1
|
Zhao C, Liu F, Pyle AM. An ultraprocessive, accurate reverse transcriptase encoded by a metazoan group II intron. RNA (NEW YORK, N.Y.) 2018; 24:183-195. [PMID: 29109157 PMCID: PMC5769746 DOI: 10.1261/rna.063479.117] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/31/2017] [Indexed: 05/24/2023]
Abstract
Group II introns and non-LTR retrotransposons encode a phylogenetically related family of highly processive reverse transcriptases (RTs) that are essential for mobility and persistence of these retroelements. Recent crystallographic studies on members of this RT family have revealed that they are structurally distinct from the retroviral RTs that are typically used in biotechnology. However, quantitative, structure-guided analysis of processivity, efficiency, and accuracy of this alternate RT family has been lacking. Here, we characterize the processivity of a group II intron maturase RT from Eubacterium rectale (E.r), for which high-resolution structural information is available. We find that the E.r. maturase RT (MarathonRT) efficiently copies transcripts at least 10 kb in length and displays superior intrinsic RT processivity compared to commercial enzymes such as Superscript IV (SSIV). The elevated processivity of MarathonRT is at least partly mediated by a loop structure in the finger subdomain that acts as a steric guard (the α-loop). Additionally, we find that a positively charged secondary RNA binding site on the surface of the RT diminishes the primer utilization efficiency of the enzyme, and that reengineering of this surface enhances capabilities of the MarathonRT. Finally, using single-molecule sequencing, we show that the error frequency of MarathonRT is comparable to that of other high-performance RTs, such as SSIV, which were tested in parallel. Our results provide a structural framework for understanding the enhanced processivity of retroelement RTs, and they demonstrate the potential for engineering a powerful new generation of RT tools for application in biotechnology and research.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Fei Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
2
|
Zhao C, Pyle AM. Crystal structures of a group II intron maturase reveal a missing link in spliceosome evolution. Nat Struct Mol Biol 2016; 23:558-65. [PMID: 27136328 PMCID: PMC4899126 DOI: 10.1038/nsmb.3224] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/06/2016] [Indexed: 12/17/2022]
Abstract
Group II introns are self-splicing ribozymes that are essential in many organisms, and they have been hypothesized to share a common evolutionary ancestor with the spliceosome. Although structural similarity of RNA components supports this connection, it is of interest to determine whether associated protein factors also share an evolutionary heritage. Here we present the crystal structures of reverse transcriptase (RT) domains from two group II intron-encoded proteins (maturases) from Roseburia intestinalis and Eubacterium rectale, obtained at 1.2-Å and 2.1-Å resolution, respectively. These domains are more similar in architecture to the spliceosomal Prp8 RT-like domain than to any other RTs, and they share substantial similarity with flaviviral RNA polymerases. The RT domain itself is sufficient for binding intron RNA with high affinity and specificity, and it is contained within an active RT enzyme. These studies provide a foundation for understanding structure-function relationships within group II intron-maturase complexes.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
3
|
Megens S, Vaira D, De Baets G, Dekeersmaeker N, Schrooten Y, Li G, Schymkowitz J, Rousseau F, Vandamme AM, Moutschen M, Van Laethem K. Horizontal gene transfer from human host to HIV-1 reverse transcriptase confers drug resistance and partly compensates for replication deficits. Virology 2014; 456-457:310-8. [DOI: 10.1016/j.virol.2014.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/24/2014] [Accepted: 03/22/2014] [Indexed: 10/25/2022]
|
4
|
Redesigning the leaving group in nucleic acid polymerization. FEBS Lett 2012; 586:2049-56. [DOI: 10.1016/j.febslet.2012.02.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/22/2012] [Accepted: 02/22/2012] [Indexed: 11/22/2022]
|
5
|
Hachiya A, Kodama EN, Schuckmann MM, Kirby KA, Michailidis E, Sakagami Y, Oka S, Singh K, Sarafianos SG. K70Q adds high-level tenofovir resistance to "Q151M complex" HIV reverse transcriptase through the enhanced discrimination mechanism. PLoS One 2011; 6:e16242. [PMID: 21249155 PMCID: PMC3020970 DOI: 10.1371/journal.pone.0016242] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 12/08/2010] [Indexed: 11/21/2022] Open
Abstract
HIV-1 carrying the “Q151M complex” reverse transcriptase (RT) mutations (A62V/V75I/F77L/F116Y/Q151M, or Q151Mc) is resistant to many FDA-approved nucleoside RT inhibitors (NRTIs), but has been considered susceptible to tenofovir disoproxil fumarate (TFV-DF or TDF). We have isolated from a TFV-DF-treated HIV patient a Q151Mc-containing clinical isolate with high phenotypic resistance to TFV-DF. Analysis of the genotypic and phenotypic testing over the course of this patient's therapy lead us to hypothesize that TFV-DF resistance emerged upon appearance of the previously unreported K70Q mutation in the Q151Mc background. Virological analysis showed that HIV with only K70Q was not significantly resistant to TFV-DF. However, addition of K70Q to the Q151Mc background significantly enhanced resistance to several approved NRTIs, and also resulted in high-level (10-fold) resistance to TFV-DF. Biochemical experiments established that the increased resistance to tenofovir is not the result of enhanced excision, as K70Q/Q151Mc RT exhibited diminished, rather than enhanced ATP-based primer unblocking activity. Pre-steady state kinetic analysis of the recombinant enzymes demonstrated that addition of the K70Q mutation selectively decreases the binding of tenofovir-diphosphate (TFV-DP), resulting in reduced incorporation of TFV into the nascent DNA chain. Molecular dynamics simulations suggest that changes in the hydrogen bonding pattern in the polymerase active site of K70Q/Q151Mc RT may contribute to the observed changes in binding and incorporation of TFV-DP. The novel pattern of TFV-resistance may help adjust therapeutic strategies for NRTI-experienced patients with multi-drug resistant (MDR) mutations.
Collapse
Affiliation(s)
- Atsuko Hachiya
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Eiichi N. Kodama
- Division of Emerging Infectious Diseases, Tohoku University School of Medicine, Sendai, Japan
- * E-mail: (SGS); (ENK)
| | - Matthew M. Schuckmann
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Karen A. Kirby
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Eleftherios Michailidis
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Yasuko Sakagami
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kamalendra Singh
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Stefan G. Sarafianos
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- * E-mail: (SGS); (ENK)
| |
Collapse
|
6
|
Song JG, Kil EJ, Cho SS, Kim IH, Kwon ST. An amino acid residue in the middle of the fingers subdomain is involved in Neq DNA polymerase processivity: enhanced processivity of engineered Neq DNA polymerase and its PCR application. Protein Eng Des Sel 2010; 23:835-42. [DOI: 10.1093/protein/gzq059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
7
|
Herschhorn A, Hizi A. Retroviral reverse transcriptases. Cell Mol Life Sci 2010; 67:2717-47. [PMID: 20358252 PMCID: PMC11115783 DOI: 10.1007/s00018-010-0346-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/22/2010] [Accepted: 03/08/2010] [Indexed: 12/22/2022]
Abstract
Reverse transcription is a critical step in the life cycle of all retroviruses and related retrotransposons. This complex process is performed exclusively by the retroviral reverse transcriptase (RT) enzyme that converts the viral single-stranded RNA into integration-competent double-stranded DNA. Although all RTs have similar catalytic activities, they significantly differ in several aspects of their catalytic properties, their structures and subunit composition. The RT of human immunodeficiency virus type-1 (HIV-1), the virus causing acquired immunodeficiency syndrome (AIDS), is a prime target for the development of antiretroviral drug therapy of HIV-1/AIDS carriers. Therefore, despite the fundamental contributions of other RTs to the understanding of RTs and retrovirology, most recent RT studies are related to HIV-1 RT. In this review we summarize the basic properties of different RTs. These include, among other topics, their structures, enzymatic activities, interactions with both viral and host proteins, RT inhibition and resistance to antiretroviral drugs.
