1
|
Abstract
Single-pass transmembrane receptors (SPTMRs) represent a diverse group of integral membrane proteins that are involved in many essential cellular processes, including signal transduction, cell adhesion, and transmembrane transport of materials. Dysregulation of the SPTMRs is linked with many human diseases. Despite extensive efforts in past decades, the mechanisms of action of the SPTMRs remain incompletely understood. One major hurdle is the lack of structures of the full-length SPTMRs in different functional states. Such structural information is difficult to obtain by traditional structural biology methods such as X-ray crystallography and nuclear magnetic resonance (NMR). The recent rapid development of single-particle cryo-electron microscopy (cryo-EM) has led to an exponential surge in the number of high-resolution structures of integral membrane proteins, including SPTMRs. Cryo-EM structures of SPTMRs solved in the past few years have tremendously improved our understanding of how SPTMRs function. In this review, we will highlight these progresses in the structural studies of SPTMRs by single-particle cryo-EM, analyze important structural details of each protein involved, and discuss their implications on the underlying mechanisms. Finally, we also briefly discuss remaining challenges and exciting opportunities in the field.
Collapse
Affiliation(s)
- Kai Cai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
| | - Xuewu Zhang
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xuewu Zhang, Department of pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Xiao-chen Bai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xiao-chen Bai, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
2
|
Pérez Y, Bonet R, Corredor M, Domingo C, Moure A, Messeguer À, Bujons J, Alfonso I. Semaphorin 3A-Glycosaminoglycans Interaction as Therapeutic Target for Axonal Regeneration. Pharmaceuticals (Basel) 2021; 14:ph14090906. [PMID: 34577606 PMCID: PMC8465649 DOI: 10.3390/ph14090906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Semaphorin 3A (Sema3A) is a cell-secreted protein that participates in the axonal guidance pathways. Sema3A acts as a canonical repulsive axon guidance molecule, inhibiting CNS regenerative axonal growth and propagation. Therefore, interfering with Sema3A signaling is proposed as a therapeutic target for achieving functional recovery after CNS injuries. It has been shown that Sema3A adheres to the proteoglycan component of the extracellular matrix (ECM) and selectively binds to heparin and chondroitin sulfate-E (CS-E) glycosaminoglycans (GAGs). We hypothesize that the biologically relevant interaction between Sema3A and GAGs takes place at Sema3A C-terminal polybasic region (SCT). The aims of this study were to characterize the interaction of the whole Sema3A C-terminal polybasic region (Sema3A 725–771) with GAGs and to investigate the disruption of this interaction by small molecules. Recombinant Sema3A basic domain was produced and we used a combination of biophysical techniques (NMR, SPR, and heparin affinity chromatography) to gain insight into the interaction of the Sema3A C-terminal domain with GAGs. The results demonstrate that SCT is an intrinsically disordered region, which confirms that SCT binds to GAGs and helps to identify the specific residues involved in the interaction. NMR studies, supported by molecular dynamics simulations, show that a new peptoid molecule (CSIC02) may disrupt the interaction between SCT and heparin. Our structural study paves the way toward the design of new molecules targeting these protein–GAG interactions with potential therapeutic applications.
Collapse
Affiliation(s)
- Yolanda Pérez
- NMR Facility, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
- Correspondence: (Y.P.); (I.A.)
| | - Roman Bonet
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Miriam Corredor
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Cecilia Domingo
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Alejandra Moure
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Àngel Messeguer
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Jordi Bujons
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Ignacio Alfonso
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
- Correspondence: (Y.P.); (I.A.)
| |
Collapse
|
3
|
Christie SM, Hao J, Tracy E, Buck M, Yu JS, Smith AW. Interactions between semaphorins and plexin-neuropilin receptor complexes in the membranes of live cells. J Biol Chem 2021; 297:100965. [PMID: 34270956 PMCID: PMC8350011 DOI: 10.1016/j.jbc.2021.100965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022] Open
Abstract
Signaling of semaphorin ligands via their plexin-neuropilin receptors is involved in tissue patterning in the developing embryo. These proteins play roles in cell migration and adhesion but are also important in disease etiology, including in cancer angiogenesis and metastasis. While some structures of the soluble domains of these receptors have been determined, the conformations of the full-length receptor complexes are just beginning to be elucidated, especially within the context of the plasma membrane. Pulsed-interleaved excitation fluorescence cross-correlation spectroscopy allows direct insight into the formation of protein-protein interactions in the membranes of live cells. Here, we investigated the homodimerization of neuropilin-1 (Nrp1), plexin A2, plexin A4, and plexin D1 using pulsed-interleaved excitation fluorescence cross-correlation spectroscopy. Consistent with previous studies, we found that Nrp1, plexin A2, and plexin A4 are present as dimers in the absence of exogenous ligand. Plexin D1, on the other hand, was monomeric under similar conditions, which had not been previously reported. We also found that plexin A2 and A4 assemble into a heteromeric complex. Stimulation with semaphorin 3A or semaphorin 3C neither disrupts nor enhances the dimerization of the receptors when expressed alone, suggesting that activation involves a conformational change rather than a shift in the monomer-dimer equilibrium. However, upon stimulation with semaphorin 3C, plexin D1 and Nrp1 form a heteromeric complex. This analysis of interactions provides a complementary approach to the existing structural and biochemical data that will aid in the development of new therapeutic strategies to target these receptors in cancer.
Collapse
Affiliation(s)
| | - Jing Hao
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Erin Tracy
- Department of Chemistry, University of Akron, Akron, Ohio, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jennifer S Yu
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA; Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA; Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Adam W Smith
- Department of Chemistry, University of Akron, Akron, Ohio, USA.
| |
Collapse
|
4
|
Lu D, Shang G, He X, Bai XC, Zhang X. Architecture of the Sema3A/PlexinA4/Neuropilin tripartite complex. Nat Commun 2021; 12:3172. [PMID: 34039996 PMCID: PMC8155012 DOI: 10.1038/s41467-021-23541-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
Secreted class 3 semaphorins (Sema3s) form tripartite complexes with the plexin receptor and neuropilin coreceptor, which are both transmembrane proteins that together mediate semaphorin signal for neuronal axon guidance and other processes. Despite extensive investigations, the overall architecture of and the molecular interactions in the Sema3/plexin/neuropilin complex are incompletely understood. Here we present the cryo-EM structure of a near intact extracellular region complex of Sema3A, PlexinA4 and Neuropilin 1 (Nrp1) at 3.7 Å resolution. The structure shows a large symmetric 2:2:2 assembly in which each subunit makes multiple interactions with others. The two PlexinA4 molecules in the complex do not interact directly, but their membrane proximal regions are close to each other and poised to promote the formation of the intracellular active dimer for signaling. The structure reveals a previously unknown interface between the a2b1b2 module in Nrp1 and the Sema domain of Sema3A. This interaction places the a2b1b2 module at the top of the complex, far away from the plasma membrane where the transmembrane regions of Nrp1 and PlexinA4 embed. As a result, the region following the a2b1b2 module in Nrp1 must span a large distance to allow the connection to the transmembrane region, suggesting an essential role for the long non-conserved linkers and the MAM domain in neuropilin in the semaphorin/plexin/neuropilin complex.
Collapse
Affiliation(s)
- Defen Lu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guijun Shang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaojing He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Higgins DMO, Caliva M, Schroeder M, Carlson B, Upadhyayula PS, Milligan BD, Cheshier SH, Weissman IL, Sarkaria JN, Meyer FB, Henley JR. Semaphorin 3A mediated brain tumor stem cell proliferation and invasion in EGFRviii mutant gliomas. BMC Cancer 2020; 20:1213. [PMID: 33302912 PMCID: PMC7727139 DOI: 10.1186/s12885-020-07694-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/26/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults, with a median survival of approximately 15 months. Semaphorin 3A (Sema3A), known for its axon guidance and antiangiogenic properties, has been implicated in GBM growth. We hypothesized that Sema3A directly inhibits brain tumor stem cell (BTSC) proliferation and drives invasion via Neuropilin 1 (Nrp1) and Plexin A1 (PlxnA1) receptors. METHODS GBM BTSC cell lines were assayed by immunostaining and PCR for levels of Semaphorin 3A (Sema3A) and its receptors Nrp1 and PlxnA1. Quantitative BrdU, cell cycle and propidium iodide labeling assays were performed following exogenous Sema3A treatment. Quantitative functional 2-D and 3-D invasion assays along with shRNA lentiviral knockdown of Nrp1 and PlxnA1 are also shown. In vivo flank studies comparing tumor growth of knockdown versus control BTSCs were performed. Statistics were performed using GraphPad Prism v7. RESULTS Immunostaining and PCR analysis revealed that BTSCs highly express Sema3A and its receptors Nrp1 and PlxnA1, with expression of Nrp1 in the CD133 positive BTSCs, and absence in differentiated tumor cells. Treatment with exogenous Sema3A in quantitative BrdU, cell cycle, and propidium iodide labeling assays demonstrated that Sema3A significantly inhibited BTSC proliferation without inducing cell death. Quantitative functional 2-D and 3-D invasion assays showed that treatment with Sema3A resulted in increased invasion. Using shRNA lentiviruses, knockdown of either NRP1 or PlxnA1 receptors abrogated Sema3A antiproliferative and pro-invasive effects. Interestingly, loss of the receptors mimicked Sema3A effects, inhibiting BTSC proliferation and driving invasion. Furthermore, in vivo studies comparing tumor growth of knockdown and control infected BTSCs implanted into the flanks of nude mice confirmed the decrease in proliferation with receptor KD. CONCLUSIONS These findings demonstrate the importance of Sema3A signaling in GBM BTSC proliferation and invasion, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Dominique M O Higgins
- Mayo Clinic: College of Medicine, Rochester, MN, 55905, USA.
