Lipid Res 2021; 85:101139. [PMID: 34793862 DOI: 10.1016/j.plipres.2021.101139] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/22/2022]
Abstract
Protein myristoylation is a C14 fatty acid modification found in all living organisms. Myristoylation tags either the N-terminal alpha groups of cysteine or glycine residues through amide bonds or lysine and cysteine side chains directly or indirectly via glycerol thioester and ester linkages. Before transfer to proteins, myristate must be activated into myristoyl coenzyme A in eukaryotes or, in bacteria, to derivatives like phosphatidylethanolamine. Myristate originates through de novo biosynthesis (e.g., plants), from external uptake (e.g., human tissues), or from mixed origins (e.g., unicellular organisms). Myristate usually serves as a molecular anchor, allowing tagged proteins to be targeted to membranes and travel across endomembrane networks in eukaryotes. In this review, we describe and discuss the metabolic origins of protein-bound myristate. We review strategies for in vivo protein labeling that take advantage of click-chemistry with reactive analogs, and we discuss new approaches to the proteome-wide discovery of myristate-containing proteins. The machineries of myristoylation are described, along with how protein targets can be generated directly from translating precursors or from processed proteins. Few myristoylation catalysts are currently described, with only N-myristoyltransferase described to date in eukaryotes. Finally, we describe how viruses and bacteria hijack and exploit myristoylation for their pathogenicity.
Collapse
Affiliation(s)
- Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
18
|
Suazo KF, Park KY, Distefano MD. A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications. Chem Rev 2021; 121:7178-7248. [PMID: 33821625 PMCID: PMC8820976 DOI: 10.1021/acs.chemrev.0c01108] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein lipid modification involves the attachment of hydrophobic groups to proteins via ester, thioester, amide, or thioether linkages. In this review, the specific click chemical reactions that have been employed to study protein lipid modification and their use for specific labeling applications are first described. This is followed by an introduction to the different types of protein lipid modifications that occur in biology. Next, the roles of click chemistry in elucidating specific biological features including the identification of lipid-modified proteins, studies of their regulation, and their role in diseases are presented. A description of the use of protein-lipid modifying enzymes for specific labeling applications including protein immobilization, fluorescent labeling, nanostructure assembly, and the construction of protein-drug conjugates is presented next. Concluding remarks and future directions are presented in the final section.
Collapse
Affiliation(s)
- Kiall F. Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Keun-Young Park
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
19
|
Fhu CW, Ali A. Protein Lipidation by Palmitoylation and Myristoylation in Cancer. Front Cell Dev Biol 2021; 9:673647. [PMID: 34095144 PMCID: PMC8173174 DOI: 10.3389/fcell.2021.673647] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/06/2021] [Indexed: 01/27/2023] Open
Abstract
Posttranslational modification of proteins with lipid moieties is known as protein lipidation. The attachment of a lipid molecule to proteins endows distinct properties, which affect their hydrophobicity, structural stability, localization, trafficking between membrane compartments, and influences its interaction with effectors. Lipids or lipid metabolites can serve as substrates for lipidation, and the availability of these lipid substrates are tightly regulated by cellular metabolism. Palmitoylation and myristoylation represent the two most common protein lipid modifications, and dysregulation of protein lipidation is strongly linked to various diseases such as metabolic syndromes and cancers. In this review, we present recent developments in our understanding on the roles of palmitoylation and myristoylation, and their significance in modulating cancer metabolism toward cancer initiation and progression.
Collapse
Affiliation(s)
- Chee Wai Fhu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Azhar Ali
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| |
Collapse
|
20
|
Jonckheere V, Van Damme P. N-Terminal Acetyltransferase Naa40p Whereabouts Put into N-Terminal Proteoform Perspective. Int J Mol Sci 2021; 22:ijms22073690. [PMID: 33916271 PMCID: PMC8037211 DOI: 10.3390/ijms22073690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 11/21/2022] Open
Abstract
The evolutionary conserved N-alpha acetyltransferase Naa40p is among the most selective N-terminal acetyltransferases (NATs) identified to date. Here we identified a conserved N-terminally truncated Naa40p proteoform named Naa40p25 or short Naa40p (Naa40S). Intriguingly, although upon ectopic expression in yeast, both Naa40p proteoforms were capable of restoring N-terminal acetylation of the characterized yeast histone H2A Naa40p substrate, the Naa40p histone H4 substrate remained N-terminally free in human haploid cells specifically deleted for canonical Naa40p27 or 237 amino acid long Naa40p (Naa40L), but expressing Naa40S. Interestingly, human Naa40L and Naa40S displayed differential expression and subcellular localization patterns by exhibiting a principal nuclear and cytoplasmic localization, respectively. Furthermore, Naa40L was shown to be N-terminally myristoylated and to interact with N-myristoyltransferase 1 (NMT1), implicating NMT1 in steering Naa40L nuclear import. Differential interactomics data obtained by biotin-dependent proximity labeling (BioID) further hints to context-dependent roles of Naa40p proteoforms. More specifically, with Naa40S representing the main co-translationally acting actor, the interactome of Naa40L was enriched for nucleolar proteins implicated in ribosome biogenesis and the assembly of ribonucleoprotein particles, overall indicating a proteoform-specific segregation of previously reported Naa40p activities. Finally, the yeast histone variant H2A.Z and the transcriptionally regulatory protein Lge1 were identified as novel Naa40p substrates, expanding the restricted substrate repertoire of Naa40p with two additional members and further confirming Lge1 as being the first redundant yNatA and yNatD substrate identified to date.
Collapse
|
21
|
Protein N-myristoylation: functions and mechanisms in control of innate immunity. Cell Mol Immunol 2021; 18:878-888. [PMID: 33731917 PMCID: PMC7966921 DOI: 10.1038/s41423-021-00663-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/18/2021] [Indexed: 02/08/2023] Open
Abstract
Protein N-myristoylation is an important fatty acylation catalyzed by N-myristoyltransferases (NMTs), which are ubiquitous enzymes in eukaryotes. Specifically, attachment of a myristoyl group is vital for proteins participating in various biological functions, including signal transduction, cellular localization, and oncogenesis. Recent studies have revealed unexpected mechanisms indicating that protein N-myristoylation is involved in host defense against microbial and viral infections. In this review, we describe the current understanding of protein N-myristoylation (mainly focusing on myristoyl switches) and summarize its crucial roles in regulating innate immune responses, including TLR4-dependent inflammatory responses and demyristoylation-induced innate immunosuppression during Shigella flexneri infection. Furthermore, we examine the role of myristoylation in viral assembly, intracellular host interactions, and viral spread during human immunodeficiency virus-1 (HIV-1) infection. Deeper insight into the relationship between protein N-myristoylation and innate immunity might enable us to clarify the pathogenesis of certain infectious diseases and better harness protein N-myristoylation for new therapeutics.