Collapse
Affiliation(s)
- Alon Herschhorn
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Amnon Hizi
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
8
|
Giraut A, Song XP, Froeyen M, Marlière P, Herdewijn P. Iminodiacetic-phosphoramidates as metabolic prototypes for diversifying nucleic acid polymerization in vivo. Nucleic Acids Res 2010; 38:2541-50. [PMID: 20097909 PMCID: PMC2860114 DOI: 10.1093/nar/gkp1246] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 12/23/2009] [Accepted: 12/28/2009] [Indexed: 01/30/2023] Open
Abstract
Previous studies in our laboratory proved that certain functional groups are able to mimic the pyrophosphate moiety and act as leaving groups in the enzymatic polymerization of deoxyribonucleic acids by HIV-1 reverse transcriptase. When the potential leaving group possesses two carboxylic acid moieties linked to the nucleoside via a phosphoramidate bond, it is efficiently recognized by this error-prone enzyme, resulting in nucleotide incorporation into DNA. Here, we present a new efficient alternative leaving group, iminodiacetic acid, which displays enhanced kinetics and an enhanced elongation capacity compared to previous results obtained with amino acid deoxyadenosine phosphoramidates. Iminodiacetic acid phosphoramidate of deoxyadenosine monophosphate (IDA-dAMP) is processed by HIV-1 RT as a substrate for single nucleotide incorporation and displays a typical Michaelis-Menten kinetic profile. This novel substrate also proved to be successful in primer strand elongation of a seven-base template overhang. Modelling of this new substrate in the active site of the enzyme revealed that the interactions formed between the triphosphate moiety, magnesium ions and enzyme's residues could be different from those of the natural triphosphate substrate and is likely to involve additional amino acid residues. Preliminary testing for a potential metabolic accessibility lets us to envision its possible use in an orthogonal system for nucleic acid synthesis that would not influence or be influenced by genetic information from the outside.
Collapse
Affiliation(s)
- Anne Giraut
- Katholieke Universiteit Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Minderbroedersstraat 10, 3000 Leuven, Belgium and Isthmus SARL, 13 rue Saint-Amand, F-75015, Paris, France
| | - Xiao-ping Song
- Katholieke Universiteit Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Minderbroedersstraat 10, 3000 Leuven, Belgium and Isthmus SARL, 13 rue Saint-Amand, F-75015, Paris, France
| | - Matheus Froeyen
- Katholieke Universiteit Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Minderbroedersstraat 10, 3000 Leuven, Belgium and Isthmus SARL, 13 rue Saint-Amand, F-75015, Paris, France
| | - Philippe Marlière
- Katholieke Universiteit Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Minderbroedersstraat 10, 3000 Leuven, Belgium and Isthmus SARL, 13 rue Saint-Amand, F-75015, Paris, France
| | - Piet Herdewijn
- Katholieke Universiteit Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Minderbroedersstraat 10, 3000 Leuven, Belgium and Isthmus SARL, 13 rue Saint-Amand, F-75015, Paris, France
| |
Collapse
|
9
|
Gao L, Hanson MN, Balakrishnan M, Boyer PL, Roques BP, Hughes SH, Kim B, Bambara RA. Apparent defects in processive DNA synthesis, strand transfer, and primer elongation of Met-184 mutants of HIV-1 reverse transcriptase derive solely from a dNTP utilization defect. J Biol Chem 2008; 283:9196-205. [PMID: 18218634 DOI: 10.1074/jbc.m710148200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The 2',3'-dideoxy-3'-thiacytidine drug-resistant M184I HIV-1 reverse transcriptase (RT) has been shown to synthesize DNA with decreased processivity compared with the wild-type RT. M184A displays an even more severe processivity defect. However, the basis of this decreased processivity has been unclear, and both primer-template binding and dNTP interaction defects have been proposed to account for it. In this study, we show that the altered properties of the M184I and M184A RT mutants that we have measured, including decreased processivity, a slower rate of primer extension, and increased strand transfer activity, can all be explained by a defect in dNTP utilization. These alterations are observed only at low dNTP concentration and vanish as the dNTP concentration is raised. The mutant RTs exhibit a normal dissociation rate from a DNA primer-RNA template while paused during synthesis. Slower than normal synthesis at physiological dNTP concentration, coupled with normal dissociation from the primer-template, results in the lowered processivity. The mutant RTs exhibit normal DNA 3'-end-directed and RNA 5'-end-directed ribonuclease H activity. The reduced rate of DNA synthesis causes an increase in the ratio of ribonuclease H to polymerase activity thereby promoting increased strand transfer. These latter results are consistent with an observed higher rate of recombination by HIV-1 strains with Met-184 mutations.
Collapse
Affiliation(s)
- Lu Gao
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kurzynska-Kokorniak A, Jamburuthugoda V, Bibillo A, Eickbush TH. DNA-directed DNA polymerase and strand displacement activity of the reverse transcriptase encoded by the R2 retrotransposon. J Mol Biol 2007; 374:322-33. [PMID: 17936300 PMCID: PMC2121658 DOI: 10.1016/j.jmb.2007.09.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 09/10/2007] [Accepted: 09/17/2007] [Indexed: 11/24/2022]
Abstract
R2 elements are non-long terminal repeat (non-LTR) retrotransposons with a single open reading-frame encoding reverse transcriptase, DNA endonuclease and nucleic acid-binding domains. The elements are specialized for insertion into the 28 S rRNA genes of many animal phyla. The R2-encoded activities initiate retrotransposition by sequence-specific cleavage of the 28 S gene target site and the utilization of the released DNA 3' end to prime reverse transcription (target primed reverse transcription). The activity of the R2 polymerase on RNA templates has been shown to differ from retroviral reverse transcriptases (RTs) in a number of properties. We demonstrate that the R2-RT is capable of efficiently utilizing single-stranded DNA (ssDNA) as a template. The processivity of the enzyme on ssDNA templates is higher than its processivity on RNA templates. This finding suggests that R2-RT is also capable of synthesizing the second DNA strand during retrotransposition. However, R2-RT lacks the RNAse H activity that is typically used by retroviral and LTR-retrotransposon RTs to remove the RNA strand before the first DNA strand is used as template. Remarkably, R2-RT can displace RNA strands that are annealed to ssDNA templates with essentially no loss of processivity. Such strand displacement activity is highly unusual for a DNA polymerase. Thus the single R2 protein contains all the activities needed to make a double-stranded DNA product from an RNA transcript. Finally, during these studies we found an unexpected property of the highly sequence-specific R2 endonuclease domain. The endonuclease can non-specifically cleave ssDNA at a junction with double-stranded DNA. This activity suggests that second-strand cleavage of the target site may not be sequence specific, but rather is specified by a single-stranded region generated when the first DNA strand is used to prime reverse transcription.