- Department of Neurosurgery, Columbia University Medical Center, 710 W. 168th Street, New York, NY, 10032, USA.
| | - Maisel Caliva
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Currently: Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, HI, 96813, USA
| | - Mark Schroeder
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Brett Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Pavan S Upadhyayula
- Department of Neurosurgery, Columbia University Medical Center, 710 W. 168th Street, New York, NY, 10032, USA
| | - Brian D Milligan
- Mayo Clinic: College of Medicine, Rochester, MN, 55905, USA
- Currently: Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Samuel H Cheshier
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84113, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Fredric B Meyer
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - John R Henley
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
6
|
Rozbesky D, Verhagen MG, Karia D, Nagy GN, Alvarez L, Robinson RA, Harlos K, Padilla‐Parra S, Pasterkamp RJ, Jones EY. Structural basis of semaphorin-plexin cis interaction. EMBO J 2020; 39:e102926. [PMID: 32500924 PMCID: PMC7327498 DOI: 10.15252/embj.2019102926] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 01/05/2023] Open
Abstract
Semaphorin ligands interact with plexin receptors to contribute to functions in the development of myriad tissues including neurite guidance and synaptic organisation within the nervous system. Cell-attached semaphorins interact in trans with plexins on opposing cells, but also in cis on the same cell. The interplay between trans and cis interactions is crucial for the regulated development of complex neural circuitry, but the underlying molecular mechanisms are uncharacterised. We have discovered a distinct mode of interaction through which the Drosophila semaphorin Sema1b and mouse Sema6A mediate binding in cis to their cognate plexin receptors. Our high-resolution structural, biophysical and in vitro analyses demonstrate that monomeric semaphorins can mediate a distinctive plexin binding mode. These findings suggest the interplay between monomeric vs dimeric states has a hereto unappreciated role in semaphorin biology, providing a mechanism by which Sema6s may balance cis and trans functionalities.
Collapse
Affiliation(s)
- Daniel Rozbesky
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Marieke G Verhagen
- Department of Translational NeuroscienceUMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Dimple Karia
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Gergely N Nagy
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Luis Alvarez
- Cellular ImagingWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Ross A Robinson
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Present address:
Immunocore LtdAbingdonUK
| | - Karl Harlos
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Sergi Padilla‐Parra
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Cellular ImagingWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Present address:
Department of Infectious DiseasesFaculty of Life Sciences & MedicineKing's College LondonLondonUK
- Present address:
Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| | - R Jeroen Pasterkamp
- Department of Translational NeuroscienceUMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Edith Yvonne Jones
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
7
|
Rozbesky D, Robinson RA, Jain V, Renner M, Malinauskas T, Harlos K, Siebold C, Jones EY. Diversity of oligomerization in Drosophila semaphorins suggests a mechanism of functional fine-tuning. Nat Commun 2019; 10:3691. [PMID: 31417095 PMCID: PMC6695400 DOI: 10.1038/s41467-019-11683-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 07/30/2019] [Indexed: 12/30/2022] Open
Abstract
Semaphorin ligands and their plexin receptors are one of the major cell guidance factors that trigger localised changes in the cytoskeleton. Binding of semaphorin homodimer to plexin brings two plexins in close proximity which is a prerequisite for plexin signalling. This model appears to be too simplistic to explain the complexity and functional versatility of these molecules. Here, we determine crystal structures for all members of Drosophila class 1 and 2 semaphorins. Unlike previously reported semaphorin structures, Sema1a, Sema2a and Sema2b show stabilisation of sema domain dimer formation via a disulfide bond. Unexpectedly, our structural and biophysical data show Sema1b is a monomer suggesting that semaphorin function may not be restricted to dimers. We demonstrate that semaphorins can form heterodimers with members of the same semaphorin class. This heterodimerization provides a potential mechanism for cross-talk between different plexins and co-receptors to allow fine-tuning of cell signalling.
Collapse
Affiliation(s)
- Daniel Rozbesky
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| | - Ross A Robinson
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
- Immunocore Ltd, Milton Park, Abingdon, OX14 4RY, UK
| | - Vitul Jain
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Max Renner
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
8
|
St Clair RM, Dumas CM, Williams KS, Goldstein MT, Stant EA, Ebert AM, Ballif BA. PKC induces release of a functional ectodomain of the guidance cue semaphorin6A. FEBS Lett 2019; 593:3015-3028. [PMID: 31378926 DOI: 10.1002/1873-3468.13561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 01/06/2023]
Abstract
Semaphorins (Semas) are a family of secreted and transmembrane proteins that play critical roles in development. Interestingly, several vertebrate transmembrane Sema classes are capable of producing functional soluble ectodomains. However, little is known of soluble Sema6 ectodomains in the nervous system. Herein, we show that the soluble Sema6A ectodomain, sSema6A, exhibits natural and protein kinase C (PKC)-induced release. We show that PKC mediates Sema6A phosphorylation at specific sites and while this phosphorylation is not the primary mechanism regulating sSema6A production, we found that the intracellular domain confers resistance to ectodomain release. Finally, sSema6A is functional as it promotes the cohesion of zebrafish early eye field explants. This suggests that in addition to its canonical contact-mediated functions, Sema6A may have regulated, long-range, forward-signaling capacity.
Collapse
Affiliation(s)
- Riley M St Clair
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Caroline M Dumas
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Kori S Williams
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | | | | - Alicia M Ebert
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT, USA
| |
Collapse
|
9
|
Class-3 Semaphorins and Their Receptors: Potent Multifunctional Modulators of Tumor Progression. Int J Mol Sci 2019; 20:ijms20030556. [PMID: 30696103 PMCID: PMC6387194 DOI: 10.3390/ijms20030556] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/28/2022] Open
Abstract
Semaphorins are the products of a large gene family containing 28 genes of which 21 are found in vertebrates. Class-3 semaphorins constitute a subfamily of seven vertebrate semaphorins which differ from the other vertebrate semaphorins in that they are the only secreted semaphorins and are distinguished from other semaphorins by the presence of a basic domain at their C termini. Class-3 semaphorins were initially characterized as axon guidance factors, but have subsequently been found to regulate immune responses, angiogenesis, lymphangiogenesis, and a variety of additional physiological and developmental functions. Most class-3 semaphorins transduce their signals by binding to receptors belonging to the neuropilin family which subsequently associate with receptors of the plexin family to form functional class-3 semaphorin receptors. Recent evidence suggests that class-3 semaphorins also fulfill important regulatory roles in multiple forms of cancer. Several class-3 semaphorins function as endogenous inhibitors of tumor angiogenesis. Others were found to inhibit tumor metastasis by inhibition of tumor lymphangiogenesis, by direct effects on the behavior of tumor cells, or by modulation of immune responses. Notably, some semaphorins such as sema3C and sema3E have also been found to potentiate tumor progression using various mechanisms. This review focuses on the roles of the different class-3 semaphorins in tumor progression.