Collapse
|
22
|
Beauchamp E, Yap MC, Iyer A, Perinpanayagam MA, Gamma JM, Vincent KM, Lakshmanan M, Raju A, Tergaonkar V, Tan SY, Lim ST, Dong WF, Postovit LM, Read KD, Gray DW, Wyatt PG, Mackey JR, Berthiaume LG. Targeting N-myristoylation for therapy of B-cell lymphomas. Nat Commun 2020; 11:5348. [PMID: 33093447 PMCID: PMC7582192 DOI: 10.1038/s41467-020-18998-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 09/18/2020] [Indexed: 01/05/2023] Open
Abstract
Myristoylation, the N-terminal modification of proteins with the fatty acid myristate, is critical for membrane targeting and cell signaling. Because cancer cells often have increased N-myristoyltransferase (NMT) expression, NMTs were proposed as anti-cancer targets. To systematically investigate this, we performed robotic cancer cell line screens and discovered a marked sensitivity of hematological cancer cell lines, including B-cell lymphomas, to the potent pan-NMT inhibitor PCLX-001. PCLX-001 treatment impacts the global myristoylation of lymphoma cell proteins and inhibits early B-cell receptor (BCR) signaling events critical for survival. In addition to abrogating myristoylation of Src family kinases, PCLX-001 also promotes their degradation and, unexpectedly, that of numerous non-myristoylated BCR effectors including c-Myc, NFκB and P-ERK, leading to cancer cell death in vitro and in xenograft models. Because some treated lymphoma patients experience relapse and die, targeting B-cell lymphomas with a NMT inhibitor potentially provides an additional much needed treatment option for lymphoma.
Collapse
Affiliation(s)
- Erwan Beauchamp
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada.,Pacylex Pharmaceuticals Inc., Edmonton, AB, Canada
| | - Megan C Yap
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada.,Pacylex Pharmaceuticals Inc., Edmonton, AB, Canada
| | - Aishwarya Iyer
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada
| | - Maneka A Perinpanayagam
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada.,Pacylex Pharmaceuticals Inc., Edmonton, AB, Canada
| | - Jay M Gamma
- Departments of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada
| | - Krista M Vincent
- Departments of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada
| | - Manikandan Lakshmanan
- Mouse Models of Human Cancer Unit, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Anandhkumar Raju
- Advanced Molecular Pathology Lab, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore, 138673.,Department of Pathology, National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Advanced Molecular Pathology Lab, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore, 138673.,Department of Pathology, National University of Singapore, Singapore, Singapore
| | - Soo Yong Tan
- Advanced Molecular Pathology Lab, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore, 138673.,Department of Pathology, National University of Singapore, Singapore, Singapore
| | - Soon Thye Lim
- Department of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Outram Road, Singapore, 169610, Singapore
| | - Wei-Feng Dong
- Departments of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada
| | - Lynne M Postovit
- Departments of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada
| | - Kevin D Read
- Drug Discovery Unit, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK
| | - David W Gray
- Drug Discovery Unit, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK
| | - Paul G Wyatt
- Drug Discovery Unit, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK
| | - John R Mackey
- Pacylex Pharmaceuticals Inc., Edmonton, AB, Canada.,Departments of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada
| | - Luc G Berthiaume
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada. .,Pacylex Pharmaceuticals Inc., Edmonton, AB, Canada.
| |
Collapse
|
23
|
N-myristoyltransferase-1 is necessary for lysosomal degradation and mTORC1 activation in cancer cells. Sci Rep 2020; 10:11952. [PMID: 32686708 PMCID: PMC7371688 DOI: 10.1038/s41598-020-68615-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/25/2020] [Indexed: 12/31/2022] Open
Abstract
N-myristoyltransferase-1 (NMT1) catalyzes protein myristoylation, a lipid modification that is elevated in cancer cells. NMT1 sustains proliferation and/or survival of cancer cells through mechanisms that are not completely understood. We used genetic and pharmacological inhibition of NMT1 to further dissect the role of this enzyme in cancer, and found an unexpected essential role for NMT1 at promoting lysosomal metabolic functions. Lysosomes mediate enzymatic degradation of vesicle cargo, and also serve as functional platforms for mTORC1 activation. We show that NMT1 is required for both lysosomal functions in cancer cells. Inhibition of NMT1 impaired lysosomal degradation leading to autophagy flux blockade, and simultaneously caused the dissociation of mTOR from the surface of lysosomes leading to decreased mTORC1 activation. The regulation of lysosomal metabolic functions by NMT1 was largely mediated through the lysosomal adaptor LAMTOR1. Accordingly, genetic targeting of LAMTOR1 recapitulated most of the lysosomal defects of targeting NMT1, including defective lysosomal degradation. Pharmacological inhibition of NMT1 reduced tumor growth, and tumors from treated animals had increased apoptosis and displayed markers of lysosomal dysfunction. Our findings suggest that compounds targeting NMT1 may have therapeutic benefit in cancer by preventing mTORC1 activation and simultaneously blocking lysosomal degradation, leading to cancer cell death.
Collapse
|
24
|
Brown JB, Summers HR, Brown LA, Marchant J, Canova PN, O'Hern CT, Abbott ST, Nyaunu C, Maxwell S, Johnson T, Moser MB, Ablan SD, Carter H, Freed EO, Summers MF. Structural and Mechanistic Studies of the Rare Myristoylation Signal of the Feline Immunodeficiency Virus. J Mol Biol 2020; 432:4076-4091. [PMID: 32442659 PMCID: PMC7316625 DOI: 10.1016/j.jmb.2020.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
All retroviruses encode a Gag polyprotein containing an N-terminal matrix domain (MA) that anchors Gag to the plasma membrane and recruits envelope glycoproteins to virus assembly sites. Membrane binding by the Gag protein of HIV-1 and most other lentiviruses is dependent on N-terminal myristoylation of MA by host N-myristoyltransferase enzymes (NMTs), which recognize a six-residue "myristoylation signal" with consensus sequence: M1GXXX[ST]. For unknown reasons, the feline immunodeficiency virus (FIV), which infects both domestic and wild cats, encodes a non-consensus myristoylation sequence not utilized by its host or by other mammals (most commonly: M1GNGQG). To explore the evolutionary basis for this sequence, we compared the structure, dynamics, and myristoylation properties of native FIV MA with a mutant protein containing a consensus feline myristoylation motif (MANOS) and examined the impact of MA mutations on virus assembly and ability to support spreading infection. Unexpectedly, myristoylation efficiency of MANOS in Escherichia coli by co-expressed mammalian NMT was reduced by ~70% compared to the wild-type protein. NMR studies revealed that residues of the N-terminal myristoylation signal are fully exposed and mobile in the native protein but partially sequestered in the MANOS chimera, suggesting that the unusual FIV sequence is conserved to promote exposure and efficient myristoylation of the MA N terminus. In contrast, virus assembly studies indicate that the MANOS mutation does not affect virus assembly, but does prevent virus spread, in feline kidney cells. Our findings indicate that residues of the FIV myristoylation sequence play roles in replication beyond NMT recognition and Gag-membrane binding.