Collapse
Affiliation(s)
| | | | - Arkadiusz Bibillo
- Department of Biology, University of Rochester, Rochester, NY 14627-0211, USA
| | - Thomas H. Eickbush
- Department of Biology, University of Rochester, Rochester, NY 14627-0211, USA
| |
Collapse
|
11
|
Hu Z, Hatano H, Hammond SP, Smith D, Wild M, Gupta S, Whitcomb J, Kalayjian RC, Gripshover B, Kuritzkes DR. Virologic characterization of HIV type 1 with a codon 70 deletion in reverse transcriptase. J Acquir Immune Defic Syndr 2007; 45:494-500. [PMID: 17496561 DOI: 10.1097/qai.0b013e31806ada48] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We identified a deletion at codon 70 (Delta70) of HIV-1 reverse transcriptase (RT) occurring together with L74V and Q151M mutations in a sample from a tenofovir (TFV)- and abacavir (ABC)-treated patient with extensive prior antiretroviral treatment. To investigate the characteristics of this mutant, we studied the drug susceptibility, relative infectivity, and fitness of viruses carrying Delta70 and associated RT mutations. The Delta70, L74V, and Q151M mutations were introduced into Hxb2 RT by site-directed mutagenesis and expressed in HIV-1 recombinants. The Delta70 mutation increased resistance to lamivudine and emtricitabine alone and in combination with various resistance mutations and augmented resistance to ABC and didanosine when present together with L74V. A recombinant virus expressing RT from the original clinical viral sample (Delta70-PRT) exhibited greater fitness than one in which the deletion had been repaired (K70-PRT). The Delta70 mutation also increased fitness of Hxb2 wild-type and 74V and Q151M mutants. Recombinants carrying Delta70-PRT showed greater relative infectivity in the presence of ABC (but not TFV) compared with K70-PRT recombinants. These results show that Delta70 enhances resistance to certain purine and pyrimidine analogues and contributes to multinucleoside resistance in the appropriate viral genetic background.
Collapse
Affiliation(s)
- Zixin Hu
- Section of Retroviral Therapeutics, Brigham and Women's Hospital, and Division of AIDS, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Paulson BA, Zhang M, Schultz SJ, Champoux JJ. Substitution of alanine for tyrosine-64 in the fingers subdomain of M-MuLV reverse transcriptase impairs strand displacement synthesis and blocks viral replication in vivo. Virology 2007; 366:361-76. [PMID: 17532359 PMCID: PMC2045069 DOI: 10.1016/j.virol.2007.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 04/11/2007] [Accepted: 04/25/2007] [Indexed: 11/28/2022]
Abstract
A distinctive property of reverse transcriptase is the ability to carry out strand displacement synthesis in the absence of accessory proteins such as helicases or single-strand DNA binding proteins. Structure-function studies indicate that the fingers subdomain in HIV-1 reverse transcriptase contacts the template strand downstream of the primer terminus and is involved in strand displacement synthesis. Based on structural comparisons to the HIV-1 enzyme, we made single amino acid substitutions at the Tyr-64 and Leu-99 positions in the fingers subdomain of the M-MuLV reverse transcriptase to ask whether this subdomain has a similar role in displacement synthesis. In vitro assays comparing non-displacement versus displacement synthesis revealed that substitution of alanine at Tyr-64 generated a reverse transcriptase that was impaired in its capacity to carry out DNA and RNA displacement synthesis without affecting polymerase processivity or RNase H activity. However, substitution of Tyr-64 with phenylalanine and a variety of substitutions at position Leu-99 had no specific effect on displacement synthesis. The Y64A substitution prevented viral replication in vivo, and Y64A virus generated reduced levels of reverse transcription intermediates at all steps beyond the synthesis of minus strong stop DNA. The role of the fingers subdomain and in particular the possible contributions of the Tyr-64 residue in displacement synthesis are discussed.
Collapse
Affiliation(s)
- Benjamin A Paulson
- Department of Microbiology, School of Medicine, Box 357242, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
13
|
Agopian A, Depollier J, Lionne C, Divita G. p66 Trp24 and Phe61 are essential for accurate association of HIV-1 reverse transcriptase with primer/template. J Mol Biol 2007; 373:127-40. [PMID: 17804012 DOI: 10.1016/j.jmb.2007.07.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 07/16/2007] [Accepted: 07/17/2007] [Indexed: 11/21/2022]
Abstract
Preventing dimerization of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) constitutes an alternative strategy to abolish virus proliferation. We have previously demonstrated that a short peptide derived from the Trp cluster of the connection domain disrupts the RT dimer by interacting with Trp24 and Phe61 in a cleft located between the fingers and the connection domains of p51. Both Trp24 and Phe61 of p51 are essential for the stability of the RT dimer. Here, in order to understand the requirement of Trp24 and Phe61 in the p66 subunit, we have investigated their implication in the formation of RT-primer/template (p/t) complexes and in RT processivity by combining pre-steady-state and steady-state kinetics with site-directed mutagenesis. We demonstrate that both residues are essential for proper binding of the p/t and control conformational changes required for RT ordered mechanism. Trp24 and Phe61 act on p/t binding and remodeling of the catalytic site. Phe61G mutation increases the binding "on" rate of both p/t and mismatched p/t, yielding an unfavorable RT-p/t for polymerase catalysis, unable to pursue mispair extension. Considering the structure of unliganded RT, Phe61 seems to be involved in the dynamics of p66 thumb-finger interactions and in stabilization of the p/t in the catalytic site. In contrast, the p66 Trp24G mutation alters the overall kinetics of p/t binding and is essentially involved in stabilizing the RT-p/t complex by contacting the 5' overhang of the template strand. Mutation of both Trp24 and Phe61 alters mispair extension efficiency, suggesting that disruption of the tight contacts between the fingers domain and the 5' overhang of the template strand increases RT fidelity and reduces RT processivity. Taken together, these studies infer that mutations altering the aromatic nature of Phe61 or Trp24 that may occur to counteract peptide inhibitors targeting this region will generate an unstable RT exhibiting low polymerase activity and higher fidelity. As such, our work suggests that the combined application of peptide-based RT dimerization inhibitors is likely to be highly efficient.
Collapse
Affiliation(s)
- Audrey Agopian
- Centre de Recherches de Biochimie Macromoléculaire, Department of Molecular Biophysics and Therapeutic, FRE-2593 CNRS, 1919 Route de Mende, 34293 Montpellier, France
| | | | | | | |
Collapse
|
14
|
Eggink D, Huigen MCDG, Boucher CAB, Götte M, Nijhuis M. Insertions in the β3–β4 loop of reverse transcriptase of human immunodeficiency virus type 1 and their mechanism of action, influence on drug susceptibility and viral replication capacity. Antiviral Res 2007; 75:93-103. [PMID: 17416429 DOI: 10.1016/j.antiviral.2007.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/14/2007] [Accepted: 03/01/2007] [Indexed: 10/23/2022]
Abstract
Introduction of antiretroviral therapy combining protease and reverse transcriptase (RT) inhibitors has dramatically improved the quality of life and survival of patients infected with the human immunodeficiency virus (HIV). However, effective long-term therapy of HIV-infection has been severely hampered by the development of drug resistance. Resistance to antiretroviral drugs is generally conferred by specific amino acid substitutions in the target gene of the drug. Yet, occasionally gene insertions are being observed. The most commonly observed insertion is seen during substrate analogue RT inhibitor therapy and is selected in the beta3-beta4 loop of the RT enzyme. This flexible loop is located in the fingers subdomain of the enzyme and plays an important role in substrate binding. The acquisition of drug resistance related mutations or insertions might come at a price, which is reduced performance of the enzyme resulting in a diminished replication capacity of the virus. Various types of insertions have been described, and, in this review, we have summarized these data and discussed the mechanism of action of the RT inserts and their impact on both drug susceptibility and replication capacity.