Collapse
|
10
|
Affiliation(s)
- Qianchuang Sun
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China.,Department of Genetics, The University of Alabama at Birmingham, AL
| | - Shuyan Liu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China.,Department of Genetics, The University of Alabama at Birmingham, AL
| | - Kexiang Liu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kai Jiao
- Department of Genetics, The University of Alabama at Birmingham, AL
| |
Collapse
|
11
|
Bidirectional regulation of bone formation by exogenous and osteosarcoma-derived Sema3A. Sci Rep 2018; 8:6877. [PMID: 29720701 PMCID: PMC5932056 DOI: 10.1038/s41598-018-25290-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022] Open
Abstract
Semaphorin 3A (Sema3A), a secreted member of the Semaphorin family, increases osteoblast differentiation, stimulates bone formation and enhances fracture healing. Here, we report a previously unknown role of Sema3A in the regulation of ectopic bone formation and osteolysis related to osteosarcoma. Human recombinant (exogenous) Sema3A promoted the expression of osteoblastic phenotype in a panel of human osteosarcoma cell lines and inhibited the ability of these cells to migrate and enhance osteoclastogenesis in vitro. In vivo, administration of exogenous Sema3A in mice after paratibial inoculation of KHOS cells increased bone volume in non-inoculated and tumour-bearing legs. In contrast, Sema3A overexpression reduced the ability of KHOS cells to cause ectopic bone formation in mice and to increase bone nodule formation by engaging DKK1/β-catenin signalling. Thus, Sema3A is of potential therapeutic efficacy in osteosarcoma. However, inhibition of bone formation associated with continuous exposure to Sema3A may limit its long-term usefulness as therapeutic agent.
Collapse
|
12
|
Abstract
Several neuronal guidance proteins, known as semaphorin molecules, function in the immune system. This dual tissue performance has led to them being defined as "neuroimmune semaphorins". They have been shown to regulate T cell activation by serving as costimulatory molecules. Similar to classical costimulatory molecules, neuroimmune semaphorins are either constitutively or inducibly expressed on immune cells. In contrast to the classical costimulatory molecule function, the action of neuroimmune semaphorins requires the presence of two signals, the first one provided by TCR/MHC engagement, and the second one provided by B7/CD28 interaction. Thus, neuroimmune semaphorins serve as a "signal three" for immune cell activation and regulate the overall intensity of immune response. The current knowledge on their structures, multiple receptors, specific cell/tissue/organ expression, and distinct functions in different diseases are summarized and discussed in this review.
Collapse
Affiliation(s)
- Svetlana P Chapoval
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA.
- Program in Oncology at the Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
- SemaPlex LLC, Ellicott City, MD, USA.
| |
Collapse
|
13
|
Abstract
Semaphorins are extracellular signaling proteins that are essential for the development and maintenance of many organs and tissues. The more than 20-member semaphorin protein family includes secreted, transmembrane and cell surface-attached proteins with diverse structures, each characterized by a single cysteine-rich extracellular sema domain, the defining feature of the family. Early studies revealed that semaphorins function as axon guidance molecules, but it is now understood that semaphorins are key regulators of morphology and motility in many different cell types including those that make up the nervous, cardiovascular, immune, endocrine, hepatic, renal, reproductive, respiratory and musculoskeletal systems, as well as in cancer cells. Semaphorin signaling occurs predominantly through Plexin receptors and results in changes to the cytoskeletal and adhesive machinery that regulate cellular morphology. While much remains to be learned about the mechanisms underlying the effects of semaphorins, exciting work has begun to reveal how semaphorin signaling is fine-tuned through different receptor complexes and other mechanisms to achieve specific outcomes in various cellular contexts and physiological systems. These and future studies will lead to a more complete understanding of semaphorin-mediated development and to a greater understanding of how these proteins function in human disease.
Collapse
Affiliation(s)
- Laura Taylor Alto
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jonathan R Terman
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
14
|
Alamri A, Soussi Gounni A, Kung SKP. View Point: Semaphorin-3E: An Emerging Modulator of Natural Killer Cell Functions? Int J Mol Sci 2017; 18:E2337. [PMID: 29113093 PMCID: PMC5713306 DOI: 10.3390/ijms18112337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/21/2017] [Accepted: 11/01/2017] [Indexed: 12/29/2022] Open
Abstract
Semaphorin-3E (Sema-3E) is a member of a large family of proteins originally identified as axon guidance cues in neural development. It is expressed in different cell types, such as immune cells, cancer cells, neural cells, and epithelial cells. Subsequently, dys-regulation of Sema-3E expression has been reported in various biological processes that range from cancers to autoimmune and allergic diseases. Recent work in our laboratories revealed a critical immunoregulatory role of Sema-3E in experimental allergic asthma. We further speculate possible immune modulatory function(s) of Sema-3E on natural killer (NK) cells.
Collapse
Affiliation(s)
- Abdulaziz Alamri
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
| | - Abdelilah Soussi Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
| | - Sam K P Kung
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
| |
Collapse
|
15
|
Ronca R, Benkheil M, Mitola S, Struyf S, Liekens S. Tumor angiogenesis revisited: Regulators and clinical implications. Med Res Rev 2017. [PMID: 28643862 DOI: 10.1002/med.21452] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since Judah Folkman hypothesized in 1971 that angiogenesis is required for solid tumor growth, numerous studies have been conducted to unravel the angiogenesis process, analyze its role in primary tumor growth, metastasis and angiogenic diseases, and to develop inhibitors of proangiogenic factors. These studies have led in 2004 to the approval of the first antiangiogenic agent (bevacizumab, a humanized antibody targeting vascular endothelial growth factor) for the treatment of patients with metastatic colorectal cancer. This approval launched great expectations for the use of antiangiogenic therapy for malignant diseases. However, these expectations have not been met and, as knowledge of blood vessel formation accumulates, many of the original paradigms no longer hold. Therefore, the regulators and clinical implications of angiogenesis need to be revisited. In this review, we discuss recently identified angiogenesis mediators and pathways, new concepts that have emerged over the past 10 years, tumor resistance and toxicity associated with the use of currently available antiangiogenic treatment and potentially new targets and/or approaches for malignant and nonmalignant neovascular diseases.
Collapse
Affiliation(s)
- Roberto Ronca
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mohammed Benkheil
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Stefania Mitola
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Sandra Liekens
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| |
Collapse
|
16
|
Bulloj A, Maminishkis A, Mizui M, Finnemann SC. Semaphorin4D-PlexinB1 Signaling Attenuates Photoreceptor Outer Segment Phagocytosis by Reducing Rac1 Activity of RPE Cells. Mol Neurobiol 2017. [PMID: 28624895 DOI: 10.1007/s12035-017-0649-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Semaphorins form a family of secreted and membrane-bound molecules that were identified originally as axonal guidance factors during neuronal development. Given their wide distribution in many including mature tissues, semaphorin 4D (sema4D) and its main functional receptor plexin B1 (plxnB1) are expected to fulfill additional functions that remain to be uncovered. A main characteristic of the plexin receptor family is its ability to reorganize the cytoskeleton. PlxnB1 specifically may directly interact with Rho family GTPases to regulate F-actin driven pathways in cells in culture. Diurnal clearance phagocytosis by the retinal pigment epithelium (RPE) of photoreceptor outer segment fragments (POS) is critical for photoreceptor function and longevity. In this process, rearrangement of RPE cytoskeletal F-actin via activation of the Rho family GTPase Rac1 is essential for POS internalization. Here, we show a novel role in POS phagocytosis by RPE cells in culture and in vivo for plexin B1 and its ligand sema4D. Exogenous sema4D abolishes POS internalization (but not binding) by differentiated RPE cells in culture by decreasing the GTP load of Rac1. In the rat eye, sema4D localizes to retinal photoreceptors, while PlxnB1 is expressed by neighboring RPE cells. At the peak of diurnal retinal phagocytosis after light onset, plxnB1 phosphorylation and sema4D levels are reduced in wild-type rat retina in situ but not in mutant RCS rat retina in which the RPE lacks phagocytic activity. Finally, increased POS phagosome content after light onset is observed in the RPE in situ of mice with either plxnB1 or sema4D gene deletion. Altogether, our results demonstrate a novel physiological function for sema4D/plxnB1 signaling in RPE phagocytosis serving as attenuating brake prior to light onset whose release enables the diurnal phagocytic burst.
Collapse
Affiliation(s)
- Ayelen Bulloj
- Department of Biological Sciences Center for Cancer, Genetic Diseases, and Gene Regulation, Fordham University, Larkin Hall, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Arvydas Maminishkis
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Masayuki Mizui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Silvia C Finnemann
- Department of Biological Sciences Center for Cancer, Genetic Diseases, and Gene Regulation, Fordham University, Larkin Hall, 441 East Fordham Road, Bronx, NY, 10458, USA.
| |
Collapse
|
17
|
Neufeld G, Mumblat Y, Smolkin T, Toledano S, Nir-Zvi I, Ziv K, Kessler O. The role of the semaphorins in cancer. Cell Adh Migr 2016; 10:652-674. [PMID: 27533782 PMCID: PMC5160032 DOI: 10.1080/19336918.2016.1197478] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 05/19/2016] [Accepted: 05/30/2016] [Indexed: 12/16/2022] Open
Abstract
The semaphorins were initially characterized as axon guidance factors, but have subsequently been implicated also in the regulation of immune responses, angiogenesis, organ formation, and a variety of additional physiological and developmental functions. The semaphorin family contains more then 20 genes divided into 7 subfamilies, all of which contain the signature sema domain. The semaphorins transduce signals by binding to receptors belonging to the neuropilin or plexin families. Additional receptors which form complexes with these primary semaphorin receptors are also frequently involved in semaphorin signaling. Recent evidence suggests that semaphorins also fulfill important roles in the etiology of multiple forms of cancer. Some semaphorins have been found to function as bona-fide tumor suppressors and to inhibit tumor progression by various mechanisms while other semaphorins function as inducers and promoters of tumor progression.