Collapse
Affiliation(s)
- Janae B Brown
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Holly R Summers
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Lola A Brown
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Jan Marchant
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Paige N Canova
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Colin T O'Hern
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Sophia T Abbott
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Constance Nyaunu
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Simon Maxwell
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Talayah Johnson
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Morgan B Moser
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Sherimay D Ablan
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute at Fredrick, Fredrick, MD 21702-1201, USA
| | - Hannah Carter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute at Fredrick, Fredrick, MD 21702-1201, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute at Fredrick, Fredrick, MD 21702-1201, USA.
| | - Michael F Summers
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
25
|
Meinnel T, Dian C, Giglione C. Myristoylation, an Ancient Protein Modification Mirroring Eukaryogenesis and Evolution. Trends Biochem Sci 2020; 45:619-632. [PMID: 32305250 DOI: 10.1016/j.tibs.2020.03.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/02/2020] [Accepted: 03/12/2020] [Indexed: 12/18/2022]
Abstract
N-myristoylation (MYR) is a crucial fatty acylation catalyzed by N-myristoyltransferases (NMTs) that is likely to have appeared over 2 billion years ago. Proteome-wide approaches have now delivered an exhaustive list of substrates undergoing MYR across approximately 2% of any proteome, with constituents, several unexpected, associated with different membrane compartments. A set of <10 proteins conserved in eukaryotes probably represents the original set of N-myristoylated targets, marking major changes occurring throughout eukaryogenesis. Recent findings have revealed unexpected mechanisms and reactivity, suggesting competition with other acylations that are likely to influence cellular homeostasis and the steady state of the modification landscape. Here, we review recent advances in NMT catalysis, substrate specificity, and MYR proteomics, and discuss concepts regarding MYR during evolution.
Collapse
Affiliation(s)
- Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Cyril Dian
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
26
|
Epigenetics, N-myrystoyltransferase-1 and casein kinase-2-alpha modulates the increased replication of HIV-1 CRF02_AG, compared to subtype-B viruses. Sci Rep 2019; 9:10689. [PMID: 31337802 PMCID: PMC6650493 DOI: 10.1038/s41598-019-47069-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/05/2019] [Indexed: 02/04/2023] Open
Abstract
HIV subtypes distribution varies by geographic regions; this is likely associated with differences in viral fitness but the predictors and underlying mechanisms are unknown. Using in-vitro, in-vivo, and ex-vivo approaches, we found significantly higher transactivation and replication of HIV-1-CRF02_AG (prevalent throughout West-Central Africa), compared to subtype-B. While CRF02_AG-infected animals showed higher viremia, subtype-B-infected animals showed significantly more weight loss, lower CD4+ T-cells and lower CD4/CD8 ratios, suggesting that factors other than viremia contribute to immunosuppression and wasting syndrome in HIV/AIDS. Compared to HIV-1-subtype-B and its Tat proteins(Tat.B), HIV-1-CRF02_AG and Tat.AG significantly increased histone acetyl-transferase activity and promoter histones H3 and H4 acetylation. Silencing N-myrystoyltransferase(NMT)-1 and casein-kinase-(CK)-II-alpha prevented Tat.AG- and HIV-1-CRF02_AG-mediated viral transactivation and replication, but not Tat.B- or HIV-1-subtype-B-mediated effects. Tat.AG and HIV-1-CRF02_AG induced the expression of NMT-1 and CKII-alpha in human monocytes and macrophages, but Tat.B and HIV-1-subtype-B had no effect. These data demonstrate that NMT1, CKII-alpha, histone acetylation and histone acetyl-transferase modulate the increased replication of HIV-1-CRF02_AG. These novel findings demonstrate that HIV genotype influence viral replication and provide insights into the molecular mechanisms of differential HIV-1 replication. These studies underline the importance of considering the influence of viral genotypes in HIV/AIDS epidemiology, replication, and eradication strategies.
Collapse
|
27
|
Kallemeijn WW, Lueg GA, Faronato M, Hadavizadeh K, Goya Grocin A, Song OR, Howell M, Calado DP, Tate EW. Validation and Invalidation of Chemical Probes for the Human N-myristoyltransferases. Cell Chem Biol 2019; 26:892-900.e4. [PMID: 31006618 PMCID: PMC6593224 DOI: 10.1016/j.chembiol.2019.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/20/2019] [Accepted: 03/06/2019] [Indexed: 12/15/2022]
Abstract
On-target, cell-active chemical probes are of fundamental importance in chemical and cell biology, whereas poorly characterized probes often lead to invalid conclusions. Human N-myristoyltransferase (NMT) has attracted increasing interest as target in cancer and infectious diseases. Here we report an in-depth comparison of five compounds widely applied as human NMT inhibitors, using a combination of quantitative whole-proteome N-myristoylation profiling, biochemical enzyme assays, cytotoxicity, in-cell protein synthesis, and cell-cycle assays. We find that N-myristoylation is unaffected by 2-hydroxymyristic acid (100 μM), D-NMAPPD (30 μM), or Tris-DBA palladium (10 μM), with the latter compounds causing cytotoxicity through mechanisms unrelated to NMT. In contrast, drug-like inhibitors IMP-366 (DDD85646) and IMP-1088 delivered complete and specific inhibition of N-myristoylation in a range of cell lines at 1 μM and 100 nM, respectively. This study enables the selection of appropriate on-target probes for future studies and suggests the need for reassessment of previous studies that used off-target compounds.