Collapse
Affiliation(s)
- Dirk Eggink
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
15
|
Huigen MCDG, de Graaf L, Eggink D, Schuurman R, Müller V, Stamp A, Stammers DK, Boucher CAB, Nijhuis M. Evolution of a novel 5-amino-acid insertion in the beta3-beta4 loop of HIV-1 reverse transcriptase. Virology 2007; 364:395-406. [PMID: 17451772 DOI: 10.1016/j.virol.2007.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 01/27/2007] [Accepted: 03/17/2007] [Indexed: 11/30/2022]
Abstract
HIV-1 isolates harbouring an insertion in the beta3-beta4 loop of reverse transcriptase (RT) confer high-level resistance to nucleoside analogues. We have identified a novel 5-amino-acid insertion (KGSNR amino acids 66-70) in a patient on prolonged nucleoside combination therapy (didanosine and stavudine) and investigated which factors were responsible for its outgrowth. Remarkably, only small fold increases in drug resistance to nucleoside analogues were observed compared to wild type. The insertion variant displayed a reduced replicative capacity in the absence of inhibitor, but had a slight replicative advantage in the presence of zidovudine, didanosine or stavudine, resulting in the selection and persistence of this insertion in vivo. Mathematical analyses of longitudinal samples indicated a 2% in vivo fitness advantage for the insertion variant compared to the initial viral population. The novel RT insertion variant conferring low levels of resistance was able to evolve towards a high-level resistant replication-competent variant.
Collapse
Affiliation(s)
- Marleen C D G Huigen
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Garforth SJ, Kim TW, Parniak MA, Kool ET, Prasad VR. Site-directed mutagenesis in the fingers subdomain of HIV-1 reverse transcriptase reveals a specific role for the beta3-beta4 hairpin loop in dNTP selection. J Mol Biol 2006; 365:38-49. [PMID: 17055529 PMCID: PMC1808332 DOI: 10.1016/j.jmb.2006.09.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 09/15/2006] [Accepted: 09/19/2006] [Indexed: 11/26/2022]
Abstract
HIV-1 reverse transcriptase shares the key features of high fidelity polymerases, such as a closed architecture of the active site, but displays a level of fidelity that is intermediate to that of high fidelity, replicative polymerases and low fidelity translesion synthesis (TLS) polymerases. The beta3-beta4 loop of the HIV-1 RT fingers subdomain makes transient contacts with the dNTP and template base. To investigate the role of active site architecture in HIV-1 RT fidelity, we truncated the beta3-beta4 loop, eliminating contact between Lys65 and the gamma-phosphate of dNTP. The mutant, in a manner reminiscent of TLS polymerases, was only able to incorporate a nucleotide that was capable of base-pairing with the template nucleotide, but not a nucleotide shape-analog incapable of Watson-Crick hydrogen bonding. Unexpectedly, however, the deletion mutant differed from the TLS polymerases in that it displayed an increased fidelity. The increased fidelity was associated with reduced dNTP binding affinity as measured using the dead end complex formation. In an effort to delineate the specific amino acid residue in the deleted segment responsible for this phenotype, we examined the K65 residue. Two substitution mutants, K65R and K65A were studied. The K65A mutant behaved similarly to the deletion mutant displaying dependence on Watson-Crick hydrogen bonding, increased fidelity and reduced dNTP-binding, while the K65R was more akin to wild-type enzyme. These results underscore the key role of the K65 residue in the phenotype observed in the deletion mutant. Based on the well-known electrostatic interaction between K65 and the gamma-phosphate moiety of incoming dNTP substrate in the ternary complex structure of HIV-1 RT, we conclude that non-discriminatory interactions between beta3-beta4 loop and the dNTP in wild-type HIV-1 RT help lower dNTP selectivity. Our results show that the fidelity of dNTP insertion is influenced by protein interactions with the triphosphate moiety.
Collapse
Affiliation(s)
- Scott J. Garforth
- Department of Microbiology and Immunology, Albert Einstein
College of Medicine, 1300 Morris Park Avenue, Bronx, NY10461
| | - Tae Woo Kim
- Department of Chemistry, Stanford University, Stanford, CA
94305
| | - Michael A. Parniak
- Division of Infectious Diseases, University of Pittsburgh
School of Medicine, Pittsburgh, PA 15261
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, CA
94305
| | - Vinayaka R. Prasad
- Department of Microbiology and Immunology, Albert Einstein
College of Medicine, 1300 Morris Park Avenue, Bronx, NY10461
- Address correspondence to: Vinayaka R. Prasad, Ph.D., Professor,
Department of Microbiology and Immunology, Albert Einstein College of Medicine,
1300 Morris Park Avenue, Room GB 401, Bronx, NY 10461, Tel. 718 430-2517; Fax:
718 430-8976; E-Mail:
| |
Collapse
|
17
|
Curr K, Tripathi S, Lennerstrand J, Larder BA, Prasad VR. Influence of naturally occurring insertions in the fingers subdomain of human immunodeficiency virus type 1 reverse transcriptase on polymerase fidelity and mutation frequencies in vitro. J Gen Virol 2006; 87:419-428. [PMID: 16432030 DOI: 10.1099/vir.0.81458-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fingers subdomain of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is a hotspot for nucleoside analogue resistance mutations. Some multi-nucleoside analogue-resistant variants contain a T69S substitution along with dipeptide insertions between residues 69 and 70. This set of mutations usually co-exists with classic zidovudine-resistance mutations (e.g. M41L and T215Y) or an A62V mutation and confers resistance to multiple nucleoside analogue inhibitors. As insertions lie in the vicinity of the dNTP-binding pocket, their influence on RT fidelity was investigated. Commonly occurring insertion mutations were selected, i.e. T69S-AG, T69S-SG and T69S-SS alone, in combination with 3'-azido-2',3'-deoxythymidine-resistance mutations M41L, L210W, R211K, L214F, T215Y (LAG(AZ) and LSG(AZ)) or with an alternate set where A62V substitution replaces M41L (VAG(AZ), VSG(AZ) and VSS(AZ)). Using a lacZalpha gapped duplex substrate, the forward mutation frequencies of recombinant wild-type and mutant RTs bearing each of the above sets of mutations were measured. All of the mutants displayed significant decreases in mutation frequencies. Whereas the dipeptide insertions alone showed the least decrease (4.0- to 7.5-fold), the VAG series showed an intermediate reduction (5.0- to 11.4-fold) and the LAG set showed the largest reduction in mutation frequencies (15.3- and 16.3-fold for LAG(AZ) and LSG(AZ), respectively). Single dNTP exclusion assays for mutants LSG(AZ) and LAG(AZ) confirmed their large reduction in misincorporation efficiencies. The increased in vitro fidelity was not due to excision of the incorrect nucleotide via ATP-dependent removal. There was also no direct correlation between increased fidelity and template-primer affinity, suggesting a change in the active site that is conducive to better discrimination during dNTP insertion.
Collapse
Affiliation(s)
- Kenneth Curr
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Snehlata Tripathi
- Department of Biochemistry and Molecular Biology, UMDNJ - New Jersey Medical School, Newark, NJ 07103, USA
| | - Johan Lennerstrand
- Emory University School of Medicine, Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | | | - Vinayaka R Prasad
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
18
|
Piskareva O, Schmatchenko V. DNA polymerization by the reverse transcriptase of the human L1 retrotransposon on its own template in vitro. FEBS Lett 2006; 580:661-8. [PMID: 16412437 DOI: 10.1016/j.febslet.2005.12.077] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 12/02/2005] [Accepted: 12/27/2005] [Indexed: 10/25/2022]
Abstract
L1 elements (LINE-1s) account for 17% of the human genome and have achieved this abundance by transpositions via an RNA intermediate, or retrotransposition. Reverse transcription is a crucial event in the retrotransposition of the active human L1 element and is carried out by the L1-encoded ORF2 protein. Previously, we performed biochemical characterization of the human L1 ORF2 protein with reverse transcriptase (RT) activity (referred to as L1 RT), expressed in baculovirus-infected insect cells. In the present study, we describe the properties of DNA- and RNA-dependent DNA synthesis catalyzed by the L1 RT on the L1 templates in vitro. We found that L1 RT synthesized at least 620 of nucleotides per template binding event utilizing L1 RNA in vitro. Under processive conditions the L1 RT synthesized cDNA over 5 times longer than that Moloney murine leukemia virus RT on the heteropolymeric RNA template used in these studies. These data are the first to demonstrate that RT from the human L1 element is a highly processive polymerase among RT enzymes. This report also presents a strong evidence of lack of RNase H activity for the L1 ORF2 protein in vitro, distinguishing L1 RT from retroviral RTs. Finally, we found strong pausing for of the L1 RT during DNA polymerization within the 3' untranslated region of L1 mRNA, that is result of contribution both rGs runs of the polypurine stretch and immediately adjacent stem-loop structure. A mechanism facilitating minus-strand DNA synthesis during reverse transcription of L1 element in vivo is discussed.