Collapse
Affiliation(s)
- Gera Neufeld
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Yelena Mumblat
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Tatyana Smolkin
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Shira Toledano
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Inbal Nir-Zvi
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Keren Ziv
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Ofra Kessler
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
18
|
Neufeld G, Mumblat Y, Smolkin T, Toledano S, Nir-Zvi I, Ziv K, Kessler O. The semaphorins and their receptors as modulators of tumor progression. Drug Resist Updat 2016; 29:1-12. [DOI: 10.1016/j.drup.2016.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/31/2016] [Accepted: 08/23/2016] [Indexed: 12/16/2022]
|
19
|
Abstract
Axon guidance relies on a combinatorial code of receptor and ligand interactions that direct adhesive/attractive and repulsive cellular responses. Recent structural data have revealed many of the molecular mechanisms that govern these interactions and enabled the design of sophisticated mutant tools to dissect their biological functions. Here, we discuss the structure/function relationships of four major classes of guidance cues (ephrins, semaphorins, slits, netrins) and examples of morphogens (Wnt, Shh) and of cell adhesion molecules (FLRT). These cell signaling systems rely on specific modes of receptor-ligand binding that are determined by selective binding sites; however, defined structure-encoded receptor promiscuity also enables cross talk between different receptor/ligand families and can also involve extracellular matrix components. A picture emerges in which a multitude of highly context-dependent structural assemblies determines the finely tuned cellular behavior required for nervous system development.
Collapse
Affiliation(s)
- Elena Seiradake
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, United Kingdom;
| | - E Yvonne Jones
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, United Kingdom;
| | - Rüdiger Klein
- Max Planck Institute of Neurobiology, 82152 Munich-Martinsried, Germany;
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| |
Collapse
|
20
|
Pascoe HG, Wang Y, Zhang X. Structural mechanisms of plexin signaling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:161-8. [PMID: 25824683 DOI: 10.1016/j.pbiomolbio.2015.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/20/2015] [Accepted: 03/20/2015] [Indexed: 02/03/2023]
Abstract
Signaling through plexin, the major cell surface receptor for semaphorin, plays critical roles in regulating processes such as neuronal axon guidance, angiogenesis and immune response. Plexin is normally kept inactive in the absence of semaphorin. Upon binding of semaphorin to the extracellular region, plexin is activated and transduces signal to the inside of the cell through its cytoplasmic region. The GTPase Activating Protein (GAP) domain in the plexin cytoplasmic region mediates the major intracellular signaling pathway. The substrate specificity and regulation mechanisms of the GAP domain have only been revealed recently. Many intracellular proteins serve as either upstream regulators or downstream transducers by directly interacting with plexin. The mechanisms of action for some of these proteins also start to emerge from recent studies. We review here these advances in the mechanistic understanding of plexin intracellular signaling from a structural perspective.
Collapse
Affiliation(s)
- Heath G Pascoe
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuxiao Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
21
|
Abstract
Semaphorins were originally identified as neuronal guidance molecules mediating their attractive or repulsive signals by forming complexes with plexin and neuropilin receptors. Subsequent research has identified functions for semaphorin signaling in many organs and tissues outside of the nervous system. Vital roles for semaphorin signaling in vascular patterning and cardiac morphogenesis have been demonstrated, and impaired semaphorin signaling has been associated with various human cardiovascular disorders, including persistent truncus arteriosus, sinus bradycardia and anomalous pulmonary venous connections. Here, we review the functions of semaphorins and their receptors in cardiovascular development and disease and highlight important recent discoveries in the field.
Collapse
Affiliation(s)
- Jonathan A Epstein
- Department of Cell and Developmental Biology, Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA.
| | - Haig Aghajanian
- Department of Cell and Developmental Biology, Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Manvendra K Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School Singapore, and the National Heart Research Institute Singapore, National Heart Center Singapore, Singapore.
| |
Collapse
|
22
|
Nasarre P, Gemmill RM, Drabkin HA. The emerging role of class-3 semaphorins and their neuropilin receptors in oncology. Onco Targets Ther 2014; 7:1663-87. [PMID: 25285016 PMCID: PMC4181631 DOI: 10.2147/ott.s37744] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The semaphorins, discovered over 20 years ago, are a large family of secreted or transmembrane and glycophosphatidylinositol -anchored proteins initially identified as axon guidance molecules crucial for the development of the nervous system. It has now been established that they also play important roles in organ development and function, especially involving the immune, respiratory, and cardiovascular systems, and in pathological disorders, including cancer. During tumor progression, semaphorins can have both pro- and anti-tumor functions, and this has created complexities in our understanding of these systems. Semaphorins may affect tumor growth and metastases by directly targeting tumor cells, as well as indirectly by interacting with and influencing cells from the micro-environment and vasculature. Mechanistically, semaphorins, through binding to their receptors, neuropilins and plexins, affect pathways involved in cell adhesion, migration, invasion, proliferation, and survival. Importantly, neuropilins also act as co-receptors for several growth factors and enhance their signaling activities, while class 3 semaphorins may interfere with this. In this review, we focus on the secreted class 3 semaphorins and their neuropilin co-receptors in cancer, including aspects of their signaling that may be clinically relevant.
Collapse
Affiliation(s)
- Patrick Nasarre
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| | - Robert M Gemmill
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| | - Harry A Drabkin
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
23
|
|
24
|
Migliozzi MT, Mucka P, Bielenberg DR. Lymphangiogenesis and metastasis--a closer look at the neuropilin/semaphorin3 axis. Microvasc Res 2014; 96:68-76. [PMID: 25087623 DOI: 10.1016/j.mvr.2014.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 01/13/2023]
Abstract
Metastasis is the leading cause of cancer-related deaths. Understanding how the lymphatic system responds to its environment and local stimuli may lead to therapies to combat metastasis and other lymphatic-associated diseases. This review compares lymphatic vessels and blood vessels, discusses markers of lymphatic vasculature, and elucidates some of the signaling motifs involved in lymphangiogenesis. Recent progress implicating the neuropilin and semaphorin axes in this process is discussed.
Collapse
Affiliation(s)
- Matthew T Migliozzi
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Mucka
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Aci-Sèche S, Sawma P, Hubert P, Sturgis JN, Bagnard D, Jacob L, Genest M, Garnier N. Transmembrane recognition of the semaphorin co-receptors neuropilin 1 and plexin A1: coarse-grained simulations. PLoS One 2014; 9:e97779. [PMID: 24858828 PMCID: PMC4032258 DOI: 10.1371/journal.pone.0097779] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/23/2014] [Indexed: 12/13/2022] Open
Abstract
The cancer associated class 3 semaphorins require direct binding to neuropilins and association to plexins to trigger cell signaling. Here, we address the role of the transmembrane domains of neuropilin 1 and plexin A1 for the dimerization of the two receptors by characterizing the assembly in lipid bilayers using coarse-grained molecular dynamics simulations. From experimental evidence using a two-hybrid system showing the biochemical association of the two receptors transmembrane domains, we performed molecular simulations in DOPC and POPC demonstrating spontaneously assembly to form homodimers and heterodimers with a very high propensity for right-handed packing of the helices. Inversely, left-handed packing was observed with a very low propensity. This mode of packing was observed uniquely when the plexin A1 transmembrane domain was involved in association. Potential of mean force calculations were used to predict a hierarchy of self-association for the monomers: the two neuropilin 1 transmembrane domains strongly associated, neuropilin 1 and plexin A1 transmembrane domains associated less and the two plexin A1 transmembrane domains weakly but significantly associated. We demonstrated that homodimerization and heterodimerization are driven by GxxxG motifs, and that the sequence context modulates the packing mode of the plexin A1 transmembrane domains. This work presents major advances towards our understanding of membrane signaling platforms assembly through membrane domains and provides exquisite information for the design of antagonist drugs defining a novel class of therapeutic agents.