Collapse
Affiliation(s)
- Wouter W Kallemeijn
- Department of Chemistry, Imperial College London, Molecular Research Science Hub, 80 Wood Lane, London W12 0BZ, UK
| | - Gregor A Lueg
- Department of Chemistry, Imperial College London, Molecular Research Science Hub, 80 Wood Lane, London W12 0BZ, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Monica Faronato
- Department of Chemistry, Imperial College London, Molecular Research Science Hub, 80 Wood Lane, London W12 0BZ, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kate Hadavizadeh
- Department of Chemistry, Imperial College London, Molecular Research Science Hub, 80 Wood Lane, London W12 0BZ, UK
| | - Andrea Goya Grocin
- Department of Chemistry, Imperial College London, Molecular Research Science Hub, 80 Wood Lane, London W12 0BZ, UK
| | - Ok-Ryul Song
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Howell
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Dinis P Calado
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Research Science Hub, 80 Wood Lane, London W12 0BZ, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
28
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
29
|
Goya Grocin A, Serwa RA, Morales Sanfrutos J, Ritzefeld M, Tate EW. Whole Proteome Profiling of N-Myristoyltransferase Activity and Inhibition Using Sortase A. Mol Cell Proteomics 2019; 18:115-126. [PMID: 30341083 PMCID: PMC6317481 DOI: 10.1074/mcp.ra118.001043] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/24/2018] [Indexed: 11/30/2022] Open
Abstract
N-myristoylation is the covalent addition of a 14-carbon saturated fatty acid (myristate) to the N-terminal glycine of specific protein substrates by N-myristoyltransferase (NMT) and plays an important role in protein regulation by controlling localization, stability, and interactions. We developed a novel method for whole-proteome profiling of free N-terminal glycines through labeling with S. Aureus sortase A (SrtA) and used it for assessment of target engagement by an NMT inhibitor. Analysis of the SrtA-labeling pattern with an engineered biotinylated depsipeptide SrtA substrate (Biotin-ALPET-Haa, Haa = 2-hydroxyacetamide) enabled whole proteome identification and quantification of de novo generated N-terminal Gly proteins in response to NMT inhibition by nanoLC-MS/MS proteomics, and was confirmed for specific substrates across multiple cell lines by gel-based analyses and ELISA. To achieve optimal signal over background noise we introduce a novel and generally applicable improvement to the biotin/avidin affinity enrichment step by chemically dimethylating commercial NeutrAvidin resin and combining this with two-step LysC on-bead/trypsin off-bead digestion, effectively eliminating avidin-derived tryptic peptides and enhancing identification of enriched peptides. We also report SrtA substrate specificity in whole-cell lysates for the first time, confirming SrtA promiscuity beyond its recognized preference for N-terminal glycine, and its usefulness as a tool for unbiased labeling of N-terminal glycine-containing proteins. Our new methodology is complementary to metabolic tagging strategies, providing the first approach for whole proteome gain-of signal readout for NMT inhibition in complex samples which are not amenable to metabolic tagging.
Collapse
Affiliation(s)
- Andrea Goya Grocin
- From the ‡Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, UK
| | - Remigiusz A Serwa
- From the ‡Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, UK
| | - Julia Morales Sanfrutos
- From the ‡Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, UK
| | - Markus Ritzefeld
- From the ‡Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, UK
| | - Edward W Tate
- From the ‡Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, UK..
| |
Collapse
|
30
|
Jacquier M, Kuriakose S, Bhardwaj A, Zhang Y, Shrivastav A, Portet S, Varma Shrivastav S. Investigation of Novel Regulation of N-myristoyltransferase by Mammalian Target of Rapamycin in Breast Cancer Cells. Sci Rep 2018; 8:12969. [PMID: 30154572 PMCID: PMC6113272 DOI: 10.1038/s41598-018-30447-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/16/2018] [Indexed: 01/02/2023] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Hormone receptor breast cancers are the most common ones and, about 2 out of every 3 cases of breast cancer are estrogen receptor (ER) positive. Selective ER modulators, such as tamoxifen, are the first line of endocrine treatment of breast cancer. Despite the expression of hormone receptors some patients develop tamoxifen resistance and 50% present de novo tamoxifen resistance. Recently, we have demonstrated that activated mammalian target of rapamycin (mTOR) is positively associated with overall survival and recurrence free survival in ER positive breast cancer patients who were later treated with tamoxifen. Since altered expression of protein kinase B (PKB)/Akt in breast cancer cells affect N-myristoyltransferase 1 (NMT1) expression and activity, we investigated whether mTOR, a downstream target of PKB/Akt, regulates NMT1 in ER positive breast cancer cells (MCF7 cells). We inhibited mTOR by treating MCF7 cells with rapamycin and observed that the expression of NMT1 increased with rapamycin treatment over the period of time with a concomitant decrease in mTOR phosphorylation. We further employed mathematical modelling to investigate hitherto not known relationship of mTOR with NMT1. We report here for the first time a collection of models and data validating regulation of NMT1 by mTOR.
Collapse
Affiliation(s)
- Marine Jacquier
- Department of Mathematics, University of Manitoba, Winnipeg, Canada
| | - Shiby Kuriakose
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Apurva Bhardwaj
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Yang Zhang
- Department of Mathematics, University of Manitoba, Winnipeg, Canada
| | - Anuraag Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Canada.,Research Institute of Hematology and Oncology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Stéphanie Portet
- Department of Mathematics, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
31
|
Corbic Ramljak I, Stanger J, Real-Hohn A, Dreier D, Wimmer L, Redlberger-Fritz M, Fischl W, Klingel K, Mihovilovic MD, Blaas D, Kowalski H. Cellular N-myristoyltransferases play a crucial picornavirus genus-specific role in viral assembly, virion maturation, and infectivity. PLoS Pathog 2018; 14:e1007203. [PMID: 30080883 PMCID: PMC6089459 DOI: 10.1371/journal.ppat.1007203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/13/2018] [Accepted: 07/05/2018] [Indexed: 01/06/2023] Open
Abstract
In nearly all picornaviruses the precursor of the smallest capsid protein VP4 undergoes co-translational N-terminal myristoylation by host cell N-myristoyltransferases (NMTs). Curtailing this modification by mutation of the myristoylation signal in poliovirus has been shown to result in severe assembly defects and very little, if any, progeny virus production. Avoiding possible pleiotropic effects of such mutations, we here used pharmacological abrogation of myristoylation with the NMT inhibitor DDD85646, a pyrazole sulfonamide originally developed against trypanosomal NMT. Infection of HeLa cells with coxsackievirus B3 in the presence of this drug decreased VP0 acylation at least 100-fold, resulting in a defect both early and late in virus morphogenesis, which diminishes the yield of viral progeny by about 90%. Virus particles still produced consisted mainly of provirions containing RNA and uncleaved VP0 and, to a substantially lesser extent, of mature virions with cleaved VP0. This indicates an important role of myristoylation in the viral maturation cleavage. By electron microscopy, these RNA-filled particles were indistinguishable from virus produced under control conditions. Nevertheless, their specific infectivity decreased by about five hundred fold. Since host cell-attachment was not markedly impaired, their defect must lie in the inability to transfer their genomic RNA into the cytosol, likely at the level of endosomal pore formation. Strikingly, neither parechoviruses nor kobuviruses are affected by DDD85646, which appears to correlate with their native capsid containing only unprocessed VP0. Individual knockout of the genes encoding the two human NMT isozymes in haploid HAP1 cells further demonstrated the pivotal role for HsNMT1, with little contribution by HsNMT2, in the virus replication cycle. Our results also indicate that inhibition of NMT can possibly be exploited for controlling the infection by a wide spectrum of picornaviruses. Picornaviruses are important human and animal pathogens. Protective vaccines are only available against very few representatives. Furthermore, antiviral drugs have not made it to the market because of serious side effects and viral mutational escape. We here show that pharmacological inhibition of cellular myristoyltransferases severely decreased myristoylation of enteroviral structural proteins as exemplified by coxsackievirus B3, a prominent pathogen causing virus-induced acute and chronic heart disease. The drug DDD85646 substantially diminished virus yield and almost abolished the infectivity of the residual progeny virus. It is highly effective against several other picornaviruses, except those two included in our study that naturally do not process VP0. Our work provides new insight into the role of myristoylation in the life cycle of picornaviruses and identifies the responsible cellular enzyme as a promising candidate for antiviral therapy.