Collapse
Affiliation(s)
- Olga Piskareva
- Institute of Biochemistry and Physiology of Microorganisms RAS Pushchino, Prosoekt Nauki 5, 142290 Pushchino, Moscow region, Russia
| | | |
Collapse
|
19
|
Mulky A, Kappes JC. Analysis of human immunodeficiency virus type 1 reverse transcriptase subunit structure/function in the context of infectious virions and human target cells. Antimicrob Agents Chemother 2005; 49:3762-9. [PMID: 16127051 PMCID: PMC1195396 DOI: 10.1128/aac.49.9.3762-3769.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The reverse transcriptase (RT) of all retroviruses is required for synthesis of the viral DNA genome. The human immunodeficiency virus type 1 (HIV-1) RT exists as a heterodimer made up of 51-kDa and 66-kDa subunits. The crystal structure and in vitro biochemical analyses indicate that the p66 subunit of RT is primarily responsible for the enzyme's polymerase and RNase H activities. Since both the p51 and p66 subunits are generated from the same coding region, as part of the Pr160(Gag-Pol) precursor protein, there are inherent limitations for studying subunit-specific function with intact provirus in a virologically relevant context. Our lab has recently described a novel system for studying the RT heterodimer (p51/p66) wherein a LTR-vpr-p51-IRES-p66 expression cassette provided in trans to an RT-deleted HIV-1 genome allows precise molecular analysis of the RT heterodimer. In this report, we describe in detail the specific approaches, alternative strategies, and pitfalls that may affect the application of this novel assay for analyzing RT subunit structure/function in infectious virions and human target cells. The ability to study HIV-1 RT subunit structure/function in a physiologically relevant context will advance our understanding of both RT and the process of reverse transcription. The study of antiretroviral drugs in a subunit-specific virologic context should provide new insights into drug resistance and viral fitness. Finally, we anticipate that this approach will help elucidate determinants that mediate p51-p66 subunit interactions, which is essential for structure-based drug design targeting RT heterodimerization.
Collapse
Affiliation(s)
- Alok Mulky
- University of Alabama at Birmingham, Department of Microbiology, LHRB 613, 701 South 19th Street, Birmingham, AL 35294, USA
| | | |
Collapse
|
20
|
Anarbaev RO, Khodyreva SN, Zakharenko AL, Rechkunova NI, Lavrik OI. DNA polymerase activity in water-structured and confined environment of reverse micelles. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.molcatb.2005.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Fisher TS, Darden T, Prasad VR. Mutations proximal to the minor groove-binding track of human immunodeficiency virus type 1 reverse transcriptase differentially affect utilization of RNA versus DNA as template. J Virol 2003; 77:5837-45. [PMID: 12719577 PMCID: PMC154037 DOI: 10.1128/jvi.77.10.5837-5845.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2002] [Accepted: 02/07/2003] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT), like all retroviral RTs, is a versatile DNA polymerase that can copy both RNA and DNA templates. In spite of extensive investigations into the structure-function of this enzyme, the structural basis for this dual template specificity is poorly understood. Biochemical studies with two mutations in HIV-1 RT that affect residues contacting the template-primer now provide some insight into this specialized property. The mutations are N255D and N265D, both adjoining the minor groove-binding track, in the thumb region. The N265D substitution led to a loss of processive polymerization on DNA but not on RNA, whereas N255D drastically reduced processive synthesis on both templates. This differential template usage was accompanied by a rapid dissociation of the N265D variant on DNA but not RNA templates, whereas the N255D variant rapidly dissociated from both templates. Molecular dynamics modeling suggested that N265D leads to a loss of template strand-specific hydrogen bonding, indicating that this is a key determinant of the differential template affinity. The N255D substitution caused local changes in conformation and a consequent loss of interaction with the primer, leading to a loss of processive synthesis with both templates. We conclude that N265 is part of a subset of template-enzyme contacts that enable RT to utilize DNA templates in addition to RNA templates and that such residues play an important role in facilitating processive DNA synthesis on both RNA and DNA templates.
Collapse
Affiliation(s)
- Timothy S Fisher
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461,USA
| | | | | |
Collapse
|
22
|
Menéndez-Arias L. Molecular basis of fidelity of DNA synthesis and nucleotide specificity of retroviral reverse transcriptases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:91-147. [PMID: 12102562 DOI: 10.1016/s0079-6603(02)71042-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reverse transcription involves the conversion of viral genomic RNAinto proviral double-stranded DNA that integrates into the host cell genome. Cellular DNA polymerases replicate the integrated viral DNA and RNA polymerase II transcribes the proviral DNA into RNA genomes that are packaged into virions. Although mutations can be introduced at any of these replication steps, reverse transcriptase (RT) errors play a major role in retroviral mutation. This review summarizes our current knowledge on fidelity of reverse transcriptases. Estimates of retroviral mutation rates or fidelity of retroviral RTs are discussed in the context of the different techniques used for this purpose (i.e., retroviral vectors replicated in culture, misinsertion and mispair extension fidelity assay, etc.). In vitro fidelity assays provide information on the RT's accuracy during the elongation reaction of DNA synthesis. In addition, other steps such as initiation of reverse transcription, or strand transfer, and factors including viral proteins such as Vpr [in the case of the human immunodeficiency virus type 1 (HIV-1)] have been shown to influence fidelity. A comprehensive description of the effect of amino acid substitutions on the fidelity of HIV-1 RT is presented. Published data point to certain dNTP-binding residues, as well as to various amino acids involved in interactions with the template or the primer strand, and to residues in the minor groove-binding track as major components of the fidelity center of retroviral RTs. Implications of these studies include the design of novel therapeutic strategies leading to virus extinction, by increasing the viral mutation rate beyond a tolerable threshold.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Spain
| |
Collapse
|
23
|
Fisher TS, Darden T, Prasad VR. Substitutions at Phe61 in the beta3-beta4 hairpin of HIV-1 reverse transcriptase reveal a role for the Fingers subdomain in strand displacement DNA synthesis. J Mol Biol 2003; 325:443-59. [PMID: 12498795 DOI: 10.1016/s0022-2836(02)01225-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Unlike most DNA polymerases, retroviral reverse transcriptases (RTs) are capable of strand displacement DNA synthesis in vitro, unassisted by other proteins. While human immunodeficiency virus type 1 (HIV-1) RT has been shown to possess this rare ability, the structural determinants responsible are unknown. X-Ray crystallographic and biochemical studies have indicated that the beta3-beta4 hairpin of the fingers subdomain of HIV-1 RT contains key contacts for the incoming template strand. In order to assess the possible role of the fingers subdomain in strand displacement synthesis, a set of substitutions was created at the highly conserved Phe61 residue, which is thought to contact the template strand immediately ahead of the dNTP-binding site. Purified heterodimeric RTs containing Phe61 substitutions displayed altered degrees of strand displacement synthesis on nicked and gapped duplex DNA templates with the relative order being: F61Y > or = F61L > wild-type = F61A > F61W. In order to verify that the effects on strand displacement synthesis were not an indirect effect of alterations in processivity, all Phe61 mutants were tested for processive polymerization. While the strand displacement activity of F61W RT variant was affected severely, it displayed a wild-type-like processivity. In contrast, both F61L and F61Y substitutions, despite showing enhanced strand displacement synthesis, displayed reduced processivity. In contrast, the processivity of F61A mutant, which had displayed nearly wild-type-like strand displacement synthesis, was affected most. These results showed that the effects of Phe61 substitutions on strand displacement are not due to global changes in polymerase processivity. Analysis of pause sites during DNA polymerization on double-stranded templates revealed that the wild-type and the Phe61 mutant RTs interact with the template quite differently. Modeling a 5 nt duplex DNA ahead of the dNTP-binding site of HIV-1 RT suggested a correlation between the ability of the side-chain of the amino acid residue at position 61 to stabilize the first base-pair of the DNA duplex to be melted and the degree of strand displacement synthesis. Our results confirm a role for F61 residue in processive synthesis and indicate that the fingers subdomain harbors a structural determinant of strand displacement synthesis by HIV-1 RT.