Collapse
Affiliation(s)
- Samia Aci-Sèche
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR, Université d’Orléans, Orléans, France
| | - Paul Sawma
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires UMR, Université d’Aix-Marseille, Marseille, France
| | - Pierre Hubert
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires UMR, Université d’Aix-Marseille, Marseille, France
| | - James N. Sturgis
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires UMR, Université d’Aix-Marseille, Marseille, France
| | - Dominique Bagnard
- Institut National de la Santé et de la Recherche Médicale, Labex Medalis, Université de Strasbourg, Strasbourg, France
| | - Laurent Jacob
- Institut National de la Santé et de la Recherche Médicale, Labex Medalis, Université de Strasbourg, Strasbourg, France
| | - Monique Genest
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR, Université d’Orléans, Orléans, France
- * E-mail: (NG); (MG)
| | - Norbert Garnier
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR, Université d’Orléans, Orléans, France
- * E-mail: (NG); (MG)
| |
Collapse
|
26
|
Prokosch V, Chiwitt C, Rose K, Thanos S. Deciphering proteins and their functions in the regenerating retina. Expert Rev Proteomics 2014; 7:775-95. [DOI: 10.1586/epr.10.47] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
27
|
Wang Y, Pascoe HG, Brautigam CA, He H, Zhang X. Structural basis for activation and non-canonical catalysis of the Rap GTPase activating protein domain of plexin. eLife 2013; 2:e01279. [PMID: 24137545 PMCID: PMC3787391 DOI: 10.7554/elife.01279] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/22/2013] [Indexed: 12/14/2022] Open
Abstract
Plexins are cell surface receptors that bind semaphorins and transduce signals for regulating neuronal axon guidance and other processes. Plexin signaling depends on their cytoplasmic GTPase activating protein (GAP) domain, which specifically inactivates the Ras homolog Rap through an ill-defined non-canonical catalytic mechanism. The plexin GAP is activated by semaphorin-induced dimerization, the structural basis for which remained unknown. Here we present the crystal structures of the active dimer of zebrafish PlexinC1 cytoplasmic region in the apo state and in complex with Rap. The structures show that the dimerization induces a large-scale conformational change in plexin, which opens the GAP active site to allow Rap binding. Plexin stabilizes the switch II region of Rap in an unprecedented conformation, bringing Gln63 in Rap into the active site for catalyzing GTP hydrolysis. The structures also explain the unique Rap-specificity of plexins. Mutational analyses support that these mechanisms underlie plexin activation and signaling. DOI:http://dx.doi.org/10.7554/eLife.01279.001.
Collapse
Affiliation(s)
- Yuxiao Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Heath G Pascoe
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chad A Brautigam
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Huawei He
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
28
|
Siebold C, Jones EY. Structural insights into semaphorins and their receptors. Semin Cell Dev Biol 2013; 24:139-45. [PMID: 23253452 DOI: 10.1016/j.semcdb.2012.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
Abstract
Ten years ago nothing was known of the three-dimensional structure of members of the semaphorin family of cell guidance cues, nor of their major receptors, the plexins. The structural biology of this cell surface ligand-receptor system has now come of age. Detailed atomic level information is available on the architecture of semaphorin and plexin ectodomains and their recognition complexes. Similarly the structure of the plexin cytoplasmic region, and its interactions with members of the Rho family of small GTPases have been unveiled. These structural analyses, in combination with biochemical, biophysical and cellular studies, have progressed our understanding of this signalling system into the realm of molecular mechanism.
Collapse
Affiliation(s)
- Christian Siebold
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| | | |
Collapse
|
29
|
Eixarch H, Gutiérrez-Franco A, Montalban X, Espejo C. Semaphorins 3A and 7A: potential immune and neuroregenerative targets in multiple sclerosis. Trends Mol Med 2013; 19:157-64. [PMID: 23419749 DOI: 10.1016/j.molmed.2013.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/18/2012] [Accepted: 01/23/2013] [Indexed: 11/30/2022]
Abstract
Semaphorins have been classically defined as axonal signalling cues involved in central nervous system (CNS) development, but in adults these molecules are expressed in distinct tissues and exert various functions under several physiological and pathological contexts. Semaphorins capable of modulating the immune system are particularly relevant in autoimmune diseases, especially multiple sclerosis (MS), which is a demyelinating, neurodegenerative disease. In this article, we compile recent insights into the specific roles of semaphorin (sema)3A and sema7A to clarify the details of their possible participation in the inflammatory and neurodegenerative phases of MS.
Collapse
Affiliation(s)
- Herena Eixarch
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Ps. Vall d'Hebron, 119-129, 08035 Barcelona, Spain
| | | | | | | |
Collapse
|
30
|
Roney K, Holl E, Ting J. Immune plexins and semaphorins: old proteins, new immune functions. Protein Cell 2013; 4:17-26. [PMID: 23307780 DOI: 10.1007/s13238-012-2108-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 10/25/2012] [Indexed: 12/24/2022] Open
Abstract
Plexins and semaphorins are a large family of proteins that are involved in cell movement and response. The importance of plexins and semaphorins has been emphasized by their discovery in many organ systems including the nervous (Nkyimbeng-Takwi and Chapoval, 2011; McCormick and Leipzig, 2012; Yaron and Sprinzak, 2012), epithelial (Miao et al., 1999; Fujii et al., 2002), and immune systems (Takamatsu and Kumanogoh, 2012) as well as diverse cell processes including angiogenesis (Serini et al., 2009; Sakurai et al., 2012), embryogenesis (Perala et al., 2012), and cancer (Potiron et al., 2009; Micucci et al., 2010). Plexins and semaphorins are transmembrane proteins that share a conserved extracellular semaphorin domain (Hota and Buck, 2012). The plexins and semaphorins are divided into four and eight subfamilies respectively based on their structural homology. Semaphorins are relatively small proteins containing the extracellular semaphorin domain and short intracellular tails. Plexins contain the semaphorin domain and long intracellular tails (Hota and Buck, 2012). The majority of plexin and semaphorin research has focused on the nervous system, particularly the developing nervous system, where these proteins are found to mediate many common neuronal cell processes including cell movement, cytoskeletal rearrangement, and signal transduction (Choi et al., 2008; Takamatsu et al., 2010). Their roles in the immune system are the focus of this review.
Collapse
Affiliation(s)
- Kelly Roney
- Department of Microbiology and Immunology, 22-004 Lineberger Comprehensive Cancer Center, University of Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
31
|
Miyato H, Tsuno NH, Kitayama J. Semaphorin 3C is involved in the progression of gastric cancer. Cancer Sci 2012; 103:1961-6. [PMID: 22924992 DOI: 10.1111/cas.12003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/15/2012] [Accepted: 08/20/2012] [Indexed: 01/03/2023] Open
Abstract
Malignant tumors are often associated with denervation, suggesting the functional implication of axonal guidance molecules in tumor growth. Here, we assessed the role of semaphorin 3C (sema3C) in the progression of gastric cancer. Immunohistochemistry of human samples revealed that sema3C was strongly expressed in neoplastic cells, especially at the invasion front. Stable transfection of target sequences of sema3C miRNA did not affect the in vitro proliferative activity of human gastric cancer AZ-521 cells. However, when the tumor growth was examined in vivo using an orthotopic model in nude mice, primary stomach tumors as well as metastatic liver tumors were significantly suppressed by sema3C silencing with the reduction of microvessel density. Immunostaining of primary tumor indicated the rate of Ki-67 positive carcinoma cells was decreased, whereas that of apoptotic cells was significantly increased in sema3C-silenced tumor. In addition, capillary-like tubular formation was reduced by the addition of culture media of sema3C miRNA cells compared with the media of control miRNA cells. Semaphorin 3C is positively expressed in gastric cancer cells and may be involved in tumor progression, presumably through the stimulation of angiogenesis.
Collapse
Affiliation(s)
- Hideyo Miyato
- Division of Surgical Oncology, Department of Surgery, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
32
|
Kang S, Kumanogoh A. Semaphorins in bone development, homeostasis, and disease. Semin Cell Dev Biol 2012; 24:163-71. [PMID: 23022498 DOI: 10.1016/j.semcdb.2012.09.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 09/18/2012] [Accepted: 09/19/2012] [Indexed: 01/25/2023]
Abstract
Semaphorins were originally identified as axon guidance cues in the development of the nervous system. In recent years, numerous studies have determined that they are also involved in organogenesis, vascularization/angiogenesis, oncogenesis, and immune responses. In addition, the mechanisms underlying the diverse functions of semaphorins and their receptors have been identified. Recently, significant advances have been made in our understanding of the roles of semaphorins in bone remodeling, particularly the regulation of osteoclast and osteoblast differentiation and migration. Moreover, dysregulated semaphorin expression causes severe bone diseases, including osteoporosis and osteopetrosis. This review focuses on advanced findings on the role of semaphorins/receptors and their intracellular signaling in the regulation of bone homeostasis.