Collapse
Affiliation(s)
- Irena Corbic Ramljak
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Julia Stanger
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Antonio Real-Hohn
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Dominik Dreier
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | - Laurin Wimmer
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | | | - Wolfgang Fischl
- Haplogen GmbH, Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | | | - Dieter Blaas
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Heinrich Kowalski
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
- * E-mail:
| |
Collapse
|
32
|
In silico identification of microRNAs predicted to regulate N-myristoyltransferase and Methionine Aminopeptidase 2 functions in cancer and infectious diseases. PLoS One 2018; 13:e0194612. [PMID: 29579063 PMCID: PMC5868815 DOI: 10.1371/journal.pone.0194612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/06/2018] [Indexed: 01/16/2023] Open
Abstract
Protein myristoylation is a key protein modification carried out by N-Myristoyltransferase (NMT) after Methionine aminopeptidase 2 (MetAP2) removes methionine from the amino-terminus of the target protein. Protein myristoylation by NMT augments several signaling pathways involved in a myriad of cellular processes, including developmental pathways and pathways that when dysregulated lead to cancer or immune dysfunction. The emerging evidence pointing to NMT-mediated myristoylation as a major cellular regulator underscores the importance of understanding the framework of this type of signaling event. Various studies have investigated the role that myristoylation plays in signaling dysfunction by examining differential gene or protein expression between normal and diseased states, such as cancers or following HIV-1 infection, however no study exists that addresses the role of microRNAs (miRNAs) in the regulation of myristoylation. By performing a large scale bioinformatics and functional analysis of the miRNAs that target key genes involved in myristoylation (NMT1, NMT2, MetAP2), we have narrowed down a list of promising candidates for further analysis. Our condensed panel of miRNAs identifies 35 miRNAs linked to cancer, 21 miRNAs linked to developmental and immune signaling pathways, and 14 miRNAs linked to infectious disease (primarily HIV). The miRNAs panel that was analyzed revealed several NMT-targeting mRNAs (messenger RNA) that are implicated in diseases associated with NMT signaling alteration, providing a link between the realms of miRNA and myristoylation signaling. These findings verify miRNA as an additional facet of myristoylation signaling that must be considered to gain a full perspective. This study provides the groundwork for future studies concerning NMT-transcript-binding miRNAs, and will potentially lead to the development of new diagnostic/prognostic biomarkers and therapeutic targets for several important diseases.
Collapse
|
33
|
Li Q, Alsaidan OA, Ma Y, Kim S, Liu J, Albers T, Liu K, Beharry Z, Zhao S, Wang F, Lebedyeva I, Cai H. Pharmacologically targeting the myristoylation of the scaffold protein FRS2α inhibits FGF/FGFR-mediated oncogenic signaling and tumor progression. J Biol Chem 2018. [PMID: 29540482 DOI: 10.1074/jbc.ra117.000940] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Fibroblast growth factor (FGF)/FGF receptor (FGFR) signaling facilitates tumor initiation and progression. Although currently approved inhibitors of FGFR kinase have shown therapeutic benefit in clinical trials, overexpression or mutations of FGFRs eventually confer drug resistance and thereby abrogate the desired activity of kinase inhibitors in many cancer types. In this study, we report that loss of myristoylation of fibroblast growth factor receptor substrate 2 (FRS2α), a scaffold protein essential for FGFR signaling, inhibits FGF/FGFR-mediated oncogenic signaling and FGF10-induced tumorigenesis. Moreover, a previously synthesized myristoyl-CoA analog, B13, which targets the activity of N-myristoyltransferases, suppressed FRS2α myristoylation and decreased the phosphorylation with mild alteration of FRS2α localization at the cell membrane. B13 inhibited oncogenic signaling induced by WT FGFRs or their drug-resistant mutants (FGFRsDRM). B13 alone or in combination with an FGFR inhibitor suppressed FGF-induced WT FGFR- or FGFRDRM-initiated phosphoinositide 3-kinase (PI3K) activity or MAPK signaling, inducing cell cycle arrest and thereby inhibiting cell proliferation and migration in several cancer cell types. Finally, B13 significantly inhibited the growth of xenograft tumors without pathological toxicity to the liver, kidney, or lung in vivo In summary, our study suggests a possible therapeutic approach for inhibiting FGF/FGFR-mediated cancer progression and drug-resistant FGF/FGFR mutants.
Collapse
Affiliation(s)
- Qianjin Li
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and
| | - Omar Awad Alsaidan
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and
| | - Yongjie Ma
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and
| | - Sungjin Kim
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and
| | - Junchen Liu
- the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030
| | | | - Kebin Liu
- Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia 30912, and
| | - Zanna Beharry
- the Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida 33965
| | - Shaying Zhao
- the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Fen Wang
- the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030
| | | | - Houjian Cai
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and
| |
Collapse
|
34
|
Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem Rev 2018; 118:919-988. [PMID: 29292991 DOI: 10.1021/acs.chemrev.6b00750] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells and regulates numerous biological pathways, such as membrane trafficking, protein secretion, signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation, including descriptions of proteins known to be modified and the functions of the modifications, the enzymes that control them, and the tools and technologies developed to study them. We also highlight key questions about protein lipidation that remain to be answered, the challenges associated with answering such questions, and possible solutions to overcome these challenges.
Collapse
Affiliation(s)
- Hong Jiang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiao Chen
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Pornpun Aramsangtienchai
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Zhen Tong
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
35
|
Udenwobele DI, Su RC, Good SV, Ball TB, Varma Shrivastav S, Shrivastav A. Myristoylation: An Important Protein Modification in the Immune Response. Front Immunol 2017; 8:751. [PMID: 28713376 PMCID: PMC5492501 DOI: 10.3389/fimmu.2017.00751] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/13/2017] [Indexed: 01/24/2023] Open
Abstract
Protein N-myristoylation is a cotranslational lipidic modification specific to the alpha-amino group of an N-terminal glycine residue of many eukaryotic and viral proteins. The ubiquitous eukaryotic enzyme, N-myristoyltransferase, catalyzes the myristoylation process. Precisely, attachment of a myristoyl group increases specific protein–protein interactions leading to subcellular localization of myristoylated proteins with its signaling partners. The birth of the field of myristoylation, a little over three decades ago, has led to the understanding of the significance of protein myristoylation in regulating cellular signaling pathways in several biological processes especially in carcinogenesis and more recently immune function. This review discusses myristoylation as a prerequisite step in initiating many immune cell signaling cascades. In particular, we discuss the hitherto unappreciated implication of myristoylation during myelopoiesis, innate immune response, lymphopoiesis for T cells, and the formation of the immunological synapse. Furthermore, we discuss the role of myristoylation in inducing the virological synapse during human immunodeficiency virus infection as well as its clinical implication. This review aims to summarize existing knowledge in the field and to highlight gaps in our understanding of the role of myristoylation in immune function so as to further investigate into the dynamics of myristoylation-dependent immune regulation.