Collapse
Affiliation(s)
- Timothy S Fisher
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Golding Bldg 401, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
24
|
Lobato RL, Kim EY, Kagan RM, Merigan TC. Genotypic and phenotypic analysis of a novel 15-base insertion occurring between codons 69 and 70 of HIV type 1 reverse transcriptase. AIDS Res Hum Retroviruses 2002; 18:733-6. [PMID: 12167282 DOI: 10.1089/088922202760072375] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An HIV-1 isolate possessing a 15-base insertion between codons 69 and 70 of the reverse transcriptase (RT) gene was derived from a patient plasma sample. Investigation of the insertion sequence revealed that this mutation is an ectopic duplication of the first 15 bases of the HIV-1 envelope gene. Phenotypic analysis yielded the following increases in resistance: 371-fold to zidovudine, 84-fold to lamivudine, 32-fold to abacavir, 15-fold to stavudine, 12-fold to didanosine, and 4-fold to zalcitabine. Phenotypic studies suggested that this change does not detract from the overall fitness of the virus. Together, data from this investigation support two conclusions. First, a previously unreported mechanism exists for generating diversity in HIV-1, namely long-distance duplication of genetic material from one portion of the genome to another. Second, large insertions in this region of RT are well tolerated and can confer high levels of resistance to multiple nucleoside analogue reverse transcriptase inhibitors.
Collapse
Affiliation(s)
- Robert L Lobato
- Center for AIDS Research, Stanford University School of Medicine, 300 Pasteur Drive, Grant Building S-156, Stanford, CA 94305-5107, USA.
| | | | | | | |
Collapse
|
25
|
Duprex WP, Collins FM, Rima BK. Modulating the function of the measles virus RNA-dependent RNA polymerase by insertion of green fluorescent protein into the open reading frame. J Virol 2002; 76:7322-8. [PMID: 12072530 PMCID: PMC136336 DOI: 10.1128/jvi.76.14.7322-7328.2002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2001] [Accepted: 04/12/2002] [Indexed: 11/20/2022] Open
Abstract
Measles virus (MV) is the type species of the Morbillivirus genus and its RNA-dependent RNA polymerase complex is comprised of two viral polypeptides, the large (L) and the phospho- (P) proteins. Sequence alignments of morbillivirus L polymerases have demonstrated the existence of three well-conserved domains (D1, D2, and D3) which are linked by two variable hinges (H1 and H2). Epitope tags (c-Myc) were introduced into H1 and H2 to investigate the tolerance of the variable regions to insertions and to probe the flexibility of the proposed domain structures to spatial reorientation. Insertion into H1 abolished polymerase activity whereas introduction into H2 had no effect. The open reading frame of enhanced green fluorescent protein was also inserted into the H2 region of the MV L gene to extend these observations. This resulted in a recombinant protein that was both functional and autofluorescent, although the overall polymerase activity was reduced by over 40%. Two recombinant viruses which contained the chimeric L genes EdtagL(MMc-mycM) and EdtagL(MMEGFPM) were generated. Tagged L proteins were detectable, by indirect immunofluorescence in the case of EdtagL(MMc-mycM) and by autofluorescence in the case of EdtagL(MMEGFPM). We suggest that D3 enjoys a limited conformational independence from the other domains, indicating that the L polymerases of the Mononegavirales may function as multidomain proteins.
Collapse
Affiliation(s)
- W Paul Duprex
- School of Biology and Biochemistry, The Queen's University of Belfast, Belfast BT9 7BL, Northern Ireland, United Kingdom.
| | | | | |
Collapse
|
26
|
Briones C, Mas A, Pérez-Olmeda M, Altisent C, Domingo E, Soriano V. Prevalence and genetic heterogeneity of the reverse transcriptase T69S-S-X insertion in pretreated HIV-infected patients. Intervirology 2002; 44:339-43. [PMID: 11805439 DOI: 10.1159/000050068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The emergence of resistance to antiretroviral drugs represents one of the main reasons for treatment failure in HIV-infected persons. Resistance to multiple nucleoside analogues may result from rearrangements in the HIV pol gene, in particular one insertion of two amino acids at position 69. Herein, we examined the prevalence of this resistant genotype and its genetic heterogeneity in a group of 475 healthy pretreated HIV-positive subjects in Spain. Only 4 (0.8%) carried the codon 69 insertion. It was always found coupled to the T69S mutation. The extra amino acids were S-S in 2 subjects and S-G in the other 2. The presence of the insert was seen only in subjects previously exposed to AZT monotherapy for at least 6 months.
Collapse
Affiliation(s)
- C Briones
- Service of Infectious Diseases, Hospital Carlos III, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Sato H, Tomita Y, Ebisawa K, Hachiya A, Shibamura K, Shiino T, Yang R, Tatsumi M, Gushi K, Umeyama H, Oka S, Takebe Y, Nagai Y. Augmentation of human immunodeficiency virus type 1 subtype E (CRF01_AE) multiple-drug resistance by insertion of a foreign 11-amino-acid fragment into the reverse transcriptase. J Virol 2001; 75:5604-13. [PMID: 11356968 PMCID: PMC114273 DOI: 10.1128/jvi.75.12.5604-5613.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A human immunodeficiency virus type 1 (HIV-1) subtype E (CRF01_AE) variant (99JP-NH3-II) possessing an in-frame 33-nucleotide insertion mutation in the beta3-beta4 loop coding region of the reverse transcriptase (RT) gene was isolated from a patient who had not responded to nucleoside analogue RT inhibitors. This virus exhibited an extremely high level of multiple nucleoside analog resistance (MNR). Neighbor-joining tree analysis of the pol sequences indicated that the 99JP-NH3-II variant had originated from the swarm of drug-sensitive predecessors in the patient. Population-based sequence analyses of 82 independently cloned RT segments from the patient suggested that the variants with the insertion, three or four 3'-azido-3'-deoxythymidine resistance mutations, and a T69I mutation in combination had strong selective advantages during chemotherapy. Consistently, in vitro mutagenesis of a drug-sensitive predecessor virus clone demonstrated that this mutation set functions cooperatively to confer a high level of MNR without deleterious effects on viral replication capability. Homology modeling of the parental RT and its MNR mutant showed that extension of the beta3-beta4 loop by an insertion caused reductions in the distances between the loop and the other subdomains, narrowing the template-primer binding cleft and deoxynucleoside triphosphate-binding pocket in a highly flexible manner. The origin of the insert is elusive, as every effort to find a homologue has been unsuccessful. Taken together, these data suggest that (i) HIV-1 tolerates in vivo insertions as long as 33 nucleotides into the highly conserved enzyme gene to survive multiple anti-HIV-1 inhibitors and (ii) the insertion mutation augments multiple-drug resistance, possibly by reducing the biochemical inaccuracy of substrate-enzyme interactions in the active center.