Collapse
Affiliation(s)
- Sujin Kang
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Osaka, Japan
| | | |
Collapse
|
33
|
Wang Y, He H, Srivastava N, Vikarunnessa S, Chen YB, Jiang J, Cowan CW, Zhang X. Plexins are GTPase-activating proteins for Rap and are activated by induced dimerization. Sci Signal 2012; 5:ra6. [PMID: 22253263 DOI: 10.1126/scisignal.2002636] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plexins are cell surface receptors that bind to semaphorins and transduce signals that regulate neuronal development, immune responses, and other processes. Signaling through plexins has been proposed to rely on specific guanosine triphosphatase (GTPase)-activating protein (GAP) activity for R-Ras and M-Ras. Activation of this GAP activity of plexins appears to require simultaneous binding of semaphorin to the plexin extracellular domain and of the Rho GTPases Rac1 or Rnd1 to the cytoplasmic region. However, GAP activity of plexins has eluded detection in several recent studies. We show that the purified cytoplasmic region of plexin uses a noncanonical catalytic mechanism to act as a GAP for Rap, but not for R-Ras or M-Ras. The RapGAP activity of plexins was autoinhibited and was activated by induced dimerization. Biochemical and crystallographic analyses demonstrated that binding of Rho GTPases did not directly contribute to activation of plexin RapGAP activity. Semaphorin stimulated the RapGAP activity of full-length plexin in cells, which was required for plexin-mediated neuronal growth cone collapse. Together, these findings define a pathway for plexin signaling and provide insights into the mechanism for semaphorin-induced activation of plexins.
Collapse
Affiliation(s)
- Yuxiao Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75063, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Neufeld G, Sabag AD, Rabinovicz N, Kessler O. Semaphorins in angiogenesis and tumor progression. Cold Spring Harb Perspect Med 2012; 2:a006718. [PMID: 22315716 PMCID: PMC3253028 DOI: 10.1101/cshperspect.a006718] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The semaphorins were initially described as axon guidance factors, but have recently been implicated in a variety of physiological and developmental functions, including regulation of immune response, angiogenesis, and migration of neural crest cells. The semaphorin family contains more than 30 genes divided into seven subfamilies, all of which are characterized by the presence of a sema domain. The semaphorins transduce their signals by binding to one of the nine receptors belonging to the plexin family, or, in the case of the class 3 semaphorins, by binding to one of the two neuropilin receptors. Additional receptors, which form complexes with these primary semaphorin receptors, are also frequently involved in semaphorin signaling. Recent evidence suggests that some semaphorins can act as antiangiogenic and/or antitumorigenic agents whereas other semaphorins promote tumor progression and/or angiogenesis. Furthermore, loss of endogenous inhibitory semaphorin expression or function on one hand, and overexpression of protumorigenic semaphorins on the other hand, is associated with the progression of some tumor types.
Collapse
Affiliation(s)
- Gera Neufeld
- Cancer and Vascular Biology Research Center, Rappaport Research Institute in the Medical Sciences, Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 31096, Israel.
| | | | | | | |
Collapse
|
35
|
Gay CM, Zygmunt T, Torres-Vázquez J. Diverse functions for the semaphorin receptor PlexinD1 in development and disease. Dev Biol 2011; 349:1-19. [PMID: 20880496 PMCID: PMC2993764 DOI: 10.1016/j.ydbio.2010.09.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 09/14/2010] [Accepted: 09/18/2010] [Indexed: 01/13/2023]
Abstract
Plexins are a family of single-pass transmembrane proteins that serve as cell surface receptors for Semaphorins during the embryonic development of animals. Semaphorin-Plexin signaling is critical for many cellular aspects of organogenesis, including cell migration, proliferation and survival. Until recently, little was known about the function of PlexinD1, the sole member of the vertebrate-specific PlexinD (PlxnD1) subfamily. Here we review novel findings about PlxnD1's roles in the development of the cardiovascular, nervous and immune systems and salivary gland branching morphogenesis and discuss new insights concerning the molecular mechanisms of PlxnD1 activity.
Collapse
Affiliation(s)
- Carl M Gay
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, 540 First Avenue, 4th floor, lab 14, New York, NY 10016, USA
| | | | | |
Collapse
|
36
|
Janssen BJC, Robinson RA, Pérez-Brangulí F, Bell CH, Mitchell KJ, Siebold C, Jones EY. Structural basis of semaphorin-plexin signalling. Nature 2010; 467:1118-22. [PMID: 20877282 DOI: 10.1038/nature09468] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 09/06/2010] [Indexed: 01/25/2023]
Abstract
Cell-cell signalling of semaphorin ligands through interaction with plexin receptors is important for the homeostasis and morphogenesis of many tissues and is widely studied for its role in neural connectivity, cancer, cell migration and immune responses. SEMA4D and Sema6A exemplify two diverse vertebrate, membrane-spanning semaphorin classes (4 and 6) that are capable of direct signalling through members of the two largest plexin classes, B and A, respectively. In the absence of any structural information on the plexin ectodomain or its interaction with semaphorins the extracellular specificity and mechanism controlling plexin signalling has remained unresolved. Here we present crystal structures of cognate complexes of the semaphorin-binding regions of plexins B1 and A2 with semaphorin ectodomains (human PLXNB1(1-2)-SEMA4D(ecto) and murine PlxnA2(1-4)-Sema6A(ecto)), plus unliganded structures of PlxnA2(1-4) and Sema6A(ecto). These structures, together with biophysical and cellular assays of wild-type and mutant proteins, reveal that semaphorin dimers independently bind two plexin molecules and that signalling is critically dependent on the avidity of the resulting bivalent 2:2 complex (monomeric semaphorin binds plexin but fails to trigger signalling). In combination, our data favour a cell-cell signalling mechanism involving semaphorin-stabilized plexin dimerization, possibly followed by clustering, which is consistent with previous functional data. Furthermore, the shared generic architecture of the complexes, formed through conserved contacts of the amino-terminal seven-bladed β-propeller (sema) domains of both semaphorin and plexin, suggests that a common mode of interaction triggers all semaphorin-plexin based signalling, while distinct insertions within or between blades of the sema domains determine binding specificity.
Collapse
Affiliation(s)
- Bert J C Janssen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | | | | | | | | | | |
Collapse
|
37
|
Parker MW, Hellman LM, Xu P, Fried MG, Vander Kooi CW. Furin processing of semaphorin 3F determines its anti-angiogenic activity by regulating direct binding and competition for neuropilin. Biochemistry 2010; 49:4068-75. [PMID: 20387901 DOI: 10.1021/bi100327r] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuropilin is an essential cell surface receptor that functions in both semaphorin-dependent axon guidance and vascular endothelial growth factor (VEGF)-dependent angiogenesis. The interplay between these two seemingly distinct pathways is a source of considerable interest. Indeed, several semaphorin family members have been shown to have potent anti-angiogenic activity in vivo. However, reports about whether semaphorin and VEGF competitively bind to neuropilin conflict. Previous work has demonstrated that all known ligands and inhibitors of neuropilin interact with the b1 domain of neuropilin via a C-terminal arginine. No semaphorin family member possesses a C-terminal arginine, leading to uncertainty with regard to the physical mechanism of interaction between the C-terminal domain of semaphorin and the b1 domain of neuropilin. Semaphorin 3F (Sema3F) possesses an RXRR furin recognition site in its C-terminus, and we demonstrate that it is proteolytically processed. This processing is found to be essential for the interaction of the C-terminus of Sema3F with the b1 domain of neuropilin. We further demonstrate that furin activation of the C-terminus of Sema3F produces a species that potently inhibits the binding of VEGF to neuropilin. These studies provide a mechanistic basis for understanding the anti-angiogenic activity of semaphorin as well as the physical interaction and competition between neuropilin ligands.