Collapse
Affiliation(s)
- Daniel Ikenna Udenwobele
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Department of Biochemistry, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Ruey-Chyi Su
- JC Wilt Infectious Diseases Research Institute, National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Sara V Good
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Terry Blake Ball
- JC Wilt Infectious Diseases Research Institute, National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Shailly Varma Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,VastCon Inc., Winnipeg, MB, Canada
| | - Anuraag Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
36
|
Chen JJ, Boehning D. Protein Lipidation As a Regulator of Apoptotic Calcium Release: Relevance to Cancer. Front Oncol 2017; 7:138. [PMID: 28706877 PMCID: PMC5489567 DOI: 10.3389/fonc.2017.00138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/16/2017] [Indexed: 12/16/2022] Open
Abstract
Calcium is a critical regulator of cell death pathways. One of the most proximal events leading to cell death is activation of plasma membrane and endoplasmic reticulum-resident calcium channels. A large body of evidence indicates that defects in this pathway contribute to cancer development. Although we have a thorough understanding of how downstream elevations in cytosolic and mitochondrial calcium contribute to cell death, it is much less clear how calcium channels are activated upstream of the apoptotic stimulus. Recently, it has been shown that protein lipidation is a potent regulator of apoptotic signaling. Although classically thought of as a static modification, rapid and reversible protein acylation has emerged as a new signaling paradigm relevant to many pathways, including calcium release and cell death. In this review, we will discuss the role of protein lipidation in regulating apoptotic calcium signaling with direct therapeutic relevance to cancer.
Collapse
Affiliation(s)
- Jessica J Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, United States
| | - Darren Boehning
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, United States
| |
Collapse
|
37
|
Audagnotto M, Dal Peraro M. Protein post-translational modifications: In silico prediction tools and molecular modeling. Comput Struct Biotechnol J 2017; 15:307-319. [PMID: 28458782 PMCID: PMC5397102 DOI: 10.1016/j.csbj.2017.03.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 02/09/2023] Open
Abstract
Post-translational modifications (PTMs) occur in almost all proteins and play an important role in numerous biological processes by significantly affecting proteins' structure and dynamics. Several computational approaches have been developed to study PTMs (e.g., phosphorylation, sumoylation or palmitoylation) showing the importance of these techniques in predicting modified sites that can be further investigated with experimental approaches. In this review, we summarize some of the available online platforms and their contribution in the study of PTMs. Moreover, we discuss the emerging capabilities of molecular modeling and simulation that are able to complement these bioinformatics methods, providing deeper molecular insights into the biological function of post-translational modified proteins.
Collapse
Affiliation(s)
- Martina Audagnotto
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
38
|
Heme Oxygenase 2 Binds Myristate to Regulate Retrovirus Assembly and TLR4 Signaling. Cell Host Microbe 2017; 21:220-230. [PMID: 28132836 DOI: 10.1016/j.chom.2017.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/12/2016] [Accepted: 12/30/2016] [Indexed: 01/09/2023]
Abstract
N-myristoylation is the covalent attachment of myristic acid to the N terminus of proteins in eukaryotic cells. The matrix domain (MA) of HIV-1 Gag protein is N-myristoylated and plays an important role in virus budding. In screening for host factors that interact with HIV-1 MA, we found that heme oxygenase (HO-2) specifically binds the myristate moiety of Gag. HO-2 was also found to bind TRAM, an adaptor protein for Toll-like receptor 4 (TLR4), and thereby impact both virus replication and cellular inflammatory responses. A crystal structure revealed that HO-2 binds myristate via a hydrophobic channel adjacent to the heme-binding pocket. Inhibiting HO-2 expression, or blocking myristate binding with a heme analog, led to marked increases in virus production. HO-2 deficiency caused hyperresponsive TRAM-dependent TLR4 signaling and hypersensitivity to the TLR4 ligand lipopolysaccharide. Thus, HO-2 is a cellular myristate-binding protein that negatively regulates both virus replication and host inflammatory responses.
Collapse
|
39
|
Hentschel A, Zahedi RP, Ahrends R. Protein lipid modifications--More than just a greasy ballast. Proteomics 2016; 16:759-82. [PMID: 26683279 DOI: 10.1002/pmic.201500353] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/24/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022]
Abstract
Covalent lipid modifications of proteins are crucial for regulation of cellular plasticity, since they affect the chemical and physical properties and therefore protein activity, localization, and stability. Most recently, lipid modifications on proteins are increasingly attracting important regulatory entities in diverse signaling events and diseases. In all cases, the lipid moiety of modified proteins is essential to allow water-soluble proteins to strongly interact with membranes or to induce structural changes in proteins that are critical for elemental processes such as respiration, transport, signal transduction, and motility. Until now, roughly about ten lipid modifications on different amino acid residues are described at the UniProtKB database and even well-known modifications are underrepresented. Thus, it is of fundamental importance to develop a better understanding of this emerging and so far under-investigated type of protein modification. Therefore, this review aims to give a comprehensive and detailed overview about enzymatic and nonenzymatic lipidation events, will report their role in cellular biology, discuss their relevancy for diseases, and describe so far available bioanalytical strategies to analyze this highly challenging type of modification.
Collapse
Affiliation(s)
- Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| |
Collapse
|
40
|
Thinon E, Morales-Sanfrutos J, Mann DJ, Tate EW. N-Myristoyltransferase Inhibition Induces ER-Stress, Cell Cycle Arrest, and Apoptosis in Cancer Cells. ACS Chem Biol 2016; 11:2165-76. [PMID: 27267252 PMCID: PMC5077176 DOI: 10.1021/acschembio.6b00371] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/24/2016] [Indexed: 12/16/2022]
Abstract
N-Myristoyltransferase (NMT) covalently attaches a C14 fatty acid to the N-terminal glycine of proteins and has been proposed as a therapeutic target in cancer. We have recently shown that selective NMT inhibition leads to dose-responsive loss of N-myristoylation on more than 100 protein targets in cells, and cytotoxicity in cancer cells. N-myristoylation lies upstream of multiple pro-proliferative and oncogenic pathways, but to date the complex substrate specificity of NMT has limited determination of which diseases are most likely to respond to a selective NMT inhibitor. We describe here the phenotype of NMT inhibition in HeLa cells and show that cells die through apoptosis following or concurrent with accumulation in the G1 phase. We used quantitative proteomics to map protein expression changes for more than 2700 proteins in response to treatment with an NMT inhibitor in HeLa cells and observed down-regulation of proteins involved in cell cycle regulation and up-regulation of proteins involved in the endoplasmic reticulum stress and unfolded protein response, with similar results in breast (MCF-7, MDA-MB-231) and colon (HCT116) cancer cell lines. This study describes the cellular response to NMT inhibition at the proteome level and provides a starting point for selective targeting of specific diseases with NMT inhibitors, potentially in combination with other targeted agents.