Collapse
Affiliation(s)
- H Sato
- AIDS Research Center, National Institute of Infectious Diseases, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rezende LF, Kew Y, Prasad VR. The effect of increased processivity on overall fidelity of human immunodeficiency virus type 1 reverse transcriptase. J Biomed Sci 2001; 8:197-205. [PMID: 11287751 DOI: 10.1007/bf02256413] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We previously reported that two insertions of 15 amino acids in the beta3-beta4 hairpin loop of fingers subdomain of HIV-1(NL4-3) RT confer an increased polymerase processivity. The processivity of human immunodeficiency virus (HIV) reverse transcriptase (RT) is thought to influence the fidelity of HIV-1 RT, which tends to create errors at template sites with high termination probability. Employing the two insertion variants of HIV-1 RT (FE20 and FE103), we examined the relationship between processivity, overall fidelity and error specificity. Although the overall mutation rate was unaffected by increased processivity, one of the mutants, FE103, generated significantly fewer frameshift errors. The other mutant, FE20, generated errors at hotspots not previously observed for HIV-1 RT. Our results indicate that an increase in the polymerase processivity of HIV-1 RT does not necessarily result in a decreased mutation rate and confirm that changes in processivity alter the sequence context in which the errors are made. Furthermore, our results also reveal that the mutation frequency obtained via in vitro gap-filling reactions with wild-type HIV-1(NL4-3) RT is only 2-fold higher than that obtained via a single cycle infection assay using the same, wild-type HIV-1(NL4-3) RT sequence as part of the helper pol function [Mansky and Temin: J Virol 69:5087-5094;1995].
Collapse
Affiliation(s)
- L F Rezende
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, N.Y. 10461, USA
| | | | | |
Collapse
|
29
|
Abstract
In the continuing search for a full-length cDNA cloning method, there is no clear winner. Perfecting these techniques may require the re-engineering of reverse transcriptase. There now exist two reasonably linear methods for deriving expression signatures from small amounts of biological material, but advances in serial analysis of gene expression provide a quantitative, if expensive, alternative to these methods.
Collapse
Affiliation(s)
- S Bashiardes
- Department of Genetics, Washington University School of Medicine, Campus Box 8232, 4566 Scott Avenue, St Louis, Missouri 63110-1093, USA
| | | |
Collapse
|
30
|
Yahi N, Tamalet C, Tourrès C, Tivoli N, Fantini J. Mutation L210W of HIV-1 reverse transcriptase in patients receiving combination therapy. Incidence, association with other mutations, and effects on the structure of mutated reverse transcriptase. J Biomed Sci 2000; 7:507-13. [PMID: 11060499 DOI: 10.1007/bf02253366] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Mutation L210W of HIV-1 reverse transcriptase (RT) is one of the six main mutations that confer in vivo resistance to zidovudine. Surprisingly, this mutation has received scant appraisal and its contribution to the genotypic resistance to nucleoside analogs is not well understood. The aim of this study was: (1) to study the frequency of mutation L210W in a large collection of HIV-1 sequences (2,049 samples, including 395 DNA and 1,654 RNA sequences) from patients receiving combination therapy, and (2) to analyze its association with the other mutations that confer resistance to zidovudine. A mutation at codon 210 (mainly L210W) was found in 647 (32%) of the 2,049 sequences analyzed. Only 43 (<7%) of these 647 genomes were also mutated at codon 70 (p < 10(-5)). In contrast, 98% of these 647 sequences were also mutated at codon 215 (essentially T215Y/F), and 94% at codon 41 (mainly M41L). These data showing a close association between L210W, T215Y/F, and M41L, and a mutual exclusion between K70R and L210W, were confirmed by analyzing the sequences stored in the HIV-1 sequences available through the Stanford HIV RT and Protease Database. Follow-up studies demonstrated that L210W appeared always after T215Y/F. This observation is consistent with crystallographic studies which suggested that the aromatic side chain of Trp 210 could stabilize the interaction of Phe/Tyr215 with the dNTP-binding pocket. This molecular cross-talk between amino acid chains occurs nearby the conserved Asp113 residue. Since the lateral chain of Arg70 may also interact with Asp113, this is likely to create a sterical hindrance around this residue. Thus, the R-->K reversion of codon 70 may represent a compensatory mechanism allowing a functional rearrangement of the dNTP-binding pocket in the mutated RT.
Collapse
Affiliation(s)
- N Yahi
- UF SIDA, CHRU de la Timone, Marseille, France
| | | | | | | | | |
Collapse
|
31
|
Kaliki V, Day NK, Dinglasan E, James-Yarish M, Hitchcock R, Skapura D, Chinta A, Johnson L, Andreopoulos A, Rey A, Good RA, Haraguchi S. Emergence of HIV-1 variants containing codon insertions and deletions in the beta3-beta4 hairpin loop domain of reverse transcriptase. Immunol Lett 2000; 74:173-5. [PMID: 10996393 DOI: 10.1016/s0165-2478(00)00209-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- V Kaliki
- Department of Pediatrics, University of South Florida College of Medicine, All Children's Hospital, 801 Sixth Street South, St. Petersburg, FL 33701, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tamalet C, Yahi N, Tourrès C, Colson P, Quinson AM, Poizot-Martin I, Dhiver C, Fantini J. Multidrug resistance genotypes (insertions in the beta3-beta4 finger subdomain and MDR mutations) of HIV-1 reverse transcriptase from extensively treated patients: incidence and association with other resistance mutations. Virology 2000; 270:310-6. [PMID: 10792990 DOI: 10.1006/viro.2000.0261] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple nucleoside resistance involves specific mutational patterns of the HIV-1 pol gene that are independent of the classic mutations conferring resistance to individual dideoxynucleosides. These include a cluster of five mutations in the reverse-transcriptase (RT) coding region (A62V, V75I, F77L, F116Y, and Q151M) generally referred to as multidrug resistance (MDR) mutations, and insertions of one or several amino acid residues between codons 67 and 70 of RT, a flexible region joining two antiparrallel beta sheets (beta3-beta4 insertions). The objectives of this study were (i) to determine the prevalence of multidrug resistance genotypes (MDR mutations and beta3-beta4 insertions) in a cohort of 632 patients who were extensively pretreated with anti-HIV drugs and not responding to their current antiretroviral therapy, and (ii) to analyze the association of multidrug resistance genotypes with other resistance mutations in the RT and protease genes. Among viruses sequenced from these patients, 15 (2.4%) of them contained an insertion and 2 (0.3%) contained a deletion in the beta3-beta4 finger subdomain of RT. In 9 cases, the insertion was associated with a D67S, G, or E mutation. In addition, we identified 13 (2.1%) viruses harboring specific MDR mutations (mainly Q151M and/or A62V, V75I, F116Y). Interestingly, the A62V mutation was found in 6 of the 15 strains with an insertion, whereas the other MDR mutations were not observed in insertion mutant strains. Especially high levels of resistance to zidovudine were observed for viruses with a beta3-beta4 insertion in the background of A62V, L210W, and T215Y. Otherwise, MDR mutations and beta3-beta4 insertions were found in association with the classic mutations conferring resistance to zidovudine, lamivudine, nonnucleoside RT inhibitors, and protease inhibitors, according to treatment history. Finally, we observed a genome with a deletion of codon 70 associated with a Q151M MDR mutation. These data suggest that the emergence of HIV-1 multidrug resistance, which may occur in various genetic contexts, poses a challenging problem in formulating treatment strategies.