Collapse
Affiliation(s)
- Matthew W Parker
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
38
|
Crystal structure of the plexin A3 intracellular region reveals an autoinhibited conformation through active site sequestration. Proc Natl Acad Sci U S A 2009; 106:15610-5. [PMID: 19717441 DOI: 10.1073/pnas.0906923106] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plexin cell surface receptors bind to semaphorin ligands and transduce signals for regulating neuronal axon guidance. The intracellular region of plexins is essential for signaling and contains a R-Ras/M-Ras GTPase activating protein (GAP) domain that is divided into two segments by a Rho GTPase-binding domain (RBD). The regulation mechanisms for plexin remain elusive, although it is known that activation requires both binding of semaphorin to the extracellular region and a Rho-family GTPase (Rac1 or Rnd1) to the RBD. Here we report the crystal structure of the plexin A3 intracellular region. The structure shows that the N- and C-terminal portions of the GAP homologous regions together form a GAP domain with an overall fold similar to other Ras GAPs. However, the plexin GAP domain adopts a closed conformation and cannot accommodate R-Ras/M-Ras in its substrate-binding site, providing a structural basis for the autoinhibited state of plexins. A comparison with the plexin B1 RBD/Rnd1 complex structure suggests that Rnd1 binding alone does not induce a conformational change in plexin, explaining the requirement of both semaphorin and a Rho GTPase for activation. The structure also identifies an N-terminal segment that is important for regulation. Both the N-terminal segment and the RBD make extensive interactions with the GAP domain, suggesting the presence of an allosteric network connecting these three domains that integrates semaphorin and Rho GTPase signals to activate the GAP. The importance of these interactions in plexin signaling is shown by both cell-based and in vivo axon guidance assays.
Collapse
|
39
|
Takahashi K, Tomizawa K, Ishida M, Hirokawa K, Takahashi H. Identification and tissue-specific expression of a novel isoform of Semaphorin 3D. Biochim Biophys Acta Gen Subj 2009; 1790:395-400. [PMID: 19345252 DOI: 10.1016/j.bbagen.2009.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 03/23/2009] [Accepted: 03/24/2009] [Indexed: 10/21/2022]
Abstract
BACKGROUND Semaphorins are a family of secreted and membrane-associated proteins involved in axon guidance in the developing brain as well as morphogenesis in various organs. There has been no report on the expression of different transcripts of the genes encoding Class 3 Semaphorins with different protein structures. METHODS Molecular cloning of rat Semaphorin 3D gene and the expression analysis at gene and protein levels were performed. RESULTS We have isolated two cDNAs encoding rat Sema 3D, a Class 3 Semaphorin. One clone is predicted to encode a protein with a structure common to Class 3 Semaphorins. The other clone encodes a novel isoform of Sema 3D lacking half of the C2-type Ig domain and the entire basic region; this isoform is predicted to have a different structure from Class 3 Semaphorins. Analysis of protein expression using a cell culture system revealed that this splice variant isoform is not secreted into the media, whereas the classical Class 3 isoform is a secreted protein. The expression of each isoform shows tissue-specificity. GENERAL SIGNIFICANCE Our present findings suggest that gene regulation, via an alternative splicing mechanism, affects not only the tissue-specificity of Sema 3D expression, but also the distance over which it can act.
Collapse
Affiliation(s)
- Kaoru Takahashi
- Developmental Neurobiology Group, Mitsubishi Kagaku Institute of Life Sciences, Machida, Tokyo 194-8511, Japan
| | | | | | | | | |
Collapse
|
40
|
Role of semaphorins during axon growth and guidance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 621:50-64. [PMID: 18269210 DOI: 10.1007/978-0-387-76715-4_4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
41
|
Hilario JD, Rodino-Klapac LR, Wang C, Beattie CE. Semaphorin 5A is a bifunctional axon guidance cue for axial motoneurons in vivo. Dev Biol 2008; 326:190-200. [PMID: 19059233 DOI: 10.1016/j.ydbio.2008.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 11/07/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
Semaphorins are a large class of proteins that function throughout the nervous system to guide axons. It had previously been shown that Semaphorin 5A (Sema5A) was a bifunctional axon guidance cue for mammalian midbrain neurons. We found that zebrafish sema5A was expressed in myotomes during the period of motor axon outgrowth. To determine whether Sema5A functioned in motor axon guidance, we knocked down Sema5A, which resulted in two phenotypes: a delay in motor axon extension into the ventral myotome and aberrant branching of these motor axons. Both phenotypes were rescued by injection of full-length rat Sema5A mRNA. However, adding back RNA encoding the sema domain alone significantly rescued the branching phenotype in sema5A morphants. Conversely, adding back RNA encoding the thrombospondin repeat (TSR) domain alone into sema5A morphants exclusively rescued delay in ventral motor axon extension. Together, these data show that Sema5A is a bifunctional axon guidance cue for vertebrate motor axons in vivo. The TSR domain promotes growth of developing motor axons into the ventral myotome whereas the sema domain mediates repulsion and keeps these motor axons from branching into surrounding myotome regions.
Collapse
Affiliation(s)
- Jona D Hilario
- Center for Molecular Neurobiology and Department of Neuroscience, The Ohio State University, 190 Rightmire Hall, 1060 Carmack Rd, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
42
|
Neufeld G, Kessler O. The semaphorins: versatile regulators of tumour progression and tumour angiogenesis. Nat Rev Cancer 2008; 8:632-45. [PMID: 18580951 DOI: 10.1038/nrc2404] [Citation(s) in RCA: 301] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The semaphorins and their receptors, the neuropilins and the plexins, were originally characterized as constituents of the complex regulatory system responsible for the guidance of axons during the development of the central nervous system. However, a growing body of evidence indicates that various semaphorins can either promote or inhibit tumour progression through the promotion or inhibition of processes such as tumour angiogenesis, tumour metastasis and tumour cell survival. This Review focuses on the emerging role of the semaphorins in cancer.
Collapse
Affiliation(s)
- Gera Neufeld
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, P.O. Box 9679, 1 Efron Street, Haifa, 31096, Israel.
| | | |
Collapse
|
43
|
Wang X, Zhang W, Cheever T, Schwarz V, Opperman K, Hutter H, Koepp D, Chen L. The C. elegans L1CAM homologue LAD-2 functions as a coreceptor in MAB-20/Sema2 mediated axon guidance. ACTA ACUST UNITED AC 2008; 180:233-46. [PMID: 18195110 PMCID: PMC2213605 DOI: 10.1083/jcb.200704178] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The L1 cell adhesion molecule (L1CAM) participates in neuronal development. Mutations in the human L1 gene can cause the neurological disorder CRASH (corpus callosum hypoplasia, retardation, adducted thumbs, spastic paraplegia, and hydrocephalus). This study presents genetic data that shows that L1-like adhesion gene 2 (LAD-2), a Caenorhabditis elegans L1CAM, functions in axon pathfinding. In the SDQL neuron, LAD-2 mediates dorsal axon guidance via the secreted MAB-20/Sema2 and PLX-2 plexin receptor, the functions of which have largely been characterized in epidermal morphogenesis. We use targeted misexpression experiments to provide in vivo evidence that MAB-20/Sema2 acts as a repellent to SDQL. Coimmunoprecipitation assays reveal that MAB-20 weakly interacts with PLX-2; this interaction is increased in the presence of LAD-2, which can interact independently with MAB-20 and PLX-2. These results suggest that LAD-2 functions as a MAB-20 coreceptor to secure MAB-20 coupling to PLX-2. In vertebrates, L1 binds neuropilin1, the obligate receptor to the secreted Sema3A. However, invertebrates lack neuropilins. LAD-2 may thus function in the semaphorin complex by combining the roles of neuropilins and L1CAMs.
Collapse
Affiliation(s)
- Xuelin Wang
- Department of Genetics, Cell Biology, and Development, Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Roth L, Nasarre C, Dirrig-Grosch S, Aunis D, Crémel G, Hubert P, Bagnard D. Transmembrane domain interactions control biological functions of neuropilin-1. Mol Biol Cell 2007; 19:646-54. [PMID: 18045991 DOI: 10.1091/mbc.e07-06-0625] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuropilin-1 (NRP1) is a transmembrane receptor playing a pivotal role in the control of semaphorins and VEGF signaling pathways. The exact mechanism controlling semaphorin receptor complex formation is unknown. A structural analysis and modeling of NRP1 revealed a putative dimerization GxxxG motif potentially important for NRP1 dimerization and oligomerization. Our data show that this motif mediates the dimerization of the transmembrane domain of NRP1 as demonstrated by a dimerization assay (ToxLuc assay) performed in natural membrane and FRET analysis. A synthetic peptide derived from the transmembrane segment of NRP1 abolished the inhibitory effect of Sema3A. This effect depends on the capacity of the peptide to interfere with NRP1 dimerization and the formation of oligomeric complexes. Mutation of the GxxxG dimerization motif in the transmembrane domain of NRP1 confirmed its biological importance for Sema3A signaling. Overall, our results shed light on an essential step required for semaphorin signaling and provide novel evidence for the crucial role of transmembrane domain of bitopic protein containing GxxxG motif in the formation of receptor complexes that are a prerequisite for cell signaling.