Collapse
Affiliation(s)
- Emmanuelle Thinon
- Department
of Chemistry, Imperial College London, Exhibition Road, London SW72AZ, United Kingdom
- Department
of Life Sciences, Imperial College London, Exhibition Road, London SW72AZ, United Kingdom
| | - Julia Morales-Sanfrutos
- Department
of Chemistry, Imperial College London, Exhibition Road, London SW72AZ, United Kingdom
| | - David J. Mann
- Department
of Life Sciences, Imperial College London, Exhibition Road, London SW72AZ, United Kingdom
- Institute
of Chemical Biology, Department of Chemistry, Imperial College London, Exhibition Road, London SW72AZ, United Kingdom
| | - Edward W. Tate
- Department
of Chemistry, Imperial College London, Exhibition Road, London SW72AZ, United Kingdom
- Institute
of Chemical Biology, Department of Chemistry, Imperial College London, Exhibition Road, London SW72AZ, United Kingdom
| |
Collapse
|
41
|
Resh MD. Fatty acylation of proteins: The long and the short of it. Prog Lipid Res 2016; 63:120-31. [PMID: 27233110 DOI: 10.1016/j.plipres.2016.05.002] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/19/2016] [Accepted: 05/21/2016] [Indexed: 12/22/2022]
Abstract
Long, short and medium chain fatty acids are covalently attached to hundreds of proteins. Each fatty acid confers distinct biochemical properties, enabling fatty acylation to regulate intracellular trafficking, subcellular localization, protein-protein and protein-lipid interactions. Myristate and palmitate represent the most common fatty acid modifying groups. New insights into how fatty acylation reactions are catalyzed, and how fatty acylation regulates protein structure and function continue to emerge. Myristate is typically linked to an N-terminal glycine, but recent studies reveal that lysines can also be myristoylated. Enzymes that remove N-terminal myristoyl-glycine or myristate from lysines have now been identified. DHHC proteins catalyze S-palmitoylation, but the mechanisms that regulate substrate recognition by individual DHHC family members remain to be determined. New studies continue to reveal thioesterases that remove palmitate from S-acylated proteins. Another area of rapid expansion is fatty acylation of the secreted proteins hedgehog, Wnt and Ghrelin, by Hhat, Porcupine and GOAT, respectively. Understanding how these membrane bound O-acyl transferases recognize their protein and fatty acyl CoA substrates is an active area of investigation, and is punctuated by the finding that these enzymes are potential drug targets in human diseases.
Collapse
Affiliation(s)
- Marilyn D Resh
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 143, New York, NY 10075, United States.
| |
Collapse
|
42
|
Jung S, Kwon I. Expansion of bioorthogonal chemistries towards site-specific polymer–protein conjugation. Polym Chem 2016. [DOI: 10.1039/c6py00856a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bioorthogonal chemistries have been used to achieve polymer-protein conjugation with the retained critical properties.
Collapse
Affiliation(s)
- Secheon Jung
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Inchan Kwon
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
- Department of Chemical Engineering
| |
Collapse
|
43
|
Rampoldi F, Bonrouhi M, Boehm ME, Lehmann WD, Popovic ZV, Kaden S, Federico G, Brunk F, Gröne HJ, Porubsky S. Immunosuppression and Aberrant T Cell Development in the Absence of N-Myristoylation. THE JOURNAL OF IMMUNOLOGY 2015; 195:4228-43. [DOI: 10.4049/jimmunol.1500622] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/01/2015] [Indexed: 01/01/2023]
|
44
|
Legrand P, Rioux V. Specific roles of saturated fatty acids: Beyond epidemiological data. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400514] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Philippe Legrand
- Laboratoire de Biochimie-Nutrition Humaine; Agrocampus Ouest; Rennes France
| | - Vincent Rioux
- Laboratoire de Biochimie-Nutrition Humaine; Agrocampus Ouest; Rennes France
| |
Collapse
|
45
|
Varland S, Osberg C, Arnesen T. N-terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects. Proteomics 2015; 15:2385-401. [PMID: 25914051 PMCID: PMC4692089 DOI: 10.1002/pmic.201400619] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/04/2015] [Accepted: 04/21/2015] [Indexed: 01/18/2023]
Abstract
The vast majority of eukaryotic proteins are N-terminally modified by one or more processing enzymes. Enzymes acting on the very first amino acid of a polypeptide include different peptidases, transferases, and ligases. Methionine aminopeptidases excise the initiator methionine leaving the nascent polypeptide with a newly exposed amino acid that may be further modified. N-terminal acetyl-, methyl-, myristoyl-, and palmitoyltransferases may attach an acetyl, methyl, myristoyl, or palmitoyl group, respectively, to the α-amino group of the target protein N-terminus. With the action of ubiquitin ligases, one or several ubiquitin molecules are transferred, and hence, constitute the N-terminal modification. Modifications at protein N-termini represent an important contribution to proteomic diversity and complexity, and are essential for protein regulation and cellular signaling. Consequently, dysregulation of the N-terminal modifying enzymes is implicated in human diseases. We here review the different protein N-terminal modifications occurring co- or post-translationally with emphasis on the responsible enzymes and their substrate specificities.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Camilla Osberg
- Department of Molecular Biology, University of Bergen, Bergen, Norway.,Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Thomas Arnesen
- Department of Molecular Biology, University of Bergen, Bergen, Norway.,Department of Surgery, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
46
|
Ohta H, Takamune N, Kishimoto N, Shoji S, Misumi S. N-Myristoyltransferase 1 enhances human immunodeficiency virus replication through regulation of viral RNA expression level. Biochem Biophys Res Commun 2015; 463:988-93. [PMID: 26074144 DOI: 10.1016/j.bbrc.2015.06.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/07/2015] [Indexed: 12/12/2022]
Abstract
N-myristoyltransferase (NMT) catalyzes protein N-myristoylation. It has been suggested that the isozyme NMT1 enhances the replication of human immunodeficiency virus type-1 (HIV-1). However, the details of the mechanism by which NMT1 does so remain unclear. In this study, we investigated NMT1-binding proteins by co-immunoprecipitation and mass spectrometry. As a result, several RNA-binding proteins including ribosomal proteins, NMT isozymes, and hnRNP A2/B1 were observed to bind to NMT1, as mediated mainly by RNA. Interestingly, only hRNP A2/B1 was found to associate with NMT1 without mediation by RNA. It was also suggested that hnRNP A2/B1 contributes to the formation of complexes of high molecular weights involving NMT1. Knockdown of hnRNP A2/B1 resulted in the enhancement of viral replication with an increase in the expression level of viral RNA in HIV-1-producing cells. On the other hand, knockdown of NMT1 resulted in the attenuation of viral replication with the decrease in the expression level of viral RNA in HIV-1-producing cells. Additionally, overexpression of NMT1 induced the enhancement of viral replication with the increase in the expression level of the viral RNA. These findings suggest that both NMT1 and hnRNP A2/B1 take part in the regulation of HIV-1 RNA expression through their mutual opposite effects on the viral RNA expression in HIV-1-producing cells.