Collapse
Affiliation(s)
- C Tamalet
- Laboratoire de Virologie, CISIH-Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Larder BA, Bloor S, Kemp SD, Hertogs K, Desmet RL, Miller V, Sturmer M, Staszewski S, Ren J, Stammers DK, Stuart DI, Pauwels R. A family of insertion mutations between codons 67 and 70 of human immunodeficiency virus type 1 reverse transcriptase confer multinucleoside analog resistance. Antimicrob Agents Chemother 1999; 43:1961-7. [PMID: 10428920 PMCID: PMC89398 DOI: 10.1128/aac.43.8.1961] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the occurrence of multinucleoside analog resistance during therapy failure, we surveyed the drug susceptibilities and genotypes of nearly 900 human immunodeficiency virus type 1 (HIV-1) samples. For 302 of these, the 50% inhibitory concentrations of at least four of the approved nucleoside analogs had fourfold-or-greater increases. Genotypic analysis of the reverse transcriptase (RT)-coding regions from these samples revealed complex mutational patterns, including the previously recognized codon 151 multidrug resistance cluster. Surprisingly, high-level multinucleoside resistance was associated with a diverse family of amino acid insertions in addition to "conventional" point mutations. These insertions were found between RT codons 67 and 70 and were commonly 69Ser-(Ser-Ser) or 69Ser-(Ser-Gly). Treatment history information showed that a common factor for the development of these variants was AZT (3'-azido-3'-deoxythymidine, zidovudine) therapy in combination with 2',3'-dideoxyinosine or 2',3'-dideoxycytidine, although treatment patterns varied considerably. Site-directed mutagenesis studies confirmed that 69Ser-(Ser-Ser) in an AZT resistance mutational background conferred simultaneous resistance to multiple nucleoside analogs. The insertions are located in the "fingers" domain of RT. Modelling the 69Ser-(Ser-Ser) insertion into the RT structure demonstrated the profound direct effect that this change is likely to have in the nucleoside triphosphate binding site of the enzyme. Our data highlight the increasing problem of HIV-1 multidrug resistance and underline the importance of continued resistance surveillance with appropriate, sufficiently versatile genotyping technology and phenotypic drug susceptibility analysis.
Collapse
Affiliation(s)
- B A Larder
- Virco UK, Ltd., Cambridge, CB4 4GH, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Harris D, Kaushik N, Pandey PK, Yadav PN, Pandey VN. Functional analysis of amino acid residues constituting the dNTP binding pocket of HIV-1 reverse transcriptase. J Biol Chem 1998; 273:33624-33634. [PMID: 9837947 DOI: 10.1074/jbc.273.50.33624] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In order to understand the functional implication of residues constituting the dNTP-binding pocket of human immunodeficiency virus type 1 reverse transcriptase, we performed site-directed mutagenesis at positions 65, 72, 113, 115, 151, 183, 184, and 219, and the resulting mutant enzymes were examined for their biochemical properties and nucleotide selectivity on RNA and DNA templates. Mutations at positions 65, 115, 183, 184, and 219 had negligible to moderate influence on the polymerase activity, while Ala substitution at positions 72 and 151 as well as substitution with Ala or Glu at position 113 severely impaired the polymerase function of the enzyme. The K219A, Y115F, and Q151M mutants had no influence on the fidelity; Y183A, Y183F, K65A, and Q151N mutants exhibited higher fidelity on both RNA and DNA templates, while Y115A was less error-prone selectively on a DNA template. Analysis of the three-dimensional model of the enzyme-template primer-dNTP ternary complex suggests that residues Tyr-183, Lys-65, and Gln-151 may have impact on the flexibility of the dNTP-binding pocket by virtue of their multiple interactions with the dNTP, template, primer, and other neighboring residues constituting the pocket. Recruitment of the correct versus incorrect nucleotides may be a function of the flexibility of this pocket. A relatively rigid pocket would provide greater stringency, resulting in higher fidelity of DNA synthesis in contrast to a flexible pocket. Substitution of a residue having multiple interactions with a residue having reduced interaction capability will alter the internal geometry of the pocket, thus directly influencing the fidelity.
Collapse
Affiliation(s)
- D Harris
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | |
Collapse
|
35
|
Tamalet C, Izopet J, Koch N, Fantini J, Yahi N. Stable rearrangements of the beta3-beta4 hairpin loop of HIV-1 reverse transcriptase in plasma viruses from patients receiving combination therapy. AIDS 1998; 12:F161-6. [PMID: 9792372 DOI: 10.1097/00002030-199814000-00003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To study the genetic rearrangements of HIV-1 reverse transcriptase (RT) in circulating viruses from patients under combination therapy, and to determine the impact of these changes on the virological response to treatment. METHODS Blood samples were extracted from total RNA and amplified by RT-PCR. The HIV-1 RT and protease genes were sequenced by fluorescent dye terminator cycle sequencing. RESULTS Specific rearrangements in the RT coding region (between amino acids 66 and 71) were documented in nine patients. This region, which corresponds to a loop between the beta3 and beta4 strands of the fingers subdomain of RT, is involved in the interaction between the enzyme and the template primer. In vitro data with recombinant enzymes have shown the importance of this domain in the processive polymerization of HIV-1 RT. The rearrangements (eight deletions/insertions and one deletion with conservation of the reading frame) did not affect the overall secondary structure of the fingers subdomain, as assessed by the Garnier Osguthorpe Robson prediction method. The changes were generally stable over a follow-up of 10-12 months. With the exception of two cases, most of the patients of this study did not respond efficiently to antiretroviral therapy as assessed by measurements of plasma viraemia. Correspondingly, the RT and protease genes sequenced from these patients displayed numerous resistance-associated mutations. CONCLUSION Functional and stable rearrangements in the beta3-beta4 hairpin of HIV-1 RT can be found in circulating viruses from patients under combination therapy. These rearrangements may affect the virological response to antiretroviral therapy by increasing the processivity of RT, an enzymatic parameter that reflects the fidelity of the polymerization process.
Collapse
Affiliation(s)
- C Tamalet
- Laboratoire de Virologie, CHRU La Timone, Marseille, France
| | | | | | | | | |
Collapse
|
36
|
Rezende LF, Drosopoulos WC, Prasad VR. The influence of 3TC resistance mutation M184I on the fidelity and error specificity of human immunodeficiency virus type 1 reverse transcriptase. Nucleic Acids Res 1998; 26:3066-72. [PMID: 9611256 PMCID: PMC147634 DOI: 10.1093/nar/26.12.3066] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A common target for therapies against human immuno-deficiency virus type 1 (HIV-1) is the viral reverse transcriptase (RT). Treatment with the widely used nucleoside analog (-)-2', 3'-deoxy-3'-thiacytidine (3TC) leads to the development of resistance-conferring mutations at residue M184 within the YMDD motif of RT. First, variants of HIV with the M184I substitution appear transiently, followed by viruses containing the M184V substitution, which persist and become the dominant variant for the duration of therapy. In the three-dimensional crystal structure of HIV-1 RT complexed with double-stranded DNA, the M184 residue lies in the vicinity of the primer terminus, near the incoming dNTP substrate. Recent studies have shown that 3TC resistance mutations, including M184I, increase the nucleotide insertion and mispair extension fidelity. Therefore, we have examined the effects of the M184I mutation on the overall polymerase fidelity of HIV-1 RT via an M13-based forward mutation assay. We found the overall error rate of the M184I variant of HIV-1 RT to be 1.7 x 10(-5) per nucleotide. This represents a 4-fold increase in fidelity over wild-type HIV-1Hxb2RT (7.0 x 10(-5) per nucleotide) and a 2.5-fold increase in fidelity over the M184V variant (4.3 x 10(-5) per nucleotide). Of the nucleoside analog resistance mutations studied using the forward assay, the M184I variant has shown the greatest increase in fidelity observed to date. Interestingly, the M184I variant RT displays significantly altered error specificity, both in terms of error rate at specific sites and in the overall ratio of substitution to frameshift mutations in the entire target.
Collapse
Affiliation(s)
- L F Rezende
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|