Collapse
Affiliation(s)
- Lise Roth
- INSERM U575 Physiopathologie du Système Nerveux, Université Louis Pasteur, 67084 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Neuropilins (NRP) are receptors for the class 3 semaphorin (SEMA3) family of axon guidance molecules and the vascular endothelial growth factor (VEGF) family of angiogenesis factors. Although the seminal studies on SEMA3s and NRPs first showed them to be mediators of axon guidance, it has become very apparent that these proteins play an important role in vascular and tumor biology as well. Neuronal guidance and angiogenesis are regulated similarly at the molecular level. For example, SEMA3s not only repel neurons and collapse axon growth cones, but have similar effects on endothelial cells and tumor cells. Preclinical studies indicate that SEMA3F is a potent inhibitor of tumor angiogenesis and metastasis. In addition, neutralizing antibodies to NRP1 enhance the effects of anti-VEGF antibodies in suppressing tumor growth in xenograft models. This article reviews NRP and SEMA3 structural interactions and their role in developmental angiogenesis, tumor angiogenesis and metastasis based on cell culture, zebrafish and murine studies.
Collapse
Affiliation(s)
- Diane R Bielenberg
- Vascular Biology Program, Children's Hospital, Department of Surgery, Harvard Medical School, Karp Family Research Laboratories, 12.211, 300 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
46
|
Toyofuku T, Yabuki M, Kamei J, Kamei M, Makino N, Kumanogoh A, Hori M. Semaphorin-4A, an activator for T-cell-mediated immunity, suppresses angiogenesis via Plexin-D1. EMBO J 2007; 26:1373-84. [PMID: 17318185 PMCID: PMC1817636 DOI: 10.1038/sj.emboj.7601589] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 01/09/2007] [Indexed: 01/13/2023] Open
Abstract
Originally identified as axon guidance molecules, semaphorins are now known to be widely expressed mediators that play significant roles in immune responses and organ morphogenesis. However, not much is known about the signaling pathways via which they exert their organ-specific effects. Here we demonstrate that Sema4A, previously identified as an activator of T-cell-mediated immunity, is expressed in endothelial cells, where it suppresses vascular endothelial growth factor (VEGF)-mediated endothelial cell migration and proliferation in vitro and angiogenesis in vivo. Mice lacking Sema4A exhibit enhanced angiogenesis in response to VEGF or inflammatory stimuli. In addition, binding and functional experiments revealed Plexin-D1 to be a receptor for Sema4A on endothelial cells, indicating that Sema4A exerts organ-specific activities via different receptor-mediated signaling pathways: via Plexin-D1 in the endothelial cells and via T-cell immunoglobulin and mucin domain-2 in T cells. The effects of Sema4A on endothelial cells are dependent on its ability to suppress VEGF-mediated Rac activation and integrin-dependent cell adhesion. It thus appears that Sema4A-Plexin-D1 signaling negatively regulates angiogenesis.
Collapse
Affiliation(s)
- Toshihiko Toyofuku
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Lepelletier Y, Moura IC, Hadj-Slimane R, Renand A, Fiorentino S, Baude C, Shirvan A, Barzilai A, Hermine O. Immunosuppressive role of semaphorin-3A on T cell proliferation is mediated by inhibition of actin cytoskeleton reorganization. Eur J Immunol 2006; 36:1782-93. [PMID: 16791896 DOI: 10.1002/eji.200535601] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Timely negative regulation of the immune system is critical to allow it to perform its duty while maintaining it under tight control to avoid overactivation. We previously reported that the neuronal receptor neuropilin-1 (NP-1) is expressed in human lymph nodes. However, the role of NP-1 interaction with its physiological ligand semaphorin-3A (Sema-3A) on immune cells remains elusive. Here we show that Sema-3A is expressed by activated DC and T cells, and that its secretion in DC/T cell cocultures is delayed. Sema-3A/NP-1 interaction down-modulated T cell activation since addition of Sema-3A in DC/T cell cocultures dramatically inhibited allogeneic T cell proliferation. More importantly, neutralization by blocking antibodies or by antagonist peptide of endogenous Sema-3A produced by DC/T cell cocultures resulted in a 130% increase in T cell proliferation. Sema-3A acted directly on T cells, since it could block anti-CD3/CD28-stimulated proliferation of T cells. Finally, immunomodulatory functions of Sema-3A relied on the blockage of actin cytoskeleton reorganization, affecting TCR polarization and interfering with early TCR signal transduction events such as ZAP-70 or focal adhesion kinase phosphorylation. Therefore, we propose that Sema-3A secretion and the resulting NP-1/Sema-3A interaction are involved in a late negative feedback loop controlling DC-induced T cell proliferation.
Collapse
Affiliation(s)
- Yves Lepelletier
- CNRS UMR 8147, Faculté de médecine, Université René Descartes, Paris V, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Semaphorins are secreted, transmembrane, and GPI-linked proteins, defined by cysteine-rich semaphorin protein domains, that have important roles in a variety of tissues. Humans have 20 semaphorins, Drosophila has five, and two are known from DNA viruses; semaphorins are also found in nematodes and crustaceans but not in non-animals. They are grouped into eight classes on the basis of phylogenetic tree analyses and the presence of additional protein motifs. The expression of semaphorins has been described most fully in the nervous system, but they are also present in most, or perhaps all, other tissues. Functionally, semaphorins were initially characterized for their importance in the development of the nervous system and in axonal guidance. More recently, they have been found to be important for the formation and functioning of the cardiovascular, endocrine, gastrointestinal, hepatic, immune, musculoskeletal, renal, reproductive, and respiratory systems. A common theme in the mechanisms of semaphorin function is that they alter the cytoskeleton and the organization of actin filaments and the microtubule network. These effects occur primarily through binding of semaphorins to their receptors, although transmembrane semaphorins also serve as receptors themselves. The best characterized receptors for mediating semaphorin signaling are members of the neuropilin and plexin families of transmembrane proteins. Plexins, in particular, are thought to control many of the functional effects of semaphorins; the molecular mechanisms of semaphorin signaling are still poorly understood, however. Given the importance of semaphorins in a wide range of functions, including neural connectivity, angiogenesis, immunoregulation, and cancer, much remains to be learned about these proteins and their roles in pathology and human disease.
Collapse
Affiliation(s)
- Umar Yazdani
- Center for Basic Neuroscience, Department of Pharmacology, NA4.301/5323 Harry Hines Blvd, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan R Terman
- Center for Basic Neuroscience, Department of Pharmacology, NA4.301/5323 Harry Hines Blvd, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
49
|
Guttmann-Raviv N, Kessler O, Shraga-Heled N, Lange T, Herzog Y, Neufeld G. The neuropilins and their role in tumorigenesis and tumor progression. Cancer Lett 2006; 231:1-11. [PMID: 16356825 DOI: 10.1016/j.canlet.2004.12.047] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Accepted: 12/22/2004] [Indexed: 11/27/2022]
Abstract
The neuropilins were originally described as receptors for the six axon guidance factors belonging to the class-3 semaphorins. They were subsequently found to function in addition as receptors for specific splice forms of angiogenic factors belonging to the VEGF family. The neuropilins are expressed in many types of cancer cells, in endothelial cells and in additional many types of normal diploid cell types. Recent findings indicate that the neuropilins and their associated plexin and tyrosine-kinase VEGF receptors play a regulatory role in developmental angiogenesis as well as in tumor angiogenesis. The neuropilin ligands belonging to the semaphorin family as well as the various VEGF's function as modulators of angiogenesis and tumor angiogenesis. Furthermore, since many types of cancer cells express neuropilins and neuropilin associated receptors, it is not surprising that various neuropilin ligands can modulate the behavior of cancer cells directly leading to the potentiation or inhibition of tumor progression.
Collapse
Affiliation(s)
- Noga Guttmann-Raviv
- Cancer and Vascular Biology Research Center, Rappaport Research Institute in the Medical Sciences, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, 1 Efron St., P.O. Box 9679, Haifa 31096, Israel
| | | | | | | | | | | |
Collapse
|
50
|
Takegahara N, Kumanogoh A, Kikutani H. Semaphorins: a new class of immunoregulatory molecules. Philos Trans R Soc Lond B Biol Sci 2006; 360:1673-80. [PMID: 16147531 PMCID: PMC1569539 DOI: 10.1098/rstb.2005.1696] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The immune and nervous systems play distinct roles in maintaining physiological homeostasis. Recent data indicates that these systems influence one another and share many proteins and pathways that are essential for their normal function and development. Molecules originally shown to be critical for the development of proper immune responses have recently been found to function in the nervous system. Conversely, neuronal guidance cues can modulate immune functions. Although semaphorins were originally identified as axon guidance factors active during neuronal development, several recent studies have identified indispensable functions for these molecules in the immune system. This review provides an overview of the rapidly emerging functions of semaphorins and their receptors in the immune system.
Collapse
|