Collapse
Affiliation(s)
- Hikaru Ohta
- Department of Environmental and Molecular Health Sciences, Faculty of Life Sciences, Kumamoto University, 5-1Oe-Honmachi, Chuo-Ku, Kumamoto 8620973, Japan
| | - Nobutoki Takamune
- Innovative Collaboration Organization, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto 8608555, Japan; Department of Environmental and Molecular Health Sciences, Faculty of Life Sciences, Kumamoto University, 5-1Oe-Honmachi, Chuo-Ku, Kumamoto 8620973, Japan.
| | - Naoki Kishimoto
- Department of Environmental and Molecular Health Sciences, Faculty of Life Sciences, Kumamoto University, 5-1Oe-Honmachi, Chuo-Ku, Kumamoto 8620973, Japan
| | - Shozo Shoji
- Department of Environmental and Molecular Health Sciences, Faculty of Life Sciences, Kumamoto University, 5-1Oe-Honmachi, Chuo-Ku, Kumamoto 8620973, Japan
| | - Shogo Misumi
- Department of Environmental and Molecular Health Sciences, Faculty of Life Sciences, Kumamoto University, 5-1Oe-Honmachi, Chuo-Ku, Kumamoto 8620973, Japan
| |
Collapse
|
47
|
Kumar S, Sharma RK. N-terminal region of the catalytic domain of human N-myristoyltransferase 1 acts as an inhibitory module. PLoS One 2015; 10:e0127661. [PMID: 26000639 PMCID: PMC4441422 DOI: 10.1371/journal.pone.0127661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/17/2015] [Indexed: 11/18/2022] Open
Abstract
N-myristoyltransferase (NMT) plays critical roles in the modulation of various signaling molecules, however, the regulation of this enzyme in diverse cellular states remains poorly understood. We provide experimental evidence to show for the first time that for the isoform 1 of human NMT (hNMT1), the regulatory roles extend into the catalytic core. In our present study, we expressed, purified, and characterized a truncation mutant devoid of 28 N-terminal amino acids from the catalytic module (Δ28-hNMT1s) and compared its properties to the full-length catalytic domain of hNMT1. The deletion of the N-terminal peptide had no effect on the enzyme stability. Our findings suggest that the N-terminal region in the catalytic module of hNMT1 functions serves as a regulatory control element. The observations of an ~3 fold increase in enzymatic efficiency following removal of the N-terminal peptide of hNMT1s indicates that N-terminal amino acids acts as an inhibitory segment and negatively regulate the enzyme activity. Our findings that the N-terminal region confers control over activity, taken together with the earlier observations that the N-terminal of hNMT1 is differentially processed in diverse cellular states, suggests that the proteolytic processing of the peptide segment containing the inhibitory region provides a molecular mechanism for physiological up-regulation of myristoyltransferase activity.
Collapse
Affiliation(s)
- Sujeet Kumar
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rajendra K. Sharma
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail: (RKS)
| |
Collapse
|
48
|
Recent Advances in The Discovery ofN-Myristoyltransferase Inhibitors. ChemMedChem 2014; 9:2425-37. [DOI: 10.1002/cmdc.201402174] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/17/2014] [Indexed: 01/08/2023]
|
49
|
Goldston AM, Sharma AI, Paul KS, Engman DM. Acylation in trypanosomatids: an essential process and potential drug target. Trends Parasitol 2014; 30:350-60. [PMID: 24954795 DOI: 10.1016/j.pt.2014.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/06/2014] [Accepted: 05/06/2014] [Indexed: 12/11/2022]
Abstract
Fatty acylation--the addition of fatty acid moieties such as myristate and palmitate to proteins--is essential for the survival, growth, and infectivity of the trypanosomatids: Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. Myristoylation and palmitoylation are critical for parasite growth, targeting and localization, and the intrinsic function of some proteins. The trypanosomatids possess a single N-myristoyltransferase (NMT) and multiple palmitoyl acyltransferases, and these enzymes and their protein targets are only now being characterized. Global inhibition of either process leads to cell death in trypanosomatids, and genetic ablation of NMT compromises virulence. Moreover, NMT inhibitors effectively cure T. brucei infection in rodents. Thus, protein acylation represents an attractive target for the development of new trypanocidal drugs.
Collapse
Affiliation(s)
- Amanda M Goldston
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - Aabha I Sharma
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - Kimberly S Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - David M Engman
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
50
|
An improved method and cost effective strategy for soluble expression and purification of human N-myristoyltransferase 1 in E. coli. Mol Cell Biochem 2014; 392:175-86. [PMID: 24668448 DOI: 10.1007/s11010-014-2029-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/07/2014] [Indexed: 10/25/2022]
Abstract
N-myristoyltransferase (NMT) is an indispensible enzyme, which exists as two isoforms (NMT1 and NMT2) in humans and has proven roles in development of cancerous states. It is thus a target for novel anti-cancer drug design, but understanding of the biochemical and functional differences of these isozymes is not fully deciphered. A soluble expression under the T7 promoter for human NMT1 was achieved in E. coli BL21 (DE3) cells, devoid of any isopropyl β-D-1-thiogalactopyranoside-based induction. The identity of expressed protein was confirmed by matrix-assisted laser desorption ionization mass spectrometry peptide-fingerprint analysis and a two-step purification protocol yielded homogeneous enzyme. The intact mass of the purified protein was verified by electrospray ionization mass spectrometry and found to be in agreement with the theoretical mass (48.141 vs. 48.140 kDa). The fluorescence spectrophotometric analyses of the ligand binding and enzyme activity demonstrated that the recombinant form is functional. The yield of purified protein was ~8-10 mg/L culture (batch to batch variation) with a specific activity value of 18,500 ± 513 U/mg of protein under the experimental conditions used. The final verification of the myristoylation was demonstrated by mass spectrometry analysis of reaction product. The described approach could be readily adapted for production of human NMT1, with high yields of pure enzyme preparations, which should aid in downstream applications involving inhibitor design and structure-function studies of NMT's.
Collapse
|